992 Letters to the Editor

R. E. Hamamersley and W. G. Richards, Nature 251, 597
(1974).

’I. D. L. Wilson, J. Mol. Spectrosc. 70, 394 (1978).

’D. L. Cooper and W. G. Richards, Nature 278, 624 (1979).

'D. L. Cooper and W. G. Richards, J. Chem. Phys. (in press).

5S. Green and R. N. Zare, J. Mol. Spectrosc. 64, 217 (1976).

8. H. Van Vleck, Phys. Rev. 33, 467 (1929),

1. Kovécs, Rotational Structure in the Spectra of Diatomic
Molecules (Adam—Hilger, London, 1969).

®P. S. Bagus, “Alchemy studies of small molecules,” in
Selected Topics in Molecular Physics (Verlag Chemie, Wein~
heim/Bergstrasse, 1972).

L.-E. Berg and L. Klynning, Physica Scripta 10, 331 (1974).

Should one use complex basis functions in coordinate

rotation calculations on molecules?
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In applying the coordinate rotation method! (CRM) to
electron~molecule® scattering resonances, one attempts
to find the complex eigenvalues (Z,) corresponding to
square integrable eigenfunctions (i,) of the rotated
Hamiltonian H,. H, is obtained from the conventional
Hamiltonian by scaling the electronic coordinates r, by
the complex quantity n(r, -r;n). For a diatomic mole-
cule whose nuclei have charges Z,, Z, and positions R,,
R, H,contains kinetic energy (-n%/23} vr}), electron-
electron interactions (n 3}, 7{}), and electron-nuclei in-
teractions (-9 3Y Z, v, - R =YY Z,lr, = IR, 17Y).
The desired resonance eigenvalues of H, are usually
found by expanding ¥,(r) in some basis of square inte-
gral functions (¢, =7 ,C.{n) ¢,{r)) which are themselves
real and 7-independent, If the basis set {¢,(r)} is com-
plete, this is a perfectly reasonable expansion to make.
However, in practical applications of the CRM to elec-
tron-molecule scattering, the set {¢,} usually consists
of a finite number of (N +1) electron Slater determinants
involving molecular orbitals expressed in terms of
atomic orbitals centered at R, and R;. This set is cer-
tainly not complete, so it is quite natural to ask whether
it is even reasonable to employ this particular choice of
basis.

It is well known?® that the lowest energy eigenfunctions
of the unscaled Hamiltonian [H(n =1)] possess high am-
plitude near each of the two nuclei. This arises because
the Schrodinger equation is dominated, for r; =R,, by
-3v2r? -z ,lr,~R,!™? which, just as in the hydrogen
atom, gives large (1s) amplitude in r; space near R,.

In choosing atomic orbital basis sets for use in standard
variational calculations on H{n=1), it is important to
include functions which properly represent the locally
high amplitudes near R,, because of the strong influence
of this part of the electron density on the total electronic
energy. It is most common to employ either 1s Slater or
“tight” contracted Gaussian basis functions centered at
R, and Rp.

In considering the best choice of basis for treating the
rotated H,, it therefore seems important to guarantee
that the resultant approximations to ¢,(r) display high
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orbital amplitude at points dictated by H,. Because the
electron—nuclei interactions in H, have singularities at
r;=n"'R,, p, it is probably quite importnat to include in
any reasonable atomic orbital basis (Slater or Gaussian)
functions centered at the complex positions n™'R 4 and
n"RB. This is easily achieved in electron—-atom prob-
lems by simply choosing the coordinate origin to be at
the atomic nucleus; then "'R, =R, =0. For molecules,
this choice of origin does not remove the problem.

Because the most common procedures!'? for locating
resonance energies (Z,) within the CRM involve follow-
ing eigenenergies of H, as n is varied, all n-dependent
atomic-basis integrals (one- and two-electron) arising
in the computation (e.g., by configuration interaction)
of Z, need to be recomputed. We therefore suggest that
one employ only a few (e.g., one per nucleus) “tight”
basis functions centered at #"'R,, 7" 'R, while using
large numbers of atomic orbitals centered at R,, R.
The latter basis functions should be capable of describ-
ing the resonance wave function ,(r) in the “valence”
region and for values of r which are on the “exterior”
of the target molecule. Moreover, only those integrals
which involve the functions centered at n7!R, ., p need
to be recomputed as 7 is varied.

If the basis {¢,} is not able to describe high orbital
amplitudes at "'R,, ; then spurious imaginary contribu-
tions? can arise in the desired resonance energies and
even in the bound states which should be 7n-independent.
We believe that the “compromise basis” described
above has potential for eliminating the undesirable spu-
rious features. Rescigno ef al.? and Junker et al.?
have, in fact, already employed an approach which is
similar to that being proposed here. For example,
Rescigno ef al. employ a Slater determinant basis in
which the N “bound” orbitals of the target atom are not
even rotated (in our language, this would be analogous to
expanding the N bound orbitals in terms of the basis or-
bitals centered at n"'R,, 5, which essentially “undoes”
the effort of rotating these N electrons in H,). Only the
“active” N + 1st orbital is rotated. There is only a
slight difference between what we are proposing and what
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was used in Refs. 4, We prefer to permit the rotated
Schrodinger equation (H, - Z)$=0 to “decide” how much
of the basis orbitals at n"'R,, ; to use; in Refs, 4, the
target atom is required to use only these orbitals.

Because of the proven numerical success of the ap-
proach advocated here as documented in a somewhat
limited form in Refs. 4, we believe that it is quite wise
for researchers in this area to implement such “mixed”
basis sets.

I acknowledge support from the National Science
Foundation (Contract #7906645) and the U. S. Army Re-
search Office (Contract #¥DAAG2979C0163).
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An attractive central potential that falls off faster than
1/7* admits orbiting trajectories at all sufficiently low
positive energies. These are circular trajectories,

Ht) =7,,,(E), on which the centrifugal force just balances
the attraction to the center. There is a natural distinc-
tion between “soft” and “hard” collisions at an orbiting
energy E: no trajectory with impact parameter greater
than the orbiting impact parameter b, (E) reaches the
surface r=7v,,(E), while all trajectories with impact
parameter less than b,,,(E) not only penetrate this sur-

" face but also reach some second, inner surface »
<¥w(E}. The “boundary” trajectories separating hard
from soft collisions—the trajectories with b=b 4 (E)—
are asymptotic, as ¢- <, to the orbiting trajectories.

Orbiting in a central field therefore suggests a natural
definition of “collision complex, ” a definition that is
used in the familiar Langevin theory of ion-molecule
collisions! and in Light’s phase -space theory of chemi-
cal reactions. ?

In this note we show that orbiting trajectories exist in
noncentral fields as well and serve the same purpose of
separating soft from hard collisions.

Consider first the motion of a particle of energy E in
the field of a fixed potential V(r). We suppose that there
exists a smooth closed surface in r space—for example,
the surface of a sphere —with the following property:
Any trajectory of energy E that is tangent at =0 to any
point on the surface spends all sufficiently small ¢#0 in-
gide the surface. We suppose, in other words, that the
energy is low enough and the potential sufficiently attrac-
tive that all trajectories tangent to the surface curve
toward the inside more strongly than does the surface
itself. If the surface is that of a sphere, for example,
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we demand that at every point the radial force in exceed
the centrifugal force out:

av/er>2{E - v(r)}/7. (1)

1t is easy to see that in the case of a central potential
Eq. (1) is a sufficient condition for orbiting.

Given such a surface, we shall use the following
obvious consequence: Any trajectory of energy E that
meets the surface, coming from the outside, in fact
crosgses the surface and enters the interior.

We shall need a second surface, the surface of a large
sphere entirely surrounding the first surface, with this
property: Any trajectory of energy E that is tangent at
t=0 to any point on the surface spends all sufficiently
small ¢+ 0 outside the surface. Such a surface always
exists: we just choose it so far from the region of the
potential that trajectories tangent to it are essentially
free-particle trajectories. Trajectories that meet this
outer surface, coming from the inside, must cross the
surface and enter the exterior.

Between the inner and outer surfaces lies an open re-
gion R of r space. We shall show that there are orbiting
trajectories of energy E in this region.

Consgider a beam of particles of energy E incident on
the potential, We label each trajectory r(¢,b) by the
point b at which it crosses a plane perpendicular to the
beam in the asymptotic entrance region, and we specify
that each trajectory cross this plane at =0, r(0,b)=b.
A subset of these trajectories will cross the outer sur-
face and enter region R; the corresponding set of points
in the b plane is open and connected. Subsequently, each
of these trajectories suffers one of three fates: the
trajectory first leaves region R through the outer sur-
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