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Abstract

The procedure for applying the coordinate rotation device to the coupled-channel seattering

equations is presented. Results of applications of the method to resonances occurring in lów~energy
atom-diatom collision processes are presented. In particular, rotational Feshbach'resonances in

model (homogeneous) potentials which have also been studied by Grabenstetter and LeRoy are
examined within this novel approach, .

1. Introduction

The so-called coordinate rotation method (CRM) [1] has been
fulIy to study scattering resonances in electron-atom and
c.ollisions [2,3]. More recently, it has also been used to study r()tational p;e~
dissociation in H2 [4]. In the present work, we report the first application ofthls
technique to resonances which oGcur in closed-shelI atom-qiatom c()l1isions.
Unlike the H2 rotational predissoCiation problem, the three-atom sitmiHon
aqdressed here involvesmotion on a three-dimensional potential energy surface

(H2 involvesonly a one-dimensional curve). As a result, the diatom'siBt~.rnill
(vibrational-rotational) energy and (rotational) angular momentum::~u;t be
explicitly coupled to the corresponding quantities of the incident at()m. The

proper couplingof energy and anguhir momentum (asymptotic) basis friricti~ns > ",'

yields the usual set of coupled-channel equations. These coupled ,~ifferentfal,{,ii:i,t!~;:
, .'.,:" . ,'" ,,".,",

equations,uponapplication of th~coordinaterotationdevice,giveris~~?~,~~t: '

of coupled-cpmplex differentia.l equations for the components of thescaHe{in'g!;':
, wavefunction which correspond to various channels. . ",,~:,:~{:," 't

In Sec. 2 we obtain the set of coupled~channel differential equatións for"!l
. closed-shelI atom-diatom collision and we demonstrate how these equations

are transformed upon coordinate rotation. In Sec. 3, we indicate hp~the re-,' '.
sulting coupled-complex differential equations can be solved either by a finite
difference method or by an expansion of the (radial) scatteringwave amplitudes
in terms of square-integrable basis functions. A method for identifyingthe de-
sired metastable resonance energy (which is complex) and its accompanying
wavefunction is also outlined in Sec. 3. Section 4 contains our concluding re-
marks.
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2. Coordinate Rotated Coupled-Channel Equadons

In Figure 1we displaythe set oflab-fixed coordinates which are used to de-
scribe the orientation ({1,a) and bond length (R) ofthe diatom AB and the po-
sition (r,80,if>o)of the incident atom C relative to the center of mass of AB. In
this coordimite system the Hamiltonian can be expressed as

h2 h2' .
H =- - \7~+ U(R) - ~ \7; + V(r,8.R)

2/LAB 2/Le,AB

where /LABis the reduced mass of AB, /Le,ABis the reduced mass of C relative
to AB, and Vis the atom-diatom interaction potential. Because ABC is a tri-

. atomie system, V can only depend on R, theangle ()between the AB axis and
r. There can be no <Pdependence because of the axial symmetry of the
system., ' .

Because the total angular momentum (J) and one ofitscomponents commute
with H. it is useful to couple the AB rotor states Yjm({1,a)and the relative col-
lisional angular momentum states Y1M-m«()O,if>O)to give proper eigenstates [5]
of J2 and Jz:

(1)

.,~

1
;.1

l
.~
~
~
.~
3
l
I
1
.~

468 BACIe AND SIMONS

"'"
""

y;ff= L {IM - m,jmIJM) Yj,m({1,a)Yl,M::"'m«()O,if>O).
"m .

(2)

in writing Eq. (2) we have assumed that the only angular momenta present are
the diatpm's rotational and the atom's collisional angular momenta; we thus
have excluded open-shelle1"ectronic problems. The eigenfunctions of H which
coIT.espondto a fixed 1,M can be expanded in terrns of these angular momentum
basis functions as

\IIJM(R{1ar8oif>o) := LL Y;jlif>fl,f(r)Hvj(R)
lj v

where the Hvj(R) are vibrational eigenfunctions of the diatom in its jth rotor
level and the if>f!;!(r) are amplitudes which describe the radial motion ofC rel-
ative to AB. Substitution of the above eigenfunction into (H - E)\II = O,fol-

(3)
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lowed by premultiplieation by 1/iff~lI*vj,,~ndim~gration over {J,a,R,Oo,and</Jo
gives a set of eoupled differential,equations fof}he radia l amplitud es </Jf/;!.<,

'
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JM
Ol'loj'jov'o -- 2- r2- - 2 + Eoj- E </Jjlv2JLC.ABr dr dr r '

+ L (1/if,Y,Hv'j,1 V(rOR)Iif;ffHvj)</Jfl;! = O (4)
j/v

where Evjis the vibrational-rotational energy of A!l:

{

h2

[

Id

(

d

)

1(j + 1)
] }

-- ~- R2- - ,-E .+U (R) H .=0. (5)
2" R2 dR dR R2 OJ VJ,..AB ,

, ,

, In praetical application ofthe above coupled-chaimel [6] (cc) equations, the
range of collisionenergies (E), together withtheAB vibration-rot~tion energy
level spaeing, determines the range ofthe v and j quantum indiees: The range
ofthe interaetion potential V. together with the incident kinetie energy E de.,-
termine the maximum value of the eollisiona~angular mom.entum L The form
of V determineswhether vibrational inelastic and/or rotational in~lastie tran-
sitions will takeplace. If V.is essentiallyindependent of R, vibrational excitation
will not oeeur; similarly V must depend on'O to aehieve rotational exeitation.
Each speeific scattering problem therefore requires eareful consideration of the
ehoices of j, /, and v as wen as a consistent modeling of the interae~ion poten-
tial. ' ,- :c'; ,

Before turning to the problem of eoordinate rotatingthe above cc equatioris,
the evaluation of the potential integral appearing in Eq. (4) requires further

, diseussion. V(rOR) is most naturany expressed internis ofthe angle Obetween
,the diatomic axis and the C atolD' However, the angular momentum basis 1/iff

is expressed in terms of the lab-fixed angles Oo,</Jo.Therefore, to perform the
integral over orientation whiehappears in Eq. (4), it is useful to express the
Y/M-m(OO,</JO)functions in term~ of functions ofthe angles O,</J(Y/I'{O,</J)}:

- Y/.M-m(OO,</JO) = E DZ-m.I'(7r-a.{J,O) Y/I'(O,</J)
- I' .

(6)

where the tninsformationeoeffieients are elementsof the rotation matrices

conneeting the two coordinate systems [5]. By inserting Eq. (6) into Eq:(4) and
using well-known identities relating rotation matrices and 3-j symbo\s [5], the
desired potential integral of Eq. (4) ean be expressedas

V}/i1"',jh= (-1 )j+j'-I-l'(2j+ 1) 1/2(2/ + 1) 1/2L (~ ~ - ~)(~~ - ~)
, I'

x f Yi'/l(O,rJ»H;"j'(R)V{~,8,R)Y/I'(0,rJ»Hoj(R)R2 sinO dRdOdrJ>
(7)

\

Now that Vand the angularrrtomentum functions are expressed in terms of a
common coordinate system, thisjntegral can, in principle, be done. To do so
would, in ge~eral, require a two-dimensional numerical integration for each value



Lmax ..

v= L VL(r,R)PL(COSO)
L=O

By separating out t11eangular dependence of V, one can.perform the Oand cf>
integrals appearing in Eq. (7), thereby reducing the Vintegral to

(8)
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of ther coordinate. Because such numerical integrationsare not usualIy prac-
tical, it is quite common to introduce an explicit functionai form for the potential
V. The most cómmonlyused expressioninvolve!;writing Vas a sum of terms each
having a different ()dependence: '

Vjf,"',jll' = (-I)j+j'-I-I'U]I/2U']1/2[1]1/2[l']I/2L L
.' L' I"

1'., J )( j I J )p. -' p. o p. - p.

I I' L I I' L',. f
.

( < . 2 )
X (-1)1"(0 o0)( p.- p.ot .' H c'j' R) Vd;,R)Hvj(R)R dR (9

which now requires only a one-dimensional integration()ver R. Furthersim-
plification of this coupling integral requires explicit chojcesfor the VL(r,R).:
We shalI not pursue this matter furtheiiri the present secti6n; such discussions
are better left to the folIowing section which deals,with theapplication of the
inethods outlined here. . ,;' "'," .

In'the so-calIed complex coordinate rotation inethod, one multiplies, in the
relevant Schrodinger equation, the spatial coordinate o(thescattered particle
by the complex quantity exp(i17).The resultant complex,-scaled Hamiltonian
is known to possess the same'bound-state energies as the original Hamiltonian
plus.additional square-integrable eigenstates whichhave cClfuplexeigehenergies
E = Er- ir /2~and which correspond t6 the sdught-after mefastable resonance
states. The fact that the resonance states become square integrable upon coor-
dinate rotation implies that one can locate such reso.nanceS"accurately by ap-
proximating (expanding) the eigenfunctions of therotated Hamiltonian in a
basis set consisting of square-integrable functions.Basis setswhich are appro-
priate tothe atbm-diatom scattering problem considered here will be discussed
briefly below. . "

The replacement of r, the C-to-ABdistance, byr exp(i17)results in the fol-
lowing set of coordinate-rotated (CR) coupled-chaimelequati?ris

.'

{

-h2

[

Id

(

d

)

l(l + 1)
] }

ono/,/ov'v exp(-2i17)- 2"- r2- - 2' + €vj':'"E cf>fl;!
2}Lc.ABr dr dr r

+ L (if;},f,Hv'fl V(r exp(i17),O,R)1if;}f1Hvj)cf>!/;f= O
jlv

Of course, the coupling matrix elements can be further simplified, as in Eq. (9),
by introducing the expansion for V(r,O,R) shown in Eq. (8). In addition, the
complex scaling of Vis greatly facilitated if one chooses functional fClrmsfor
V(r,O,R) or VHr,R) in which,the r dependenc~is homogel1eClus[l]. Fórex-
ample,the Lennard-Jones function,V2(r,R}= a'2(R)r-:n :.b2(R) r-6 scales
easily under -- r exp(i17)to become V[1:ex,p(i17);R]=;='lz2r;12exp(-12i17)-

:? ,.:::fY:(",;;: 'i. i j" "'f' ' "i,~i "::!i;/i\fi\;;:2,';;';;\d)\~;;i;z%':"j"J\i!;;: '"" 'J

(lO)
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b2r-;Pexp( -6i11). However, the Morse functionDI1 - exp[ -(r re)]J2does
not scale homogeneously. The value of using a functional form which scales
homogeneously is obvious. In this case, the integrai displayed in-Eq. (9) reduces
to a sum of integrals which are 11independent (and, hence, evaluated once and
for all) multiplied by various powers of exp( -iTJ). As a result, the evaluation
of the TJdependence of the Cc differential equation is greatly simplified.

If one were-to use an ab initio potential energy surface for V(r.8.R) in Eq.
(7), orie would be forced to compute, as Morokuma and George [7] did for
HeH2+, the "electronic energy" V using ab iniiio quantum chemical tools at
the "geometry" [r exp(i11),8,R]. This,' of course, requires the evaluation of
complex electron-nucleus interaction integra-ls and the location of a complex
"electronic energy." It is, in fact, our intent to eventually perform such calcu-
lations in connection with our investigation of the dissociative lifetimes of
electronically excited metastable states.of triatomic molecules. However, for'
the immediate future, we intend to explore the utility of the coordinaterotation -
method in atom-diatom resonance situations which involve potentials having
homogeneous r dependence and which have already been examined by other
inethods in the literature. That is, we want to check the results of our approach
against those which have been obtainerl by others using well-established tech-
niques of scatteringtheorY:Clearly, our goal is to reproduce the existing results
with less computational effort and to then move on to more difficult problems

s~ch as arise in using ab initio nonseparabie forms for V[~ exp(iTJ),8,R].

"
s.

,-c,.

3. SoIutionoCthe CRCCEquations

According to the philosophy of the coordinate rotation method, we should
expand' the amplitudes «pj/v(r)! (the fixed index J.M is suppressed for conve-
nience) iJia square-integrable basis {bn(r)} and then look for the (coniplex) ei-
genvalues Ej,I(11)ofthe resulting secular equatiorts. These eigenvalues will;of

- course;'depend on the "rotation angle" 11.'By plotting the complex EiTJ) (Ej,I
= Ej.l.r- ir j,I/2)as 11is varied;' we,can thcn obtain so-called 11trajectories for
each of the eigenenergiesEi 11). -

. The desired resonance eigenvalue is the one which, for 11> tan-l (r j,I/2Ej,I.r),
.Is relatively independent of 11.

The primary difficulties involved in implementing the process outlined above
have to do with basis set choice and the efficient identitication of the resonance
eigenvalue.' If N basis functions are used to expand the <Pj/v.one obtains an N.
d/odrdv-dimensionalsecular problem, where dl. dj. and dv are the number of.
l.j. and v quantumnumbers included. Clearly, this overalldimensioncan become
quite large even for relatively "simpIe" three-atom systems. For these reasons,
it is ofutmost importance that square-integrablebasis functions bechosen very
judiciously (to span the important region of r space) and that numerical methods
be used which permit oneto'find eigenvalues of the (complex symmetric) secular
problem within rather narrow energy ranges. 'That is, methods which locate
either all or the lowest few roots of the secular problem are not practical. Pro-

--
'I
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ceduressuch as the inverse iteration scheme must be used to search foreigen-
energies, which are then checked for T/independence, within a range of energies
(as dictated by the energy range of the incident colliding atom).

In the initial prototype ea1culations which we are presently undertaking, we
are exploring the use both of Gaussian basis fuhctions having diff,,)rent"centers"
rn and exponents anlbn(r) = exp[-a~(r - rn)2]},and of "unit square" basis
funetions [Sn(r)] whieh can be expressed as differenees betweeil Heaviside
funetions ISn(r) = 8[r - (n + l)a] - O(r- na), O~ n ~ NI where a is thestep
unit alongthe r axis.The useof theseSn(r) basisfunctionsgivesriseto the fa-
miliar set of finite-difference equations which arise from Eqs. (lO):

[

. -h2' '-

(

-- - l(l+ 1)-
)

ónó/,/óv'v exp(-21T/)-2 a 2 CPn+1+ CPn-l- 2CPn- 2 CPnILe.AR n

, + €Vj"i>"- E"i>n
]

'+ L (1/;j'I'Hv'lV{na exp(iT/):O,R)l1/;j/Hv>"i>n= a (11)
~ - ., ,

, where"i>n E cp(na)-and the indices J,M.},l,v have been suppressed.
By arranging the set ofamplitudes I"i>j/v(r = na), n = O, 1, . . . , NI into a

column vector ~ whieh is partitioned int9,itsjlv components, the above equations
can be expressed in matrix form as

~
~

~

,

:j
~
1
f
,j
1

J
t
I
I

(H + V ~ E)"i>= ónó;,/óvlv(H/ + €vj -' E) <J?j/v+ L Vj'l'v'.j/v <J?j/v= O (12)
, j/v "

where the identification of the H and V matrices from Eq. (11) is elear. This set
of coupled (for the various j,l,v channels) finite-difference equations can be
solved for the (compIex) efgenenergies EJl and the corresponding amplitude
I"i>JlJ/v(na)1.By examining the trajectories of the E Jl as~is varied, one can identify
the desired resonance roots.

To illustrate how the above-described procedures are carried out in praetice,
we report here the first results of applying the CRCCmethod to a model atom-
diatom collision which has been investigated independently by Grabenstetter
and Le Roy [8] using another approach. In these calculations, the interaction
potential V(R,r,O) is taken to be a sum of a spherical part Vo(r)-and an aniso-
tropie part V2(r) P2(COSO)with Voand V2given in the Lennard-Jones form:

, ,

VO,2 = 4€[bo,2(IT/r)12 - aO.2(IT/r)6] (13)

The numerical values ofthese potential parameters and all other information
needed to specify the model iue given in Table I.

Because Vis assumed to be independent ofR, we are explicitly exeluding ,

vibrational irielastic everits from eonsideration. Thus, we remove the vibrational
quantum states (v,v') from our basis and concentrate on the coupling of rbta-
tional and translational motion.

The Gaussian basis set chosen for use in these calculations consists of 15

functionslexp[-d(r - rj)2]}all havingexponentd =20,and centers rj = 3.3
+ j X 0.372 A (O~ j ~.14). These posjtions span the region of r space in w.hich
Vis significant (3 < r < 8 A). The exponent was chosen.to permit substantial
overlap between neighbor Gaussians.

1
,jIJ
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TABLE I. Parameters cnaracterizing the model system and the computed resonance energies.

JI.(amu)

Bd (cm-I)

E (cm-I)
- O"(A) .

00
Q2

bo
b2

1.981
60.551
60.408

3.4745
1.00
0.09
1.00
0.5

Resonance energy (cm-l) Resonance width (cm-I)

Grabenstetter and Le Roy [8]
Present work

338.13
342.93

0.16
0.25

In the collision energy range examined by Grabenstetter and Le Roy, oniy
thej =Oandj =2 states ofthe (presumed homonuclear) diatom are likely to
play an important role (the j = O-- j = 2 excitation energy is 363.306
cm-l). .

In examining the J =Ochannel, we are then restricted to collisional angular
_momenta (/) of l = Oand l =2. :H:ence,ou~ two coupled channels are labeled
j = l =Oandj = l = 2.These two channels combine with our chosen 15 basis
functions to yield matri ces in Eq. (lO) of dimension 30.

. The 30 "Complexeigenvalues of the resulting secular problem were obtained
at many values ofthe rotation angle (71).In fact, 71was permitted to assum~
complexvalues [exp(i71) = a exp(iO)] where 'the amplitude a is thought of as
being related to the "usual" scaling of wavefunctions arising in, for example,
treatment of the virial theorem, and O isothe "true angle" of rotation in the
complex piane. By examining Otrajectories of aU 30 eigenvalues a= 0.85,0.90,
1, 1.075, 1.080, 1.083, 1.085, 1.087, and 1.10, several of which are shown in
Figure 2, in steps of tlO = 1 X 10-3 rad, we were able tojdentify one energy level
which became relatively stable (Oindependent) for O~ 13 X 1O~3rad. The va1ue
of a which gave the most stable Otrajectory was a = 1.085. The so-caUedsta-
bility "cusp" (see Fig. 2) in the optimum Otrajectory occurred at 0= 14 X 10-3
rad, at which the complex eigenvalue was E = (342.93 - iO.124) cm-l. For this
same model potential, Grabenstetter and Le Roy found the resonance energy -
to be 338.13 cm-l and to have a width (r = -2 lmE)ofr = 0.16cm-l.Ou~.
results, which required about 1 min of cpu time per Ovalue on the Utah DEC
2060 computer, are thus in reasonably good agreement with those of Le Roy
ctd .

In examining the natureof the eigenvector of Eq. (10) corresponding to the
above resonance eigenenergy, we find the j = l = 2 components to be consider-
ably larg er than those for j = l = O,thereby indicating the rotational Feshbach
nature of this scattering resonance. .

Based on the results of this initial work, we are encouraged about the potential
utility of the coordinate rotation method in treating atom-diatom collision
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Figure 2. A collection of fJ trajectories. The fJ increment is 1 X 10-3 rad, begimi.ing at fJ =
0.0 rad; a = (O) 1.087, (8) 1.085, (o) 1.083, (~) 1.080, (8) 1.075.

resonanees. We are presently applying this deviee to other"model" problems
treated by Grabenstetter and Le Roy whieh involve signifieantly more aniso-
tropie potentials. In the next phase of our work on this projeet, we plan to study
lifetimes both of metastable van der Waals' eomplexes sueh as Ar-HeI and
of predissoeiating (exeited eleetronie) states of.triatomic moleeules sueh as
HCN. .

Certainly these eoordinate rotation ealculations do not provide the same
wealth of detail about the seattering proeess as is obtained in fulI quantal solu-
tions of the eoupled-ehannel equations with proper boundary eonditions; the
present method is designed to evaluate lifetimes and resonanee energies. On the
other hand, these first results do indieate the praeticality ofthe approaeh and
do suggest that this tool might be a valuabie means, to obtaining information
about lifetimes for systems whieh would not permit fulIsolutions of the seattering
differential equations and relevant boundary eonditions~
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