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Abstract

The procedure for applying the coordinate rotation device to the coupled-channel scattering
equations is presented. Results of applications of the method to resonances occurring in low-energy
atom-diatom collision processes are presented. In particular, rotational Feshbach resonances in
model (homogeneous) potentials which have also been stud:cd by Grabenstetter and Le Roy are
examined within this novel approach. :

1. Introduction

The so-called coordinate rotation method (CRM) [1] has been used success-
fully to study scattering resonances in electron-atom and electron-molecule
collisions [2, 3]. More recently, it has also been used to study rotational pre-
dissociation in Hy [4]. In the present work, we report the first application of this
technique to resonances which occur in closed-shell atom-diatom collisions.
Unlike the Hj rotational predissociation problem, the three-atom situation
addressed here involves motion on a three-dimensional potential energy surface
(H3 involves only a one-dimensional curve). As a result, the diatom’s internal
(vibrational-rotational) energy and (rotational) angular momentum must be
explicitly coupled to the corresponding quantities of the incident atom. The
proper coupling of energy and angular momentum (asymptotic) basis functions
yields the usual set of coupled-channel equations. These coupled differential
equations, upon application of the coordinate rotation device, give rise to a set
of coupled-complex differential equations for the components of the scattering

- wavefunction which correspond to various channels.
In Sec. 2 we obtain the set of coupled-channel differential equations for a
" closed-shell atom-diatom collision and we demonstrate how these equations
are transformed upon coordinate rotation. In Sec. 3, we indicate how the re-
sulting coupled-complex differential equations can be solved either by a finite
difference method or by an expansion of the (radial) scattering wave amplitudes
in terms of square-integrable basis functions. A method for identifying the de-
sired metastable resonance energy (which is complex) and its accompanying
wavefunction is also outlined in Sec. 3. Section 4 contains our concludmg re-
marks.
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2. Coordinate Rotated Coupled-Channel Equations

In Figure 1 we display the set of lab-fixed coordinates which are used to de-
scribe the orientation (8,«) and bond length (R) of the diatom 4B and the po-
sition (r,8g,¢¢) of the incident atom C relative to the center of mass of 4B. In

this coordinate system the Hamiltonian can be expressed as <
K2
H= - V& + UR) — VZ+ V(r.0,R) (1)
248 2pc.as

where p 45 is the reduced mass of AB, uc 4p is the reduced mass of C relative
to AB, and V is the atom-diatom interaction potential. Because ABC is a tri-
atomic system, ¥ can only depend on R, the angle f between the 4B axis and
r. There can be no ¢ dependence because of the axial symmetry of the
system. : .

Because the total angular momentum (J) and one of its components commute
with H, it is useful to couple the AB rotor states ¥, (8,«) and the relative col-
lisional angular momentum states ¥jy—n (6o,¢0) to give proper eigenstates [5]
of J2and J,:

M= (IM — mjm|IM) Y;m(B.a) Y1 rr—m(00,60) (2

In writing Eq. (2) we have assumed that the only angular momenta present are
the diatom’s rotational and the atom’s collisional angular momenta; we thus
have excluded open-shell electronic problems. The eigenfunctions of H which
correspond to a fixed J,M can be expanded in terms of these angular momentum
basis functions as

WV u(RBarbodo) = );_Z Vi (r)Hyi(R) 3)
i

where the H,;(R) are vibrational eigenf unctions of the diatom in its Jjth rotor
level and the ¢}/ (r) are amplitudes which describe the radial motion of C rel-
ative to 4B. Substitution of the above eigenfunction into (H — E)W¥ = 0, fol-

™
Figure 1. Lab-fixed coordinate system used in this work.
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lowed by premultiplication by Y/ H; »» and integration over 8,a,R, 0o, and q&o
gives a set of coupled differential equations for the radial amplitudes ¢7:

Rl e g‘ ST
e L Z,H.C,Ag J"Zd?‘ dr, 2

+ €pj — E]é;ﬂ/

+* Z (\l’ Hv; |V(r6R)[VJMHvJ)¢'JIu =0 (4)

where ¢, is the vibrational—rotanonal energy of AB:

Lo lod i d J(J"'l)_ }
[ 2#‘43 deR (R dR) ] ELJ+U(R) ij 0 (5)

In practical application of the above couplcd_ -channel [6] (CC) equations, the
range of collision energies (£), together with the AB vibration-rotation energy
level spacing, determines the range of the v and j quantum indices. The range
of the interaction potential ¥ together with the incident kinetic energy E de-
termine the maximum value of the collisional angular momentum /. The form
of ¥ determines whether vibrational inelastic and /or rotatjonal inelastic tran-
sitions will take place. If ¥ is essentially independent of R, vibrational excitation
will not occur; similarly ¥ must depend on @ to achieve rotational excitation.
Each specific scattering problem therefore requires careful consideration of the
choices of j, /, and v as well as a consistent modeling of the interaction poten-
tial.

Before turning to the problem of coordinate rotating the above CC equatlons,
the evaluation of the potential integral appearing in Eq. (4) requires further
discussion. V(rfR) is most naturally expressed in terms of the angle f between
the diatomic axis and the C atom. However, the angular momentum basis ¥/}
is expressed in terms of the lab-fixed angles f,¢0. Therefore, to perform the
integral over orientation which appears in Eq. (4), it is useful to express the
Yiasr—m(6o,00) functions in terms of functions of the angles 0,4 {¥7,(0,9)}:

Yirr-m(oib0) = X Dl (7—,8,0)Y7, (0,8) )

where the transformation coefficients are elements of the rotation matrices
connecting the two coordinate systems [5]. By inserting Eq. (6) into Eq. (4) and
using well-known identities relating rotation matrices and 3-j symbols [5], the
desired potential integral of Eq. (4) can be expressed as

Vil jie = (=1 =122 + 1)172 (27 + 1)'/2 Z Gl =Dt n

X f Y7u(0,0)Hyy(R)V(r,0,R)Y1,(0,6)H,;(R)R? sinf dRdOd¢  (7)

Now that V and the angular momentum functions are expressed in terms of a
common coordinate system, this integral can, in principle, be done. To do so
would, in general, require a two-dimensional numerical integration for each value
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of the r coordinate. Because such numerical integrations are not usually prac-
tical, it is quite common to introduce an explicit functional form for the potential
V. The most commonly used expression involves writing ¥ as a sum of terms each
having a different 0 dependence:

Limax :
V=73 Vi(r,R)P(cos b) (8)
: L=0
By separating out the angular dependence of ¥, one can perform the 6 and ¢
integrals appearing in Eq. (7), thereby reducing the V'integral to

Vifeo jio = (- D)=L ]""[*’1'/2[1’]”2 ): Z €l D0 )

X (=D E 5L 6 fH(;(R)VL(FR)Hw(R)RIdR 9)

which now requires only a one-dimensional integration over R. Further sim-
plification of this coupling integral requires explicit choices for the V. (r,R).
We shall not pursue this matter further in the present section; such discussions
are better left to the following sectlon whlch deals with the apphcatlon of the
methods outlined here.

In the so-called complex coordmate rotation method, one multiplies, in the
relevant Schrodinger equation, the spatial coordinate of the scattered particle
by the complex quantity exp(in). The resultant complex-scaled Hamiltonian
is known to possess the same bound-state energies as the original Hamiltonian
plus additional square-integrable eigenstates which have complex eigenenergies
E = E, —iI"/2 and which correspond to the sought-after metastable resonance
states. The fact that the resonance states become square integrable upon coor-
dinate rotation implies that one can locate such resonances accurately by ap-
proximating (expanding) the eigenfunctions of the rotated Hamiltonian in a
basis set consisting of square-integrable functions. Basis sets which are appro-
priate to the atom-diatom scattering problem considered herc will be discussed
briefly below.

The replacement of 7, the C-to-AB distance, by r exp(in) results in the fol-
lowing set of coordinate-rotated (CR) coupled-channel equations

. —h? 1(1 + 1) %
5_,*_,5;*;5er Iexp( 211}) 2,(1,-;}_43[!‘2 dr ( d?'] ] €oj ] ‘-b;fv

+Z<¢f:fHLf,f|V(r exp(in),0,R)|WIMH ;) oI =0  (10)

Of course, the couplmg matrix elements can be further simplified, as in Eq. (9),
by introducing the expansion for ¥(r,0,R) shown in Eq. (8). In addition, the
complex scaling of V is greatly facilitated if one chooses functional forms for
V(r,0,R) or Vi(r,R) in which the r dependence is homogeneous [1]. For ex-
ample, the Lennard-Jones function V»(r,R) = a5(R) r~12 — by(R) r—scales
easily under r — r exp(in) to become V[r exp(in),R] = a;r~12 exp(—12in) —
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bor—6 exp(—6in). However, the Morse function D{l — exp[—(r = r.)]}* does
not scale homogeneously. The value of using a functional form which scales
homogeneously is obvious. In this case, the integral displayed in Eq. (9) reduces
to a sum of integrals which are 7 independent (and, hence, evaluated once and
for all) multiplied by various powers of exp(—in). As a result, the evaluation
of the n dependence of the cC differential equation is greatly simplified.

If one were to use an ab initio potential energy surface for ¥(r,0,R) in Eq.
(7), one would be forced to compute, as Morokuma and George [7] did for
HeH?*, the “electronic energy” V using ab initio quantum chemical tools at
the “geometry” [r exp(in),0,R]. This, of course, requires the evaluation of
complex electron-nucleus interaction integrals and the location of a complex
“electronic energy.” It is, in fact, our intent to eventually perform such calcu-
lations in connection with our investigation of the dissociative lifetimes of
electronically excited metastable states of triatomic molecules. However, for’
the immediate future, we intend to explore the utility of the coordinate rotation
method in atom-diatom resonance situations which involve potentials having
homogeneous r dependence and which have already been examined by other
methods in the literature. That is, we want to check the results of our approach
against those which have been obtained by others using well-established tech-
niques of scattering theory. Clearly, our goal is to reproduce the existing results
with less computational effort and to then move on to more difficult problems
such as arise in using ab initio nonseparable forms for ¥[r exp(in),0,R].

3. Solution of the CRcC Equations

According to the philosophy of the coordinate rotation method, we should
expand the amplitudes {¢ ito(r)} (the fixed index J,M is suppressed for conve-
nience) in a square-integrable basis {b,(r)} and then look for the (complex) ei-
genvalues E ,(n) of the resulting secular equations. These eigenvalues will, of

* course, depend on the “rotation angle” n. By plotting the complex E (1) (E,
= E,,—iI',/2) as n is varied, we can then obtain so-called 7 trajectories for
each of the eigenenergies E (7).

The desired resonance eigenvalue is the one which, for n > tan=! (I',/2E,, ),
is relatively independent of 7.

The primary difficulties involved in implementing the process outlined above
have to do with basis set choice and the efficient identification of the resonance
eigenvalue. If IV basis functions are used to expand the ¢;;,, one obtains an N-
drdj-d,-dimensional secular problem, where d;, d;, and d,, are the number of
1, j, and v quantum numbers included. Clearly, this overall dimension can become
quite large even for relatively “simple” three-atom systems. For these reasons,
it is of utmost importance that square-integrable basis functions be chosen very
judiciously (to span the important region of r space) and that numerical methods
be used which permit one to find eigenvalues of the (complex symmetric) secular
problem within rather narrow energy ranges. That is, methods which locate
either all or the lowest few roots of the secular problem are not practical. Pro-
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cedures such as the inverse iteration scheme must be used to search for eigen-
energies, which are then checked for 5 independence, within a range of energies
(as dictated by the energy range of the incident colliding atom).

In the initial prototype calculations which we are presently undertaking, we
are exploring the use both of Gaussian basis functions having different “centers”
rn and exponents a,{b,(r) = exp[—a,(r — r,)?]}, and of “unit square” basis
functions [S,(r)] which can be expressed as differences between Heaviside
functions {S,(r) = 6[r — (n+ 1)a] — 6(r — na), 0 < n < N}where a is the step
unit along the r axis. The use of these S, (r) basis functions gives rise to the fa-
miliar set of finite-difference equations which arise from Egs. (10):

o A e — - d+1)-
070110070 [eXP(—ﬁn) a4 (¢n+l + Gn-1— 260 — (—n—;lqha

2pic.a8 _ K
+ Epjan = Ean} + IZ (\bj’l’Hn’lV(na.e'xp(in)»asR)h!’ﬂHv)‘;n =0 (11)
[jv

where ¢, = ¢(na) and the indices J,M,j,.,v have been suppressed.

By arranging the set of amplitudes {¢;, (* = na), n =0,1,..., N}intoa
column vector ® which is partitioned into its jlv components, the above equations
can be expressed in matrix form as

H+V = E)G = y5dnboe(Hi + € = E) o+ T Viro oo = 0 (12)
Jlv

where the identification of the H and V matrices from Eq. (11) is clear. This set
of coupled (for the various j,/,v channels) finite-difference equations can be
solved for the (complex) eigenenergies E, and the corresponding amplitude
{¢.jiv(na)}. By examining the trajectories of the E,, as n is varied, one can identify
the desired resonance roots.

To illustrate how the above-described procedures are carried out in practice,
we report here the first results of applying the CRCC method to a model atom-
diatom collision which has been investigated independently by Grabenstetter
and Le Roy [8] using another approach. In these calculations, the interaction
potential V(R,r,0) is taken to be a sum of a spherical part Vy(r) and an aniso-
tropic part ¥(r) Pa(cosfl) with ¥ and V> given in the Lennard-Jones form:

Vo2 = 4€[bo2(0/r)'2 — ag2(a/r)6] (13)

The numerical values of these potential parameters and all other information
needed to specify the model are given in Table I.

Because V is assumed to be independent of R, we are explicitly excluding -

vibrational inelastic events from consideration. Thus, we remove the vibrational
quantum states (v,0”) from our basis and concentrate on the coupling of rota-
tional and translational motion.

The Gaussian basis set chosen for use in these calculations consists of 15
functions {exp[—d(r — r;)?]} all having exponent d = 20 and centers r; = 3.3
+j X 0.372 A (0 < j < 14). These positions span the region of r space in which
V is significant (3 < r < 8 A). The exponent was chosen to permit substantial
overlap between neighbor Gaussians.

g
E
1
:
b |
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TABLE L. Parameters characterizing the model system and the computed resonance energies.

# (amu) 1.981

Bs (cm™1) 60.551

€(cm™1) 60.408

c(A) - : 3.4745

dp 1.00

as : 0.09

bo 1.00

b2 0.5

Resonance energy (cm™!) Resonance width (cm™!)

Grabenstetter and Le Roy [8] 338.13 0.16
Present work 342.93 0.25

In the collision energy range examined by Grabenstetter and Le Roy, only
the j = 0 and j = 2 states of the (presumed homonuclear) diatom are likely to
play an important role (the j = 0 — j = 2 excitation energy is 363.306
cm™l),

In examining the J = 0 channel, we are then restricted to collisional angular
momenta (/) of / = 0 and / = 2. Hence, our two coupled channels are labeled
j=1=0andj=1=2. These two channels combine with our chosen 15 basis
functions to yield matrices in Eq. (10) of dimension 30.

The 30 complex eigenvalues of the resulting secular problem were obtained
at many values of the rotation angle (7). In fact, n was permitted to assume
complex values [exp(in) = « exp(if)] where the amplitude « is thought of as
being related to the “usual” scaling of wavefunctions arising in, for example,
treatment of the virial theorem, and # is the “true angle” of rotation in the
complex plane. By examining 6 trajectories of all 30 eigenvalues o = 0.85, 0.90,
1, 1.075, 1.080, 1.083, 1.085, 1.087, and 1.10, several of which are shown in
Figure 2, in steps of A8 = 1 X 1073 rad, we were able to identify one energy level
which became relatively stable (f independent) for # 2 13 X 1073 rad. The value
of o which gave the most stable § trajectory was o = 1.085. The so-called sta-
bility “cusp” (see Fig. 2) in the optimum 8 trajectory occurred at § = 14 X 103
rad, at which the complex eigenvalue was E = (342.93 — i0.124) cm™!. For this
same model potential, Grabenstetter and Le Roy found the resonance energy
to be 338.13 cm~! and to have a width (I' = =2 ImE) of I' = 0.16 cm™!. Our
results, which required about 1 min of CPU time per 6 value on the Utah DEC
2060 computer, are thus in reasonably good agreement with those of Le Roy
et al.

In examining the nature of the eigenvector of Eq. (10) corresponding to the
above resonance eigenenergy, we find the j = / = 2 components to be consider-
ably larger than those for j = / = 0, thereby indicating the rotational Feshbach
nature of this scattering resonance.

Based on the results of this initial work, we are encouraged about the potential
utility of the coordinate rotation method in treating atom-diatom collision
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Figure 2. A collection of f trajectories. The # increment is 1 X 1073 rad, beginning at § =
0.0 rad; « = (O) 1.087, (®) 1.085, (00) 1.083, (&) 1.080, (W) 1.075.

resonances. We are presently applying this device to other “model” problems
treated by Grabenstetter and Le Roy which involve significantly more aniso-
tropic potentials. In the next phase of our work on this project, we plan to study
lifetimes both of metastable van der Waals’ complexes such as Ar—HCI and
of predissociating (excited electronic) states of triatomic molecules such as
HCN.

Certainly these coordinate rotation calculations do not provide the same
wealth of detail about the scattering process as is obtained in full quantal solu-
tions of the coupled-channel equations with proper boundary conditions; the
present method is designed to evaluate lifetimes and resonance energies. On the
other hand, these first results do indicate the practicality of the approach and
do suggest that this tool might be a valuable means to obtaining information
about lifetimes for systems which would not permit full solutions of the scattering
differential equations and relevant boundary conditions.

oo Bl 0
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