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Abstract

The so-called complex coordinate rotation technique is applied to two simple one-dimensional
piecewise-defined model potentials. The invariance of the bound and resonance energy levels of
these potentials under coordinate rotation is analyzed. It is shown that a proper treatment of the
coordinate rotation gives a natural and easily understood introduction of the so-called exterior scaling.
Implications for application of the coordinate rotation method to physically reasonable electron-atom
or electron-molecule potentials are also discussed. Finally, the relative merits of the rotation pro-
cedure and the direct Siegert search method proposed by Miller et al. are evaluated.

1. Introduction

Several years ago, it was demonstrated by Aguilar and Combes [1], Balslev
and Combes [2], and Simon [3] that certain (dilatation analytic) electronic
Hamiltonians H(r) could be continued analytically by replacing each electronic
coordinate r; by a “scaled” coordinate® r; exp(ia). The resultant scaled Ham-
iltonian H,(r) [which, for example for an atom? of charge Z, is exp(—2ia) 2%,
-3V} —Zexp(—ia) 2%, r7' + exp(—ia)Zi.;y7;'] was shown by the above
authors to possess the same bound energy levels (but not the same wavefunctions)
as the original H(r). They also demonstrated that the resonances of H(r), which
are discussed in more detail below, occur as complex energy levelsS [E = ¢
exp(—if3)] of H, whose corresponding wavefunctions are square integrable
provided that the so-called “coordinate rotation angle” « is greater than one-half
the magnitude of the complex energy’s phase 5. These facts lead many re-
searchers [4-10] to explore the exciting possibility that these resonance wave-
functions, which are not square-integrable eigenfunctions of H(r), could be
found by using conventional (square-integrable Gaussian or Slater) basis
function techniques.
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t All electronic coordinates are scaled by the same amount because of the indistinguishability
of the electrons.

! For a diatomic molecule, the nuclear attraction part of the electronic Hamiltonian scales as

Zy+Zp ZatZp
—Z4 Y |rexplia) —Ra4|™'—Zp ¥ |rjexp(ia) — Rg|™!
i=1 =1
which is not a simple homogeneous function of r.
§ Such a complex energy, when substituted into ¥/(x,#) = ¥(X) exp(—iEt), gives an exponentially
decaying time dependence to |{/|2 with a lifetime 7 = (2e sin8)~".
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" A great deal of computational information was recently generated by applying
the coordinate rotation technique (CRT) to electron-atom and electron-molecule
resonances which use model one-electron potentials [6a], configuration inter-
action wavefunctions [5¢,6b], explicitly correlated wavefunctions [5b,5¢,8j,8k],
static exchange potentials [5a], or many-body Green’s function methods [9].
It is the primary purpose of this article to present (in Sec. 2) a clear explanation
of how the CRT applies to a few simple one-dimensional model problems and
to point out some of the potentially confusing aspects of its use, and show its
connection with exterior scaling theory [11]. The implications which observations
derived from these model problems have for physically realistic electron-atom
and electron-molecule scattering studies are also brought to light in Sec. 3.

2. Coordinate Rotation Applied to Piecewise Potentials

To motivate physically the introduction of the coordinate rotation transfor-
mation, we consider the motion of an “electron” in the one-dimensional potential
defined by [v(x) = 0,0<x < L; v(x) =V, L <x < «]. Such a potential might
be thought of as representing the electron-atom radial potential for s-wave (/
= 0) scattering. The unrotated Schrédinger equation ; j

—Eﬁ'ﬁ%v(x)#/ EY, ¥(0)=0 (1)
has bound states (E < V) which obey ¥/(x — =) = 0. The energy levels of the
bound states arise from matching [(dy/dx)/¥] at x = L, where Y(x) =
sin(kx),0 < x S L ¥(x) = Cexp(=Jx), L<x < =;and k =+/2E , J = (20
— k2)1/2, The resulting equation which can be used to solve for the bound energy
levels is tan(kL) = —k/J, which can easily be solved graphically or numerically
for the real bound energy levels. The continuum (E > ¥) wavefunctions of the
above Hamiltonian are given by ¥(x) = A4 sin(kx), 0 < x < L; Y(x) = B
exp(iJx) + C exp(—iJx), L < x < = with J = (k2 — 2V)!/2. Of course, the
amplitudes C and B can be related to A4 via the two equations stating the con-
tinuity of Y and dy/dx at x = L. Thus far, the above discussion is nothing but
a treatment of the usual textbook-level problem.

Siegert showed [12] in 1939 that one could find continuum solutions to the
above problem which have continuous ¥(x) and dy//dx but which also possess
no incoming flux (C = 0). In this classic article, Siegert demonstrated that the
imposition of this extra constraint (C = 0) could only be realized if the Schro-
dinger equation energy E assumed complex values. For the above-specified
problem, the imposition of C = 0 leads to tan(kL) = —ik/J which is to be solved
for the complex energy levels. The solution of this complex transcendental
equation is treated in the Appendix. Siegert also showed how these complex
energies E = E, — iI'/2 = e exp(—if) were related to the scattering resonance
energies (E,) and widths (I') which could also be obtained from a more con-
ventional phase-shift energy-dependence study.

However, when one looks carefully at the nature of the Siegert resonance
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wavefunction for large x, one finds that y/(x) is exponentially diverging since
D exp(ikx) = D exp[ix +/2¢ cos(B/2) + +/2¢ x sin(8/2)] and, as is shown in -
the Appendix and by Siegert, 8 > 0. This divergence could be circumvented if
the “electronic coordinate” x were allowed to assume complex values [x = y
exp(ia)], for then D exp(ikx) = D exp[iy v/2¢ cos(a — 8/2) — y+/2e sin(«
— B/2)] which is square integrable as long as « > /2. Of course, it is not
physically meaningful to consider complex values of x. However, if one could
show that, by mathematically permitting x to assume complex values, the desired
resonance energy levels of the modified [by x = y exp(icx)] problem were un-
changed, then a very interesting possibility immediately presents itself. By
coordinate rotating x [x = y exp(iex)], one should be able to find the resonance
energy levels by using square-integrable approximations for the eigenfunctions
of the rotated problem. It is the author’s opinion that the extension of Siegert’s
original idea [12] to permit rotated “electronic” coordinates provides a physically
clear motivation for introducing the CRT. The mathematically rigorous justi-
fication of the CRT theory has been provided in refs. 1-3, where it is shown that
both the resonance (if & > (3/2) and bound eigenenergies are unchanged by the
rotation and that both kinds of eigenstate possess square-integrable wavefunc-
tions.

To better understand how certain energy levels (bound and resonance) of
H,(r) can be identical to those of H(r), let us return to the above “square-
well” potential problem. The rotated Schrodinger equation —3 exp(—2icr)
(d¥dyW = (E — V), ¥(0) = 0, has (for Re E < V) solutions Y(y) = A sin[ky
exp(ia)), ¥ () = D exp[J exp(ie)y] + C exp[—J exp(ia)y], where k and J
are as defined above except that E is now thought of as complex. To obtain the

“allowed” energy levels for Re E < ¥, one must insist that (dy/dy )y be con-
tinuous at y = L exp(—ia), not at y = L. That is, in the interior (x < L) region,
the coordinate rotation is nothing but a trivial redefinition of variables; the
boundary conditions on ¥ are unchanged! This constraint leads to tan(kL) =
—k/J, which is identical to the “energy-level equation” for the bound states of
the unrotated problem. Of course, in the exterior region (|x| = |y| > L) the

“rotation” does change the behavior of Y/(y) since ¥(y) is now square integrable.
This idea of scaling only the asymptotic part of the problem has been called

“exterior scaling” [11].

The Siegert resonance states belonging to the above potential should also be
invariant to rotation. By matching the logarithmic derivative of A4 sin[k
exp(ia)y] to that of D exp[iJy exp(ia)] + C exp[—iJy exp(ia)] aty = L
exp(—ia) not at y = L, one obtains exactly the same equations as resulted in
the unrotated problem. Then, by enforcing C = 0, one obtains exactly the same
Siegert resonance condition. Thus, the resonances are indeed unchanged. The
nonresonant scattering solutions to the rotated Schrédinger equation, A sin[ky
exp(ia)] and D expliJy exp(ia)] + C exp[—iJy exp(ia)], do not have their
energies specified by a condition like C = 0. Their energies are not quantized
and are simply the unrotated energies times exp(—2ia). That is, the rotated
Schrodinger equation has a continuum eigenfunction of the unrotated Schré-
dinger equation having energy E.
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The lesson which is learned from the above simple example is that the process
of using the exterior scaled coordinate rotation does not alter the nonasymptotic
boundary conditions which ¥ must obey. ¢ and y/ are still continuous at the real
physical point x = L, which corresponds to the mathematical rotated point y
= [ exp(—ia). The process of rotation does change the asymptotic spatial be-
havior (in y space) by making ¥ — 0 as y — . This mathematical consequence
then permits one to expand ¥/(») in square-integrable functions of y as a device
for finding the bound and resonance energies.

Next we consider a potential [V(x) =0,0<x<L;V(x)=V,L<x <L+
T:V(x) =0,L+ T < x < =] which can be thought of as crudely representing
the radial potential for p-wave (/ = 1) electron-atom scattering. Such a potential
supports no bound states but it does have true shape resonances in contrast to
the first potential considered which has only “virtual states™ since it has no
“angular momentum barrier.” The unrotated Schrédinger equation for the above
potential (for Re E < V) has solutions ¢ = A sin(kx), 0 < x < Ly =C
exp(—Jx) + D exp(Jx), L<x < L+ T; ¥ = Fexp(ikx) + G exp(—ikx), L +
T < x < o, Applying the continuity condition toy and Y atx = Land x = L
+ T permits one to solve for G in terms of F. By then, as Siegert suggests [12],
insisting that y possess no incoming flux (G = 0), one obtains the following
“resonance energy condition’”:

tan(kL) X k/J = —exp(=2JT)(1 + J/}k)'(l - JJik)~! [tan(kL) — (k/T)] (2)

To gain some insight into the nature of the (resonance) solutions of this equation,
let us consider the case of a thick (T large) barrier with Re E << V (so that Re
J is'large). In this case, we expect the resonance to be quite sharp (Im E small).
We can now solve for the resonance energy by “iterating” the above equation. -
First, we ignore the entire right-hand side of this equation since exp(—2JT) =~
0. The resulting condition, tan(kL) = —k/J, is identical to the bound-state energy
condition resulting from the model potential considered earlier. This is not
surprising for such a thick, high barrier.

With the solutions to tan(kL) = —k/J taken as “zero-order” solutions to the
full-resonance energy equation given above, we can obtain an improved estimate
of the true solutions. We simply use the (real) zero-order energies (call them
ko,Jo) to evaluate the right-hand side of the full equation. In the left-hand side,
we replace k by ko + & [and J = 2V — k2)V2by J = (2V — k§ — 2kob — 62)1/2]
and expand tan(kL) and k/J in powers of the “correction” 8, keeping terms
through first order in 8. The resulting equations can easily be solved for 8, giving
Ld = [2ko/Jo exp(—2JoT)(1 + J3/k3)~" (1 — J3/k} — 2iJo/ko)][1 + tan?(koL)
+ (JoL)™' + k§/J3L]~". This correction to the (real) ko yields an “improved”
value of k which, as Siegert shows, has a negative imaginary part. The imaginary
component of & gives [through E = k2 = L (k} + 2ko6 + 62)] the width (T")
of the resonance (E = E, — iT/2) as I" = (8k¢/L) exp(—2JoT)(1 + J3/k3)~1
[1 + tan2(koL) + (JoL)~! + k3/J3L]~. This result for I' is physically quite
resonable. It contains the exponential damping factor exp(—=2J,T), and as the
resonance energies (k3) increase relative to ¥V, the resonance widths I' also in-
crease. These observations are not at all surprising.
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The exterior-scaled coordinate-rotated version of the above Schrédinger
equation has solutions which, upon applying the continuity equations at y = L
exp(—ia)and y = (L + T) exp(—ia) and imposing G = 0, yield exactly the same
resonance energy condition as was analyzed above. The only advantage to solving
the coordinate-rotated Schrodinger equation is that the wavefunction ¥/(y) could
(for large y) be expanded in square-integrable functions of y (if « < 8/2). This
is not a significant advantage for simple one-dimensional model problems which
can be solved analytically, but it is important for problems which do not possess
known analytic solutions for which basis set expansion techniques must be
used. :

3. Implications for Physically Realistic Problems

Having now illustrated how the exterior-scaled CRT is applied to “simple”
piecewise potential problems, it is natural to ask whether difficulties arise in
treating more physically realistic potentials (e.g., electron-atom or electron-
molecule interactions). The answer is “usually not™! Because the electronic
Schradinger equation involves potentials which are globally defined (e.g., —Z|r
— R|~1) rather than given in a piecewise manner, one is not forced to address
the question of matching ¥ and ¥’ at some boundary point. The usual (Cou-
lombic) potentials and the square-integrable basis functions (e.g., Gaussian or
Slater) which are commonly used are analytic functions of ». This *“smoothness”
property implies that, as r is “rotated” to r exp(i«), ¥ and ¥/ will maintain their
continuity (in r space). This point is very nicely made in ref. 5d, where Junker
shows explicitly how the bound-state energies of the H atom are unchanged by
rotation, and in ref. 5f where Doolen analyzes the exact expressions for the
resonance energies and wavefunctions for a potential (r~! — yr~2) which is
supposed to describe et H atom scattering.

In a sense then, the simple one-dimensional square-well problems contain a
confusing extra complication which does not arise in “usual” electronic structure
considerations. However, it is a good idea to clarify the essential points. Lest
the reader conclude that these remarks are essentially irrelevant because such
difficulties arise only for piecewise potentials, it should be emphasized that ex-
actly the same problems could arise in physically reasonable problems in which
a wall or barrier is used to model a very repulsive region of (electronic) config-
uration space (e.g., for scattering of electrons from an atom sitting on a solid
surface defined by 8 = I1/2,0 < ¢ < 2II, 0 < r < « or for an electron-atom
potential which is “cut off” at some small r value r = rg). The rotationr =y
exp(icar) should only be used for r outside the surface “wall.” Perhaps more
importantly, for molecular problems in which the scaled nuclear attraction
potentials are —Z 4|r exp(ia) — R4| ™! the cusp conditions obeyed by the
wavefunction (and hence by the L2 basis functions used to approximate ¥) at
the nuclei will now (under rotation) be obeyed at the mathematical point r =
R4 exp(—ia). This cusp behavior is a straightforward consequence of the local
[r = R exp(—ia)] behavior of the Schrodinger differential equation. One could
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deal with this behavior in either of two ways. One could, as is suggested in ref.
11, not apply the rotation r = r exp(i«x) except for |r| > Z where Z is a distance
greater than the maximum distance of any nucleus in the molecule from the one
nucleus which is the coordinate origin. In this manner, one is guaranteed of
scaling only the asymptotic part of the problem and the cusp behavior remains
atr = R (i.e., at real position). Alternatively, one could introduce into the basis
(in addition to L2 functions centered at R) L functions (in r space) centered
at R exp(—ia). The Schrodinger equation can then “use” these new basis
functions to force proper cusp behavior at r exp(ia) = R [which is equivalent
tor = R exp(—ia)] and the original L? basis functions centered at R to describe
the large r behavior of . Thus, in both cases the only thing which is accomplished
by the coordinate rotation device is the modification of the asymptotic (large
r) behavior of the resonance eigenfunctions in order to permit ¥(r) [which obeys
H (rY(r) = EY(r)] to be expanded in a square-integrable basis.

There are, of course, alternatives to using the CRT for finding resonance
energies. Miller [13] has suggested that one essentially “skip” the coordinate
rotation step and simply look directly for Siegert resonances. His method consists
of carrying out a linear variational calculation using V square-integrable basis
functions (determinantal configurations for a many-electron atom or molecule)
and one “Siegert function™ 8(r) = [1 — exp(—r)] exp(ikr) (or Siegert deter-
minant containing all “bound” orbitals except for one orbital which is the result
of orthogonalizing 6(r) to these bound orbitals). By extremizing (Y| =3
(d%/dr?) + V(r) — $ k2|, ), where ¢, is the trial linear variational wavefunction,
one obtains a complex symmetric (k dependent) secular equation to solve. This
secular equation is solved iteratively (guessing k, finding an eigenvalue and
corresponding wavefunction ¥; which is as close as possible to zero, using 2 (|
— 3(d¥dr?) + V|y;) as the next “guess” for k2, etc.). The technical details
of how this iterative process is carried out are discussed in ref. 13.

The primary difficulty which arises in using Miller’s technique to search for
Siegert resonances has to do with the evaluation of the Hamiltonian matrix el-
ement integrals involving the Siegert basis function 8(r). As the authors of refs.
13 clearly point out, these integrals can only be evaluated for Im k > 0, whereas,
as was stressed earlier in this article, the Siegert resonance energy has Im k <
0. The response made by Miller et al. is to compute the integrals for Im k > 0
and to continue these integrals simply analytically to Im & < 0. This continuation
is done either by replacing Im k by —Im k, when the integrals are explicitly
known functions of k, or by fitting the eigenvalue of the secular equation to a
rational fraction in k and then replacing Im k by —Im k to obtain the “correct™
eigenvalue (which gives their estimate of the Siegert resonance energy).

Although Yaris et al. [15] have shown how one can probably circumvent the
divergent integrals which would arise in the application of Miller’s approach
with Im k < 0, it is not entirely clear at this time whether this will turn out to
be computationally more efficient than the coordinate rotation technique. It
is the author’s feeling that the direct search for Siegert resonances suggested
by Miller et al. should be examined much more thoroughly, both from the formal
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and computational points of view. Certainly the initial applications of the method
described in refs. 13 yielded very promising results.

4. Concluding Remarks

By considering the application of the so-called coordinate rotation technique
together with exterior scaling ideas to two piecewise-defined one-dimensional
“square-well” model potential problems, we have attempted to shed light on the
mathematical structure of the rotated Schrédinger equation. In particular, we
showed how to relate the nonasymptotic boundary condition appropriate to the
rotated problem to those arising in the original (unrotated) Schrédinger equation.
Hopefully, the result of these remarks is a clearer understanding of why the
bound and resonance energy levels are not changed by rotation. The important
effect of rotation is that the previously non-normalizable resonance wavefunc-
tions become square integrable, hence making them amenable to approximations
within commonly used basis sets.

In Sec. 3 we discussed under what circumstances the kind of boundary con-
dition modification, which was essential for piecewise potentials, could arise in
more physically relevant problems. Our primary conclusion was that such dif-
ficulties generally show up in electron-molecule or electron-atom scattering
problems only at nuclear cusps or if one uses “hard wall” cutoff potentials to
exclude the electron from certain regions of space as is commonly done when
treating electron-atom scattering within the static exchange plus polarization
model. One describes [15] the charge-induced dipole interaction of the electron
with the target atom in terms of the target’s polarizability @ as —a/2r4, ro < r
< @, 0, r < rg. Moreover, cusp conditions are not obeyed by the rotated elec-
tronic wavefunction for molecular problems (where one cannot take R = 0) at
r = R4, but rather, at »r = R, exp(—ia) where r is the “rotated” coordinate.
Analogous difficulties would result in attempting to use the coordinate rotation
method in a straightforward manner while using Hartree-Fock orbitals com-
puted using any type of hard-core pseudopotential method. The use of these
piecewise potentials might be expected to present the kind of conceptual dif-
ficulties which we discussed in Sec. 2. '

An alternative to searching for Siegert resonance states via the CRT was given
by Miller et al. [13]. In Sec. 3 we presented some remarks concerning the relation
of this method to the CRT and we pointed out the primary difficulty of the Miller
approach. Although the numerical results obtained in refs. 13 are impressive
and Yaris et al. [14] have demonstrated how one could avoid the divergent in-
tegrals arising in the original version of Miller’s theory, it is not at all obvious
that this direct Siegert search process will have any practical advantages over
the CRT. It is the author’s opinion that the ideal of Miller et al. is excellent and
that we should proceed to develop a great deal more computational experience
on model potential and realistic (ab initio) electron-atom and electron-molecule
resonance problems.



120 : SIMONS

Acknowledgments

The author thanks the University of North Carolina Chemistry Department
‘for their hospitality during the fall of 1979, and the U.S. National Science
- Foundation for support in the form of Contract No. 7809734,

Appendix

The complex solutions to tan{kL) = —ik/J can, of course, be found numerically for a given po-
tential well depth (V) and length (L). However, to gain better insight into why these complex res-
onance solutions have a negative imaginary part it is instructive to attempt an approximate solution
to.the above equation. Toward this end, we consider the special case in which the potential well is
deep and the kinetic energy of the incident electron is small (low-energy resonances). Then since
J = (k? = 2V)"/2is small, it is convenient to rewrite the resonance condition as tan[(J2 + 2V)1/2L]

= —i(J2+ 2¥)/2/J. Then, by factoring (J2+ 2V)\/2 = (2V)V2(1 + J2/2V)/2, expanding the square
root in powers of J%/V, using tan(x + y) = (tan x + tan y) (1 — tan x tan y) and tan x = x for small
x, one easily obtains :

tan(2VL2)V2 + [1 + tan? (2VLY) /2] —— it =—j ﬂ

2V/2V J
If tan(2VL2)1/2 « 1, so that the well is nearly able to support a bound state having zero energy, we
expect there to be a long-lived resonance state having slightly positive Re E. In this case, we obtain
as a solution to the above resonance condition J? = —4iV/L, which then implies J = (4V/L)"/?
exp(—iIl/6), so that the resonance energy is E = V + % (4V/L)¥3 exp(—iw/3). Clearly this resonance
root lies in the Im £ < 0, Re £ < 0 quadrant of the complex E plan as was claimed in Sec. 2. As
the potential well depth is increased, £/V, which is the energy of the resonance in units of the well
depth [E/V = 1 +%(4/L)¥*V~"3 exp(—ill/3], comes closer and closer to unity. That is, the relative
lifetime (in ¥ energy units) of the resonance lengthens and the position (Re E) approaches the top
of the potential well (£ = V).
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