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Abstract

The so-called complex coordinate rotation technique is applied to twa simple one-dimensional

piecewise-defined model potentials. The invariance of the bound and resonance energy levels of

these potentials under coordinate rotation is analyzed. It is shown that a proper treatment of the
coordinate rotation gives a natura! and easily understood introduction ofthe so-calIed exteriorscaling.

Implications for application of the coordinate rotation method to physicalIy reasonable eIectron-atom

or electron-molecule potentials are algo discussed. Finally, the relative merits of the rotation pro-

cedure.and the direct Siegert search method proposed by Miller et al. are evaluated.

1. Introduction'

- Several years ago, it was demonstrated by Aguilar and Combes [1], Balslev.
an.d Combes [2], and Simon [3] that certain (dilatation analytic) electronic
Hamiltonians H(r) could be continued analytically by replacing each electronic
coordinate rjby a "scaled" coordinatet rj exp(ia). The resultant scaled Ham-
iltonianH",(r) [which, for example for an atomt ofcharge Z, isexp(-2ia) 'Il]=!
- l \1J~ Z exp(-ia) 'I,f=1ril + exp(-ia)'I,1"a'Yi}I]wasshownbythe above
authors to possessthe same baund energy levels (but not the same wavefunctions)
as the original H(r.). They also demonstrated that th~ resonances of H(r), which
ale discussed in moce detail below, occur as complex energy levels§ [E = E

exp(-i,6)] of H", whose corresponding wavefi1nctions ale square integrable
provided that the so-called "coordinate rotation angle" a is greater than one-half
the magnitude of the complex energy's phase ,6. These facts lead maDYre-
searchers [4-10] to explore the exciting possibility that these resonance wave-
functions, which ale not square-integrable eigenfunctions of H(r), could be
fauna by using conventional (square-integrable Gaussian or Slater) basis
function techniques.

*-Camille and Henry Dreyfus Foundation FelIow, John Simon Guggenheim FelIow.

t Ali electronic coordinates are scaled by the same amount because of the indistinguishability
of the electrons.

t For a diatomic molecule, the nucIear attraction part of the electronic Hamiltonian scales as

ZA+ZB ZA+ZB
-ZA L hexp(ia)-RAI-I-ZB L hexp(ia)-RBI-l

~I ~I

which is not a simple homogeneous function of r.

§ Such a complex energy, when substituted joto 1/;(x,t) =1/;(X) exp( -iEt), gives an exponentialIy

decaying time.dependence to 11/;12with a lifetime T = (2E sinJ3)-I.
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. A greatdealofcomputationalinformationwasrecentlygeneratedbyapplying
the coordinate rotation technique (CRT) to electron-atom and electron-molecule
resonances which use model one-electron poten.tials [6a], configuration inter-
action wavefunctions [5c,6b], explicitly correlated wavefunctions [5b,5e,8j,8k],
static exchange potentials [5a], or maDy-body Green's function methods [9].
It is the primary purpose of this artiele to present (in Sec. 2) a elear explanation
of how the CRTapplies to a rew simple one-dimensional model problems and
to point out same of the potentially confu,sing aspects of its use, and show its
connection with exterior scalingtheory [11]. The implications which observations
derived erom these model problems have for physically realistic electron-atom
and electron-molecule scattering studies are also brought to light in Sec. 3.

2. CoordinateRotation Appliedto Piecewise.Potentials

To motivate physically the introduction of the coordinate rotation trans for-
mation, we consider the motion of an "electron" in the one-dimensionalpotentia1
defined by [v(x) =0,0 ~ x ~ L; v(x) = 'V,L <x < 00].Sucha potentia1might
be thought of as representing the electron-atom radial potential for s-wave (l
= O) scattering. The unrotated Schr6dinger equation .

h-

1 d2
- 2:dx21/;+ v(x) 1/;=E1/;,

bas bound states (E< V) which obey 1/;(x-+ 00) = O.The energy levels of the
bound states arise erom matching [(d1/;jdx)N] at x = L, where 1/;(x) = A
sin(kx), O~ x ~ L; 1/;(x) = C exp( -Jx), L ~ x < 00;and k ==v0E, J =(2v
- k2)1/2.The resulting equation which caDbe used to solvefor the boundenergy
levels is tan(kL) = -kjJ, which caDeasily be solvedgraphically or numerically
for the real boundenergylevels.The continuum(E > V) wavefunctionsof the
above Hamiltonian are given by 1/;(x) = A sin(kx), O.~ x ~ L; 1/;(x) = B
exp(iJx) + C exp(-iJx), L ~ x < 00 with J = (P - 2V)1/2.Of course, the
amplitudes C and B caDbe related to A via the twa equations stating the con-
tinuity of 1/;and d1/;/dx at x =L. Thus far, the above discussion is nothing but
a treatment of the usual textbook-level problem.

Siegert showed [12] in 1939 that one couldfind continuum solutions to the
above problem which have continuous 1/;(x)and d1/;jdx but which aIso possess
no incoming f1ux(C =O). In this elassic artiele, Siegert demonstrated that the
impositio~ of this extra constraint (C = O)could anty be realized if the Schr6-
dinger equation energy E assumed complex values. For the above-specified
problem, the imposition of C = Oleads to tan(kL) = -ikjJ which is to be solved
for the complex energy levels. The solution of this complex transcendental
equation is treated in the Appendix. Siegert also showed how these complex
energiesB = Er - ir/2 ==€ exp( -i{3) were related to the scattering resonance
energies (Er) and widths (r) which ~ould also be obtained erom a more con-
ventional phase-shift energy-dependence study.

However, when one looks carefully at the nature of the Siegert resonance

1/;(0)= O (1)
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wavefunction for large x, one finds that 1/;(x) is exponentially diverging since
D exp(ikx) = D exp[ix V2E cos(/3/2) + V2E x sin(/3/2)J and, as is shown in.
the Appendix and by Siegert, /3> O.This divergence could be circumvented if
the "electronic coordinate" x were allowed to assume complex values [x =y
exp(ia)], for then D expUkx) = D exp[iy V2E cos(a - /3/2)- YV2E sin(a
- /3/2)] which is square integrabie as long as a> /3/2. Of course, it is not
physically meaningful to consider complex values of x. However, if one could
show that, by mathematically permitting x to assume complexvalues, the desired
resonance energy /eve/s of the modified [by x =y exp(i a)] problem were un-
changed, then a very interesting possibility immediately presents itself. By
coordinate rotating x [x == y exp(ia)], one should be able to find the resonance
energy levels by using square-integrable approximations for the eigenfunctions
of the rotated problem. It is the author's opinion that the extension of Siegert's
original idea [12] to permit rotated "electronic" coordinates providesa physically
elear motivation for introducing the CRT. The mathematically rigorous justi-
fication ofthe CRTtheory bas been provided in refs. 1-3, where it is shown that
both the resonance (if a > /3/2) and boundeigenenergiesare unchangedbythe
rot3:tion and that both kinds of eigenstate possess square-integrable wavefunc-
tions.

To better understand how certa in energy levels (bound and resonance) of
H,xCr)can beidentical to those of H(r), let us return to the above "square-
well" potential problem. The rotated Schr6dinger equation -l exp(-2ia)
(d2/dy2)1/; = (E - v)1/;, 1/;(0) = O, bas (for Re E < V) solutions 1/;(Y) = A sin[ky

exp(ia)], 1/;(Y) = D exp[J exp(ia)y] + C exp[-J exp(ia)y], where kand J

aI~ as defined above except that Eis naw thought of as complex. To obtain the
"al10wed" energy levels for Re E < V, one must insistthat (d1/;jdy)1/;be con-
tinuous aty= L exp(-ia), not aty = L. That is, in the interior (x ~ L) region,
the coordinate rotation is nothing but a trivial redefinition of variabies; the
boundary conditions on 1/;are unchanged! This constraint leads to tan(kL) =
-kjJ, which is identical to the "energy.level equation" for the bound states of
the unrotated problem. Of course, in the exterior region (lxi = Iyl > L) the
"rotation" does change the behavior of 1/;(Y)since 1/;(Y)is naw square integrable.
This idea of scaling only the asymptotic part of the problem bas been called
"exterior scaling" [11].

The Siegert resonance states belonging to the above potential should algobe
invariant to rotation. By matching the logarithmic derivative of A sin[k
exp(ia)y] to that of D exp[iJy exp(ia)] + C exp[-iJy exp(ia)] at y =L
exp( -ia) not at y = L, one obtains exactly the same equations as resulted in
the unrotatedproblem. Then, by enforcing C = O,one obtains exactly the same
Siegert resonance condition. Thus, the resonances are indeed unchanged. The
nonresonant scattering solutions to the rotated Schrodinger eq1.lation,A sin[ky
exp(ia)] and D exp[iJy exp(ia)] + C exp[-iJy exp(ia)], do not have their
energies specified by a condition like C = O.Their energies are not quantized
and are simply the unrotated energies limes exp(-2i.a). That is, the rotated
Schrodinger equation bas a continuum eigenfunction of the unrotated Schro-
dinger equation having energy E.
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The lessonwhich is learned Eromthe above simple example is that the process
of using the exterior scaled coordinate rotation does not alter the noTl4symptotic
boundary conditionswhich y;most obey.y; and VI arestill continuous at the real
physical point x = L, which corresponds to the mathematical rotated point y
= L exp( -i ar The process of rotation does change the asymptotic spatial be-
havior (iny space) by making y;-+ Oas y -+ "". This mathematical consequence
then permits one to expand y;(y) in square-integrable functions of y as a device
for findingthe bound and resonance energies.

Next we consider a potential [v(x) = O, O ~ x ~ L; V(x) = V, L ~ x ~ L +
T; V(x) = O,L + T < x < ""] which caD be thought of as crudely representing
the radial potential for p- wave (l = 1) electron-atom scattering~ Soch a potential

supports no bound states but it does have true shape resonances in contrast to
-the first potential considered which bas only "virtual states" since it ha's no
"angular momentom barrier." The unrotated SchrOdingerequation for the above
potential (for Re E < V) bas solutions y; = A sin(kx), O ~ x ~ L; y; =C
exp(-Jx) + D exp(Jx), L ~ x ~ L + T; y; =F exp(ikx) + G exp(-ikx), L +
T ~ x < "". Applying the continuity condition to y;and y;'at x = L aI).dx = L
+ T permits one to solve for G in terms of F. By then, as Siegert suggestSl i2],
insisting that 1f;possess no incoming fiux (G = O),one obtains the folIowing
"resonance energy condition":

tan(kL) X kjJ = -exp(-2JT)(I + J/ik)(I -J/ik)-1 [tan(kL) - (kjJ)]

To gam same insight into the nature of the (resonance) solutions of tbis equation,
lei us consider the case of a thick (T large) barrier with Re E « V(so that Re
J is'large). In this.(,:ase,we expect the resonance to be quite sharp (Im E smalI).
We caDnaw solve for the resonance energy by"iterating" the above equation. -
First, we ignore the entire right-hand side ofthis equation since exp( -2JT) ~

O.The resultingcondition, tan(kL) = -kjJ, is identical to the bound-state energy
condition resulting Erom the model potential considered earlier. This is not
surprising for such a thick, high barrier.

Willi the solutions to tan(kL) = -kjJ taken as "zero-order" solutions to the
full-resonance energy equation given above, we can oblam an improved estimate
of the true solutions. We simply use the (real) zero-order energies (call lbem
ko.Jo) to evaluate the right-hand side of the fulI equation. In the left-hand side,
we replace k by ko + O[andJ = (2V - k2)1/2 by J = (2V - kfi - 2koo - 02)1/2]

and expand tan(kL) and kjJ in powers of the "correction" O,keeping terms
through first order in O.The resulting equations caDeasily be solved for O,giving
Lo = [2kojJoexp(-2JoT)(1 + J5Ik'ij)-1(I - J'6/k'6- 2iJ<fko)][1 + tan2(koL)
+ (JoL)-1 + kijj JijL]-I. This correction to the (real) ko yields an "improved"
value of k which, as Siegert shows, bas a negative imaginary part. The imaginary
component of ogives [through E = l k2 =l (kij+ 2koo+ 02)]the width (r)
of the resonance (E = Er - ir/2) as r = (8ko/L) exp(-2Jo T) (1 + J'6/k'6)-1
[I + tan2(koL) + (JOL)-l + kijjJijL]-I. This result for r is physicalIy quite
resonable. It contains the exponential damping factor exp(-2JoT), and as the
resonance energies (kij) increase~relative to V, the resonance widths r also in-
crease. These observations are not at alI surprising.
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The exterior-sealed eoordinate-rotated version of the above SehrOrlinger
equation bas solutions whieh, upon applying the eontinuity equations at y = L
exp(-ia) andy = (L + T) exp(-ia) and imposing G = O,yield exaetly the same
resonanee energy eondition as wasanalyzed above. The only advantage to solving
the eoordinate-rotated SehrOrlingerequation is that the wavefunetion 1/;(Y)eould
(for large y) be expanded in square-integrable funetions of y (if a < (3/2). This
is not a signifieant advantage for simple one-dimensional model problems .whieh
ean be solved analytieaJly, but it is important for problems whieh do not possess
known analytie solutions for whieh basis set expansion teehniques must be
used.

3. Implicationsfor Physically Realistic Problems

Having now illustrated how the exterior-sealed CRTis applied to "simpie"
pieeewise potential problems, it is natura l to ask whether diffieulties arise in
treating more physically realistie potentials (e.g., eleetron-atom or eleetron-
moleeule interaetions). The answer is "usually not"! Beeause the eleetronie
Sehr6dinger equation involvespotentials whieh are globally defined (e.g., -Zlr
- R I-I) rather than given in a pieeewise manner, one is not foreed to address
the question of ma1ehing 1/;and 1/;'at some boundary point. The usual (Cou-
lombie) potentials and the square-integrable basis funetions (e.g., Gaussian or
Slater) whieh are eommonly used are analytie funetionsof r. This "smoothness"
property implies that, as r is "rotated" to r exp(ia), 1/;and 1/;'will maintain their
eontinuity (in r spaee). This point isvery nieely marle in ref. 5~,where Junker
shows explieitly how the bound-state energies ofthe H atom are unehanged by
rotation, and in ref. 5f where Doolen analyzes the exaet expressions for the
resonanee energies and wavefunetions for a potential (r-I ..;..')'r-2) whieh is
supposed to deseribe e+H atom seattering.

In a sense then, the simple one-dimensional square-well problems eontain a
eonfusing extra eomplieation whieh does not arise in "usual" eleetronie strueture
eonsiderations. However, it is a good idea to clarify the essential points. Lest
the reader eonclude that these remarks are essentially irrelevant beeause sueh
diffieulties arise only for pieeewise potentials, it should be emphasized that ex-
aetly the same problems eould arise in physieally reasonable problems in which
a wall or barrier is used to model a very repulsive region of (eleetronie) eonfig-
uration spaee (e.g., for seattering of eleetrons erom an atom sitting on a solid
surfaee defiiled by () = n/2, O ~ 1>~ 2n, O~ r < ex>or for an eleetron-atom
potential which is "elit orf' at SOfiesmalI r value r = ro). The rotation r = y
exp(ia) should only be used for r outside the surfaee "wall." Perhaps more
importantly, for moleeular problems in whieh the sealed nuclear attraetion
potentials are -ZA Ir exp(ia) - RA I-I the eusp eonditions obeyed by the
wavefunetion (and henee by the L2 basis funetions used to approximate 1/;)at
the nuclei will now (under rotation) be obeyed at the mathematieal point r =
RA exp(-ja). This eusp behavior is a straightforward eonsequenee of the loeal
[r"'" R exp(-ia)] behavior of the Sehr6dinger differential equation. One eould
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deal with ibis behavior in either of iwo ways. One could, as is suggested in ref.
11,not apply the rotation r =r exp(i a) except for Irl > Z whereZ isa distance
greater than the maximum distance of any nuc1~usin the molecule from the one
nueleus which is the coordinate origin. In ibis mann er, one is guaranteed of
scaling only the asymptotic part of the problem and the cusp behavior remains
at r = R (i.e., at real position). Alternatively, one could introduce into thebasis
(in addition to L2 functions centered at R) L2 functions (in r space) centered
at R exp( -ja). The Schr6~ingerequation can then "use" these new basis
functions to force proper cusp behavior at r exp(ia) = R [which is equivalent
to r =R exp(--'ia)] and the original L2 basis functions centered at R to describe
thelarge r behavior of 1/;.Thus, in both cases the onlything which is accomplished
by the coordinate rotation device is the1}1odificationof the asymptotic (large
r) behavior of the resonance eigenfunctions in order to permit 1/;(r)[which obeys
H",(r)1/;(r) =E1/;(r)] to be expanded in a square-integrable basis.

There are, of course, alternatives tousing the CRT for finding resonance
energies. Miller [13] bas suggested that one essentially "skip" the coordinate
rotation step and simply look directlyfor Siegert resonances.His method consists
of carrying out a linear variational ca1culation using N square-integrable basis
functions (determinantal configurations for a many-electron atom or molecule)
and one "Siegert function" OCr)= [l - exp(-r)] exp(ikr) (or Siegert deter-
minant containing al! "bound" orbitais except for one orbital which is the result
of orthogonalizing OCr)to these bound orbitais). Byextremizing Nr! -!
(d2jdr2)+ V(r) -! k211/;/},where 1/;/is thetriallinearvariational wavefunction,
oneobtains a complex symmetric (k dependent) secular equation to solve. This
secular equation is solved iteratively (guessing k, finding an eigenvalue and
corr~sponding wavefunction 1/;jwhich is as eloseas possibleto zero, using 2 (1/;jI
- ! (d2jdr2) + VI1/;j) as the next "guess" for k2, etc.). The technical details
of how ibis iterative process is carried out are discussed in ref. 13.

The primary difficulty which arises in using Miller's technique to search for
Siegert resonances bas to do with the evaluation of the Hamiltonian matrix el-
ement integrals involvingthe Siegert basis function OCr).As tJleauthors of refs.
13 elearly point out, these integral~can only be evaluated for Im k > O,whereas,
as was stressed earlier in ibis artiele, the Siegert resonance energy bas Im k <
O.The response macie by Miller et al. is to compute the integrals for Im k > O
and to continue these integrals simply analytically to Im k < O.This continuation
is clone either by replacing Im k by -Im k, when the integrals are explicitly
known functions of k, ofby fitting the eigenvalue of the secular equation to a
rational fraction in kand then replacing Im k by - Im k to obtain the "correct"
eigenvalue (which gives their estimate of the Siegert resonance energy).

Although Yaris et al. [15] have shown how one can probably circumvent the
divergent integrals which would arise in the application of Miller's approach
with Im k < O,it is not entirely elear at ibis time whether ibis will turn out to
be computational!y more efficient than the coordinate rotation technique. It
is the author's feeling that the direct search for Siegert resonances suggested
by Miller.et al. shouldbe examined much more thoroughly,both from the formai
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and computational points ofview. Certainly the initial applications ofthe method
described in refs. 13 yielded verypromisingresults.

4. ConcludingRemarks

By considering the application of the so-called coordinate rotation technique
together with exterior scaling ideas to twa piecewise-defined one-dimensional
"square-well" model potential problems, we have attempted to shed light on the
mathematical structure of the rotated Schr6dinger equation. In particular, we
showed how to relate the nonasymptoticboundary condition appropriate to the
rotated problem to those arising in the original (1,lnrotated)Schr6dinger equation.
Hopefully, the result of these remarks is a clearer understanding ofwhy the
bound and resonance energy levels are not changed by rotation. The important
effect of rotation is that the previously non-normalizable resonance wavefunc-
tions become square integrable, heRcemaking them amenable to approximations
within commonly used basis sets. .

In Sec. 3 we discussed under what circumstances the kind of boundary con-
dition modification, which was essential for piecewise potentials, could arise in
mate physically relevant problems. Our primary conclusion was that such dif-
ficulties generally show up in electron-molecule or electron-atom scattering
problems only at nuclear cusps or if one uses "hard wall" cutoff potentials to
exclude the electron erom certa in regions of space as is commonly done when
treating electron-atom scattering within the static exchange plus polarization
model. One describes [15] the charge-induced dipole interaction ofthe electron
with the targ et atom in terms of the target's polarizability a as -af2r4, ro ~ r
< <x>,O,r < ro. Moreover, cusp conditions are not obeyed by the rotated elec-
tronie wavefunction for molecular problems (where one cannot take R =O)at
r = RA, but rather, at r = Ra exp( -ja) where r is the "rotated" coordinate.
Analogous difficulties would result in attempting to use the coordinate rotation
method in a straigh'tforward manner .'fthileusing Hartree-Fock orbitals.com-
puted using aDYtype of hard':core pseudopotential method. The use bf these
piecewise potentials might be expected topresent the kind of conceptual dif-
ficultieswhichwediscussedin Sec.2. -

An alternative to searching for Siegert resonance states via the CRTwas given
by Miller et al. [13]. In Sec. 3 we presented same remarks concerning the relation
of this method to the CRTand we pointed out the primary difficulty of the Miller
approach. Although the numerieal results obtained in refs. 13 are impressive
and Yaris et al. [14] have demonstrated how one could avoid the divergent in-
tegrals arising in the original version of Miller's theory, it is not at all obvious
that this direct Siegert search process will have aDYpractieal advantages over
the CRT.It is the author's opinion that the idea l of Miller et al. is excellent and
that we should proceed to develop a great deal mate cpmputational experience
on model potential and realistic (ab jnitio)electron-atom and electron-molecule
resonance problems. '
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Appendix

The complex solutions to tan(kL) = -ikjJ can, of course, be found numerical1y for a given po-

tential wel1 depth (V) and length (L). However, to gai n better insight into why these complex res-
onance solutions have a negative imaginary part it is instructive to attempt an approximate solution

toJhe above equation. Toward this end, we consider the specjal case in which the potential well is

deep and the kinetic energy of the incident electron is smal1 (1ow-energy resonances). Then since
] = (F - 2V)1/2 is smal1, it is convenient to rewrite the resonance condition as tan[(J2 + 2V)1/2L]

= -i(J2 + 2V)1/2fJ. Then, by factoring (]2 + 2V)1/2 = (2 V) 1/2(L+ ]2/2 V) 1/2,expanding thesquare

root in powersOf]2/V, using tan(x + y) =(tan x + tany) (1 - tan x tany) and tanx a;;x for smalI
x. one easily obtains

]iL V2V
tan(2VL2)1/2+ [I +tan2(2VL2)1/2]_= -i---'

2V2V J

lf tan(2VL2) 1/2« l, so that the well is nearly able to support a bound stale having zero energy, we

expect there to be a long-lived resonance stale having slightly positive Re E. In this case, we obtain
as a solution to the above resonance condition]3 = -4iV/L, which then implies] = (4 V/L) 1/3

exp(-iIT/6), so that the resonance energy is E = V + h4V/L)2j3 exp(-i1r/3). Clearly this resonance
root lies in the lm E < O, Re E < O quadrant of the com plex E plan as was daimed in Sec. 2. As

the potential well depth is increased, E/V, which is the energy of the resonance in units of the well

depth [E/V = I + H4/ L)2j3V-1/3 exp( -iIT/3], comes deser and deser to unity. That is, the relative

lifetime (in V energy units) ofthe resonance lengthens and the position (Re E) approaches the top

ofthe potential well (E = V).
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