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A perturbation approach is used to analyze the natural transition orbital method proposed by Smith and
Day for computing ionization potentials. The results are carried to third order in the electronic interaction
and a comparison is made with the diagrammatic method of Cederbaum. Two of the third-order terms
included in the natural transition orbital method which contribute to the “particle part” of the self-energy
are found to differ from Cederbaum’s diagrammatic terms by multiplicative factors.

I. INTRODUCTION

Direct methods for the calculation of ionization poten-
tials have been a very active area of research in recent
years., 1-8 geveral different methods have received at-
tention in the form of analysis and comparison, Purvis
and Ohrn® and Simons and Jgrgensen'® have shown how
the equation-of-motion (EOM) method can be made to
contain all the second- and third-order self-energy
diagrams which are obtained diagrammatically by
Cederbaum.? Smith and Day'! have compared their nat-
ural transition orbitals (NTO) theory to the EOM tech-
nique by analyzing the form of the equations used in
these methods., The theories of Parr et al.! and Smith
and Day® have been shown to be formally identical, thus
our analysis applies equally to both for a single electron
ionization.

Within the NTO methods, the quality of the reference
wavefunction is of utmost importance. In this paper,
an evaluation of the NTO theory is achieved by using a
second-order Rayleigh~Schrodinger perturbation theory
wavefunction, This choice of reference function per-
mits an order-by-order comparison with other methods
in which perturbation theory is used to treat ionization
energies,

H. THEORY

Following the development of Smith and Day,? and as-
suming that the wavefunction for the N -1 electron sys-
tem, |1¢"!), can be accurately described by the re-
moval of a specific spin orbital from the wavefunction of
N electron system, | ¢¥), we write

[o" )=, ¢y, (1a)
where
Q,=2_C,cy, (1b)
i

and C; is an annihilation operator corresponding to the
Hartree—-Fock spin orbital ¢;. The difference between
the energy of the N electron system, E”, and the ener-
gy of the N—1 system, E"!, can be expressed as fol-

lows,

-[H, Q]| ¢Y) = AEQ| My = = (E¥1 - EM)Q| oM .  (2)

Taking the matrix element of Eq. (2) with the complex
conjugate of the N -1 electron wavefunction, (¢¥"!|
={¢"1 Q*, leads to a matrix equation of the eigenvalue
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form

vic‘=8‘c‘AE, (3a)
where

vii==(o"|cilH, Gl o") (3b)
and

sii= (0" c; Cil ") (3¢)

Using the second quantized form of the Hamiltonian,
. . + 1 .. +
H=Z<zlh|]>c,-cj+;UZkoyllkwc.-c,c,ck, (4)
17 1

with antisymmetrical two-electron integrals {iji| &),
the 7j matrix element of V¢ becomes

1
vi=("| Do cicye g 2 Gell kb ciciic| 6.

&k 1
(5)
When the wavefunction is exact {(e.g., equal to a full CI
function), V¢ is Hermitian; however, this may not be
the case for an arbitrary trial wavefunction. For this
reason Smith and Day have chosen to use the Hermitian
component,

71y =(67 |2 2 (G| k) C3Co+ k| BL) CiCy}
2 k

1
+3 2 {sl | k) cicie,cye (hl) i) Cicic,CiH 0)
&y Ry

=3(V§+ V5D . (6)
This form of vV will be used througout our analysis.

The second-order correlated wavefunction chosen for
use in our work is given by

|0) =n7tv {1+Z<K§C;ca)+ 2 (KT ChCiCCa)
%

m<n
a<B
> (K:sﬁcmc;c,csca)w-}|HF>, ()
m<n<p
alBr

where the correlation coefficients, K55, are deter-
mined by Rayleigh—Schrddinger perturbation theory, N
is the appropriate normalization constant, indices g,7,
js B, I are unspecified Hartree-Fock spin-orbitals, and
the indices a, B, 6, ¥ (m, =, p, q) are occupied (unoc-
cupied) spin-orbitals. Using only the first- and second-
order components of this wavefunction, which is suffi-
cient to compute v through third order, the required
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expansion coefficients'® are:
K- Cypl | mm) (mn | | 8y)
2=
man (€= €) (€54 €= € —€,)
7
(apl 1) {gp] | @B
(- € (eat G-€qmp) ()
B \€5 — €p/\Eu + € — €, — €,
a
mn (mnlla
KaB = B>

T (egt€g—€p—c¢,)

1 (mn| | 6y) Syl | ap)

2 5 e+ —€n—€) €5+ € —€,—€,)

1 (mnl | pg) gl | ap)

.
e legteg—€,—€ eyt eg—€,—€,)

1

;njn} (€i6i6+ €; 6]5:)(1 -

-~ 1
VijzéijGi_E ; !K;ni"
msn
7

ZK"‘"*(wml Im—— Z |KaRET

m<n
ke

-3 Z | K™K 22| (om| |jp) + E | KR Gm | [jp) + Z(: |k ™

m, , a<
,n,p

where we have used the notation

rrm mnl mn*

(12a)

atB’

and §;, is used to indicate that the spin-orbital ¢; must
be occupied. The terms in Eq. (12) which contain only
one Rayleigh-Schrodinger double excitation expansion
coefficient contribute in both second- and third-order
since K Jj contains both first- and second-order parts.
In analyzing the third-order parts in Eq. (12) one can
see that we have obtained Cederbaum’s diagrams® la-
beled A;~Ag4 as well as contributions from the diagrams
representing the “particle-part” of the self-energy
which Cederbaum labels C,~C; and D;~D;. However,
only one-half of C, and C; are included in Eq. (12).

All of Cederbaum’s second-order diagrams for the
“particle part” of the self-energy are included in Eq.
(12). However, an additional off-diagonal second-order
contribution

[~ 3 2 lresmrcspliesir e, - ]

m<n

appears in Eq, (12) but does not appear in Cederbaum’s
diagrams. The NTO theories thus give the diagonal
“particle part” of the self-energy complete through sec-
ond order, but not third order., The off-diagonal com-
ponents of the NTO self-energy are in error in second
order,

1. CONCLUSIONS

By taking a perturbation theory approach to the nat-
ural transition orbital method of Smith and Day, which

5;;) +Z<251 JP)K’+Z<ZP1 l76) K2*+

(y|| ap) - E K Mg e
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(onl | Bp) (pm| | da)

+ mn 9

Pas £ (€gt€=€n—€)(€at € —€n—€,) 0
K35 =2nd order terms , (10)
K73% = 2nd order terms , (11)

where p.; is an operator which sums over the cyclical-
ly permuted upper and lower indices independently, the
sign being determined by (- 1) parity, It turns out that
the evaluation of K52 and KJ5%¢ is not necessary if one
is interested in computing v through third order,

By choosing the perturbation to be the exact nonrela-
tivistic Hamiltonian [Eq. (4)] minus the Hartree-Fock
Hamiltonian, and employing the above second-order
reference state [Egs. (7)-(11)] in Eq. (8), one obtains:

22(17] ‘mn)K

m<n
Y

(ap] IJV>—— 2. kMK

myty
m(n 7,0
b

K27 im| | ps)

™ iyl 178 » (12)

a,B,7

f
is equivalent to Parr’s theory, we have shown that only
the “particle part” of the self-energy is obtained in the
NTO method for calculating ionization potentials. With
this restriction, the NTO theories are complete in sec-
ond order except for off-diagonal terms in I-/,-j and in
third order except for the fact that the NTO equation
contains only one-half of Cederbaum’s C, and C; dia-
grams.

Ionization potential theories which employ a more ex-
tensive operator space than shown in Eq. (1b) together
with the Hartree-Fock ground state have been investi-
gated and are shown to introduce spurious terms which
are cancelled by using a correlated wavefunction, **

The results of current work from this group indicate
that all second order and most, but not all, third-order
diagrams of Cederbaum can be generated by keeping all
(Hermitian and non-Hermitian) terms and using a
Hartree—Fock reference state and an inner projection
manifold which includes hy, ks, and kg '* It has also
been shown that the contributions of h; are of fourth
order®® 8 if the spurious non-Hermitian terms are
eliminated. This shows that the inclusion of %; is not
needed in a complete third-order theory, Thus it
seems that both the NTO method, which employs a
small operator space {Ci} and a high quality reference
state, and an approach which uses a large operator
space (hy, hs, hs) together with a poorer reference state
(Hartree-Fock) give “most” of Cederbaum’s third-or-
der diagrams, However, knowing that the exact energy
difference requires both the exact wavefunction and the
exact ionization operator, we are led to conclude that
results of a given quality require a corresponding quali-
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ty in both the operator and the wavefunction approxima-
tions. We feel that an operator space including %, and
ks and a wavefunction including first- and second-order
corrections can most conveniently give a theory which
is complete through third-order.
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