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ABSTRACT: Two methods that make use of standard electronic structure tools,
the stabilization and extrapolation methods, are discussed with an eye toward
pointing out their relative strengths and weaknesses and for improving their
applications. In the former, whether to utilize energy data from only one or from
both branches of an avoided crossing between the quasi-bound and pseudo-
continuum states is one issue that is focused on. Another is the decision of where
along the stabilization plot’s branches (i.e., far from or close to the avoided
crossing) to create data points for optimal performance given a reasonable (10−5−
10−7 eV) precision in the electronic energy. A third issue is how many parameters
to use in fitting energy data to the (one or two) branches of the stabilization plot. In
extrapolation methods, one uses energy data computed when the metastable state’s energy has been rendered stable by the
application of an external potential, which thus produces a one-branch function. The main issues in implementing this method are
the functional form for how the energy E depends on the strength of the external potential especially as the energy evolves from the
bound-state region toward the unbound region and how to choose data points so that energy values of a reasonable precision are
capable of determining the parameters in the formula that produces the metastable state’s energy E and half-width Γ/2 (inversely
related to the state’s lifetime). In addition to explaining, critiquing, and comparing these two methods, several suggestions are offered
for their further testing and improvements.

1. INTRODUCTION

It is my hope that the analysis and insights offered in this paper
will allow a wider range of scientists to make use of stabilization
and extrapolation methods for characterizing anions that are
electronically quasi-bound. I think this is important because the
currently available quantum chemistry software now includes
pathways for examining such situations, which means that the
number of workers doing so is bound to grow. In addition to
attracting new workers to this field, I hope that current
practitioners and developers of these tools will gain knowledge
that will help them sharpen and focus the methods they have
pioneered.
Calculating the energy and lifetime of an electronically

metastable anion is a difficult task1−3 because the electronic state
is imbedded within a continuum of other states belonging to the
neutral molecule plus a free electron. This means that the state of
interest is not the lowest-energy state of its symmetry, so the
wide range of variational methods used to compute ground and
excited bound states cannot straightforwardly be of use.
However, much progress has been and is being made on
developing new computational tools to address the problem
although many of them require substantial modifications to the
electronic structure computer programs, and such methods are

not being discussed here. There are two approaches that have
been especially useful in characterizing metastable species that
make use of conventional electronic structure codes with little
modification. This paper attempts to describe two of them: so-
called stabilization methods and extrapolation methods. A
primary goal is to clarify some of the pitfalls, strengths, and
weaknesses of these tools aiming primarily at an audience of
mainstream electronic structure theory users who are not yet
informed about them. Along those lines, I offer several
suggestions for further testing and improvements.
In the most widely used conventional stabilization meth-

ods4−8 (SMs), one tries to use an orbital basis set that is capable
of describing the core and valence-range electronic structure of
the neutral molecule, of the anion formed by attaching an
electron, as well as continuum states corresponding to the
neutral molecule plus a free electron having an energy close to
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that of the metastable anion. One then computes the energies of
several states9 in a range within which a metastable state is
expected. This process of computing several states’ energies is
then repeated as the radial extents of the more diffuse basis
orbitals are scaled. The possible existence of a metastable state is
signaled by the occurrence of one state’s energy remaining
relatively stable over a significant set of scaled basis sets. The
plateauing or stabilization of this energy is the key feature of this
approach. How the lifetime of the metastable state is extracted
will be explained in section 2.
In extrapolation methods10−17 (EMs) one adds to the

Hamiltonian of the electron-attached species a potential Vatt
that serves to differentially stabilize the energy of electrons in the
core and valence regions relative to the energy of electrons that
are more distant. For example, in studying18 the metastable
SO4

2−, the charge of the sulfur nucleus can been increased from
16 to 16 + x to achieve this differential stabilization. Clearly, at x
= 1.0, the system would be a geometrically distorted (because
ClO4

− does not have the same bond lengths as sulfate) ClO4
−

anion, which is stable, not metastable. By performing
calculations in which the added stabilizing potential’s strength
(Z) is increased to varying degrees, one eventually reaches a
point at which the electron-attached species become electroni-
cally stable. From this point on, one can use conventional
electronic structure tools to compute the electronic energy of
this artificially stabilized species. If one has a theoretical
framework within which to extrapolate the electronic energy
from values of Z where the species is bound into regions of Z
where it is metastable and onward to Z = 0, such a tool can be
used to predict the energy and lifetime of the metastable species.
The key to such EMs is to use the correct analytical structures for
expressing how the energy E depends on the strength parameter
Z, especially in the region where E moves from electronically
bound to unbound. These analytical formulas will be explained
in section 3.

2. STABILIZATION METHODS
2A. Stabilization Plots. Perhaps the most common variant

of the SM involves scaling the atomic orbital exponents of
several of the most diffuse basis functions thereby varying the
radial extent of the basis set. One first computes the energies of
several electronic states of the electron-attached species and
subtracts each such energy from the energy of the parent species
in the absence of the excess electron. The latter energy will also
vary as one scales the basis orbitals, albeit less so than for the
energies of the electron-attached states. One then plots these
energy differences as functions of the parameter related to how
the diffuse basis functions are scaled to generate a so-called
stabilization plot (SP), an example of which is shown19 in Figure
1.
In this example, increasing Z could, for example, involve

contracting the radial extent of the scaled basis. Alternatively, Z
could be related to 1/R, where R is the radius of a spherical box
within which a several radial basis functions are constrained. In
Figure 1, the energies that grow monotonically with Z describe
discretized-continuum (DC) states involving the detached
electron having the corresponding kinetic energies, and these
energies increase as the radial extent of the basis is contracted.
This SP shows two energy regions within which the energy of

at least one state remains nearly constant over substantial ranges
of Z. Near E = 0.5 eV and E = 1.3 eV such plateau regions are
seen in Figure 1 (see the blue rectangles); these are signs of
metastable states that the SM is designed to address. For

example, for values of Z between 1.0 and 2.0, the fourth lowest
state’s energy remains nearly constant near E = 0.5 eV but then
undergoes an avoided crossing with the third lowest state a bit
past Z = 2.0. In like fashion, between Z = 2.2 and Z = 3.2 a
plateau occurs near E = 1.3 eV with avoided crossings at lower
and higher Z values.
There are two differences worth emphasizing between the

plateau and avoided crossings near E = 0.5 eV and E = 1.3 eV.
First, the energy splittings (see the red ovals) arising in the
avoided crossings are substantially larger for the metastable state
near E = 1.3 eV than for the state near E = 0.5 eV. Second, the
slopes of the rapidly rising DC (green) and plateau branches
(blue) involved in the avoided crossings are quite different at E =
1.3 eV and E = 0.5 eV. As will be explained later, these
characteristics of the avoided crossings play key roles in
determining the lifetimes of the two metastable states belonging
to these two plateaus.
In Figure 2, another stabilization plot20 is shown in which the

four lowest energies of the 2Πg N2
− anion are shown as colored

dots as functions of a basis-function scaling parameter Z, where a
metastable state near E = 2 eV appears. In addition to plotting
the four states of 2Πg N2

−, Figure 2 also shows in dashed lines
three energies computed as eigenvalues of a Hamiltonian
containing only the kinetic energy of the excess electron. That is,
by use of the same atomic orbital basis set and the same scaling
factor Z for the diffuse basis functions, but including none of the
nuclei of the 2Πg N2

− and none of the electrons of the neutral N2,
the Hamiltonian has only the kinetic energy for the excess
electron. This plot helps make it clear how the three DC levels
relate to the kinetic energy of the excess electron as described by
the scaled orbital basis, while the energy of the metastable state
relates primarily to the valence-range character of the 2Πg N2

−.
Of course, the three DC states formed in this manner with
energies shown as lines are not orthogonal to the valence-type
(VT) state but become orthogonalized in forming the four
states’ energies shown as dots.
At a value of Z near 1.2, the VT state of 2Πg N2

− and the
second DC state undergo an avoided crossing the nature of

Figure 1. Generic stabilization plot showing how the energies (relative
to the energy of the system in the absence of the excess electron) of
several electron-attached states vary with the basis-extent scaling factor
Z. Reproduced with permission from ref 19. Copyright 2018 Elsevier.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c03920
J. Phys. Chem. A 2021, 125, 7735−7749

7736

https://pubs.acs.org/doi/10.1021/acs.jpca.1c03920?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c03920?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c03920?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c03920?fig=fig1&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c03920?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


which I will now discuss within the lens of a simple five-
parameter model.
2B.Most BasicModel for Stabilization Plot Data. In this

subsection, I introduce an analytical model21 that embodies
much of the character of the avoided crossings between one VT
and one DC diabatic state occurring in many SPs and for which
exact expressions can be obtained for the energy and half-width
of the associated resonance state. Within this model, I show how

these resonance characteristics depend on the model’s five
parameters (the slopes and intercepts of the VT andDC diabatic
states and their off-diagonal coupling matrix element). I also
show how the precision with which these parameters can be
determined depends on where within in SP one computes
energy data (i.e., at what values of the scaling parameter the
electronic energies are evaluated). In particular, I show that to
determine the energy and half-width of a resonance to a given
order of the coupling strength between the VT and DC diabatic
states, one needs to utilize data points within specific ranges in
the SP.
Analysis of the five-parameter model is used later in this paper

to assist one in deciding where to select data points in SPs being
used to create more sophisticated descriptions of how the
metastable state’s energy varies with the scaling parameter. By
first examining the SPwithin the lens of themodel, one canmake
reasonable estimates of where SP data should be computed.
These estimates in turn can be used to select data points to use as
input for creating more advanced descriptions (e.g., Pade ́́
rational fractions) for how E(Z) depends on the scaling
parameter Z. It is by this route that the insight provided by
this most basic model can provide guidance when implementing
the more sophisticated methods that I discuss later. I do not
mean to suggest that fitting SP data to the five-parameter model
can give a more accurate estimate for the resonance energy and
half-width than the more advanced stabilization or extrapolation
methods discussed in this paper. I only suggest that using the
model can assist one in choosing Z values at which to compute
the electronic energy differences E(Z) used to create the SP data
to use as input to the more advanced tools.
The model I now introduce was proposed in 1981 by this

author and later expanded upon by Löwdin22 and improved by
several others.23−25 In this model the diabatic energy h1 of the

Figure 2. Three dashed lines showing the discretized-continuum states
as functions of the basis scale factor Z (obtained as explained in the text
by carrying out the calculation in the absence of the two N nuclei and
the 14 electrons of N2

−). The energies of the lowest four 2Πg states of
N2

− are shown as dots as functions of Z. Reproduced with permission
from ref 20.

Figure 3. Plots of the diabatic VT (red) and DC (blue) energies (relative to the parent species) as functions of a scaling parameter Z showing their
crossing point ZC and crossing-point energy EC.
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VT branch of the pair of states undergoing the avoided crossing
is assumed to vary linearly with the scaling factor Z as is the
diabatic energy h2 of the DC branch:

= + = +h b a Z h b a Z;1 1 1 2 2 2 (1)

as depicted in Figure 3. The two adiabatic states formed by
coupling these two diabatic states through an off-diagonal
Hamiltonianmatrix elementV undergo an avoided crossing near
ZC as discussed below.
Although the energies appearing in actual SPs often display

signifianct curvatures, it can be possible to choose the scaling
parameter Z to produce primarily linear behaviors in the DC and
VT branches. For example, by choosing not 1/R but 1/R2 as the
scaling factor when using diffuse basis functions constrained to a
spherical box of radius R, the DC branches will vary nearly
linearly because they will closely follow the particle-in-a-box
energy expression (k2h2/8mR2). As mentioned earlier, the SP
involves the differences between the energies of several of the
electron-attached states and the energy of the parent species
lacking the excess electron. By including the (smaller) Z
dependence of the parent’s energy in these energy differences,
one increases the chances of obtaining (local) linear forms for
the VT andDC states’ energies in regions away from the avoided
crossing. The energy of the VT branch is expected to be much
less sensitive to the scaling that has been applied to the more
diffuse basis functions, so it often has a much smaller slope a1
than that of the DC branch a2. In fact, one might be tempted to
expect the VT state’s energy to be essentially independent of any
scaling applied to the more diffuse basis functions. However,
because the VT state’s wave function is orthogonal to the DC
states’ wave functions, it does not contain only a diabatic VT
character; it also contains admixtures of the diabatic DC
functions. These admixtures cause the adiabatic VT state, which
is what is obtained in a stabilization calculation, to acquire a
nonzero slope of the same sign as found for the DC states. In the
Supporting Information, I offer a more detailed analysis of this
matter.
Assuming that one DC state is coupled in the avoided crossing

to one VT state, the model mentioned above shows that the two
assumed linear diabatic energies intersect at

=
−
−

Z
b b
a aC

1 2

2 1 (2)

where they have a common energy

=
−
−

E
a b a b

a aC
2 1 1 2

2 1 (3)

and give rise through a coupling V to two adiabatic energies

= +
+

−

± +
−

−

±E E
a a

Z Z

V
a a

Z Z

2
( )

2
( )

C
2 1

C

2 2 1
2

C
2i

k
jjj

y
{
zzz

(4)

which are separated by 2V at the diabats’ crossing point ZC.
Earlier, I showed21 that this function of Z has complex stationary
points (i.e., where dE/dZ = 0 ) at

= ±
−

+

Z Z iV
a a a a

2
( )

a a

sp C
2

2 1 1 2

1 2

(5)

at which it has complex values

= ±
−

E E iV
a a

a a
2sp C

1 2

2 1 (6)

with the solution having a negative imaginary part being relevant
to the metastable state’s half-width.
If one’s SP data have both the DC and VT adiabatic branches

varying quite linearly far from the crossing point, one can easily
determine the slope parameters a1 and a2. The energy at the
crossing point can be determined from where the two linear
functions intersect and thus produce EC. The energy splitting
between the two adiabatic curves at ZC can then be used as 2V
(see eq 4), and this is enough to estimate the half-width via eq 6.
This is the approach I used in my group’s early work in this field,
but it limited us to cases in which we could “eyeball” the two
slopes and the 2V splitting.
If one has a SP in which the VT and/or DC energies show

significant curvature, one can still try to fit the data to the model
as follows. One can first carry out a least-squares fit of the sum20

of the energies of the adiabatic DC and VT curves using values of
Z within one of the regions where the VT curve displays a clear
plateau as well as closer to an avoided crossing. This energy sum
should equal the sum of the two diagonal Hamiltonian matrix
elements (see eq 4)

= +E h hsum 1 2 (7)

which is independent of the coupling between the two states.
This fit could be performed assuming these matrix elements vary
linearly, quadratically, and higher with Z, which would be
especially useful if the DC or VT curve displays substantial
nonlinearity. One can then, having determined h1 + h2, fit the
square of the difference D between the two adiabatic energies20

= + + −D h h V h h( ) 4( )2
1 2

2 2
1 2 (8)

again expressing this quantity in a power series in Z. This fit
would contain the information about the strength of the
coupling V. Such an approach was recently detailed in ref 20
where it was also shown that when the VT and DC diabatic
energies vary linearly, results to those given above eqs 5 and 6
can be obtained if one were to set the a1 slope factor to zero but
allow V2 to vary quadratically with Z still limiting the parameters
to a total of five. Setting a1 to zero often makes sense since in
stabilization plots for systems with very small half-widths the
variation of the VT state’s energy in the plateau region is slight,
which makes it difficult to assign a slope to this branch. In my
current discussion, I will remain with the point of view contained
in the model I introduced in 1981 which assumes a nonzero a1
and a constant V, but in the Supporting Information, I provide
further information about this approach and that followed in ref
20, both of which lead to the same final results.
Of course, it is also possible to utilize more sophisticated

functional forms7,8,25,24 than provided by eq 4 to fit to the
adiabatic DC and VT energy data. A widely used and successful
approach generalizes the model introduced above by expressing
the two branches of an avoided crossing within a SP as solutions
of a more general quadratic equation7,8,26

+ + =P Z E Q Z E R Z( ) ( ) ( ) 02 (9)

where P, Q, and R are expressed as low-order polynomials in Z.
Using, for example, a least-squares fitting procedure or using as
many data points as there are parameters in P +Q + R to convert
eq 9 into a set of linear equations7 for the parameters, we can use
energy data Ek at various Zk values to determine the coefficients
in these three polynomials. Then, the two adiabatic energies
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E(Z) at any value of Z can be expressed as what is sometimes
called a generalized Pade ́ approximant (GPA) or generalized
rational fraction

=
− ± −

E
Q Q PR

P
4

2

2

(10)

This expression for E can be searched for complex stationary
pointsZsp which, if located, can then be used tomake predictions
of the energy and half-width of metastable states. Clearly, this
way of describing the two adiabatic states’ energies is also
capable of treating situations in which either the VT or DC
branch’s energy (or both) display nonlinear dependence on the
scaling parameter Z. In fact, in ref 7 the authors used P,Q, and R
polynomials of orders [3, 3, 3] up to [5, 5, 5] and even extended
eq 9 to include terms proportional to E3 (and thus had four
polynomials) to account for the existence of a second DC state
in proximity to the avoided crossing.
Although it is tempting to use P,Q, and R polynomials of high

order to better fit the Ek vs Zk data, doing so produces an
expression (eq 10) that can have a very large number of complex
stationary points, among which only a small number relate to the
energy and half-width of the metastable states of interest. In my
opinion, it is therefore useful to search for methods that contain
the fewest number of parameters needed to achieve a precise fit
to the Ek vs Zk data given energy data of a reasonable specified
precision. In section 2D I will say much more about this issue,
but at this point I want to emphasize that one needs to consider
two aspects of precision when making use of any tool for
extracting resonance energies and half-widths from SPs (or
when using the extrapolation methods I discuss later). The
anion−neutral electronic energy differences E have precision
limits that depend on various aspects of the codes used to
compute them; as I explain later, I think 10−5 eV is a reasonable
estimate for how precisely these energies can be determined, but
in my later analysis I allow for the possibility that a precision of
10−7 eV can be achieved. In addition to these precision limits on
E, one has additional uncertainty resulting from how accurately
the analytical formula E(Z) (e.g., eq 4, eq 6, etc.) fits the
electronic energy values used as inputs. Later, I have more to say
about these two issues.
2C. Using Data from Only One Branch. The approaches

discussed above are often performed by using energy data from
both adiabatic branches of the SP since the working equations
(eqs 4 and 10) have two solutions. However, one might wonder
whether it would be possible to use data from only one branch to
estimate the energy and half-width of the metastable state. For
example, one might have energy data on the VT adiabatic state
that displays quite linear dependence on the scaling parameter
until the avoided-crossing region is approached. To address the
possibility of using data from only one branch,19 I expand the
expressions for the two adiabatic energies given in eq 4 in powers
of the interaction strength V assuming the scaling factor Z is
chosen so that the SP data is in the plateau region:

δ
δ δ δ δ

= + − + −E E a Z
V
a Z

V
a Z

...1 C 1

2 4

3 3 (11)

δ
δ δ δ δ

= + + − +E E a Z
V
a Z

V
a Z

...2 C 2

2 4

3 3 (12)

where

δ = −a a a2 1 (13)

and

δ = −Z Z ZC (14)

The energy E1 describes the VT plateau, and E2 describes the
more strongly sloped DC state. Clearly, if δZ is large enough,
these energies vary nearly linearly with Z and develop curvature
as one gets closer to the avoided crossing point.
It is straightforward to show that the E1 function possesses

complex stationary points but the E2 function does not and that
the stationary points for E1 depend upon at what power of V

2 the
expansion in eq 11 is terminated. For example, when truncated
at order V2, E1 is stationary at

δ
= ±Z Z

iV
a asp C

1 (15)

while E2 is stationary at

δ
= ±Z Z

V
a asp C

2 (16)

The complex Zsp of the VT function gives rise to the following
complex energy for E1

δ
= ±E E iV

a
a

2sp C
1

(17)

from which one can infer a half-width

δ
Γ = V

a
a

/2 2 1

(18)

On the other hand, the (real) stationary point of the DC branch
E2 offers no complex energy and thus no estimate of the half-
width.
In ref 19, expressions for Esp and Γ/2 are given for the case in

which the +
δ δ

V
a Z

4

3 3 term is included in eq 11; it is a bit more

complicated, but its expression for Γ/2 still contains only V and
the ratio

δ
a
a
1 , whereas the exact half-width (eq 5) depends on the

ratio
−

a a
a a

1 2

2 1
. It is important to point out that the exact, the order

V2, and order V4 half-width expressions become equal in the
limit |a1| ≪ |a2|, that is, when the SP’s VT state has a much
smaller slope than does the SP’s DC state. As I will show later,
this means that it is much easier to select appropriateZ values for
creating a SP when |a1| ≪ |a2|.
The above analysis suggests that it would be possible to use

data from the VT branch to estimate the energy and half-width
of the metastable state, but it would not be possible to use data
only from the DC branch. It should be noted that this
observation is not a result of truncating the expansion of the full
adiabatic energy expression at order V2; it has also been shown19

to hold at order V4.
I realize that the model upon which the results discussed

above are based may not offer a highly precise fit to SP data that
display substantial curvature far from the crossing point.
However, the functional form embodied in this model does
possess the most essential features of real SP data. Its form far
from the crossing point EC + a1δZ − ... is linearly varying with Z
and its form as one approaches the crossing point; the term

− + −
δ δ δ δ

...V
a Z

V
a Z

2 4

3 3 displays curvature and is suggestive of a

singularity. For these reasons, I believe this model does offer
useful insight into issues that arise even when using more
sophisticated functional forms for how the Hamiltonian matrix
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elements depend on the scaling parameter Z. In particular, any
approach to extracting metastable-state energies and half-widths
from Ek vs Zk data that does not succeed when attempting to fit
data generated from this simple model is unlikely to succeed
when fitting more complicated Ek vs Zk data. I therefore suggest
that workers test their methods on artificial data generated from
eq 4 with a range of V, a1, and a2 values to see if the method can
generate half-widths that are essentially “exact” or accurate to
only order V2 or V4. In the next subsection, I will provide an
example of doing so when the powerful and widely used rational
fraction form is used for E(Z), but first I will overview some of
the history involved when data from one branch of a SP has been
used.
Several years ago, in refs 24 and 25 the workers explored using

data from only the VT branch and met with modest success, but
their functional forms for E(Z) had two-branch character built in
even though they used data only from one branch. Also, in refs 8
and 25 the workers demonstrated how one can use data from the
VT branch alone, but again their functional form had two-
branch character built into it. Therefore, there is considerable
history supporting the point of view that data from the stable VT
branch of a SP can indeed be used to extract resonance energies
and lifetimes.
However, there remains the question of whether it is better to

use data from both branches of a SP rather than data from only
the VT branch, and a key observation about using one-branch
data was made in ref 24. Those authors found that extremely
high precision (10−12 au) energy data were needed to achieve
reliable results when data from only one branch were used,
whereas precision many orders of magnitude lower could yield
trustworthy results when two-branch data were employed. I will
have more to say about this in the following subsection as I
believe it is a key point to keep in mind when seeking
improvements to one-branch SM and especially in EMmethods
where one is of necessity dealing with data from only one branch.
From eq 11 it is clear that at large Z the VT branch’s energy E

is expected to vary linearly withZ (and perhaps to contain higher
powers of Z if the VT branch displays curvature). The terms in
eq 11 that vary inversely with Z − ZC in combination with the
term varying linearly with Z − ZC suggest that a rational fraction
(RF) could be a useful way to model the Z dependence of E
because such functions can describe the behavior of a function at
both large and small Z within a one-branch functional form.
Here is an example of such an RF (often called Pade ́
approximants):

[ − ] =
+ + + +

+ + + + −
−E N K

n n Z n Z n Z
d Z d Z d Z

N,
...

1 ...
N

N

N K
N KRF

0 1 2
2

1 2
2

(19)

In eq 19, an RF of powerN in the numerator and powerN−K in
the denominator is shown. Such an RF would allow the large-Z
form of E to contain terms of power ZK and lower. For example,
choosing K = 2 would describe E varying linearly and
quadratically at large Z. This approach was studied recently in
ref 19 where particular focus was placed on how to select the
values of Z at which to calculate the VT-branch E given a limited
precision in the E values as I will discuss in the next subsection. It
is worth noting as pointed out in ref 14 when studying the
applications of RF functions to the extrapolation problem I
discuss in section 3 that difficulties arise when extending the
powers of Z beyond what the precision of the energy data can
tolerate. Moreover, if the orders N and N − K grow too large,

some/many of the stationary points found as solutions to dERF/
dZ = 0 can have little or no relationship to the desired
metastable-state energy and half-width.
The idea of using data only from the plateau branch of a SP

and employing a RF functional form for E(Z) was explored
recently15 in a nice study of metastable states of the He atom and
of theH2molecule. These workers concluded that if only data far
from the avoided crossing were used, the RF was able to extract a
reasonable half-width, but when data closer to the avoided
crossing were included, the RF method did not succeed. In fact
(see Figure 3c in ref 15), the data points used when the method
failed included points spanning both sides of the avoided
crossing. I note that it is not clear from that reference what
numerical precision for the energy Ewas used in carrying out the
fit to the RF function by using data far from the avoided crossing.
Because the energies and half-widths obtained in ref 15 appear to
agree well with results obtained by other workers using other
means, it is likely that the precision to which E had been
determined in ref 15 met the criteria that I will describe in the
next subsection when the data were collected far from the
avoided crossing.
In a more recent paper,27 some of the same workers as in ref

15 revisited the issue of where to select single-branch data points
in forming an RF after finding that different stationary points,
and thus different energies and half-widths were obtained when
data from different portions of the SP plateau (VT) branch were
used to form the RF. The workers of ref 27 introduced a new so-
called clustering technique aimed at identifying which stationary
points are more likely to be realistic and which are likely to be
artifacts. In this approach, one selects data points at Z values (α
values in ref 27) from a variety of ranges within the plateau of the
SP to form an RF fromwhich resonance energies and half-widths
are obtained. By examining how sensitive the resultant
resonance parameters were to the location of the data points,
the authors of ref 27 searched for clusters of Z values from which
the resonance parameters were more consistent (i.e., had lower
standard deviation). I note (see Figure 3a from ref 27) that the
clusters of optimal α values identified following this route for the
He(2s2) case also treated in ref 15 fall near α = 1.0 and α = 1.6,
which are considerably closer to the avoided crossing points
than where the data were taken in ref 15. This illustrates why I
think it is useful to have tools for suggesting where (i.e., Z or α
values) it is best to collect energy data to use in forming the Pade ́
or any other approximants to describe a SP. I think the clustering
technique offers one approach, but I suggest that the approach
based on the five-parameter model as I describe in the next
subsection can also be useful as I will illustrate first on data from
a model for which the exact answers are known and then on data
from the He(2s2) plots of refs 15 and 27.

2D. Where to Choose Z Values to Create a SP. Even
when creating a SP from ab initio electronic energies and even
when planning to use that SP to form a more sophisticated
analytical expression for E(Z), I suggest that first viewing the SP
data within the lens of the five-parameter model can provide
insight into how close to an avoided crossing one must approach
when selecting Z values at which to evaluate the adiabatic
energies (both E1 and E2 if using both branches or E1 if using
only the VT plateau).
To illustrate, for the moment assume that one is presented

with a SP whose VT branch data derived from eq 4 where, of
course, we know what the exact resonance energy and half-width
are. The analysis offered above tells us that if only Z values far
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enough from Z0 to make the magnitude of the
δ δ

V
a Z

4

3 3 term less

than the precision ε to which the energies E are known, while

rendering the
δ δ

V
a Z

2
term larger than ε, the half-width should turn

out to be that given in eq 18, not the correct half-width of eq 6.
The good news is that, as noted earlier, these two half-widths do
not differ much if the slope of the VT branch is very much less
than that of the DC branch. However, when one is faced with a
VT branch of the SP that has a more substantial slope, it is

important to select Z values within which the
δ δ

V
a Z

4

3 3 term exceeds

the energy precision ε as I will now illustrate.

The quantities
δ δ

V
a Z

2
or

δ δ
V

a Z

4

3 3 exceed in magnitude the

numerical precision ε to which the electronic structure code
determines the energy E if

δ
ε δ

≤Z
V V

a (20)

for the V2 term and

δ
ε δ

≤Z
V V

a

1/3i
k
jjj

y
{
zzz (21)

for the V4 term; analogous expressions can be obtained for
having terms of higher V2 power exceed ε. Let me now illustrate
using two sets of SP data: first one with |a1|≪ |a2| and then one
with |a1| comparable to |a2|.
In Figure 4, an SP is shown19 in which a metastable state near

E = 2.5 eV appears. The two dashed curves are the two adiabatic

energies; the blue line is not relevant to the present discussion.
These data were generated from eq 4 by using a1 = 1.0 eV/Z for
the slope of the VT branch, a2 = 10 eV/Z for the DC branch’s
slope, V = 0.1 eV, and ZC = 0.20.
Assuming that the electronic energies are computed to a

precision that generates an ion−neutral energy difference
reliable to ε = 10−5 eV, eq 21 says that one must select values
of Z within 0.239 of ZC to have precision sufficient to extract
information about order V4. Equation 20 suggests that one can
select values of Z as far as 111 units away from ZC to be able to
gain information about order V2.

For the SP data of Figure 4, it turns out that the slope of the
VT branch is sufficiently less than the slope of the DC branch
that the exact, V2, and V4 level half-widths are very similar:
0.0703, 0.0667, and 0.0697 eV, respectively. Therefore, in this
case it would be safe to use data at values of Z quite far from the
avoided crossing because obtaining a half-width of V2 quality
would be sufficient. However, when the slopes of the two
branches are closer in magnitude, things are very different as I
will now illustrate.
Now, assume one were to use a1 = 4.0 eV/Z for the slope of

the VT branch, a2 = 6 eV/Z for the DC branch’s slope, V = 0.1
eV, and ZC = 0.20 to generate SP data from eq 4. Note that this
case differs from the one treated above not in the strength of the
coupling V or in the energy of the resonance but only in the VT
and DC slopes. Equation 21 tells us, again assuming an energy
precision of ε = 10−5 eV, that one would need to select data
points (at least five of them given the model has five parameters)
no farther than 1.08 from ZC to obtain a half-width of V4

accuracy; to achieve a half-width of V2 accuracy, eq 20 says Z can
be as far from ZC as 500. In this case, there are very large
differences among the exact, V2, and V4 level half-widths; they
are 0.4899, 0.2828, and 0.3810 eV, respectively. Thus, for such a
case it is important to know at what Z values to compute the
energies if one wants to achieve the best results.
To examine to what extent the guidance provided by

analyzing the SP data in the lens of the five-parameter model
is useful when creating a Pade ́ representation of such data, we
created a [3, 2] Pade ́ representation for the data set discussed
immediately above and used six Z values (this Pade ́ has six
parameters as seen in eq 19): Z = 0.4, 0.6. 0.8, 1.0, 1.2, and 1.4.
Notice that five of these six Z values fall within the δZ < 1.08
criterion to achieve a V4 level half-width, but the sixth Z value is
outside this range. However, this Pade ́ fit produced a half-width
of 0.287 eV, close to the V2 level result but not close to the V4

level result. Even by extending our Pade ́ representation to [4, 3],
[5, 4], and [6, 5] by using the six above-specified Z values and
additional Z values above Z = 1.28, essentially the same V2 level
half-width was obtained. This shows that even a high-order Pade ́
equation cannot go beyond the precision of the energy data that
it is given as input, which is one of my main points.
The good news from this numerical experiment is that the [3,

2] (or higher) Pade ́ representation of the SP data generated by
using a1 = 4 and a2 = 6 works very well if one uses six or more
data points all within δZ < 1.08. For example, when these six Z
values are used, 0.25, 0.40, 0.55, 0.70, 0.85, and 1.00, a half-width
of 0.4892 eV is obtained, which is very close to the exact half-
width. I hope this illustrates how it can be useful to first examine
SP data within the lens of the simple model (i.e., attempt to
estimate the two slopes and the coupling parameter V) and to
then use eqs 20 and 21 to assist in deciding where to focus
energy data used in generating a Pade ́ (or other sophisticated)
expression for E(Z). As with the clustering strategy discussed
earlier, this path offers a way to focus on the most important
region(s) within the SP’s VT branch.
Now, let me illustrate how this strategy applies to the He(2s2)

data of refs 15 and 27 where the exact results are not known but
for which highly accurate results from other methods are
presented. Taking the SP data of Figure 2 in ref 27, which is
essentially the same as the SP data shown in Figure 3a of ref 15, I
estimated the slope of the VT branch to be a1 = −0.015 and the
slope of the other branch to be a2 = −2.00 (both having units of
hartree per unit change in α). From this same SP, I estimated the
splitting between the two adiabatic states at the avoided crossing

Figure 4. Two adiabatic energies (dashed line) generated from the five-
parameter model showing their avoided crossing with data points
(circles and squares) used to extract energies and half-widths from
them. The slopes and coupling strength are given in the text.
Reproduced with permission from ref 19. Copyright 2018 Elsevier.
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point to be 2V = 0.0375 hartree. I then used these values with the
simple model I cite in the paper to estimate how close δα to the
avoided crossing point one must collect data assuming that the
electronic energies are precise to ε = 10−5 eV = 3.7 × 10−7

hartree and assuming one wants to achieve results of V4 level

(see eq 21). This produced δα = =
ε− ( ) 0.35V

a a
V 1/3

2 1
. From

the SP in Figure 2 of ref 27, one can see that the crossing point
occurs at ca. α = 0.8, so this means that data points should be
focused in the region not beyond α = 1.15 according to eq 21. I
note that this suggestion is very much in line with the results
obtained by using the clustering method as shown by the data
points contained within the red circle in Figure 3a of ref 27. I
hope this example and the two shown earlier for the model data
where the exact answers were known support my claim that
using the simplemodel put forth here can be useful in deciding at
what values of the scaling parameter one should focus computed
E values.
I should note that the utility of the strategy I just outlined is, of

course, limited by (i) the extent to which one can estimate V
from the energy splitting and (ii) the extent to which one can
estimate the slope difference a2− a1 and the degree to which the
two branches of the SP display linear behavior away from the
crossing point. Using ε = 10−5 eV in eq 21, the expression for δα

reduces to δα = −46.4 V
a a

4/3

2 1
with V and the slope parameters

expressed in eV and eV per unit of α, a result that can be used to
estimate the uncertainty in δα given uncertainties in V and in a2
− a1.
In the above analysis, I used ε = 10−5 eV as a reasonable

estimate of the precision to which the ion−neutral energy
difference can be obtained. I realize that most modern electronic
structure programs use double (or higher) precision arithmetic,
evaluate the one- and two-electron integrals to precisions better
than 10−5 eV, and have convergence and matrix eigensolver
routines that are of very high precision. Nevertheless, even when
attempting to carry out a calculation by using the same basis set
and the same level of electron correlation (e.g., Hartree−Fock,
MP2, CCSD(T), EOM-CC, etc.), there can be slight differences
among research laboratories (e.g., self-consistent field con-
vergence, eigenvalue solver routines, geometry optimization
algorithms, solving the EOM-CC equations for several roots,
etc.) that cause the final energies to vary by ca. 10−5 eV from one
research lab to another. So when one uses energy values
generated by the electronic structure code to many figures
beyond 10−5 eV, the resulting RF might offer a good fit to the
data but the data themselves and the resultant RF are still not
trustworthy to better than 10−5 eV.
Finally, I also note that methods that use the total electronic

energy of the electron-attached system under study are even
more prone to the issue of limited precision because such total
energies are extensive quantities and become very large in
magnitude as the molecular size increases. To compute the
anion−neutral energy differences used to form the SP, one has
to subtract two such large numbers, which adds to the energy
uncertainty. In contrast, methods such as Koopmans’ theorem
and Green’s function or equations of motion methods are less
prone to this problem because they evaluate the intensive
electron binding energy directly.
Although these points are made in context of discussing using

one-branch VT data within stabilization methods, they are going
to appear again in section 3 when I discuss how one should be

aware of the precision to which E values are computed when
using the extrapolation methods discussed there.

3. EXTRAPOLATION METHODS
3A. A Different Type of Stabilization Plot. In these

approaches one adds to the system’s electronic Hamiltonian a
potential Vatt that is differentially attractive in regions where the
core and valence electrons reside and one computes the
electronic energy at various strengths ZVatt of the added
potential. If the strength factor Z is large enough, the modified
Hamiltonian will produce a bound electronic state. For values at
this and higher Z, the electronic energy can be computed by
using conventional bound-state methods. For example, as
explained earlier, in studying18 SO4

2−, one could change the
charge on the sulfur nucleus to be 16 + Z; if Z were to equal 1.0,
the calculation would correspond to one on the ClO4

− anion
which is electronically bound. By finding the smallest value of Z
that renders the system bound and then carrying out a series of
calculations at this and higher values of Z, one can generate
energy data to be used in an extrapolation method (EM). For
example, one might posit to fit the E(Z) data to a low-order
polynomial in Z and to then extrapolate back to Z = 0. However,
the more successful EMs have made use of knowledge about
how the function E(Z) should behave in the region where E
moves from negative (i.e., describing a bound state) to positive
and have shown that such a polynomial representation is not
appropriate. Incorporating this aspect of the functional form has
proven to be a key component of the more successful EMs as I
will now describe.
One potential advantage of the EM approaches is that one can

utilize electronic structure methods that focus on only one (e.g.,
the lowest energy) state in determining the energy of the VT
state once it has been sufficiently stabilized. Therefore, for
example, high-level methods such as CCSD(T) can be used.
However, one still has to compute such an energy for both the
electron-attached and neutral parent species to obtain the
energy difference used as input to forming a Pade ́ or other
representation.
Now, I want to show the results16 of a calculation in which a

stabilizing potential has been added to generate the kind of data
discussed above. But I want to show how the energies of the DC
states also evolve when the added potential acts because doing
so illustrates one of the difficulties that arise when certain
stabilizing potentials are used. To do so, I selected a set of
calculations from ref 16 in which the authors used a multistate
configuration interaction method so they could simultaneously
determine the energies of the VT and DC states. In Figure 5, I
show such a plot pertaining to the lowest metastable shape
resonance of CO2

−. Note that the strength parameter ξ is
defined to begin at ξ = 1 (thus corresponding to Z = 0 in my
notation) as I have to correct for this difference in the following
discussion.
The energies (anion−neutral energy differences) shown in

blue are those in which the ground electronic state of the CO2
−

anion has become bound and have been used as input data in ref
16 to form a Pade ́ representation; the six other red curves
describe how the DC states in this calculation on CO2

− evolve as
the potential acts to differentially stabilize the VT state. Clearly,
the DC states are also being stabilized but not as much as the VT
state.
In all of the EMs I know of only energy data taken from the

region in which the VT is electronically bound are used to carry
out the extrapolation. In other words, even though the workers
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of ref 16 examined how the energies of several DC states varied
as the strength of the stabilizing potential was changed, they only
used data (the blue points) taken from the bound-state VT data.
In that study, the workers examined the behavior of the DC
states because they wanted to emphasize how certain stabilizing
potentials Vatt gave rise to unwanted effects on the DC states
whereas the shorter-range potentials they prefer were less
problematic. I emphasize this so the reader understands that EM
methods usually do not look for avoided crossings between VT
and DC states; they only look at the character of the VT state
once it has become bound. Therefore, it is important to keep in
mind that unlike when using SPmethods, one does not have two
states whose avoided crossing magnitude can be used to
estimate the coupling strength V; one only has a plot of the VT
state’s energy in the region where it is stable.
3B. Problem with Intervening Rydberg-like States.

Before describing the EMs that have been used to extrapolate the

kind of data shown in blue in Figure 5 to obtain the energy and
half-width of the corresponding metastable state, I want to point
out a problem that can and often does arise in this kind of study
as the workers in ref 16 addressed. Notice that for values of the
strength factor (ξ in Figure 5) greater than ca. 1.007 the lowest
DC state’s energy has dropped below zero. Notice also that this
DC state’s energy is actually below that of the differentially
stabilized VT state for values of ξ up to ca. 1.022. Therefore, any
electronic structure method that is focused on locating and
characterizing only the lowest bound state of a given symmetry
would not find the VT state in this range of ξ. This is a problem
because it limits one’s ability to follow the evolution of the
desired VT state from large values of ξ downward to where the
energy of the VT state crosses E = 0.
It is the long-range character of the differential stabilizing

Coulomb potential = ξ−V
ratt used to generate the data in Figure

5 that causes the DC states’ energies to undergo substantial
stabilization and, for several of these DC states, to drop below E
= 0 as ξ increases. In effect, these DCs evolve into Rydberg-like
states at larger ξ values, and in ref 17 we are reminded that this
danger in using a purely Coulomb stabilizing potential can be
difficult to overcome. In ref 16 and again by other workers in ref
17 it is shown that using an attenuated Coulomb attractive
potential can help overcome this difficulty and can do so with
little modification to the one-electron integral codes contained
in most ab initio electronic structure programs. In ref 7 a
stabilizing potential that is constant (−q/R) inside a sphere of
radius R and Coulomb-like (−q/r) outside the sphere was
employed along similar lines. Other workers28 have used
dielectric stabilization to render the VT state bound, but these
same workers have not utilized such E data to attempt to
compute the half-widths.
Another example of how Rydberg-like states arise in such

studies29 when using the pure Coulomb potential to effect the
differential stabilization is shown in Figure 6. Here we see the
energy (here by using E > 0 to denote a bound state) of the 2Πu
diacetylene H−CC−CC−H− anion at the equilibrium
geometry of the neutral (relative to its neutral) evolves as the
charge λ added to each of the six nuclei is increased. For values of

Figure 5. Plots of energies for the shape resonance state of CO2
− for the

stabilized VT state (blue for ξ > ca. 1.022 and continuuing red for ξ
below that) and DC states (other red) as functions of the strength ξ of
the stabilizing potential. Reproduced with permission from ref 16.
Copyright 2015 AIP Publishing.

Figure 6. Plots of the energies of the stabilized 2Πu VT state of diacetylene anion (line including point 3) and in intervening Rydberg-like state (curve
containing points 1 and 2) as functions of the strength parameter λ. Also shown is the radial dependence of the lowest-energy state at data points 1, 2,
and 3. Reproduced with permission from ref 29. Copyright 2015 AIP Publishing.
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λ > 0.02, the lowest energy state is the desired VT state of the
anion. But as λ decreases below 0.02, a Rydberg-like state
becomes lower in energy than the VT state. This causes
problems in extrapolating the VT state’s energy to find the point
where it crosses E = 0 which, as I explain below, is important to
know when using EMs. These plots of the radial component of
the singly occupiedmolecular orbital as functions of the distance
from the center of themolecule at the three data points indicated
in Figure 6 amplify the issue. At data point 3, the radial function
has a single lobe with a maximum near 1.0 Å and is characteristic
of a diacetylene π* VT orbital, but at points 1 and 2 it extends to
much longer distances as expected for a Rydberg-like orbital.
Another feature of the Rydberg-like state’s energy that is

worth noting is its quadratic dependence λ2 on the coupling
constant, whereas the stabilized VT state’s energy varies nearly
linearly with λ in Figure 6. It turns out, as I discuss later, that
these different λ dependences are important to keep in mind
when deciding what kind of stabilizing potential to use in
performing extrapolation studies. Potentials of the Coulomb

form = ξ−V
ratt that are singular at r → 0 are most prone to the

difficulties involving spurious Rydberg-like states as discussed in
refs 16 and 17.
Before moving on to describe how one makes use of the data

from the electronically stable portion of the plots shown in
Figures 5 and 6, I want to emphasize that this kind of plot is very
different from the SPs used in the stabilizationmethod described
earlier even though they both have avoided crossings between
VT and DC (or Rydberg) branches. In one case, the key features
are the plateau behavior of the branch describing the VT
character of the metastable state and the avoided crossings this
plateau branch undergoes with DC branches whose energies
intersect its plateau energy. In the second case, the key features
are the behavior of the VT state that has been rendered bound by
the differentially stabilizing potential and the functional form of
E(Z) that can be used to extrapolate back to Z = 0. The avoided
crossings between the VT branch and the DC branches in the
latter class (Figure 5 shows five of these) do not play the same
role as in the first class of SPs. For example, the avoided crossings
near 1.2 and 2.7 eV are not to be used to say anything about the
half-width of the CO2

−metastable state; only the behavior of the
VT branch near ξ = 1.0, where E is ca. 4 eV, can be so used, and
this behavior is obtained only via extrapolation of the EM
formula E(ξ).
3C. Most Basic Extrapolation Formula. A key concept

underlying the formulas used to extrapolate the E(Z) data from
the bound state where E < 0 (returning to our earlier
convention) into the unbound and potentially metastable
region where E > 0 lies in understanding how the momentum
p of the ejected electron evolves as one moves through E = 0. For
Z > Z1, this critical value, the momentum, is purely imaginary

because = Ep
m2

2

e
is negative (i.e., as for a bound state).

Moreover, it is known that for a state of nonzero angular
momentum (e.g., the 2Πg shape resonance of N2

−) this
momentum approaches and passes through zero in the following
manner:3,11,30,32

= [− + − ]p i a b Z Z0 (22)

Hence, for Z < Z0 the momentum develops a real component
and becomes

= [− ∓ − ]p i a ib Z Z0 (23)

These constraints on how the momentum varies near E = 0 then
suggest how the energy itself should vary (assuming atomic units
in which me = 1) as

= − − − + − ≥E a b Z Z ab Z Z Z Z
1
2

1
2

( ) for2 2
0 0 0

(24)

and

= − − − − − ≤E a b Z Z iab Z Z Z Z
1
2

1
2

( ) for2 2
0 0 0

(25)

The functional form given in eq 24 suggests that E should be real
and decrease linearly with Z at large Z having a slope of −1/2 b2
and should pass through E = 0, Z = Z0 + a2/b2. Once Z drops
below Z0, E develops an imaginary component that grows in
magnitude until it reaches−iab Z0 at Z = 0. In this same range,
the real part of E should increase linearly with slope of
magnitude 1/2 b2 as Z decreases to Z = 0. In Figure 7, I show an

EM plot31 (using ε for E and λ for Z) to illustrate this kind of
behavior. The energies shown here are those of a two-electron
atom having a nuclear charge that is reduced from ZNuc = 2.0 by
an amount described by the parameter λ. As λ increases and
approaches λC, the energy approaches that of a neutral H atom
(−1/2 au) and a free electron of zero kinetic energy. For even
smaller values of the nuclear charge, the two-electron system has
a metastable state that is treated by using a SM type method
detailed in ref 31.
In Figure 7, an increase in λ should be interpreted as a

decrease in the nuclear charge and ε = −1/2 au should be
interpreted as E = 0. Moreover, the multitude of horizontal lines
are to be viewed as amultitude of DC states that approximate the
continuum of a H atom plus a free electron. The plot shows how
the bound state’s energy varies (essentially) linearly when the
strength parameter is large and how the energy evolves into the
continuum once E crosses 0; this is analogous to what is shown
in Figure 5.

Figure 7. Plots of the energies (in atomic units) of the destabilized VT
state of H− having a variable nuclear charge (see text) and of numerous
DC states (horizontal lines) as functions of the strength parameter λ.
Reproduced with permission from ref 31. Copyright 1966 AIP
Publishing.
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The most important lesson from the discussion thus far is that
the functional form3,8,10,32 for how E depends on Z cannot
contain only powers of Z (or of Z − Z0); it must contain powers
of −Z Z0 if is to be capable of extrapolating to Z = 0 in a
manner that can produce a complex E and thus a proper half-
width. The expressions in eqs 24 and 25 are the most elementary
form that has been used, but much progress has been made in
developing more rigorous and reliable equations for E(Z) to use
as I will now discuss.
3D. More Sophisticated Extrapolation Formulas. I

begin by emphasizing that the EMs used in the context discussed
here involve using data from a stabilization plot containing only
the VT state’s energy; one wants to use data where the VT state
of interest is bound and to then extrapolate the data for only this
branch back to Z = 0 to predict the complex E that corresponds
to the metastable state. This should remind the reader of the
earlier discussion of using data from one branch of a stabilization
plot of the standard SM. However, these two situations are quite
different. In the present case, the branch one follows describes
the VT state’s energy that has been stabilized (lowered) through
application of the additional attractive potential Vatt, and this
branch has a higher slope than do the DC branches. In the
traditional SM plot, the branch one follows, if one is attempting
to use data from a single branch, is the plateau of the VT state,
and in this case, the branch has a smaller slope than do the DC
branches.
Even though the branches one is attempting to describe in the

present (EM) and earlier (SM) cases differ substantially as just
explained, they have some characteristics in common, and these
characteristics help guide the formation of more sophisticated
functional forms for E(Z) than that given in eqs 24 and 25. They
both often vary (approximately) linearly for values of Z far from
some critical point (ZC in the SM case and Z0 in the EM case),
and they both have slopes that decrease significantly in
magnitude as one approaches the critical point. These
observations as well as the essential observation that one must
use powers of −Z Z0 rather than powers of Z when
performing extrapolations suggest that rational fractions
involving −Z Z0 analogous to eq 19 should be capable of
providing reliable extrapolation tools; indeed, this has turned
out to be true.
In the region where the VT state being followed is bound, the

anion’s energy lies below that of the neutral so E is negative. But

κ≡ − ≡
p

E
2

2
2

(26)

can be used to define a (artificial) momentum p (or as some
workers prefer κ) in terms of the square root of the positive
quantity −E. Given a set of (real) κi values each computed at a
set of Zi, an RF of the form

κ [ − ] =
+ + + +

+ + + + −
−N K

n n y n y n y
d y d y d y

N,
...

1 ...
N

N

N K
N KRF

0 1 2
2

1 2
2

(27)

can be formed with the expansion being in powers of

= −y Z Z0 (28)

if one has a way to find the value of Z0, which I will discuss
shortly. A set of (real) κi values (κ = −Ei i ) computed at a set

of (real) = −y Z Zi i 0 values can be used to determine the nj

and dj coefficients in the RF. Then, the RF can be evaluated at Z
= 0 (i.e., at =y i Z0 to, via eq 27, generate the complex value of
κi = κi + iκi. The complex energy is then given as

κ κ κ κ= − −E i2i r i r
2 2

(29)

To implement this approach, onemust be able to compute the
= −y Z Zi i 0 quantities for each Zi, which requires knowing

Z0. This can be approximated by first extrapolating the data
computed for the electronically bound state to E = 0 to find an
approximate Z0 and then proceeding to use this Z0 to calculate
the = −y Z Zi i 0 , but if Rydberg-like states intervene as in
Figure 6, this extrapolation can be of limited accuracy. In ref 16,
it is suggested that an iterative process for determining Z0 can
also be used.
There are several methods that have proven useful in

determining the nj and dj coefficients from the κi and yi inputs.
In refs 12 and 13 a least-squares procedure is outlined and
implemented with good success. In ref 17 the authors suggest
using a method developed by Schlessinger33 in which a
truncated continued fraction is recursively formed by using
these same inputs.
To illustrate the success in using the kind of EM method

outlined above, I note that in ref 12 some of the pioneers of this
approach used [1, 1] through [4, 4] RFs to study metastable 2Πg
N2

− and found that a [3, 3] RF was sufficient to achieve reliable
results. I mention this to make it clear that experience has shown
that one does not have to employ RFs of very high order because
the most important ingredient to forming the extrapolation
formula is to use = −y Z Z0 as the independent variable. A
[2, 1] RF contains four coefficient parameters, a [3, 2] has six,
and a [4, 3] has eight.
However, there are significant challenges to employing the

kind of extrapolation formulas discussed above. To illustrate, I
show in Figure 8 plots of the stabilized VT state of the 2Πu

diacetylene anion29 at three different CC bond lengths. In
these plots positive energy corresponds to an electronically
bound anion, and λ is the amount of extra charge added to each
of the six nuclei in the molecule to generate the stabilizing
Coulomb potential.
It should be clear that for each of the three bond lengths the

SP data vary nearly linearly with λ in the region within which the

Figure 8. Plots of the energies of the stabilized VT state of the
diacetylene anion at three bond lengths as functions of the strength
parameter λ. Reproduced with the permission from ref 29. Copyright
2015 AIP Publishing.
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anion is bound, especially at large λ. Reflecting back on what was
said in section 2D about attempting to follow a plateau region of
a SM SP toward the avoided crossing region, one should expect
that energy data of high accuracy will be needed in this case as
well. That is, even if the extrapolation formula has the correct
analytical form to permit it to be used to extrapolate E data from
the region where the anion is stable toward λ = 0, the terms in the
formula that contribute to the half-width in particular will be
very small in the large λ range of E values (since the linear
variation dominates here) which is why high-precision E data are
needed. This point is amplified in Figure 9 where I show the
results obtained (real part of E and full width Γ) obtained in ref
12 in their study of 2Πg N2

−.

In Figure 9, the nine energy data points used to form the RF
and to then do the extrapolation are shown where one can see
that they very closely follow the linear plot labeled “extrap”. The
authors of ref 12 can compute the real part of the resonance
energy and half-width at various values of the stabilizing
potential’s strength λ by evaluating the RF (eq 27) at various
values of λ λ= −y i 0 . Therefore, the RF used to fit these data
points produces a function E(λ) (labeled “Energy”) that (i)
remains real down to ca. λ = 0.3, after which it becomes complex
with (ii) its real component evolving down to ca. E = −2.5 eV at
λ = 0 and (iii) twice its imaginary part Γ (labeled “Width”)
evolving from 0 at λ = 0.3 to ca. 0.5 eV at λ = 0.
More recently, a variant of the RF extrapolation approach

described above developed by many of the scholars who
pioneered the approach just described has proven to be even
more effective. It is based on the observation29 that when
κ = −E varies with Z as

κ ∝ −Z Z0 (30)

the inverse function must vary as

κ∝ +Z Z a0
2

(31)

meaning that Z(κ) must be an increasing function κ with a local
minimum at κ = 0. Therefore, instead of expressing κ as a RF in

powers of = −y Z Z0 , the authors of refs 14, 29, and 34
proposed to express Z as a RF in powers of κ

κ κ κ
κ κ κ

[ − ] =
+ + + +

+ + + + −
−Z N K

n n n n
d d d

N,
...

1 ...
N

N

N K
N KRF

0 1 2
2

1 2
2

(32)

Using a set of Ej computed at Zj where the electron-attached
species is bound, the corresponding (real) κ = −Ej j values are

computed. These Zi and κj are then used (e.g., employing least-
squares or Schlessinger fitting33 mentioned earlier) to determine
the nj and dj coefficients in the RF of eq 32. Extrapolating this
function to Z = 0 amounts to finding (complex) values of κ at
which the numerator of the RF vanishes. The fact that this
approach reduces the key step (finding zeros of a polynomial
which can be done analytically for quadratic or cubic
polynomials) to one that is quite amenable to stable numerical
methods is a main reason underlying this EM’s success. The
complex κ values that cause the numerator to vanish can then be
used as in eq 29 to generate complex energies that might
describe the metastable state’s energy and half-width. In
addition to finding this approach more numerically stable than
that contained in eq 27, it avoids having to find the Z0 value
needed to compute the = −y Z Zk k 0 values that appear in the
earlier approach. It can be seen from eq 31 that Z0 will be
determined to be n0 (i.e., the lead term in the numerator) during
the data-fitting process.
More recently, the authors of ref 29 have introduced rather

clever expressions for the RF functions they use by constraining
the nk and dk coefficients in eq 32 to ensure that the condition Z
∝ Z0 + aκ

2 is met For example, a [2, 1] RF they use is of the form

κ κ α κ α β
α β α κ

κ
α β α κ

= + + +
+ +

= +
+ +

Z Z Z( )
2

2 20

2 2 4 2

4 2 2 0

2

4 2 2

(33)

The numerator has two complex zeros at

κ α β= − ± i2 (34)

which predict the metastable state’s energy to be

β α= −E 2 4 (35)

and its half-width to be

α βΓ =
2

2 2
(36)

This [2, 1] RF contains only three parameters Z0 α, and β which
has been shown (ref 29) to somewhat limit its accuracy. As a
result, higher order RFs, including a new [3, 2] RF of the form

κ κ α κ ω δ κ
ω α δ ω κ τκ

= + + +
+ + +

Z Z( )
( 2 )(1 )

(2 )0

2 2 2

2 2 2 (37)

were invented29,34 and found to be more reliable. The above [3,
2] RF contains five parameters. A somewhat simpler [3, 1] RF
containing four parameters (eq 37 with τ = 0) was also shown to
be reliable in ref 34.
Finally, in ref 34 it was again emphasized that when using

stabilizing potentials that are singular at r→ 0 (e.g., a Coulomb
potential or even an attenuated Coulomb potential), Z turns out
to not vary as Z ∝ Z0 + aκ2 for large κ as it should but instead
varies linearly with κ, which should offer further caution in
choosing the functional form16,17 to use for the stabilizing

Figure 9. Plots of the energies and half-widths of the VT state of 2Πg
N2

− as functions of the strength parameter λ; see text for details.
Reproduced with permission from ref 12. Copyright 2010 AIP.
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potential. This linear relationship between Z and κ is what causes
the energy E = −κ2 to vary quadratically with Z in the Rydberg-
like intruder states discussed earlier. In ref 34 it is mentioned that
the functional form shown in eq 37 is designed to accommodate
the linear variation of Z with κ at large κ and thus to be more
appropriate to use if one decides to employ, for example, a
Coulomb or attenuated Coulomb stabilizing potential. How-
ever, it is not clear to me that using an RF such as eq 37 that
varies linearly at large κ is a good idea; doing so would seem to
accommodate the intrusion of Rydberg-like states. It might be
better to use a stabilizing potential that is not singular so
Rydberg-like states do not arise in the first place or to choose an
orbital basis set that does not produce DC states having very low
energies that can change into Rydberg-like states under the
influence of the singular potential.

4. SPECULATION AND SUGGESTIONS
I wish to now offer constructive suggestions that I hope workers
in developing the stabilization and extrapolation fields will
explore. I simply do not currently have access to the resources
needed to carry out these studies, or I would do so myself. Some
of my suggestions involve using data generated from eq 4 to test
SM methods. I think this is useful because one knows the exact
answer in this case. If a proposed SM is not capable of handling
data in such an ideal situation (i.e., having two linear asymptotes
and a constant coupling strength), it is unreasonable to expect it
can handle more complicated situations.

(a) I think it is imperative when testing one’s SM or EM
working equations that one employ energy data accurate
to no better than between 10−5 and 10−7 eV because this is
likely the most precision one can expect from ab initio
calculations of electron binding energies. This might
sound like an obvious or even trivial suggestion, but it is
my impression that many of the studies to date in these
two areas have utilized energy data of substantially more
figures. I think it is proper to determine whether the
success of any method requires data that is beyond what is
reasonably available.

(b) I suggest that one utilize (artificial) energy data (precise to
only 10−5 or 10−7 eV) generated by using eq 4 (the simple
model discussed early in this paper that contains five
parameters) with V = 0.1 eV, Z0 = 0.200, EC = 2.50 eV, a1
= 4, and a2 = 6 within the working equations of one’s VT-
branch SM. In particular, using data only from the VT
branch (the one with slope of 4), one should explore how
the resultant half-widths vary as functions of (i) howmany
data points one uses to fit to one’s SM formula, (ii) how
close/far the data points are from Z0, and (iii) how many
parameters one incorporates into one’s working equa-
tions. In my opinion, a method that succeeds only by
using data more precise than 10−5 eV is likely to be of
limited use in practical calculations of metastable states.

(c) When considering real SP data in which two branches are
clearly identified, I think it would prove useful to estimate
the difference in the two (VT and DC) slopes δα and the
splitting 2V between the two branches near the crossing
point and to then use δ ≤

ε δ
Z V V

a
and δ ≤

ε δ
Z V V

a
(with ε ≈

10−5 eV) to estimate the range of Z values within which
one should obtain energy data. I realize that these
formulas derive from the most basic model of an avoided
crossing as discussed earlier, but I think they can be of use

in focusing data generation within regions that are likely
most important.
As detailed in the Supporting Information, I have not

been able to come up with an analogous approach for
locating data generation when using the extrapolation
methods but I encourage others to try.

(d) I showed in Figure 5 an EM plot in which the evolution of
the stabilized VT energy was followed in the electronic
structure calculation into the region where the VT curve
undergoes a series of avoided crossings until it reaches ca.
E = 4 eV at Z = 0. Notice in Figure 5 how the energy
splittings in these avoided crossings (just above E = 0,
near E = 1 eV, near E = 3 eV, and finally near E = 4 eV)
increase as one progresses upward in energy.
Equation 25 suggests that the half-width should vary

with Z as −ab Z Z0 , and eq 6 tells us the prefactor
should be proportional to the coupling strength V. It
would be interesting to determine whether the series of
splittings mentioned above follow the −Z Z0 trend
suggested by eq 25.

Within this same line of thought, the factor
δ

V2
a a

a
1 2

that governs the half-width in the model problem used
throughout this paper would be expected to decay to zero
as the VT state is stabilized by the added potential ZVatt.
Why? As Z increases, the VT state’s wave function
becomes more radially compact while the DC state whose
energy is (nearly) degenerate with that of the VT state
becomes more radially extended (i.e., of lower kinetic
energy). As a result, the coupling matrix element between
these two states will decrease. But to what extent does the
factor −Z Z0 (or low powers of this factor) describe
the Z dependence of the half-width (e.g., such as the data
shown for N2

− in Figure 9)? It would be nice to learnmore
about this issue.

(e) As another test of one’s EM for the data of Figure 5, one
could remove one or more of the DC states that undergo
avoided crossings with the VT state to see to what extent
the EM can predict the correct energy and half-width if
there are few or many DC states lying between E = 0 and
the Z = 0 value of the real part of the metastable state’s
energy. The correct energy and half-width are given in ref
16. Knowing the answer to this question may be
important because it might turn out that one needs to
have quite a few DC states separating E = 0 and the final E
of the metastable state to achieve reliable results. On the
other hand, it might turn out that one’s EM performs best
when there is only oneDC state present (e.g., one near the
final E of the metastable state).

(f) When developing SM approaches that contain two-
branch (or more) functional forms such as the GPAs in eq
10 but with the intent to focus on using E data from only
the VT branch, it would be wise to compare the
dependence of the results obtained on the energy
precision limit (e.g., 10−5 eV) and on the locations of
theZk data points when one uses data from both branches.
In other words, is it better to focus on a method that can
use two E values for each Zk data point than to insist on
using a one-branch approach? I expect that using data (of
precision 10−5 eV) from two branches would allow one to
select Zk values farther from the avoided crossing than if
one restricts the data to the VT branch alone.
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5. CONCLUSIONS

I have attempted to explain how stabilization and extrapolation
methods that utilize energy data from conventional electronic
structure calculations are used to determine the energies and
half-widths of electronically metastable states. In so doing, I
focused on the following: (i) the functional forms E(Z) used to
relate the energy data E to the parameter Z used to characterize
the strength of the variation used in the SM or EM; (ii) the need
to limit SM or EM formulas to those whose parameters can be
determined by using energy data precise to between 10−5 and
10−7 eV, which is what can be obtained by using modern
electronic structure methods; (iii) weaknesses that arise when
using data from only one branch of a stabilization plot with
comparisons to results obtained when data from both branches
are used; (iv) using data generated from an exactly soluble
model problem to test SM and EM approaches. In addition, I
offered several suggestions for workers to explore in pursuit of
more reliable tools for studying this class of metastable states.
For scientists interesting in exploring the use of current-
generation stabilization or extrapolation methods, I offer the
following guidance: (v) Within the stabilization approach, it is
better to use energy data from both branches of an avoided
crossing than to use data from only the plateau branch (the latter
approach requires data of precision that might be outside the
scope of current electronic structure codes); (vi) also within the
stabilization method, it is wise to estimate the V parameter and
the slope difference δα from the stabilization plot and to then

use δ ≤
ε δ

Z V V
a
and δ ≤

ε δ( )Z V V
a

1/3
(with ε ≈ 10−5 eV) to

estimate the range of Z values where data should be collected; of
course, this approach is most applicable when the two branches
of the stabilization plot vary approximately linearly with Z and
where the avoided crossing is clear enough to produce a
reasonable estimate ofV; (vii) when forming, for example, an RF
function to fit to the E(Z) data, limit the values of E used as input
to ±10−5eV; (viii) when using the extrapolation method, be
careful when using a Coulomb or attenuated Coulomb function
as the stabilizing potential because doing so can give rise to
intruding Rydberg-like states that can limit one’s ability to track
E(Z) to small values of Z where the bound state evolves into an
unbound state; I understand that these singular potentials are
likely to continue to be used because they require little to no
modification of current computer codes, but it is important to
keep the possibility of Rydberg-like states in mind; (ix) when
fitting computed E(Z) data to an RF to use in extrapolating, find
some way (e.g., examining least-squares χ2 values) to determine
to what extent the energy values predicted by the RF vary if small
variations are made to the parameters appearing in the RF; (x)
watch out if major changes in the computed energies and half-
widths arise when the polynomial orders appearing in the
numerator and denominator of the RF are increased; this
suggests that the number of data points and/or the energy
precision (again, limit these to ±10−5 eV) are not adequate to
reliably determine these parameters
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