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A B S T R A C T

The electronic and thermodynamic stabilities of the [(MgF3)2]2− dianion (composed of two neutral radical
superhalogen MgF3 molecules and two excess electrons) are investigated on the basis of theoretical calculations
employing ab initio methods. It is demonstrated that this species is vertically and adiabatically electronically
stable (by 5.58 and 2.28 eV, respectively). Although it is susceptible to certain fragmentations, [(MgF3)2]2− is
predicted to be kinetically long-lived (due to substantial energy barriers for any of the fragmentation reactions)
and thus it is likely to be detected in electrospray mass spectroscopic studies if solutions containing salts of this
dianion can be formed. For this reason, the structures and energies of the corresponding Na2[(MgF3)2] salt are
also examined as part of this study.

1. Introduction

Superhalogens are commonly defined as compounds exhibiting high
electron affinities (3.6–14 eV) [1–3] exceeding those of halogen atoms.
The existence of such species was predicted in 1981 by Gutsev and
Boldyrev who employed quantum chemistry methods to support their
hypothesis [1]. In addition, they proposed a simple formula for one
class of superhalogens, MXk+1 and the corresponding superhalogen
anions [MXk+1]−, where M is a main group or transition metal atom, X
is a halogen atom, and k is the maximal formal valence of the atom M.
Since the 1980’s many scientific reports describing various super-
halogens have been published [4–19] including a milestone work
comprising the first experimental photoelectron spectra of super-
halogen anions (measured by the Wang group) together with their
theoretical interpretations provided by Boldyrev and Simons [20].
During last two decades it was also revealed that superhalogens might
alternatively be composed of non-metal central atoms [21,22] or non-
halogen ligands [23–29]. In addition, the existence and stability of so-
called ‘hyperhalogens’ (i.e., compounds with the MXk+1 formula but
containing superhalogens themselves as ligands X) has been confirmed
[30–33].
Despite their very large first electron affinities, superhalogens (ei-

ther mononuclear MXk+1 or polynuclear MnXnk+1 (where n stands for
the number of central atoms)) seem to not be capable of binding two
excess electrons. This likely is due to the fact that a typical MXk+1 (or
MnXnk+1) superhalogen molecule is an open-shell system having one
unpaired electron thus the attachment of one excess electron results in a

closed-shell structure with no half-filled or empty molecular orbital to
hold a second excess electron.
Therefore, a main goal of this work was to consider the possibility of

forming stable or metastable dianions composed of two MXk+1 super-
halogen building blocks with two excess electrons. Even though the
Coulomb repulsion in such a [(MXk+1)2]2− could be anticipated to be
very large, the strong ability to bind an excess electron exhibited by
each of its binding sites could still render the [(MXk+1)2]2− dianion
stable to autodetachment of an electron or to Coulomb explosion.
In this contribution we present the results of theoretical studies

concerning the [(MgF3)2]2− dianion. We describe the equilibrium
structure of this unusual system and discuss its stability with respect to
fragmentation and to autodetachment of an excess electron. In addition,
we investigate the role that the Repulsive Coulomb Barrier (RCB)
[34–37] plays for the predicted electronic stability of such a doubly
negatively charged superhalogen dimer. We also examine the stability
and structure of a possible Na2[(MgF3)2] salt containing two Na+ ca-
tions and the [(MgF3)2]2− dianion.

2. Methods

The equilibrium structures of the systems investigated in this work
were obtained by applying the second-order Møller-Plesset (MP2) per-
turbation method [38–40] with the 6311+G(d) basis set [41,42]. The
harmonic vibrational frequencies characterizing the stationary points
were evaluated at the same MP2/6-311+G(d) level to assure that all
the obtained structures correspond to true minima or first order saddle
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points on the potential energy surface. The coupled-cluster method with
single, double, and non-iterative triple excitations (CCSD(T)) [43–46]
was then employed to refine the electronic energies of all stationary
point structures (using the same 6-311+G(d) basis set). The intrinsic
reaction coordinate (IRC) procedure [47–50] (during which the reac-
tion path is followed in both directions away from the transition state)
was employed to confirm the corresponding minima for each transition
structure.
The first vertical electron detachment energy (VDE) of the

[(MgF3)2]2− dianion structure was obtained by employing the outer
valence Green function OVGF method (B approximation) [51–59],
which is closely related to so called ‘equations of motion (EOM)’ ap-
proaches. Since the OVGF approximation remains valid only for outer
valence ionizations for which the pole strengths (PS) are greater than
0.80-0.85 [60], we verified that the PS value was sufficiently large to
justify the use of the OVGF method for each of the states studied here
(the PS found for the state examined in this work was 0.945). We used
the larger 6-311+G(3df) basis while estimating the first vertical elec-
tron binding energy of [(MgF3)2]2− since analogous basis sets have
been used for superhalogen anions and provided an excellent agree-
ment between such calculated and experimentally measured VDEs
[6,16,18,20,61].
The partial atomic charges were evaluated by the Natural Bond

Orbital (NBO) analysis scheme [62–66]. All calculations were per-
formed using the GAUSSIAN16 (Rev. B.01) package [67].

3. Results and discussion

The equilibrium D2h-symmetry structure of the [(MgF3)2]2− dianion
can be viewed as consisting of two quasi-tetrahedral MgF4 fragments
sharing two fluorine atoms as shown in Fig. 1. The bond lengths be-
tween Mg atoms and terminal F atoms are shorter by 0.096 Å than those
in the Mg-F-Mg bridging fragments. It is important to stress that this
structure of [(MgF3)2]2− is geometrically stable (i.e., it corresponds to a
minimum on the dianion’s potential energy surface). In addition,
[(MgF3)2]2− is vertically electronically stable as its first vertical elec-
tron detachment energy was calculated to be 5.58 eV. As far as the
adiabatic electronic stability of [(MgF3)2]2− is concerned, we con-
firmed that the energy of this dianion is lower by 2.28 eV (52.6 kcal/
mol) than the energy of the most stable isomer of [(MgF3)2]− depicted
in Fig. 2 (see [(MgF3)2]− (1)).
Photo-ejecting one excess electron from [(MgF3)2]2− would initially

populate a different (local minimum) isomeric structure of the
[(MgF3)2]− monoanion (shown in Fig. 2 as [(MgF3)2]− (2)) whose
structure mimics the equilibrium structure of [(MgF3)2]2−. Since the
isomer [(MgF3)2]− (2) is higher in energy by 1.95 eV (44.9 kcal/mol)
than [(MgF3)2]− (1) (and by 4.23 eV (97.5 kcal/mol) than the

[(MgF3)2]2− dianion), one can expect (2)→(1) isomerization to follow,
but at a rate depending on the barrier of 13.1 kcal/mol connecting these
two structures (the height of the barrier was calculated at the CCSD(T)/
6-311+G(d) level, see also Fig. 2 for the corresponding TS(2)→(1)
structure).
In order to examine the thermodynamic stability of [(MgF3)2]2− we

considered seven different fragmentation paths including: (i) the loss of
F− and formation of either [Mg2F5]− or of [MgF3]− and MgF2 ; (ii) the
loss of [F2]− and formation of either [Mg2F4]

− or of [MgF3]− and MgF ;
(iii) the fragmentation to [MgF3]−, [MgF]−, and F2; (iv) the loss of two
F− anions and formation of Mg2F4; and (v) fragmentation into two
[MgF3]− anions (see Table 1). As indicated by the calculated energies
for these reactions (ΔEr), [(MgF3)2]2

− is predicted to be susceptible only
to fragmentations leading to either [Mg2F5]− and F− or to two
[MgF3]− anions. In particular, the most probable fragmentation path
(i.e., leading to the most stable final products) corresponds to the for-
mation of two very stable superhalogen [MgF3]− anions whose com-
bined energy is lower by 13.9 kcal/mol than that of [(MgF3)2]2

−.Fig. 1. Equilibrium structure of [(MgF3)2]2−. Bond lengths in Å, valence angles
in degrees.

Fig. 2. Equilibrium structures of [(MgF3)2]− monoanions: the lowest energy
isomer of [(MgF3)2]− ((1), top), the second isomer of [(MgF3)2]− ((2), center),
and the transition state structure connecting these minima (TS(2)→(1),
bottom). Bond lengths in Å, valence angles in degrees.
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Since we found two possible paths along which the fragmentation of
[(MgF3)2]2

− is energetically favorable (see Table 1), we decided to take
a closer look at these processes. For each of these fragmentations (i.e.,
[(MgF3)2]2

− → 2[MgF3]− and [(MgF3)2]2
− → [Mg2F5]− + F−), we

searched for kinetic barriers separating [(MgF3)2]2
− and the products.

We found the transition state (TS) structures corresponding to both
fragmentation paths and we performed intrinsic reaction coordinate
calculations during which the reaction paths were followed in both
directions (by integrating the intrinsic reaction coordinate). According
to these IRC calculations, we confirmed that each of the transition
structures indeed connects the expected minima on the reaction paths
presented in Fig. 3.
The structures of the TS1 and TS2 transition states (corresponding to

[(MgF3)2]2
− → 2[MgF3]− and [(MgF3)2]2

− → [Mg2F5]− + F−, re-
spectively) are depicted in Fig. 4. The separation between the two MgF3
fragments (which correspond to the fragmentation products) is rela-
tively large in TS1 (3.486 Å) while both of these units adopt a quasi-
triangular structure (approaching the planar triangular D3h-symmetry
structure exhibited by the isolated [MgF3]− monoanion (see Fig. 4 and
Ref. [68]). The results of the NBO population analysis performed for
TS1 confirms that these two MgF3 fragments may be treated as
[MgF3]− monoanions because their partial atomic charges sum up to
-1.001e and -0.999e. On the other hand, the Cs-symmetry structure of
TS2 resembles that of the [Mg2F5]− product (shown in Fig. 4) with a
distant F− anion (separated by 3.894 Å from the Mg atom). Again, the
population analysis confirms that each of these two fragments holds ca.
-1e excess charge as the partial atomic charge on F is equal to -0.998e
while the partial atomic charges on the remaining fragment sum up to
-1.002e.

As mentioned in the preceding paragraphs, there are two en-
ergetically favorable fragmentation paths for [(MgF3)2]2

− (see Table 1),
namely, [(MgF3)2]2

− → 2[MgF3]− and [(MgF3)2]2
− → [Mg2F5]− + F−.

However, the energies of the transition states found for these processes
indicate that the kinetic barriers that have to be overcome to complete
these fragmentations are relatively large and equal to 33.4 and
49.3 kcal/mol, respectively. Therefore, the expected rate of passage
over any of these two barriers renders the [(MgF3)2]2− dianion kine-
tically very long-lived except at very high temperatures or with some
other source of high internal energy.
Having discussed the stability of [(MgF3)2]2− regarding possible

structural reorganization, we move on to the analysis of the excess
electron binding energies. As already mentioned in the preceding
paragraphs, [(MgF3)2]2− is vertically electronically stable by 5.58 eV.
Albeit relatively large, this stability is significantly smaller than that of
the [MgF3]− monoanion (8.79 eV [68]). [(MgF3)2]2− is in fact com-
posed of two [MgF3]− monoanions, hence one might expect each of its
two MgF3 sites to bind an excess electron by 8.79 eV. Clearly, this
would be the case only for two singly negatively charged [MgF3]−

fragments separated by infinitely large distance (i.e., not interacting
with each other). However, when the distance between two [MgF3]−

systems becomes finite, the Coulomb repulsion between the two anionic
sites decreases the electron binding abilities of both sites.
The positive value electron binding energy determined for

[(MgF3)2]2− indicates that the Coulomb repulsion potential is not
strong enough to outweigh the valence-region attractive potentials of
each MgF3 site. As a consequence, the doubly charged anion
[(MgF3)2]2− is electronically stable with respect to the singly charged
[(MgF3)2]− anion. Although [(MgF3)2]2− is composed of two MgF3
fragments (each of which is capable of binding an excess electron by
8.79 eV), the dianion’s first electron binding energy is only 5.58 eV
because to remove an electron from one of the two MgF3 fragments
assembled into the [(MgF3)2]2− dimer does not require as much energy
as for the singly charged [MgF3]− due to the Coulomb repulsion energy
generated by the other negative charge localized on the neighboring
MgF3 moiety. Although the influence of this destabilizing effect is ra-
ther easy to estimate for large finite separations between MgF3 sites, the
situation is more complicated when two such fragments are assembled
into one molecular system, as it is the case for the [(MgF3)2]2− dianion.
However, we can utilize the extended Repulsive Coulomb Barrier model to
treat structurally compact multiply charged anions and described in
Ref. [34].
According to the extended RCB model, the Coulomb repulsion be-

tween two excess electrons can be thought of as raising the energy level
of the bound electron by an amount e2/R that depends on the distance R
between the electron being detached and the other negatively charged
site. While using this model it is important to note that the vertical
dianion-monoanion energy difference has to be calculated at the equi-
librium structure of the dianion because the Coulomb model relates to
energy differences among species having the same atomic composition
and nuclear positions but varying number of electrons, and thus should
be viewed as a means for predicting vertical rather than adiabatic
electron detachment energies [34]. The internal Coulomb energy for
[(MgF3)2]2− can be evaluated by computing e2/RLL for each resonance
structure of this species and averaging over the resonance structures
(where RLL stands for the ligand-ligand separation, i.e., the separation
between the atoms where the excess charges are assumed to be loca-
lized). Even though [(MgF3)2]2− contains 6 electronegative fluorine
atoms where the excess electrons could potentially be localized, ana-
lysis of the ab initio electron density distribution in this system allows
us to limit that number to 4 by excluding the two F atoms localized in
the central fragment and involved in the Mg-F-Mg bonds. Indeed, the
highest occupied molecular orbital (HOMO) in [(MgF3)2]2− holding
two excess electrons is delocalized exclusively among the four terminal

Table 1
The reaction energiesa (ΔEr in kcal/mol) evaluated for various fragmen-
tation processes involving the [(MgF3)2]2− dianion.

Process ΔEr

[(MgF3)2]2− → 2[MgF3]− −13.9
[(MgF3)2]2− → [Mg2F5]− + F− −3.7
[(MgF3)2]2− → [MgF3]− + MgF2 + F− 79.9
[(MgF3)2]2− → [MgF3]− + [MgF]− + F2 222.0
[(MgF3)2]2− → [MgF3]− + MgF + [F2]− 184.7
[(MgF3)2]2− → Mg2F4 + 2F− 108.7
[(MgF3)2]2− → [Mg2F4]− +[F2]− 134.0

a Reported ΔEr values include zero-point vibrational energies.

Fig. 3. Schematic energy profiles for two fragmentation paths of [(MgF3)2]2−.
Relative energies (in kcal/mol) of the stationary points are given in par-
entheses.
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fluorine atoms (see Fig. 5) because locating excess electron density on
either of the bridging F atoms would generate higher repulsive internal
Coulomb energy and thus raise the total energy of the species.
Hence, while applying the extended RCB model to estimate the in-

ternal Coulomb energy for [(MgF3)2]2−, it is sufficient to consider only
3 resonance structures in which the two excess charges are assumed to
be separated by either R1, R2, or R3, as defined in Fig. 5. Since the four
terminal F atoms in [(MgF3)2]2− are equivalent due to symmetry, one
can view one of the excess charges as residing on any one of these sites
with the second negative charge residing R1, R2, or R3 away. Assuming
that these three distances occur with equal weight, we can estimate the
internal Coulomb energy in the [(MgF3)2]2− dianion minus that of the
[(MgF3)2]− monoanion (which is zero) as:

= + +Internal Coulomb Energy e
R

e
R

e
R

1
3

2

1

2

2

2

3

Introducing R1=5.081 Å, R2=5.978 Å, and R3=3.150 Å (i.e., the
separations corresponding to the equilibrium structure of [(MgF3)2]2−

and defined in Fig. 5) into this equation results in an internal Coulomb
energy of 3.27 eV. The value of 3.27 eV is very close to 3.21 eV (i.e., the
difference between the excess electron binding energy of the [MgF3]−

monoanion (8.79 eV) and the ab initio first excess electron binding
energy of the [(MgF3)2]2− dianion (5.58 eV)), which confirms the
usefulness and applicability of the extended RCB model. Summing up,
one may consider each of the MgF3 electron binding sites in
[(MgF3)2]2− as being destabilized by ca. 3.2–3.3 eV due to the presence
of the second MgF3 electron binding site.
Finally, we decided to investigate the relative energy and structure

of a salt formed by combining the [(MgF3)2]2− dianion with two

counterions, and we selected Na2[(MgF3)2] as a candidate salt.
According to our predictions, [(MgF3)2]2− is expected to form a geo-
metrically stable Na2[(MgF3)2] molecule when combined with two so-
dium cations. The equilibrium structure of Na2[(MgF3)2] depicted in
Fig. 6 resembles that of the isolated [(MgF3)2]2− dianion (see Fig. 1)
accompanied by two Na+ cations localized at its two termini. This
structure makes sense as it minimizes the Coulomb repulsion between
the two cations while maximizing the Coulomb attractions between the
cations and the dianion. Comparing the bond lengths and valence an-
gles in the (MgF3)2 fragments for [(MgF3)2]2− and Na2[(MgF3)2] re-
veals that the Mg-F distances change only slightly (by less than 0.05 Å)
upon the formation of Na2[(MgF3)2] whereas the valence angles either
remain nearly the same (for the central rhombic (MgF)2 fragment) or
change significantly (for the terminal F2Mg fragments), see Figs. 1 and
6. Namely, the terminal F-Mg-F angles decrease by ca. 20° when two
Na+ cations are attached to [(MgF3)2]2− and this results in the elon-
gation of the [(MgF3)2] moiety.
In order to verify the thermodynamic stability of Na2[(MgF3)2], we

examined the most probable fragmentation reactions that this system
might be susceptible to. In particular, we considered the fragmentation
paths leading to formation of various species (NaMgF3, NaMg2F5, MgF2,
NaF, Mg2F4, Na2, F2, [Na(MgF3)2]−, [(MgF3)2]2−, and Na+) that likely
represent the most stable fragmentation products. Since the energies for
all these reactions turned out to be positive (see the ΔEr values shown in
Table 2), none of them should be considered favorable, which confirms
the thermodynamic stability of Na2[(MgF3)2].
The results of the population analysis based on the NBO scheme

indicates that the partial atomic charges on the (MgF3)2 fragment in
Na2[(MgF3)2] sum up to −1.850e while each of the Na holds a positive
partial atomic charge of +0.925e, as shown in Fig. 6. Such a charge

Fig. 4. The structures of the transition states (TS) and products of the [(MgF3)2]2− → 2[MgF3]− (TS1) and [(MgF3)2]2− → [Mg2F5]− + F− (TS2) fragmentation
reactions. Bond lengths in Å, valence angles in degrees.
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distribution and the fact that the HOMO for Na2[(MgF3)2] is delocalized
only among fluorine atoms indicate that the Na2[(MgF3)2] salt is
strongly ionic and can be described by the (Na+)2[(MgF3)2]2− formula.

4. Conclusions

On the basis of our quantum chemical calculations performed with
the CCSD(T) method and the 6-311+G(d) basis set for [(MgF3)2]2− and
[(MgF3)2]−, whose equilibrium structures and vertical electron binding
energies were determined respectively at the MP2/6-311+G(d) and
OVGF/6-311+G(3df) levels, we arrive at the following conclusions:

(i) [(MgF3)2]2− is a geometrically stable system adopting a D2h-
symmetry structure with its two excess electrons delocalized
evenly among four terminal fluorine atoms.

(ii) [(MgF3)2]2− is electronically stable (i.e., it is not expected to
spontaneously eject an electron) and its vertical and adiabatic
electron binding energies are predicted to be 5.58 and 2.28 eV,
respectively.

(iii) Although [(MgF3)2]2− is thermodynamically unstable with respect
to two fragmentation reactions, neither of these processes would
be operative at low internal energies because of large activation
barriers that would have to be overcome to render them plausible
(i.e., the expected rate of passage over either of these two barriers
renders the [(MgF3)2]2− dianion kinetically very long-lived).

(iv) Applying the extended Repulsive Coulomb Barrier model to
[(MgF3)2]2− provides an explanation of the difference between its
first vertical electron binding energy (5.58 eV) and the vertical
electron binding energy of the [MgF3]− superhalogen anion
(8.79 eV).

(v) The [(MgF3)2]2− dianion might form thermodynamically stable
ionic salts (such as Na2[(MgF3)2]) when accompanied by coun-
terions.

Taking into account that [(MgF3)2]2− is not expected to sponta-
neously eject an electron and, despite its metastability, is predicted to
be kinetically very long-lived, we conclude that this species is likely to
be detected in electrospray mass spectroscopic studies if one could
synthesize salts such as Na2[(MgF3)2] to use in the electrospray source
solution.
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Fig. 5. Definition of the separations (R) used in the extended RCB model (top)
and the highest occupied molecular orbital (HOMO) for [(MgF3)2]2− (bottom).

Fig. 6. The equilibrium structure of the Na2[(MgF3)2] salt (bond lengths in Å,
valence angles in degrees) and the highest occupied molecular orbital of this
system. The partial atomic charges on the sodium atoms are provided in a.u.

Table 2
The reaction energiesa (ΔEr in kcal/mol) evaluated for various frag-
mentation processes involving the Na2[(MgF3)2] salt.

Process ΔEr

Na2[(MgF3)2] → 2NaMgF3 61.2
Na2[(MgF3)2] → NaMg2F5 + NaF 66.6
Na2[(MgF3)2] → 2MgF2 + 2NaF 204.3
Na2[(MgF3)2] → Mg2F4 + 2NaF 139.2
Na2[(MgF3)2] → Na2 + 2MgF2 + F2 372.5
Na2[(MgF3)2] → Na2 + Mg2F4 + F2 307.5
Na2[(MgF3)2] → [Na(MgF3)2]− + Na+ 119.4
Na2[(MgF3)2] → [(MgF3)2]2− + 2Na+ 333.6

a Reported ΔEr values include zero-point vibrational energies.
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