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Ab initio electronic structure methods such as Møller-Plesset (MP) theory can be used to compute electron
affinities (EAs) of molecules or clusters of molecules to reasonable accuracy ((a few tenths of an electron
volt). For systems in which an electron is bound to a closed-shell neutral in a manner that primarily localizes
the excess electron exterior to most of the electron density of the neutral, we investigate how a given level
of ab initio description can be accurately described by a one-electron potential governing the excess electron’s
interaction with the neutral. We show what ingredients such a potential must possess not only to reproduce
the ab initio EA but also to have long-range electrostatic, polarization, and other contributions identical to
the ab initio potential. In particular, we show that using Hartree-Fock level electrostatic moments and
polarizability can produce a one-electron potential consistent with MP2 theory. To be consistent with MP3
theory, MP2-level electrostatics and polarizabilities must be used. The long-range components of the ab initio
potential are shown to embody both orbital relaxation induced by the excess electron and the dispersion
interactions between the excess electron and the other electrons of the neutral. Even though these individual
contributions do not necessarily scale as r-4, they are shown to combine into a total potential that can be
represented in the familiar polarization form -1/2Rr-4. These findings suggest that electrostatic potentials
combined with polarization potentials scaling as r-4 can indeed describe the relaxation (induction) and dispersion
energies of an excess electron. Finally, how these observations might assist in constructing new
electron-molecule potentials is also discussed.

I. Introduction

A. Goal of this Work. The main goal of this paper is to
establish connections between ab initio electronic structure
analytical expressions for electron affinities (EAs) of molecules
(or clusters of molecules) and one-electron interaction potentials
that can capture this ab initio description. (By analytical
expression, we mean that the EA is written, in each order of
perturbation theory, in terms of Hartree-Fock orbital energies
and two-electron integrals involving the Hartree-Fock spin-
orbitals. Of course, the values of these quantities depend upon
the atomic orbital basis set employed.) When studying
electron-molecule scattering or weak electron binding to closed-
shell molecules or clusters, it is common to employ one-electron
potentials V(r,θ,φ) that contain valence repulsion as well as
electrostatic and polarization components. Often, the electrostatic
potentials are represented in terms of partial charges, and the
polarization potential is taken to be of the -1/2Rr-4 form. This
paper attempts to show to what extent such representations are
consistent with ab initio descriptions of the electron-molecule
interaction. This allows us to suggest how one might then utilize
ab initio results on test systems to calibrate or determine
parameters when designing new one-electron potentials.

The most commonly used electron-molecule potentials
V(r,θ,φ) are expressed in terms of: (i) functions of the position
(r,θ,φ) of the excess electron that contain electrostatic (e.g.,
dipole and quadrupole moments) and polarization (e.g., dipole
polarizability) parameters and that are designed to describe the
long-range radial and angular characters of the electron-molecule

interaction, and (ii) shorter-range functions (also containing
parameters) to represent primarily the repulsion exerted on the
excess electron by the valence and inner-shell electrons of the
neutral molecule.

Often, one or more parameter in the short-range repulsion
potential is adjusted so the EA computed using the model
potential agrees with the experimental EA or with the EA
obtained at some high level of theory. However, simply
requiring the potential V(r,θ,φ) to reproduce a known EA is no
guarantee that the radial and angular properties of V(r,θ,φ) are
correct. We suggest here it might be wise to design a potential
that has long-range components optimally consistent with a
given level of ab initio theory; the short-range potential whose
strength is then tuned to generate the correct EA is then more
likely to be an accurate and less arbitrary representation.

Toward this goal of concentrating on the long-range character
of V(r,θ,φ), we focus on species in which one excess electron
is bound to a closed-shell molecule in a manner that localizes
most of the excess electron density exterior to the molecule or
cluster. In so doing, we develop relationships between the ab
initio EA expressions and the long-range components of the
electrostatic (charge-dipole, charge-quadrupole, etc.) and
polarizationpotentialscommonlyusedtomodelelectron-molecule
interactions. (In this paper, we will focus on the charge-induced
dipole potential that involves the so-called dipole polarizability
although we will show how the analysis can be extended to
higher-order polarizabilities.) It is by insisting that the asymp-
totic radial and angular characters of the ab initio and one-
electron model electron-molecule interactions match that we
extract the long-range portion of a one-electron potential.
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Following this path, we are able to characterize polarization
potentials that achieve EA values and asymptotic forms
maximally consistent with MPn ab initio theory. At the MP2
level, the Hartree-Fock (HF) level electrostatic moments and
polarizabilities of the neutral molecule appear. We also dem-
onstrate how such potentials can be extended to the MP3 level,
in which MP2 level electrostatic moments and polarizabilities
arise. It is our hope that others can employ and extend this
approach to even higher and more robust levels of theory to
develop even better electron-molecule interaction potentials.
Such advances could have significant impact on how one treats
electrons in large molecular clusters, on surfaces, and in
electron-molecule scattering.

When electron-molecule interactions are studied, the primary
advantage in using a local one-electron potential V(r,θ,φ) )
V(r) lies in the fact that the associated Schrödinger equation
depends only on three coordinates (r,θ,φ). In contrast, ab initio
approaches involve dealing with many-electron wave functions
or complicated density functionals whose utilization is extremely
computationally taxing. The approach taken here involves
extracting V(r) from an ab initio expression for the molecule’s
or cluster’s EA in a manner that focuses on the large r character
of V(r), while expressing the electrostatic and shorter-range
repulsive potentials in terms of the electron-nuclei Coulomb
attractions and electron-electron Coulomb and exchange repul-
sions as they appear in the Fock operator. In such a form,
applications to small molecules and clusters are quite feasible,
but for large molecular clusters, applications would be difficult
because of the need to evaluate the Coulomb and exchange
integrals appearing in the Fock operator’s matrix elements.

B. Model Potentials to Replace the Fock Operator. For
the reason just stated, most applications of electron-molecule
potentials to larger clusters of molecules involve replacing the
valence-repulsion and electrostatic components of the Fock
operator by another easily evaluated one-electron effective
potential. For example, as mentioned briefly above, these
components are often expressed in terms of (i) Coulomb
interactions of the excess electron with point partial charges
distributed to simulate the molecule’s or cluster’s dipole and
quadrupole moments and (ii) repulsive factors (often depending
exponentially with distance) to simulate the excess electron’s
exclusion from regions of the neutral’s occupied valence and
inner-shell orbitals.

A significant challenge in combining a one-electron electro-
static-plus-repulsion potential with a one-electron polarization
potential is how one cuts off or attenuates the polarization
potential -1/2R/r4 and the attractive Coulomb potentials -q/r
involving positive partial charges (of magnitude q) as r f 0.
For example, the polarization potential can be multiplied by (1
- exp(-br2))2 to overcome its divergence as r f 0. As noted
earlier, the strength and functional form of the short-range
repulsion potential must also be carefully chosen (often to
guarantee the EA agrees with an accurate value for some test
system).

C. Intermolecular Potentials. When dealing with an elec-
tron bound to a cluster of closed-shell molecules, it is common
to express the interaction between the electron and the cluster
as a sum of interaction potentials of the electron with each
molecule in the cluster. In such studies, one must also account
for the fact that the molecules can polarize one another and
that the resulting induced moments alter the interaction potentials
among the cluster’s constituent molecules. This means that one
must employ a molecule-molecule interaction potential (which
is necessary for determining the total energies of the neutral

and anionic cluster) that can treat the inductive effects of the
excess electron and of the other molecules. Moreover, the equa-
tions governing the polarization of each molecule by the excess
electron and by the other molecules must be solved self-
consistently. Needless to say, these considerations add consider-
able complexity to the study of cluster anions.

However, it is not the purpose of this paper to address the
valence-repulsion components of the electron-molecule po-
tential, how to attenuate the long-range potentials, or how to
treat molecule-molecule interactions in clusters. Nor is it our
purpose to discuss how to choose parameters (e.g., point partial
charges and their placements, exponential damping coefficients
in cutoff functions, etc.) used in these aspects of the total one-
electron potential. Workers cited later have devoted much effort
to these issues with considerable success, and we do not have
new insight to offer. Our goals here are to show how to uncover
the long-range parts of the electron-molecule one-electron
potential contained within the ab initio MPn EA expression and
to understand what effects they contain. It is toward these goals
that we now return.

D. The Kind of Systems To Be Considered. As stated
above, we strive to identify the long-range nature of the one-
electron potentials that one can use to describe interactions
between a single excess electron and a closed-shell neutral
molecule or cluster for cases in which it is safe to view the
excess electron as primarily occupying a region of space outside
that occupied by most of the electron density of the underlying
molecule. The kinds of systems we have in mind are represented
by the water cluster anion shown in Figure 1.

In these water cluster anions, one excess electron is bound
in an orbital that is spatially localized rather distant from the
other electrons in the neutral cluster. The excess electron
occupies an orbital that might be classified as dipole bound1

because the electron is bound primarily by the local dipole
potentials generated by the surface water molecules in the upper
right where we see that at least one of the water molecules has
two of its O-H bonds directed outward, thus generating a large
dipole potential that attracts the excess electron.

Of course, even for this kind of electron-molecule complex,
some of the excess electron’s density extends into regions of
space occupied by the other electrons. Nice examples of such
penetration effects, especially as they relate to hyperfine
interactions between the excess electrons and nuclei within the
water cluster to which it is bound, can be found in ref 2.
However, because we want to focus on the asymptotic (i.e.,

Figure 1. (H2O)20
- anion and the orbital occupied by the excess

electron in its ground state (top). The light blue vector is used to describe
the location of an electron localized within the neutral cluster while
the red and black vector sum gives the location of the excess electron
in the orbital shown. Ground and excited electronic states of (H2O)45

-

anion showing the orbital occupied by the excess electron (bottom) in
ground and excited states (adapted from Figures 10 and 12 in ref 11b).
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large r) nature of the electron-molecule interaction potential,
we need to (and are permitted to) introduce assumptions and
approximations that are valid in such regions even if they are
not valid elsewhere. Specifically, analogous to what is done in
deriving expressions for van der Waals interactions between
two systems,

(i) We will assume that the orbitals of the electron-molecule
complex are sufficiently localized that we can identify (a) one
set of orbitals localized primarily around the centroid of the
excess electron’s ground state charge density (these are expected
to look like those shown in Figure 1 and will constitute the
occupied and virtual orbital space “belonging” to the excess
electron) and (b) the remaining orbitals, which will constitute
the occupied and virtual orbital space of the underlying neutral.

(ii) We will carry out an expansion of the Coulomb potential
|r2 - r1|-1 in powers of (r</r>) to achieve analytical expressions
in powers of (r>)-1, and we will retain only terms of low order
in (r>)-1.

(iii) We will assume that the important contributions to the
correlated wave function of the anion are those in which only
one electron occupies an orbital belonging to the excess electron;
configurations in which zero or two or more electrons occupy
these orbitals represent charge-transfer configurations that we
will ignore.

With the above decomposition of the orbital space in mind,
we can divide the spin-orbitals of the electron-molecule
complex into four categories.

(i) The upper case index X will be used to label the singly
occupied HF spin-orbital holding the excess electron in its
ground state, and (ii) upper case P ) X + 1, X + 2, etc., will
label the excess electron’s virtual spin-orbitals.

(iii) The lower case indices a and b will label occupied HF
spin-orbitals (φ1, φ2, ..., φN) of the underlying molecule, while
(vi) lower case m and n will be used to label the corresponding
virtual spin-orbitals.

The indices i, j, and k will be used to label arbitrary HF
spin-orbitals belonging either to the neutral molecule or the
excess electron.

The remainder of this paper is organized as follows. In section
II, we describe the electron-molecule interaction energies that
are present in the Koopmans’ theorem and MP2-level expres-
sions for the EA. In section III, we demonstrate how to use this
information to define a one-electron potential that gives, when
used in a one-electron Schrödinger equation, an eigenvalue equal
to the MP2 EA and has large r character consistent with MP2
theory. In section IV, we summarize our findings, show how to
extend to MP3, and discuss how our analysis relates to a very
promising recent approach that has been used to treat the
correlation components of electron-molecule interactions.

II. Ab Initio Expressions for Electron Affinities and
Underlying Potentials

A. Koopmans’ Theorem and Its Electrostatic Potential.
In the simplest description of electron-molecule interactions,
one uses the Fock operator of the neutral molecule to describe
the behavior of the excess electron. In this way, one obtains, as
an eigenvalue of this Fock operator, the Koopmans’ theorem
estimate of the EA. When used to describe the behavior of an
excess electron that is not bound but whose energy lies in the
continuum, this is called the static-exchange approach to
electron-molecule scattering.3,4 The N-electron Fock operator
belonging to the underlying molecule can be written as a sum
of N one-electron Fock operators FN(ri) for a state in which N
spin-orbitals (labeled a) are occupied

Here, Zc and Rc are the charge and position of the cth nucleus,
and Ja and Ka are the Coulomb and exchange operators involving
the ath occupied HF spin-orbital of the molecule whose action
on a spin-orbital φj is

1. There Is No Net Coulomb Potential. To illustrate what
electron-molecule potentials are contained in the Fock opera-
tors, let us consider various contributions to the
〈φX(r)|FN(r)|φX(r)〉 matrix element for a system in which an
excess electron in the spin-orbital φX can be assumed to be
localized away from the electrons in the underlying neutral
molecule. The first thing to note is that there is no net Coulomb
contribution because the Coulomb components of the sum of
all the electron-nuclei attractive potentials

are exactly canceled by the Coulomb components of the sum
of all the repulsive potentials generated by the N other electrons

since the sum of all the nuclear charges Σa Za is equal to the
total number of electrons N in the molecule. (This can be proven
by expanding 1/(|r - Ra|) and 1/(|r - r′|) for r > Ra and r > r′,
respectively, in powers of |Ra|/|r| or |r′|/|r| and keeping the lowest-
order terms, which are 1/|r| in both cases. Other terms in these
expansions varying as |Ra|L/|r|L+1 and |r′|L/|r|L+1 give the dipole
(L ) 1), quadrupole (L ) 2), etc. electrostatic potentials.) The
exchange terms -∫φX*∑a)1

N KaφX dr vanish at large r (i.e., when
the excess electron is far from the molecule) because KaφX

decays exponentially with this distance. (Throughout this paper,
exchange interactions between an orbital localized on the
molecule and an orbital holding the excess electron will be
neglected for this reason, which is consistent with the assump-
tion of spatial separtation introduced earlier and upon which
our analysis is based.) It is important to note that the N occupied
spin-orbitals {φa} were obtained in a HF calculation on the
neutral molecule. Thus, they contain no information about the
presence of the excess electron in φX; in particular, they are not
polarized by the excess electron.

2. The Dipole and Quadrupole Electrostatic Potentials. The
electron-nuclear and electron-electron Coulomb potentials
combine as in

FN ) ∑
i)1

N {-1/2∇i
2 - ∑

c)1

M Zc

|ri - Rc|
+

∑
a)1

N

[Ja - Ka](ri)} ) ∑
i)1

N

FN(ri) (1)

Jaφj(ri) ) ∫ φa*(r′)φa(r′) 1
|ri - r′| dr′φj(ri) (2)

Kaφj(ri) ) ∫ φa*(r′)φj(r′) 1
|ri - r′| dr′φa(ri) (3)

∫ φX*[- ∑
a)1

M Za

|r - Ra|]φX dr (4)

∫ φX* ∑
a)1

N

JaφX dr (5)
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to give rise to large r contributions from electron-dipole,
electron-quadrupole, and higher electron-multipole potentials.
(This can be proven by expanding 1/(|r - Ra|) and 1/(|r - r′|)
for r > Ra and r > r′, respectively, in powers of |Ra|/|r| or |r′|/|r|
and keeping the lowest-order terms, which are 1/|r| in both cases.
Other terms in these expansions varying as |Ra|L/|r|L+1 and
|r′|L/|r|L+1 give the dipole (L ) 1), quadrupole (L ) 2), etc.
electrostatic potentials. It is by examining how these potential
look at large r that one creates the asymptotic form of a one-
electron potential to use in studying electron-molecule interac-
tions.) The first two are often written as

and

where, µ and Q are the dipole moment vector and quadrupole
moment tensor of the neutral molecule, I is the unit tensor, and
r̂ is a unit vector pointing from the molecule to the excess
electron. We note that µ and Q are the permanent dipole and
quadrupole moments of the molecule; they have nothing to do
with how the excess electron polarizes the molecule.

B. The Electrostatic Moments Appear at the HF Level.
It is important to note that the Fock operator’s dipole, quadrupole,
and other electrostatic potentials (i.e., as embodied in eq 6) involve
the corresponding moments evaluated at the HF level. Of course,
there are corrections to µ and Q caused by electron correlation,
but these corrections do not alter the electron-molecule interaction
energy until third order. To understand why correlation corrections
to µ and Q contribute first at third order, we first note that the
dipole and quadrupole operators are one-electron operators that
depend on the positions of the electrons and the positions and
charges of the nuclei. Thus, because the first-order MP wave
function contains only doubly excited Slater determinants, there
are no first-order corrections to µ and Q. The second-order MP
contributions to µ and Q arise from the doubly excited determinants
in the first-order MP wave function as well as from the singly
excited determinants in the second-order MP wave function.
However, even these second-order changes in µ and Q do not
contribute to the EA until third order because (i) it is by altering
the molecule’s electronic charge distribution that the interaction
energy between the molecule and the excess electron is changed
and (ii) the dipole and quadrupole components of this interaction
energy are contained in Coulomb integrals of the form

where F(r′) is the molecule’s electron density, F0(r′) is its HF value,
and δF2(r′) is the MP2 correction to this density (arising from both
first-order double excitations and second-order single excitations).

So, although there are second-order corrections to F(r′), they induce
third-order changes5 in the electron-molecule interaction energy.
These observations are important for the present work because they
tell us what level of theory to use in the electrostatic moments
(and, as we show later, in the polarizabilities) if one desires to
match EAs computed at a specified level of ab initio theory. In
particular, they tell us not to go beyond HF-level moments (i.e.,
the neutral’s Fock operator) if our goal is to match MP2-quality
EAs.

The above discussion raises the question of whether one
should attempt to duplicate MP2-level EAs or whether a higher-
level theory is essential. In some cases, the correlation changes
to the electrostatic moments can be substantial; for example,
for H2O, the HF-level dipole moment is 2.2 D, while it is 1.85
D at the MP2 level. One might then expect that an MP2-level
calculation of the EAs of water clusters would not be highly
accurate because the exaggerated HF-level dipole moment might
give rise to exaggerated EAs. Thus, one should probably employ
a theory (ab initio or one-electron potential based) that is more
accurate than MP2 in such cases. For example, one could
employ MP3 theory, which would allow for the correlation-
derived renormalization of the electrostatic moments as dis-
cussed earlier, or one could employ a one-electron model
potential that is consistent with MP3.

C. Short-Range Potentials. In addition to the above large
r potentials, 〈φX(r)|FN(r)|φX(r)〉 contains contributions from
shorter-range valence potentials that are both attractive and
repulsive. For example, in the oxygen atom (1s22s22p4; 3P), the
nitrogen atom (1s22s22p3; 4S), or the methoxy radical H3C-O
(2E), there are regions of space (e.g., in the half-filled 2p orbitals
of the former two and in the oxygen-localized e-symmetry
orbital of the latter) where there are valence-range attractive
potentials. The strength of these potentials depends on the
electronegativity of the atom(s) where the orbital is localized
(e.g., it is stronger for O than for N). The valence repulsive
potentials arise from the 8 O 1s22s22p4, 7 N 1s22s22p3, or 17
H3C-O electrons’ Coulomb and exchange interactions with the
extra electron when the latter tries to occupy the half-filled
orbital. The latter potentials are often called exchange-repulsion
potentials. As discussed earlier, they are not the focus of the
present paper; it is the large r potentials that we want to
characterize.

In summary, the N-electron Fock operator, when acting on
the excess electron, contains short-range exchange-repulsion,
short-range valence potentials, as well as all long-range
electrostatic (i.e., charge-dipole, charge-quadrupole, etc.) po-
tentials within the HF level of theory. Therefore, Koopmans’
theorem EA includes contributions from all of these terms, but
not more.

To gain an appreciation for how large the various electrostatic
(HF and beyond), orbital relaxation, and correlation (discussed
later) contributions to the EA are for the kind of species
considered here, one can look at Tables 1, 3, and 4 in ref 1.
The numerical results shown there illustrate that orbital relax-
ation and electron correlation effects can play important roles
in determining the EA, which suggests that using an electron-
molecule potential that is capable of representing such effects
is important.

Before moving on to discuss orbital relaxation (i.e., induction)
and correlation, we want to point out that there are situations
in which the approach underlying the developments we offer
here will not be fruitful. In particular, if the Koopmans’ theorem-
level description of the electron-molecule interaction is quali-
tatively inaccurate, it is probably foolish to pursue a path such

∫ φX*[- ∑
a)1

M Za

|r - Ra|]φX dr + ∫ φX* ∑
a)1

N

JaφX dr

(6)

Vdipole ) -µ · r̂e

r2
(7)

Vquadrupole ) -e(3r̂ ·Q · r̂ - I ·Q · I
3r3

(8)

∫ φX*(r′)F(r)
1

|r′-r|
φX(r′) dr dr′ ) ∫ φX*(r′){F0(r) +

δF2(r)}
1

|r′-r|
φX(r′) dr dr′ (9)
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as Møller-Plesset theory that assumes its corrections to KT are
small. For example, if the excess electron is not even bound at
the KT level (i.e., if the orbital energy εX for the lowest virtual
orbital of the neutral is positive), the approach offered here
cannot be expected to be useful.

D. Beyond Koopmans’ Theorem: Relaxation and Cor-
relation. 1. Equations of Motion Theory. It has long been
known that it is possible to develop a computational approach
in which a one-electron operator, analogous to the Fock operator,
has eigenvalues that correspond to EAs (and ionization potentials
(IPs)) whose accuracy goes beyond Koopmans’ theorem. In the
1970s, the author and his co-workers developed6 (through third
order in Møller-Plesset (MP) perturbation theory) what is called
the equations of motion (EOM) theory for EAs. Within this
theory, the EA of a molecule is obtained as an eigenvalue of a
matrix

given in terms of the matrix elements Fi,j of the neutral
molecule’s Fock matrix plus those of the so-called self-energy
matrix Σi,j. Explicit expressions for Σi,j are given in ref 6 through
third order in MP theory and discussed further in a recent
review7 by the author within second order.

It might appear that by forming the i ) j ) X element8 of Fi,j

+ Σi,j, one would have in hand exactly what this paper strives
to achieve, a one-electron electron-molecule interaction po-
tential capable of generating EAs in agreement with ab initio
theory through second or third order (depending on the order
to which the self-energy is written). However, this is not quite
the case; the self-energy matrix elements must be subjected to
further analysis and approximation before one can extract the
kind of local, long-range, one-electron potential that is desired.
This additional analysis is how we obtain expressions involving
the dipole polarizability and higher polarizabilities, and it is
precisely this analysis that we now undertake.

Using EOM theory, the author showed6 that the neutral-anion
energy difference (i.e., the vertical EA) can be expressed at the
MP2 level as follows (Recall that the lower case indices a, b,
m, and n and the upper case indices X and P run over distinct
sets of spin-orbitals. The indices a and b run over the N HF-
occupied spin-orbitals f1, f2, ..., fN; m and n run over the
corresponding virtual spin-orbitals. X labels the HF-occupied
orbital fX holding the excess electron and P labels virtual orbitals
for this electron.):

where εX is the Koopmans’ theorem estimate obtained as an
eigenvalue of the N-electron Fock operator FN(r) of the neutral
molecule.

In the numerators of the three sums in eq 11, which come
from the self-energy matrix, the two-electron integrals are
defined as

and, in the denominators the εa, εm, εX, and εP are HF orbital
energies of occupied and virtual molecule-localized and oc-
cupied and virtual excess-electron spin-orbitals, respectively.

2. Orbital Relaxation (Induction) and New Correlation
(Dispersion-like) Energies. The three sums in eq 11 were earlier
shown by the author (see ref 6) to be the MP2-level contributions
to EA due to (i) changes (called induction or relaxation) in the
occupied HF spin-orbitals (labeled a) induced by the presence
of the excess electron in the spin-orbital φX (These relaxations
generate the perturbative corrections to EA that attempt to
replicate the so-called ∆SCF approximation to EA.), (ii) the
pair correlation energy between the excess electron in the
spin-orbital φX and the N other electrons in spin-orbitals
labeled a, and (iii) the loss in pair correlation energies for
electron pairs in spin-orbitals labeled a and b due to the
presence of the excess electron in the spin-orbital φX, respec-
tively. The first two contributions act to differentially stabilize
the anion, while the third differentially destabilizes the anion.

E. Relaxation Contains Mean-Field Polarization. Let us
further examine the electron-molecule potentials contained
within the orbital-relaxation contribution to EA. The first
summation in eq 11 consists of terms summed over all of the
molecule’s occupied spin-orbitals (labeled a). Each term
contains a coefficient

that is the first-order perturbation theory amplitude for the
change in spin-orbital φa induced by its Coulomb and exchange
interactions with the excess electron in φX. This amplitude then
multiplies the virtual spin-orbital φn to form the relaxed
spin-orbital φa,relexed

It is by inducing such changes in the neutral’s occupied
spin-orbitals that the excess electron causes the neutral’s
electron density to become that of the anion.

The corresponding second-order relaxation energy ∆Ea
relaxation

of the spin-orbital φa is given by the matrix element of the
perturbation (JX - KX) coupling φa to φa,relaxed

The sum (over a) of such contribution is what we see in the
first summation in eq 11.

Hi,j ) Fi,j + Σi,j (10)

-EA ) εX + ∑
a)1

N

∑
n

∞ 〈X, n|X, a〉〈X, a|X, n〉
εa + εX - εn - εX

+

∑
a)1

N

∑
n,P

∞ 〈P, n|X, a〉〈X, a|P, n〉
εa + εX - εP - εn

+

∑
a<b

N

∑
n

∞ 〈a, b|n, X〉〈n, X|a, b〉
εn + εX - εa - εb

(11)

〈ij|kl〉 ) ∫ φi*(r)φj*(r′) 1
|r - r′|φk(r)φl(r′) dr dr′ -

∫ φi*(r)φj*(r′) 1
|r - r′|φl(r)φk(r′) dr dr′ (12)

Ca
n ) 〈X, a|X, n〉

εa + εX - εn - εX
)

〈φa|JX - KX|φn〉
εa - εn

(13)

φa,relaxed ) φa + ∑
n

∞

Ca
n
φn (14)

∆Earelaxation ) ∑
n

∞

Ca
n〈φn|JX - KX|φa〉

) ∑
n

∞ 〈φa|JX - KX|φn〉〈φn|JX - KX|φa〉
εa - εn

(15)
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The sum over n runs only over the unoccupied spin-orbitals
of the underlying neutral molecule, not over any of the
spin-orbitals (φX or φP) of the excess electron. Terms in which,
for example, n ) P (a spin-orbital of the excess electron)
represent charge-transfer configurations in which two excess
electrons (one in φX another in φP) are bound to a cationic
molecular core. (All such charge-transfer configurations are
neglected throughout this paper.) Such terms can be neglected
here because their amplitudes would involve (see eq 13) integrals
of the form 〈X,a|X,P〉, which exponentially vanish because φP

is a spin-orbital localized exterior to the neutral molecule while
φa is localized on the molecule.

F. Focus on Large r Forms of the Potentials. To further
interpret these relaxation energies, and later when examining
the correlation energies, we use the following expression
for the electron-electron Coulomb interaction potential to
separate the integrals appearing in eq 15 into factors depending
on the coordinates of the N electrons in the neutral molecule
and the coordinate of the one excess electron

Here r< and r> label the coordinates of the electrons closest to
and furthest from the origin, respectively, and ω<,> is the angle
between the two vectors r< and r>. (The coordinate r> will be
taken as equivalent to rN+1, the coordinate of the excess electron,
throughout this paper.) It is by using this expansion that we are
able, throughout this paper, to develop expressions for
electron-molecule interaction potentials in powers of (r>)-1,
as one desires for writing the long-range form of such potentials.

To illustrate, for the water cluster anion shown in Figure 1,
where we choose the origin of our coordinate system to be
within the molecular cluster, the light blue vector gives the
location r< of an electron of the neutral cluster. The location r>
of the excess electron is the vector sum of the red vector (giving
the centroid of the orbital holding the excess electron) and the
black vector (giving the instantaneous location of the excess
electron relative to the φX orbital centroid). Expressing r> in this
manner allows us later to determine how various contributions to
EA scale with the distance (the length of the red vector) between
the molecule and the centroid of the excess electron’s charge
density.

Inserting the expansion in eq 16 into the two-electron integral
appearing in the numerator of eq 15, we obtain

where the integrations over r> and r< occur in the first and
second integrals, respectively. The L ) 0 contributions in eq
17 vanish because orbitals φa and φn are orthogonal. The lowest-
order term (We will focus primarily on the lowest-order terms
arising in each contribution to EA as a means of determining
the electron-molecule potentials of longest range. Of course,
considering terms with L > 1 would allow one to derive
expressions for potentials of shorter range and higher angular
anisotropy; it is by pursuing such higher-order terms that one

could improve upon the development provided in this paper.),
and that having the longest range in the r> variable, arises from
L ) 1 and is

The integral over the r> variables

can be interpreted as the average over the probability density
|φX|2 of a quantity that is the Y1,M component of the charge
density of the excess electron divided by the square of the
distance (rred + rblack). (The variable rblack ranges over the
volume occupied by the orbital shown in Figure 1.) This
integral is expected to scale as rred

-2 with the distance
between the molecule and the centroid of the orbital holding
the excess electron; because squares of these integrals appear
in ∆Ea

relaxation, this energy contribution is expected to scale
as rred

-4. The other integrals 〈a|Y1,M*rL|n〉 are the various
M-components of the transition dipole matrix element
between φa and φn.

When eq 18 is inserted into eq 15, we obtain an expression for
the L ) 1 component of the orbital relaxation contribution to EA

This result can be seen to contain the components of the
polarizability tensor (More precisely, this is the dipole polarizability;
there are higher polarizabilities arising from higher-L components
in eq 16.) RM,M′ of the underlying molecule (evaluated at the HF
level)

as well as factors 〈X|Y1,M*(1/r2)|X〉〈X|Y1,M′(1/r2)|X〉 that, according
to eq 19, scale as rred

-4 with the distance rred between the molecule
and the centroid of the excess electron’s charge distribution, as
expected for a polarization-related potential.

This shows clearly that orbital relaxation contains, in its L )
1 component, the mean-field polarization of the neutral mol-
ecule’s electron density resulting from its interaction with an
electron density given by Y1,M |φX|2. It is a mean-field polarization
because the molecule is polarized not by the instantaneous
Coulomb potential of the excess electron but by the spatially
averaged charge density Y1,M |φX|2. The higher-order (i.e., L )
2, 3, ...) terms of eq 16 contribute factors scaling as rred

-6, rred
-8,

etc., and represent contributions to mean-field quadrupole and
higher polarizations.

1
|r< - r>|

) ∑
L)0

∞

∑
M)-L

L
4π

2L + 1
YL,M*(θ<, φ<)YL,M(θ>, φ>)

r<
L

r>
L+1

) ∑
L)0

∞

PL(cos ω<,>)
r<

L

r>
L+1

(16)

〈X, a|X, n〉 ) ∑
L)0

∞

∑
M)-L

L
4π

2L + 1〈X|YL,M
1

rL+1 |X〉〈a|YL,M*rL|n〉

(17)

〈X, a|X, n〉L)1 ) ∑
M)-1

1
4π
3 〈X|Y1,M

1

r2 |X〉〈a|Y1,M*r1|n〉

(18)

〈X|Y1,M
1

r2 |X〉 )

∫blackarrow
|φX(rred + rblack)|

2
Y1,M

(rred + rblack)
2

drblack (19)

∆EL)1relaxation ) ∑
a,n

1
εa - εn

| ∑
M)-1

1
4π
3 〈X|Y1,M

1

r2 |X〉 ×

〈a|Y1,M* r1|n〉|2 (20)

RM,M′ ) 2
4π
3 ∑

a,n

〈a|rY1,M|n〉〈n|rY1,M′*|a〉
εn - εa

(21)
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G. Large r Analysis of the New Correlation and Correlation Loss Energies. In the correlation contribution to the EOM’s
EA expression, we see two sums. The terms in the second sum

represent the dynamical correlation energy between the excess electron in φX and another electron in φa. (Recall that n and P run
over the unoccupied spin-orbitals of the molecule and excess electron, respectively.) These contributions have a form that has been
described9 in terms of a dispersion or van der Waals-like interaction between the excess electron and the electrons of the neutral
molecule. One might expect such factors to scale as rred

-6 in analogy with how van der Waals potentials scale, but as we show below,
this is not the case; instead, their contributions scale as rred

-4 and thus contribute to the electron-molecule polarization potential.
The third sum

represents the loss in the correlation energy between the two electrons in φa and φb caused by the occupancy of φX in the anion. In
the neutral, doubly excited determinants in which φa and φb are promoted to φn and φX do contribute to the correlation energy.
However, in the anion, promotions of φa and φb to φn and φX cannot occur because the spin-orbital φX is already occupied. So, the
occupancy of φX in the anion “blocks” certain double excitations of the other N electrons and thus modifies the correlation energy
of these N electrons.

In carrying out an analysis of the asymptotic r dependence of the new correlation and correlation loss contributions to EA, we
use a strategy similar to that employed above for the relaxation energy. For example, in the numerator of eq 22 there appear products
of integrals that can be written using the expansion in eq 16 as follows

Again focusing on the L ) 1 components, we obtain

Unlike the orbital-relaxation case, these integrals now contain products of two transition momentssone involving the r< variable
and the other involving the r> variable. (Unlike in eq 20 where the diagonal matrix element 〈X|Y1,M(1/r2)|X〉 appears and can be
shown to scale as rred>

-2, here we have the transition element 〈X|Y1,M(1/r2)|P〉, which cannot be assumed to scale as rred
-2. So, at this

point, it remains to be shown (which we do later) that the correlation energy contributions indeed scale as rred
-4 not as rred

-6 as dispersion
energies do.)

Later, we will make use of this and analogous treatments when decomposing the correlation components of the EA expression given
in eq 11, but first we need to discuss how people often go about defining a polarization potential. We then return to compare the
polarization potentials thus obtained with the large r decompositions of the MP2-level EAs introduced above to see if the two
approaches reconcile.

III. A Polarization Potential Consistent with MP2

Earlier, we showed that the orbital relaxation contribution to EA involved the mean-field polarization of the underlying molecule
by the excess electron. However, one might desire to introduce a different kind of polarization interaction, as has been shown to be
of much utility in many electron-molecule and electron-cluster studies,10,11 that goes beyond the mean-field approximation, which
is what we explore in this section.

The total Born-Oppenheimer Hamiltonian for the N-electron neutral molecule can be written as a sum of the N-electron Fock
operator and the N-electron fluctuation potential

∆Enewcorrelation ) ∑
a)1

N

∑
n,P

∞ 〈P, n|X, a〉〈X, a|P, n〉
εa + εX - εn - εP

(22)

∆Ecorrelationloss ) ∑
a<b

N

∑
n

∞ 〈a, b|n, X〉〈n, X|a, b〉
εn + εX - εa - εb

(23)

〈X, a|P, n〉 ) ∑
L)0

∞

∑
M)-L

L
4π

2L + 1〈X|YL,M
1

rL+1 |P〉〈a|YL,M*rL|n〉 (24)

〈X, a|P, n〉L)1 ) ∑
M)-1

1
4π
3 〈X|Y1,M

1

r2 |P〉〈a|Y1,M*r1|n〉 (25)

〈X|Y1,M
1

r2 |P〉 ) ∫blackarrow
φX*(rred + rblack)

Y1,M

(rred + rblack)
2
φP(rred + rblack) drblack (26)
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The fluctuation potential appearing in eq 27 is the difference between the true Coulomb interactions among the N electrons and the
mean-field (Ja - Ka) potentials experienced by each of the N electrons. The corresponding Hamiltonian for the N + 1 electron anion
is given by

which is equivalent to

where FN(rN+1) is the Fock operator of the N-electron neutral molecule acting on the coordinate of the excess electron rN+1. In eq
29, the (N + 1)-electron Hamiltonian is written as the N-electron Hamiltonian plus the N-electron Fock operator acting on rN+1 plus
the fluctuation potential of the excess electron.

A. Defining a Polarization Potential. The next step12 in deriving a polarization potential is to consider a N-electron Hamiltonian
that has added to it the Coulomb interactions of its N electrons with the (N + 1)st electron whose position is held fixed at rN+1

The eigenvalues and eigenfunctions of this Hamiltonian will depend parametrically on the location of the excess electron. The
introduction of HN

pol and the subsequent developments given below amount to making an adiabatic treatment of the (N + 1)st

electron. That is, by initially holding rN+1 fixed, one is taking a step much like in the Born-Oppenheimer approximation where one
begins by holding the nuclei fixed. Of course, this then raises the question of how important non-Born-Oppenheimer type corrections
will be for the (N + 1)-electron system when such a polarization potential is used to describe it. In Figures 4 and 5 of ref 11b this
adiabatic potential, computed at the MP2 level, is plotted for the electron-water system and compared to several one-electron
model potentials that have been commonly used. These comparisons show that even though a model potential can reproduce an
accurate EA, it may not have radial and angular characters consistent with such an ab initio-derived potential.

Returning to our derivation, we then express HN as in eq 27, and treat the N-electron Fock operator FN as a zeroth-order Hamiltonian
and both the N-electron fluctuation potential

and the Coulomb potential of the (N + 1)st electron interacting with the N other electrons

as perturbations, both of which are first order in the electron-electron interaction strength. This perturbative approach to determining the
energy and wave function of the ground state of the N-electron molecule in the presence of a spatially fixed (N + 1) electron then yields
the following zeroth- through second-order energies and zeroth- and first-order wave functions. The zeroth-order wave function

is the single Slater determinant in which the N occupied HF spin-orbitals of the neutral molecule appear, and the zeroth-order energy

is the sum of the HF orbital energies of the N-electron Fock operator of the neutral.

HN ) FN + ∑
i<j)1

N
1

|ri - rj|
- ∑

i)1

N

∑
a)1

N

[Ja - Ka](ri) (27)

HN+1 ) HN - 1/2∇N+1
2 - ∑

c)1

M Zc

|rN+1 - Rc|
+ ∑

a)1

N

[Ja - Ka](rN+1) + ∑
i)1

N
1

|ri - rN+1|
- ∑

a)1

N

[Ja - Ka](rN+1) (28)

HN+1 ) HN + FN(rN+1) + ∑
i)1

N
1

|ri - rN+1|
- ∑

a)1

N

[Ja - Ka](rN+1) (29)

HN
pol ) HN + ∑

i)1

N
1

|ri - rN+1|
(30)

VN ) ∑
i<j)1

N
1

|ri - rj|
- ∑

i)1

N

∑
a)1

N

[Ja - Ka](ri) (31)

δV ) ∑
i)1

N
1

|ri - rN+1|
(32)

ψ0 ) |φ1φ2...φaφN| (33)

E0 ) ∑
a)1

N

εa (34)
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The first-order energy contains contributions from the interaction of the neutral’s N electrons with the (N + 1)st electron as well
as the usual sum of Coulomb minus exchange integrals (Ja,b-Ka,b) that correct for the double counting of the electron-electron
interactions that occurs in E0

where P>,< is the operator that interchanges r> and r< to generate the exchange contribution. The first-order wave function contains
both singly |(n)/(a)〉 and doubly |(n,m)/(a,b)〉 excited Slater determinants

in which one electron is promoted from φa to φn or two electrons are promoted from φa and φb to φn and φm, respectively. (〈(n/
a)|VN|ψ0〉 vanishes by the Brillouin condition, and 〈(n,m/a,b)|δV|ψ0〉 vanishes because δV is a one-electron operator in the space of
the N electrons.). Finally, the second-order energy

has contributions from these singly and doubly excited determinants when E2 is evaluated as 〈ψ0|VN + δV|ψ1〉.
Some of the contributions to E0 + E1 + E2 do not depend on the location r> of the excess electron. These include all of E0, the

second terms on the right-hand side of eq 35, and the second sums in eq 37, and add up to yield the HF energy of the neutral plus
its second-order correlation energy EN(HF+MP2). In contrast, the first terms in eqs 35 and 37 are functions of the (N + 1)st electron’s
coordinate; it is these terms (defined as U(r>))

that we now need to analyze further to see how U(r>) relates to the desired polarization potential as suggested by the second equality
in eq 38.

B. Obtaining a Polarized Orbital and Orbital Energy from Upol(r>). The first thing to notice about U(r>) is that its first term
is nothing but the Coulomb minus exchange contribution to the N-electron Fock operator FN acting on r> (which is the same as rN+1,
under the assumption that the excess electron is localized far from the molecule)

so, it relates to the HF-level electrostatic potential. This suggests that one could define the second term in eq 38 as a polarization
potential Upol(r>) and then use it in the one-electron Schrödinger equation

to obtain a polarized orbital φpol and its orbital energy εpol. With the energy of the neutral molecule then expressed as EN(HF+MP2),
and the energy of the polarized (N + 1)st electron’s orbital as εpol, it remains to determine how the energy of the (N + 1)st electron
system through second order (as with EN) can be related to the sum εpol + EN(HF+MP2).

C. Relating εpol to the EA of MP2 Theory. To see whether εpol can reproduce the ab initio expression for -EA given in eq 11,
it is instructive to use the L ) 1 components of the expansion for |r> - r<|-1, as given in eqs 16 and 18 and in eqs 11 and 38. The

E1 ) 〈ψ0|VN + δV|ψ0〉 ) ∑
a)1

N ∫ φa*(r<)
1 - P>,<

|r> - r<|
φa(r<) dr< - 1

2 ∑
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N
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∑
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∞ 〈n
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+ ∑
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) ∑
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N
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∑
a<b)1

N

∑
n<m

∞ 〈n, m|a, b〉
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results for the relaxation and correlation components to -EA are

To compare these components of -EA to εpol, we consider solving eq 40 in a perturbative manner realizing the FN(r>) is zeroth
order and Upol(r>) is second order in the electron-electron interaction strength. This means that φX and εX, the Koopmans’ theorem
results, are the zeroth-order approximations to φpol and εpol, respectively, and that the perturbative corrections are

and

Substituting the explicit expression for Upol (eq 38) into eq 45 yields (through second order)

At first glance, it appears that the expressions for εpol in eq 46 and for -EA in eq 11 as εX plus the relaxation, new correlation,
and correlation loss energies do not reconcile. However, with one reasonable approximation, they can be shown to be essentially
identical. Specifically, if the (N + 1)st electron is very weakly bound, as it often is when localized exterior to and distant from a
closed-shell neutral molecule, the denominators (εa + εX - εn - εP) appearing in the new correlation contribution of eq 42 can be
approximated by (εa - εn) because the excitation energies associated with the excess electron (εX - εP) are much smaller than those
associated with the valence electrons of the underlying neutral molecule. (Of course, εP can extend into the continuum describing
states in which the excess electron is detached. However, for continuum orbitals φP having appreciable kinetic energy, the matrix
elements 〈X|(Y1,M/r2)|P〉 are expected to be very small because of the oscillatory nature of φP.) Making this approximation and using
the completeness relation

the expression for the L ) 1 component of the new correlation energy can be rewritten as

In this form and with the approximation to the denominator introduced above, we see that the terms entering with a minus sign in
eq 48 exactly cancel the L ) 1 part of the relaxation energy (eq 41). Moreover, the remaining parts of eq 48 are exactly equal to

∆EL)1relaxation ) ∑
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1
εa - εn

∑
M,M′)-1

1

(4π
3 )2〈X|Y1,M

1

r2 |X〉〈a|Y1,M*r1|n〉〈n|Y1,M'r
1|a〉〈X|Y1,M′*

1

r2 |X〉 (41)
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1
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εpol - εX as seen in eq 46, and reflecting back on eq 21, one
can clearly identify the HF-level polarizability components RM,M′
of the neutral molecule within these parts of eq 48. This means
that εpol is indeed equal to -EA (at least through second order
and at least in their L ) 1 components), except for the
correlation-loss energy given in eq 43. For the kind of systems
forming the focus of the present work, the correlation loss is
expected to be very small because eq 43 contains terms of the
form 〈X|(Y1,M/r2)|a〉〈a|(Y1,M′*/r2)|X〉 that should be very small
because the orbital φa is, by assumption, distant from φX, so
the product φX φa should be exponentially small.

Notice that, as expressed in eq 42, the new-correlation energy
contained transition matrix elements of the form 〈X|Y1,M(1/r2)|P〉,
which did not allow it to be expressed in a form scaling as r-4.
However, the exact cancellation of parts of the new correlation
and relaxation energies noted above produced a total that does
indeed scale as r-4. This is important because it means one can
employ electron-molecule potentials containing repulsive,
electrostatic, and polarization (varying as r-4) functions, but one
does not need a factor varying as r-6 to treat the dispersion
interaction between the excess electron and the electrons of the
neutral.

IV. Summary, Extensions to Higher Order, Comparison
to Drude Electron-Molecule Theory, and Nonadiabatic
Corrections

A. Summary and Extensions. The primary goal of this work
was to identify the long-range radial and angular characteristics
that an electron-molecule potential should have to be consistent
with ab initio descriptions that include electrostatic, orbital
relaxation, and dispersive correlation interactions. We have
shown how one can define a polarization potential Upol(r>) as
in eq 38 that can be used, in combination with the Fock operator
FN of the neutral molecule or cluster, to obtain EAs that are
expected to agree well with ab initio MP2-calculated EAs for
the class of anions considered here. We also showed that this
Upol(r>) scales as r-4 at large r even though it contains the
dispersion-like interaction of the excess electron and the
electrons of the neutral; one does not need a function scaling
as r-6 to describe these interactions.

These findings suggest that one-electron potentials containing
short-range repulsion, electrostatics and dipole polarization can
indeed be employed to describe electron-molecule interactions,
that they are capable of embodying both orbital relaxation
(induction) and dispersion within the conventional -1/2Rr-4

function, and that they can be consistent with MP2 or MP3
theory if appropriate electrostatic moments and polarizabilities
are used within their parameters.

To be consistent with MP2-level theory, the polarization
potential should contain the HF-level polarizability tensor of
the neutral, much like the Fock operator contains HF-level
electrostatic moments, and it describes both mean-field polariza-
tion (i.e., MP2-level orbital relaxation) and the new pair
correlation energy (i.e., that often termed dispersion) involving
the excess electron.

The strategy used in this paper to relate MP2-level EAs to a
particular form (eq 38) of the dipole polarization potential can
be extended in at least two directions:

(i) Going to MP3 and higher levels, one can define polariza-
tion potentials that are consistent with this higher level and that
incorporate correlation corrections to the dipole, quadrupole and
higher electrostatic moments and to the dipolesand highers
polarizabilities of the underlying neutral.

(ii) Including terms from eq 16 involving values of L > 1,
one can develop quadrupole and higher polarization potentials

(i.e., contributions to the one-electron potential varying with
higher powers of r>

-1).
To achieve an MP3 level potential, one can combine MP2

level electrostatic moments with polarization potentials (dipole
and perhaps quadrupole) in which the polarizabilities are also
evaluated at the MP2 level The derivation of the third-order
self-energy matrix presented in ref 6 can be used to prove this.

(1) In particular, in eq 37 of ref 6a and eqs A3-A6 of ref
6b, the third-order self-energy matrix appears in a form very
close to that shown in eq 11 of the present paper.

(2) In particular, we note that the two-electron integrals
appearing in the numerators of this paper’s eq 11 are replaced
by matrix elements (labeled B in ref 6a) that are equal to the
(first-order) two-electron integrals of eq 11 plus second-order
corrections arising from the first-order doubly excited determi-
nants of the MP2 reference wave function multiplied by other
two-electron integrals (see eqs 31e and 31f of ref 6a). As
discussed earlier, these wave function corrections alter the
electron density and thus the electrostatic moments and polar-
izabilities of the neutral molecule.

(3) There are also corrections (see eqs A3-A6 of ref 6b)
arising from the second-order singly excited determinants to
the wave function. These also alter the electron density and thus
the moments and polarizabilities.

(4) However, there are no third-order contributions to the self-
energy that do not derive from the first-order (double excitations)
or second-order (single excitation) corrections to the MP wave
function. This thus suggests that by making MP2-level correc-
tions to the moments and polarizabilities, one generate a one-
electron electrostatic plus polarization potential consistent with
MP3-level EAs.

For workers involved in designing electron-molecule inter-
action potentials, we suggest that, when deciding what level of
theory (i.e., what electrostatic moments and polarizabilities) to
use in such a model potential, it would be wise to employ values
that are consistent with a specified level of ab initio theory if
one wants to use results from the ab initio theory to validate
the one-electron model. For example, if ab initio MP2 theory
produces EAs of sufficient quality, it may be wise to combine
a HF-level polarization potential with the Fock operator (and
hence the HF-level electrostatic moments) of the neutral
molecule to define a one-electron Hamiltonian. Alternatively,
one could use MP2-level electrostatic moments and polariz-
ability if one wanted to reproduce MP3-level EAs. On the other
hand, it would be inconsistent, if one desires to obtain MP2-
quality EAs, to use an electrostatic potential in which MP2-
level dipole, quadrupole, and higher moments appear.

Even if one has no interest in generating EAs of a specified
MPn level of accuracy, the observations made above may still
be of use in determining the parameters appearing in the short-
range repulsive portion of a model electron-molecule potential.
After all, it is the balance between these short-range repulsions
and the long-range attractions that determine the EA, and one
should be careful not to (fortuitously) reproduce the correct EA
by using inaccurate long-range and inaccurate short-range
potentials. Clearly, one would prefer to use accurate long-range
potentials and then create a short-range repulsive potential that
gives the correct EA when balanced against these accurate long-
range terms. For example, the results provided here suggest that
one could employ HF-level electrostatic moments and polariz-
abilities and then adjust the parameters in the short-range
repulsions to reproduce MP2-level EAs on test systems (e.g.,
the water dimer anion if one is interested in developing an
electron-water potential to use on larger water cluster anions).
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Alternatively, one could use MP2-level electrostatic moments
and polarizabilities and adjust the repulsive potential’s param-
eters to reproduce MP3-level EAs. It would even make sense
if Koopmans’ theorem EAs are of sufficient accuracy (this is
not likely, be we use this example to make a point), to use HF-
level electrostatic moments, to include no polarization potential,
and then adjust the parameters in the short-range repulsions to
reproduce the Koopmans EAs. In addition, one could plot (as
was done in ref 11b) the long-range part of a candidate one-
electron potential and compare it to a plot of the MP2- or MP3-
level potential obtained as in ref 11b

B. Connections to the Drude Model. We would like to
show, as part of this summary, that many of the observations
made above concerning orbital relaxation and new correlation
(i.e., dispersion effects involving the excess electron) were made,
albeit in a different framework, by Professor Ken Jordan’s group
when treating their Drude model13 for electron-molecule and
electron-cluster interactions. In particular, for dipole-bound and
water-cluster anions, they showed the Drude model capable
of reproducing high-level ab initio electron binding energies
that include dispersion effects, and they showed11b that a
polarization potential scaling as r-4 arises from the Drude model
when an adiabatic approximation (much as used here in deriving
Upol(r>)) is employed.

In the model discussed in refs 11b and 13, the coupling
between the N electrons belonging to the underlying molecule
or cluster and the excess electron is described by a potential

expressed in terms of the coordinates r of the excess electron
and of the so-called Drude oscillator R. The response of all N
of the neutral’s electrons to the presence of the excess electron
is modeled in terms of a single three-dimensional Drude
oscillator, which is characterized (These parameters and the
force constant kD are chosen to make the polarizability of the
Drude oscillator equal to that of the water molecule.) by a charge
qD, a mass mD, and a displacement vector R that is assumed to
undergo harmonic motion according to the Hamiltonian

in the absence of coupling to the excess electron. The function
f(r) in eq 49 serves to cutoff the coupling at small r.

Using a basis {|R, nx, ny, nz〉} consisting of products of (i)
orbitals {φR} for the excess electron (i.e., the orbitals we denoted
φX and φP) and (ii) harmonic oscillator eigenfunctions for the
Hamiltonian of eq 50 and treating the coupling given in eq 49
either by configuration interaction or by perturbation theory,
the workers in refs 11b and13 showed that the energy change
induced by the coupling can be viewed as a dispersion-like
energy arising from correlated excitations of the Drude oscillator
and of the excess electron. Such doubly excited contributions
are depicted qualitatively in the central part of Figure 2 and
correspond, in our eq 23, to the new-correlation terms that
describe the dispersion interactions between the excess electron
and the neutral’s electrons.

This Drude model was subjected (see ref 11b) to an adiabatic
treatment in which the oscillator Hamiltonian including the
coupling to the excess electron was diagonalized for a fixed

position of the excess electron. A matrix representation of the
Hamiltonian

is formed within a basis {|nx, ny, nz〉}consisting of products of
harmonic oscillator eigenfunctions but constrained to nk ) 0 or
1 only (k ) x, y, or z). The lowest eigenvalue of the resultant
4 × 4 matrix, which depends parametrically on the position r
of the excess electron, was shown to have the form

where ωD is the frequency of the Drude oscillator. This can be
seen (after removing the zero-point energy of the oscillator) to
be of the polarization-potential form

where RD is the polarizability of the Drude oscillatort

and f(r) is the same cutoff function discussed earlier. This view
of the coupling of the excess electron to the underlying molecule
is shown in the right side of Figure 2.

It is our view that this derivation and the related observations
offered by the Jordan group for their Drude modelsthat the
dynamical coupling between the excess electron and the
electrons of the underlying neutral can be viewed either as
dispersion-like (Figure 2 in the center) or polarization-derived
(Figure 2 on the right)sare consistent with the analysis of MP2
theory offered here. We concluded that the dispersion-like new-
correlation energy plus the mean-field orbital relaxation energy
can be combined and expressed in terms of a single polarization-
derived energy analogous to the adiabatic Drude model’s
potential of eq 53. We also showed that the combination of all
of these terms indeed scale as r-4 even though they contain
dispersion contributions that might be expected to scale as r-6.

C. What about Nonadiabatic Corrections? In closing, we
note that it is somewhat surprising the degree to which using

Ve,osc(r, R) ) qD
R · r̂
r2

f(r) (49)

hosc(R) ) - p
2

2mD
∇R

2 + 1
2

kD(X2 + Y2 + Z2) (50)

Figure 2. Descriptions of the couplings between electrons of a neutral
molecule or cluster (water in this case) and an excess electron described
by ab initio MP2 dispersion (a), Drude-model CI or perturbation theory
(b), and adiabatic treatment of Drude model (c). Reprinted with
permission from ref 11b. Copyright 2008 American Chemical Society.

HF ) hosc(R) + Ve,osc(r, R) (51)

U(r) ) 2pωD - �(1/2pωD)2 +
pqD

2

2ωDmDr4
f2(r)

(52)

U(r) ) -
RD

2r4
f2(r) (53)

RD )
qD

2

kD
(54)
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FN + Upol(r>) to evaluate εpol can be trusted to yield EAs
consistent with MP2-level calculations. After all (i) in MP2,
the orbital relaxation contributions contain only the mean-field
polarization of the neutral molecule’s N electrons, while (ii) in
defining Upol(r>), the excess electron is held fixed and the neutral
molecule’s electrons are allowed to fully polarize in the presence
of this fixed charge. (iii) In forming U(r>), one makes an
adiabatic treatment of how the neutral molecule’s electrons
respond to the presence of the excess electron. One should then
subsequently examine, when solving [FN + Upol(r>)]φpol ) εpol

φpol, nonadiabatic couplings that arise from the dynamical
motion of the excess electron. However, such couplings were
not considered14 in the analysis offered here and they are not
often included when polarization potentials are used to study
dipole-bound anions or molecule-cluster anions. This suggests
that further consideration of the relationships between MPn-
based expressions for EAs and results derived from one-electron
polarization potentials may be warranted, especially if one
extends the analysis to higher order where such nonadiabatic
couplings may come into play.
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