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Abstract Special theoretical tools are needed to carry out ab initio simulations of

(i) electron transfer from a negatively charged donor (i.e., an anion donor) to

a positively charged polypeptide and (ii) electron transfer within such a

peptide from Rydberg orbitals on positive sites (e.g., protonated amines on

side chains) to disulfide or amide bond sites. Basis sets capable of describing

several Rydberg states as well as states with an electron attached to an

SS s* or OCN p* orbital must be used. Electron correlation is important to

include for some states, and methods that allow one to obtain excited states

of the same spin and spatial symmetry must be employed. Tools for treating

surface hopping between states are also crucial. Examples of applying such

tools to anion-to-peptide and intra-peptide electron-transfer processes are

presented. It is demonstrated that intra-peptide electron transfer from

Rydberg orbitals can occur over long distances (15 Å) and can take place in
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both through-space and through-bond paths. Similarities and differences

with other electron-transfer processes in chemistry are also discussed.

Keywords: electron-capture dissociation; electron-transfer dissociation;

electron transfer; Rydberg orbital; Landau–Zener theory

1. INTRODUCTION

Electron-capture dissociation (ECD) [1] and electron-transfer dissociation (ETD)
[2] mass spectroscopic methods have shown much utility and promise for
sequencing peptides and proteins. A strong point of both techniques is their
propensity for selectively cleaving disulfide and N–Ca bonds and for doing so
over a wide range of the backbone, thus producing many different fragment ions,
unlike collision-induced dissociation (CID) or infrared multiphoton dissociation
(IRMPD). ECD and ETD also preserve labile sidechains with posttranslational
modifications. Parallel with many advances in the experimental development
and improvement of these methods, theoretical studies have been carried out by
several groups to try to determine the mechanism(s) [3] by which electron
attachment leads to these specific bond cleavages as well as how the initial
electron attachment occurs.

In both ECD and ETD experimental approaches, a positively charged sample
of a polypeptide enters the gas phase (usually via electrospray), after which ions
of specific mass to charge ratio are selected. Usually, the positive charging is
induced by subjecting the solution-phase sample to acidic conditions prior to
electrospray. An example of a relatively simple polypeptide is shown in Figure 1
as a means for introducing several concepts and terminology.

In ETD, an anion donor collides with the positively charged peptide and
transfers an electron to the peptide; subsequent to this intermolecular electron
transfer, the peptide undergoes cleavage at one of its N–Ca or S–S bonds to form
fragment ions. The mass to charge ratios and intensities of the fragment ions are
the raw data that is then used to infer the primary sequence of the original
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Figure 1 Prototypical polypeptide showing disulfide (SS) linkage, one of many N–Ca bonds,

amino acid side chains (wavy lines), protonated amines on side chains (wavy lines), and one of

many peptide bonds. Also shown is an anion donor (H3C
�) colliding with the peptide.
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polypeptide. In ECD, a free electron (usually having low kinetic energy) rather
than a molecular anion collides with the parent polypeptide. This electron is
captured and subsequently the peptide undergoes cleavage at one of its N–Ca or
S–S bonds. The kind of fragment ions produced (i.e., those arising from N–Ca or
S–S bond cleavage) and their intensities are found to be very similar for ETD and
ECD, suggesting that the two processes proceed along very similar mechanistic
paths. The detailed mechanism(s) by which the electron attaches to the peptide,
where it attaches, and how the N–Ca or S–S bond cleavage then takes place have
been the main focuses of our research in this area.

1.1 The electron-capture event involves electron transfer

In both ECD and ETD, the initial conditions appropriate to the experiments do not
correspond to the ground electronic state of the electron/peptide (ECD) or anion/
peptide (ETD) system. In both cases, there are a myriad of lower-energy electronic
states, and this fact presents major challenges to the theoretical study of these
processes. In Figure 2, we show qualitative plots of energies as functions of the
distance R between a H3C� anion donor and a polypeptide having total charge Z.

The families of electronic states that must be considered in such a study and
that are depicted in Figure 2 include:

1. The ion-pair state in which the ‘‘excess’’ electron resides on the donor anion;
this state’s energy varies strongly with R reflecting the strong Coulomb
attraction between the anion donor and the positively charged polypeptide.
In Figure 2, this state is shown as rapidly descending as R decreases
approximately as expected based on the Coulomb attraction between the
anion donor and the peptide of charge Z: �14.4Z/R is in eV, when R is in Å.

2. Families of Rydberg states in which the excess electron has moved from the
anion donor to reside in a Rydberg orbital (ground 3s, or excited 3p, 3d, 4s, etc.)
on one of the polypeptide’s protonated amine side chains. These curves (at least

E
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Figure 2 Qualitative plots of the electronic energy surfaces as functions of the anion-to-

peptide distance R, for the anion–peptide collision complex, and for states in which the

electron has been transferred from the anion to Rydberg states on one of the peptide’s

protonated amines, to an SS s* orbital, or to an amide p* orbital.
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at long anion–peptide distances) are found to vary rather weakly with R
because the anion donor has been rendered neutral, so only charge–dipole and
charge-induced-dipole potentials between the peptide and the H3C radical exist.

3. One or more states in which the excess electron has moved to reside in an
antibonding SS s* orbital of one of the peptide’s disulfide linkages.

4. One or more states in which the excess electron has moved to reside in an
antibonding OCN p* orbital of one of the peptide’s amide linkages. The curves of
these s* and p* vary rather weakly with R for the same reasons as noted above.

Near where we depict the energy surfaces crossing in Figure 2, the pairs
of surfaces actually undergo avoided crossings at which they experience a
minimum energy splitting that we denote 2H1,2. Moving through each such
avoided crossing, the nature of the two states changes. For example, when the
ion-pair state approaches the –NH3 3s ground-Rydberg state from above at the
left-most circle in Figure 2, the lower-energy surface corresponds to having
the extra electron in the 3s Rydberg orbital; the upper surface has this electron in
the methyl lone pair orbital. In contrast, to the left of the circle, the lower surface
corresponds to the ion-pair state, while the upper surface is the 3s Rydberg-
attached state. The evolution of the two states’ energies and wave functions
through such avoided crossings describes how the interspecies electron transfer
occurs. This is the first category of electron-transfer processes one needs to study
when investigating ETD or ECD.

In probing ETD experiments, one must be able to characterize the above four
families of electronic energy surfaces, and one must have a means of extracting
the couplings H1,2 between these states as they undergo avoided crossings. In the
studies that our group has undertaken [3h–3w], we have used Landau–Zener (LZ)
theory to estimate the probabilities P for an electron being transferred from an
anion donor to a Rydberg orbital, an SS s* orbital, or an amide p* orbital during a
collision beginning on the attractive ion-pair surface that undergoes a crossing
with one of the other surfaces. In LZ theory, this probability is computed as

P ¼ 1� exp �
2pH2

1;2

_vjDFj

" #
�

2pH2
1;2

_vjDFj
(1)

H1,2 is one half the splitting observed when the two energy surfaces undergo their
avoided crossing, v the speed at which the "ion pair moves through the avoided
crossing region, and DF the difference in the slopes of the two energy surfaces as
they approach the avoided crossing.

1.2 Intra-peptide electron transfer can also occur

Once an electron is transferred to or captured by the polypeptide, various things
can happen:

1. If the electron attaches directly to an SS s* orbital, the disulfide bond
promptly cleaves [3j] because the s2s*1 electron-attached state is strongly
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repulsive along the S–S bond. This is one path by which disulfide cleavage
occurs.

2. If the electron enters an OCN p* orbital, an �O–Cd–NH–Ca radical anion
center is formed, after which the neighboring N–Ca bond is weakened and can
be cleaved (to produce �O–CQNH +dCa) thus producing the N–Ca bond-
cleavage products [3m].

3. If the electron enters a Rydberg orbital on one of the protonated amine sites, in
addition to undergoing a cascade of radiative or non-radiative relaxation steps
to lower-energy Rydberg states, it can subsequently undergo intra-peptide
electron transfer to either an SS s* or an OCN p* orbital after which disulfide
or N–Ca bond cleavage can occur [3r,3u–3w].

For the intra-peptide electron migration to be effective in cleaving an S–S or
N–Ca bond, it must occur before the Rydberg species from which the electron is
transferred can decay by some other mechanism. It is believed that electron
attachment (in ECD or ETD) at a positively charged side chain initially occurs into
an excited-Rydberg orbital after which a decay cascade eventually leads to
formation of the ground-Rydberg species. It is known that excited-Rydberg states
belonging to protonated or fixed-charge amine sites undergo radiationless
relaxation to the ground-Rydberg state in a few to several microseconds. Moreover,
we know that the excited-Rydberg states do not undergo N–H or N–C bond
cleavage, but the ground-Rydberg states do (in ca. 10�12 s). Hence, the intra-peptide
electron transfer must occur within a few microseconds of the time the electron
attaches to an excited-Rydberg orbital; otherwise, it will relax to the ground-
Rydberg state and N–H or N–C bond cleavage will occur (ejecting an H atom or an
alkyl radical) terminating the electron’s chance to undergo further transfer.

This transfer from a Rydberg orbital to an SS or OCN antibonding orbital is the
second family of electron-transfer events that must be considered when studying ECD
or ETD. These transfers can occur either through-space or through-bond. To appre-
ciate which Rydberg states are most likely to be involved, qualitative depictions of
the energies of states in which the extra electron occupies a Rydberg orbital or an
SS s* orbital are shown in Figure 3 as functions of the S–S bond length.

The energy profile of the SS s*-attached state is largely repulsive,1 but its
location, relative to the parent and Rydberg-attached states, depends upon the
distance R between the SS bond and the positively charged site whose Coulomb
potential acts to move the SS s*-attached state up and down in energy as R
varies. For example, if R is very large, the energy of the SS s*-attached state will
be little affected by the stabilizing Coulomb potential of the 2NHþ3 site and thus
its energy profile will be as shown by the upper curve in Figure 3. Alternatively, if
the 2NHþ3 site is closer to the SS bond, the energy profile will be shifted
downward as in the lower curve in Figure 3.

For each instantaneous value of the Coulomb potential experienced by the
SS s* orbital, a different Rydberg state will intersect the energy profile of the

1This state’s energy is weakly attractive at large distances because of van der Waals and charge-induced dipole
interactions, but its valence-range character is repulsive.
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SS s*-attached state at or near the equilibrium SS bond length Re. In poly-
peptides containing multiple positively charged sites such as that shown in
Figure 4, the total Coulomb potential C

C ¼ �14:4
X

J

1

RJ
(2)

will determine the energy-placement of the SS s*-attached state (RJ is the distance
of the Jth charged site to the SS bond).

Because ETD and ECD experiments are carried out at or near room
temperature, the SS and N–Ca bonds are expected to sample only distances
close to their equilibrium values Re. Hence, we focus primarily on the Rydberg
states having energies close to that of the SS s*-attached or OCN p*-attached state
near Re when considering intra-peptide electron transfer. In Figure 3, this would
be the highest Rydberg state shown.

In the studies our group has undertaken [3h–3w] to date, we used LZ theory
to estimate the probabilities P for an electron being transferred from such a
Rydberg orbital to an SS s* or amide p* orbital. In Figure 5 we show actual data
from such a study on the H3C2S2S2ðCH2Þ32NHþ3 model compound.

Figure 3 Energies, as functions of the S–S bond length, of the parent charged polypeptide

(top), of ground and excited-Rydberg states localized on the protonated amine side chain, and

of the SS s*-attached state in the absence of (upper curve) and in the presence of (lower

curve) Coulomb stabilization (appears as Figure 1 in ref. 3s).

168 Jack Simons



From the data shown in Figure 5, we concluded that it is the excited-Rydberg
state that crosses the repulsive SS s*-attached state near Re, so this is the state
from which electron transfer is most likely to occur. The 82 cm�1 energy value
shown in Figure 5 is the electronic coupling matrix element H1,2 connecting the
excited-Rydberg and SS s* states, which plays a central role in determining the
LZ-estimated probability P of electron transfer (see Equation (1)). In these cases,
the rates of electron transfer are computed by multiplying the frequency n at
which the S–S bond moves through the curve crossing (we take this to be the
harmonic frequency of the SS bond) by the LZ probability P. In the LZ formula,
the speed v at which the system passes through the crossing region is computed
in terms of the speed of the SS vibrational motion.

To illustrate, it was shown in ref. 3q that H1,2 values in the 300 cm�1 range
produce LZ probabilities of ca. 0.1–0.5 for this system. Thus, we can estimate the
rates of electron transfer by multiplying the S–S vibrational frequency nSS (ca.
1.5� 1013 s�1) by the surface hopping probability (0.1–0.5) and then scaling by the
ratio of the square of (H1,2/300):

Rate � ð1:5 to 7:5Þ � 1012 H1;2

300

� �2

s�1 (3)

Such estimates allowed us to conclude that the smallest H1,2 that could
produce S–S bond cleavage competitive with relaxation from one Rydberg state
to another (taking place at ca. 106 s�1) should be Hmin

1;2 � 0:11� 0:24 cm�1. Most
of the H1,2 values we obtained in our studies to date are substantially larger,

Ala-Gly-Cys-Lys
Thr-Phe-Thr-Ser-Cys

+ 3 H
.

8.782 [Å]
Lys site

6.230 [Å]
Thr site

5.024 [Å]
Ala site

-

Figure 4 Triply protonated polypeptide containing one SS linkage with the distances RJ to

each positive site labeled by dotted lines (appears in Figure 7 of ref. 3s).
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suggesting that intra-peptide electron transfer can be an important contributor to
electrons attaching to and cleaving SS and N–Ca bonds.

In summary, ETD and ECD processes involve two kinds of electron-transfer
events. The first occurs in the initial capture of an electron by the positively
charged polypeptide. The second involves intra-peptide electron transfer from a
Rydberg orbital residing on a positively charged site to an SS or OCN bond site.

2. THE THEORETICAL CHALLENGES AND EXAMPLES OF HOW THE
STUDIES ARE PERFORMED

2.1 Theoretical considerations

Before discussing specific examples as a tool for illustrating how one uses theory
to carry out such studies, we overview a few components of all theoretical
investigations of the electron-transfer events we have studied. Specifically, one
must be sure to address all of the following issues:

1. Atomic orbital basis sets containing diffuse functions must be used at least for
the atoms onto which the electron will attach. This means the sulfur atoms if
one is studying disulfide cleavage and the O, C, and N atoms (at the site of
cleavage) if one is studying N–Ca cleavage. It is important to then check to
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Figure 5 Energies of the parent H3C – S– S – (CH2)3 – NH +
3 cation (open circles), ground

Rydberg-attached (open squares), excited Rydberg-attached (filled squares), and S–S s*-attached

(filed diamonds) states as functions of the S–S bond length. Also shown are the SS s* (left),

excited-Rydberg (center), and ground-Rydberg (right) orbitals (appears as Figure 4 in ref. 3s).
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make sure one obtains a reasonably accurate electron binding energy for the
fragment that holds the excess electron upon bond cleavage. For SS bond
cleavage, this means verifying that the �S–R anion has an electron binding
energy near 1.4 eV. This is important because the relative energies of the bond-
attached and Rydberg-attached states determine which Rydberg state is likely
to couple to the bond-attached state.

2. The positively charged site to which an electron is to attach must have special
basis functions [4–6] attached to it to describe the Rydberg orbitals. This is
important because one needs to accurately describe the energies of the
Rydberg states in relation to bond-attached states and the Rydberg orbitals’
radial extent must be properly represented. To appreciate the sizes of such
orbitals, we show in Figure 6 the lowest (labeled 3s, 3p, 3d, 4s, 4p, and 5s
because NHþ4 is isoelectronic with Na+ ) Rydberg orbitals of NH4.

In each orbital, the outer surface in the figure contains only 60% of the
electron density (i.e., 40% of the density lies farther from the cation center).
Moreover, for each orbital, one can notice the size of the van der Waals surface of
the underlying NHþ4 cation to gain perspective about how large these Rydberg
orbitals are. Realizing that the N–H bond length is ca. 1 Å, it is easy to appreciate
that these Rydberg orbitals span (even at the 60% contour level) 10 Å or more.2

3. The theoretical methods used must be capable of describing not only ground
but also (several) excited states, including state of the same spatial and spin
symmetry. We have found it possible to converge Hartree–Fock self-consistent
field (HF-SCF) calculations on excited states by starting the SCF process with a
spin-orbital occupancy that describes the desired electronic state. After
converging the SCF calculation and checking to make sure it has converged
to the correct state, we have employed Møller–Plesset perturbation theory at
second order (MP2) to evaluate the energy of each state. A correlated
treatment is not so important for the Rydberg-attached states because they

2Hydrogenic and Rydberg orbitals have ‘‘sizes’’ that can be characterized by their expectation values of r and
of r2:

hrin;l ¼
n2a0

Z
1:5�

lðlþ 1Þ

2n2

� �
; hr2in;l ¼

n4a2
0

Z2
2:5�

3lðlþ 1Þ � 1

2n2

� �

where n and l are the principal and angular momentum quantum numbers of the orbital and a0 the Bohr unit of
length (a0 ¼ 0.529 Å). These expressions can be found, for example, in ref. 7. To conceptualize the magnitude of the
overlap (and thus the H1,2 coupling strength) of a Rydberg orbital with, for example, a methyl anion lone pair,
an SS s*, or an amide p* orbital, think of a Rydberg s-orbital as a spherical shell of radius /rSn0 ¼ 1.5n2a0/Z having
a radial ‘‘thickness’’ dr to its electron distribution characterized by its dispersion in radial distribution dr ¼
[/r2Sn,0�(/rSn,0)2]1/2

¼ 0.5n2a0/Z. This shell of thickness dr thus has a surface area of 4p2.25n4a0
2/Z2 and a volume

of Vn ¼ 4p2.25� 0.5n6a0
3/Z3. In contrast, a methyl anion lone pair, an SS s*, or an amide p* orbital has a

volume of ca. Vbond ¼ 4/3p(10a0)3. Now, consider one of the latter orbitals penetrating into a Rydberg orbital,
and approximate the electron density within each of the two volumes Vn and Vbond as uniform. That is,
within each volume, the respective wave functions are approximated by c(r) ¼ (1/V)1/2. The H1,2 coupling
should then scale with n in the same manner as the overlap integral (S) between the two wave functions

S ¼
R

Vbond
ð1=V1=2

bondÞð1=V1=2
n Þd

3r ¼ ðV1=2
bond=V1=2

n Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
103Z3=0:5ð3Þð2:25Þn6

q
given in terms of the square root of

the fraction of the volume of the Rydberg orbital that is shared with the penetrating orbital of volume (10a0)3. Even
for n ¼ 4, this overlap is 0.27Z2/3. For n ¼ 9, S is 0.02Z3/2. This scaling of the overlap between a Rydberg orbital and
a valence-sized orbital as n�3 suggests that the H1.2 couplings will be small except for Rydberg orbitals in the
n ¼ 3–10 range, not for high-n Rydberg orbitals.
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have only one electron in their Rydberg orbital. However, for an anion donor
such as H3C�, correlation is very important because the extra electron
experiences very large correlations with the other methyl lone pair electron.

4. To evaluate the H1,2 couplings, one needs to carry out calculations at a very
finely spaced grid (often with geometry changes along, for example, the SS
bond length, of ca. 0.01 Å) in the region of the avoided crossing. After one has
determined the smallest energy gap between the two states undergoing the
avoided crossing, H1,2 is taken an one-half this gap. These same calculations
are what one uses to evaluate the slope difference |DF| entering into the LZ
surface hopping probability formula.

Finally, it is important to explain the strategy that we have used to construct
model compounds on which to carry out ab initio calculations from which we can
gain insight into the two classes of electron transfer discussed above. For the kind
of polypeptides shown in Figures 1 and 4 and for most species used in ETD or
ECD experiments, the positively charged sites reside primarily on side chains
that possess great motional flexibility. This means that, as the peptide undergoes

Figure 6 Plots of 3s, 3p, 3d, 4s, and 5s Rydberg orbitals of NH4 with the outermost contour

containing 60% of the electron density of that orbital.
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thermal motion in the gas phase, the distances between the positive sites and any
SS or OCN group will fluctuate substantially, as will the distances from one posi-
tive site to another. As a result, the Coulomb stabilization energy (Equation (2)) at
the SS, OCN, and positive sites will also fluctuate with time. Ideally then, one
would like to model the dynamical motions of the polypeptide’s side chains and
backbone and, at each instant of time, compute the rates for electron transfer from
an anion donor to SS, OCN, and Rydberg sites as well as the rates of intra-peptide
electron transfer. Such an ideal approach is simply not computationally feasible
because of the substantial difficulties involved in each electron transfer rate
calculation. Therefore, the approach we have undertaken involves:

a. Using small model compounds containing one disulfide or amide unit to limit
the computational cost.

b. Fixing the distances between positive sites and SS or OCN bond sites and
between positive sites in each calculation (but varying them from one
calculation to another) as a way to gain data representative of that particular
set of inter-site distances.

This approach allows us to generate a body of data representative of the range
of geometries sampled by a polypeptide undergoing dynamical motions.

2.2 Illustrative examples

With the above advice and strategy in mind, we can now focus on a few
illustrative cases involving electron transfer to an SS s* orbital that subsequently
affects disulfide bond cleavage as a means of further illustrating how these
studies proceed and what they have told us. First, let us consider intra-peptide
transfer from a Rydberg orbital on a protonated amine site, through intervening
aliphatic ‘‘spacers’’ of varying length, to such an SS s* orbital.

In Figure 7, we show the SS s*, excited-Rydberg, and ground-Rydberg
orbitals for three model compounds + H3N–(CH2)n–S–S–CH3 having n ¼ 3, 2, or 1
from left to right.

It is important to recognize that the Rydberg orbitals have significant
amplitudes in regions of space where the SS s* orbital also does and that the
degree of overlap between the Rydberg and SS s* orbitals decreases as n
increases, as expected.

For n ¼ 3, the energy profiles of the parent compound, the species with an
electron attached to the ground or excited-Rydberg orbital, and the species with
an electron in the SS s* orbital as functions of the SS bond length were shown
earlier in Figure 3 where we also see the H1,2 values associated with the Rydberg
SS s* avoided crossings. Analogous data was obtained for the n ¼ 2 and n ¼ 3
cases, and the corresponding H1,2 values were obtained. When the ln H1,2 values
for ground and excited-Rydberg states are plotted for n ¼ 1, 2, and 3 are plotted
vs. the distance R between the center of the SS bond and the center of charge of
the Rydberg orbital, decent linear correlations are obtained as shown in Figure 8.

Such exponential decays of H1,2 with distance are characteristic of the
electronic coupling strengths in all electron-transfer studies [8–11], not just those
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related to intra-peptide or anion-to-peptide electron transfer. The error bars
shown in Figure 8 derive from our estimate of how small H1,2 can be before we
find it too difficult to reliably determine the minimum energy splitting between
two surfaces undergoing an avoided crossing.

Figure 7 SS s* (top), excited-Rydberg (middle), and ground-Rydberg (bottom) orbitals of
+ H3N–(CH2)n–S–S–CH3 with n ¼ 3 (left), 2 (center), and 1 (right) (appears as Figure 5 in ref. 3s).
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Although we are not able to directly determine H1,2 values as small as
0.3 cm�1 (recall, this is the smallest H1,2 that can generate an intra-peptide
electron transfer that can compete with relaxations among Rydberg states), we
use the near-linear plots of H1,2 vs. R to extrapolate to that R-value where
Hmin

1;2 ¼ 0:3 cm�1 should be realized. For example, the data shown in Figure 8
suggest that the excited-Rydberg state can contribute to electron transfer out to
RE18 Å, while the ground-Rydberg state can out to RE12 Å.

To explore whether the electron-transfer events occur primarily through-space
or through-bond, we carried out calculations on model compounds in which the
disulfide linkage is separated from the site of the Rydberg orbital(s) by distances
similar to those arising in the studies of + H3N–(CH2)n–S–S–CH3 but with no
‘‘spacer’’ groups between the Rydberg and SS sites. For example, we studied
two model systems: H3C–SS–CH3 with an NHþ4 ion 3–15 Å from the midpoint of
the SS bond and H3C–SS–CH3 with an NðCH3Þ

þ
4 ion 3–15 Å from the midpoint

of the SS bond. These two positive sites were chosen to model protonated amine
and so-called fixed-charge sites that occur in many polypeptides. The energy
profiles of the parent compound and of species with an electron attached to the
SS s*, ground-, or excited-Rydberg orbitals are shown in Figures 9 and 10.

Also shown in Figures 9 and 10 are the H1,2 values (in cm�1) obtained by
analyzing the avoided curve crossings. In Figure 11 we show plots of the natural
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triangles), excited-Rydberg (inverted open triangles), and various SS s*-attached (circles) states
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log of these H1,2 values as functions of the distance from the nitrogen atom to the
midpoint of the SS bond for the four cases related to Figures 9 and 10.

Again, we see that the Rydberg states’ couplings can extend over very large
distances. Moreover, it appears (from Figures 8 and 11) that the excited-Rydberg
states’ coupling strength seems to decay somewhat slower with distance than
those of the ground-Rydberg states. Finally, the magnitudes of the H1,2 values
obtained with –CH2– spacers present are not qualitatively larger (compare
Figures 8 and 11) than those obtained in the through-space study (for a given
distance). This suggests that, at least for the systems studied to date, the presence
of aliphatic spacers does not qualitatively increase the rates of intra-peptide
electron transfer; through-space transfer seems to be dominant.

Although space limitations preclude reviewing all of the results [3h–3u] that
have come out of our studies on anion-to-peptide electron transfer and intra-
peptide electron transfer, it is worth mentioning here a few of the highlights.

a. In collisions of an anion donor with a positively charged polypeptide, electron
transfer to a Rydberg orbital on a positive site is 10–100 times more likely than
transfer to an SS s* or OCN p* orbital.

b. Once an electron attaches to a Rydberg orbital (probably an excited orbital), it
can relax to lower-energy Rydberg orbitals in ca. 1 ms, or it can, in this same
timeframe, undergo transfer to any an SS s* or OCN p* orbital that is within
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as functions the SS bond length for a range of distances between the nitrogen atom and the
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15–20 Å and that is sufficiently Coulomb stabilized by nearby positive charges
to render positive its electron binding energy.

c. Once an electron attaches to a Rydberg orbital, it can transfer to a Rydberg
orbital on a different positive site if the two sites come within ca. 10 Å of each
other.

3. RELATION TO MORE COMMON FORMS OF ELECTRON
TRANSFER

Electron-transfer processes play many very important roles in chemistry and
biology. Because the present work is focused on electron-transfer events occurring
within positively charged gas-phase peptides as they occur in ETD and ECD mass
spectrometry experiments, it is not appropriate or feasible to review the myriad
of other places electron-transfer reactions occur in chemistry. Chapter 10 of the
graduate level textbook by Schatz and Ratner [12] gives a nice introduction to
the main kinds of electron-transfer events that chemists usually study as well as
to the theoretical underpinnings. They also give, at the end of Chapter 10, several
literature references to selected seminal papers on these subjects.

In most other electron-transfer processes, one considers an electron moving
from a donor (D) to an acceptor (A) through an intervening molecular structure
called a bridge (B). This is much like the Rydberg-bridge-SS system treated earlier
in this paper. There are then two diabatic (meaning having a fixed orbital
occupancy) electronic states D-B-A and D + -B-A� of the donor-bridge-acceptor
system between which one views the transfer as taking place. The energy profiles
of the reactant (D-B-A) and product (D + -B-A�) states as functions of a reaction
coordinate X (i.e., the direction along which the two diabatic energy
hypersurfaces cross) are, in the most commonly invoked theory, represented as
parabolic functions whose minima are shifted in energy by e2�e1 and in length
along the reaction coordinate by XR�XL as shown in Figure 12.

The two diabatic energy profiles are expressed in terms of harmonic forms
having a common force constant as:

VLðXÞ ¼ �1 þ
1

2
kðX � XLÞ

2 (4)

VRðXÞ ¼ �2 þ
1

2
kðX � XRÞ

2 (5)

The two diabatic surfaces and wave functions are allowed to couple by way of
a Hamiltonian matrix element denoted J:

J ¼ hcLjHjcRi (6)

and two adiabatic energy surfaces are generated from the 2� 2 Hamiltonian
matrix

H ¼
VL J

J VR

" #
(7)
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The two eigenvalues of this matrix

E� ¼
1

2
½VL þ VR �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVR � VLÞ

2
þ 4J2

q
	 (8)

differ by an amount 2J at the point XC along the reaction coordinate at
which the two diabatic curves cross (i.e., VL ¼VR at XC) as shown in Figure 12.
The activation energy EA (i.e., the energy needed to move from e1 to the barrier
on the lower adiabatic energy surface (i.e., E�(XC))) can be expressed in terms
of the so-called reorganization energy L and the thermodynamic energy
difference e2�e1:

EA ¼
ðLþ �2 � �1Þ

2

4L
(9)

with

L ¼ VRðXLÞ � VRðXRÞ (10)

L is called the reorganization energy because (see Figure 12) it is the energy
necessary to relax the system when it is in the D + -B-A� state but at the
equilibrium geometry of the D-B-A state (having energy VR(XL)) to the energy of
this D + -B-A� state at its own equilibrium geometry.

In the cases treated in the present paper, we do not have a reorganization
energy because, for example as shown in Figures 5 and 10, the two diabatic states
between which electron transfer occurs (e.g., the SS s* and excited-Rydberg
states) cross so close (i.e., within the zero-point vibrational motion of the SS bond)
to the minimum on the Rydberg-state surface as to render L essentially zero. In
more traditional electron-transfer events, L contains contributions from the

VL(x)

EA

EA

VR(x)

2J

xL xc xR x

E
ne

rg
y

op

ε1 − ε2

Figure 12 Plots of the energy surfaces appropriate to the D-B-A (left) and D + -B-A� (right)

species as functions of the reaction coordinate along which the diabatic surfaces cross and the

adiabatic surfaces undergo an avoided crossing (as shown) (appears as Figure 10.2 in ref. 12).
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energy needed to rearrange the geometry of the D-B-A molecule itself as well as
the energy needed to relax the surrounding solvent environment to the change
from D-B-A to D + -B-A�. That is, in D-B-A the surrounding solvent experiences a
very different electrostatic potential than in D + -B-A�, so the solvent molecules
must reorient (and polarize) to adjust to the change in this potential. However, as
noted above, in our case, there is no intramolecular reorganization energy and no
solvent contribution because the mass spectroscopy experiments are carried out
in the gas phase.

Returning to the more common electron-transfer cases, as shown in ref. 12, the
electron-transfer rate is eventually expressed as a product of two terms. One
term, which depends on the activation energy EA in the usual exp(�EA/RT)
manner contains the reorganization energy. The other term is proportional to
J2 and reflects the intrinsic electron-transfer rate once the system reaches the
activation barrier. The scaling with J2 arises when the couplings between the two
diabatic states are treated perturbatively in this so-called nonadiabatic limit. In
the cases treated in this paper, the electron-transfer rates depend on H2

1;2 (H1,2 is
the same as J) through the LZ expression, but we have no exp(�EA/RT) factor
because, as already explained, our reorganization energies are essentially zero.
They scale as H2

1;2 because, in the LZ estimate of the surface hopping probability,
the two diabatic states that cross are assumed to undergo a weakly avoided
crossing; that is, the LZ estimate is in line with the nonadiabatic limit discussed in
conventional electron-transfer theory.

Finally, it may be useful to note that the Fermi golden rule and time
correlation function expressions often used (see ref. 12, for example) to
express the rates of electron transfer have been shown [13], for other classes of
dynamical processes, to be equivalent to LZ estimates of these same rates. So,
it should not be surprising that our approach, in which we focus on events
with no reorganization energy requirement and we use LZ theory to evaluate
the intrinsic rates, is closely related to the more common approach used to
treat electron transfer in condensed media where the reorganization energy
plays a central role in determining the rates but the J2 factor plays a second
central role.

In closing, it may be instructive to contrast the electron-transfer events taking
place in polypeptides with those we have been studying relating to electrons in
DNA [14]. In these studies, we simulate processes in which

a. an electron attaches to a p* orbital on one of DNA’s bases, after which
b. the electron can autodetach, or
c. it can undergo a transfer through the sugar unit attached to the base and into

the sugar-phosphate C–O s bond’s antibonding orbital, thus leading to C–O
bond cleavage and a so-called single strand break.

The branching ratio between autodetachment and electron transfer governs
the yield of strand breaks. In Figure 13, we show a qualitative depiction of the
energy surfaces involved in this class of electron-transfer processes.
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There are two primary differences in this DNA case when compared to the
polypeptide systems discussed earlier:

1. Because the repulsive C–O s*-attached state crosses the base p*-attached state
at an energy significantly above the minimum on the p*-attached state’s
surface (see Figure 13), the C–O bond must undergo substantial elongation to
access this crossing point. This elongation is thought to occur by thermal
excitation of the C–O stretching motion. The energy DE required to reach this
crossing is analogous to the reorganization energy discussed earlier. This
requirement gives rise to a Boltzmann exp(�DE/RT) dependence in the
electron-transfer rate for this DNA case, much like the reorganization energy
does in the conventional electron-transfer theory discussed earlier.

2. The H1,2 matrix elements connecting the C–O s*-attached and the base
p*-attached states were found [14] to be much larger (e.g., W1,000 cm�1) than
in the polypeptide case (where they were usually o300 cm�1). As a result, the
DNA electron transfer does not occur in the nonadiabatic limit discussed
earlier as it does in the polypeptides. In the DNA case, the couplings are large
enough that the system evolves adiabatically (i.e., once the barrier at the
crossing of the C–O s*-attached and the base p*-attached states is reached,
electron transfer is prompt) from the base to the sugar-phosphate C–O bond
that is then cleaved.

Figure 13 Qualitative depiction, as functions of the sugar-phosphate C–O bond length, of the

energy of a base-sugar-phosphate nucleotide with no electron attached (labeled neutral), with

an electron attached to its base p* orbital (labeled p* anion), and with the electron residing in

the sugar-phosphate C–O s* orbital (lower curve) (appears as Figure 7 in ref. 14).
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