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The modified diffusion theory of imprisonment of atomic resonance radiation is shown to be valid in the 
low-opacity region, and is extended to include infinite slab, infinite cylinder, and spherical vessel geome- 
tries. Calculations are presented which allow the use of the theory for pure Doppler, pure Lorentz, and 
Voigt spectral line shapes. 

I. Introduction 

Experimental investigation of chemical and physical pro- 
cesses involving fluorescent electronically excited atoms is 
sometimes complicated by the troublesome phenomenon of 
radiation impri~onment.~-l3 Because of repeated emission 
and reabsorption of resonance quanta, the “effective” life- 
time of an excited atomic state may depend both on the 
concentration of ground-state atoms and the geometry of 
the enclosing cell, often in a complicated fashion. With 
more sensitive detection techniques it is sometimes possi- 
ble to conduct experiments a t  extremely low ground-state 
number densities, where the excited-state lifetime is in- 
creased negligibly. More commonly, however, the effects of 
radiation imprisonment can be reduced but not completely 
eliminated.3*a11J4 Obviously, certain practical optical de- 
vices such as lasers also have optimum operating conditions 
where imprisonment considerations cannot be ignored. A 
tractable theoretical model of the imprisonment process, 
which could be applied to experimentally convenient vessel 
geometries and low absorber opacities,15 would be useful 
for determining limiting conditions of negligible imprison- 
ment and for calculating small corrections to lifetimes 
when sufficiently low atom densities cannot be attained 
and direct measurements are difficult or i m p o s ~ i b l e . ~ ~ ~ ~ ~ ~ ~  

In very high opacity situations, for infinite slab or infi- 
nite cylinder geometries, the “incoherent scattering” theo- 
ry of Holstein has been quite successful in predicting ap- 
parent lifetimes of Hg(3Pl).6v8,11J6 For the high opacity 
limit, simple analytical approximations are found to be ad- 
equate solutions of the Holstein integro-differential equa- 
tions for radiative t r a n ~ f e r . ~ ~ ~  Van Volkenburgh and Car- 
r i n g t ~ n , ~  using numerical analysis techniques, have extend- 

ed the Holstein formulation for an infinite slab to Doppler 
line-shape systems of intermediate opacity. 

For the low-opacity region of interest here, Michael and 
Yeh8 have pointed out that the earliest treatment of radia- 
tion imprisonment (the infinite slab diffusion theory of 
Milne,13*17 as modified by S a m ~ o n l ~ * ~ ~ )  will fit quite suc- 
cessfully the available Hg(3P1) lifetime data if the width of 
the slab is identified with the radius of a cylindrical experi- 
mental vessel. The success of the Samson modification of 
the Milne theory rests on the use of a single “equiva- 
lent” 8 ~ 1 3  opacity to approximate the more complicated sit- 
uation in which the scattered (imprisoned) radiation has a 
spectral distribution related to the absorption coefficient 
distribution of the ground-state atoms (e.g., for the com- 
mon case of a pressure-broadened absorption line). Thus 
the photons are assumed to be incoherently rather than co- 
herently scattered. 

Holstein,6 and Biberman,lg have since shown that the 
transport equations for incoherently scattered resonance 
radiation (under Doppler- or dispersion-broadening condi- 
tions) cannot properly be solved by assuming the existence 
of an average absorption coefficient (Le., a photon mean 
free path), so that a simple diffusion model is not expected 
to predict imprisonment lifetimes accurately. However, 
while it is certainly true that the Samson-Milne treatment 
is not successful in the very high opacity region of interest 
to Holstein and Biberman, there is good reason to believe 
that the simpler diffusion theory can provide an adequate 
model for low-opacity experimental situations for which 
the use of an average absorption coefficient, or equivalent 
opacity, is a less drastic approximation. 

In this paper, we: (1) show that the use of an ‘‘equiva- 

653 



654 R. P. Blickensderfer, W. H. Breckenridge, and J. Simons 

lent” opacity is valid in the limit of low absorber opacities, 
for a variety of line shapes, and therefore justify the use of 
the Samson-Milne diffusion theory as a very good approxi- 
mation under such conditions; ( 2 )  extend the radiation dif- 
fusion theory to the geometries of sphere and of infinite 
cylinder, which may be better approximations to certain 
experimental vessels than the infinite slab; and (3) calcu- 
late equivalent opacities in the low-opacity regime for the 
following line shapes: (i) pure Doppler broadening, (ii) pure 
Lorentz (pressure) broadening, and (iii) Voigt broadening 
(Doppler, Lorentz, and Heisenberg (natural) broadening). 

11. The Diffusion Model 
We first treat an idealized two-level atomic system in a 

cell under the influence of a weak external source of reso- 
nance radiation. The system has a concentration (n) of 
ground-state atoms of a certain element and a concentra- 
tion (n*) of atoms in a particular excited state, with n* << 
n. The absorption coefficient for ground-state atoms and 
the spectral distribution of fluorescent radiation from the 
excited-state atoms are assumed to be constant and non- 
zero over a narrow range of frequencies which is common to 
both. 

The modified diffusion equation as first derived by 
Milne13J7 may be written 

at 
where (i) V2 is the Laplacian in a coordinate system appro- 
priate to the experimental cell geometry, (ii) 7 is the natu- 
ral radiative lifetime of the excited state, and (iii) k is the 
absorption coefficient (in cm-l) and is directly proportion- 
al to n. The dimensionless product of h and an appropriate 
length characteristic of the vessel is often called the “opaci- 
ty” or “optical depth” of the system. 

Equation 1 can be solved easily for three geometries 
which may be useful approximations to common experi- 
mental cell configurations. 

Infinite Slab Geometry. If the external radiation source 
is turned off at t = 0, there is zero inward radiation flux 
( I - )  at the cell boundary for times t > 0. As shown by 
Milne this boundary condition, when applied to an infinite 
slab of thickness 1, may be expressed as follows: 

After solving eq 1 in rectangular coordinates (which are 
appropriate to the slab geometry) and then applying the 
boundary condition (eq 21, one finds for the ratio of the so- 
called “imprisoned” lifetime 71 to the natural lifetime T :  

(3) 

tan y = kl/y (4) 

rilr = 1 + (kl/yl)2 

where y1 is the first root of 

The excited state decay is actually described by a series 
of exponential terms e-t/rm including all possible roots of 
eq 4 ,  where T ,  is the decay time of the mth  mode corre- 
sponding to the mth root. It is customary to retain only the 
first term although, as we show later, higher terms 
may contribute significantly a t  short times following the 
initial cutoff of the external radiation source. 

Infinite Cylinder Geometry. To  solve eq 1 for an infinite 
cylinder of radius R under conditions of uniform external 
radiation, the angular and axial terms of the Laplacian may 

be ignored since these coordinates will not contribute to 
net decay. Equation 1 thus may be written 

The associated boundary condition expressing the absence 
of inward light flux for t > 0 is 

If we assume that n(r,t) = F(r)-g(t), the variables may be 
readily separated to give 

d2F 1dF 
dr2 r d r  
-+-++2F=O 

and 

dg 
d t  

(A2 + 4k2)7 - + X2g = 0 

( 7 )  

where X2 is the separation constant. X may be eliminated 
from the radial eq 7 by substituting x = Xr: 

d2F 1 d F  
dx2 x dx 
-+ - -+F=O 

The solution of this equation is the zero-order Bessel func- 
tion J&). The time dependence of n* is obtained from the 
solution of eq 8 

The boundary condition (eq 6) restricts X to values satisfy- 
ing 

X,R J1(XmR) - 2kR Jo(X,R) = 0 (9) 

which follows directly upon substituting the general solu- 
tion 

m 

n*(r,t) = A ,  J~(X,r)e-~’~m (10) 
m = l  

into eq 6 and making use of the relation Jo’(x) = -Jl(x). 
The decay times 7, in the expansion are given by 

where X, = X,R is the mth root of x Jl(x) - 2kRJo (x) = 
0.20 The amplitudes {A,) are determined by the distribu- 
tion of excited atoms in the cell a t  t = 0 (see Appendix). 

As in the case of infinite slab geometry, a series of decay 
modes is obtained (see Appendix). For low opacities the 
first decay mode will describe the decay adequately 
for times sufficiently long after cutoff. The lifetime 71 may 
be calculated for different opacities using eq 11 with m = 1. 
Figure 1 presents curves (solid lines) of r1/r vs. opacity (kl  
or kR) for infinite slab and infinite cylinder geometry. 

The near equivalence at  low opacities of an infinite cylin- 
der with radius R to an infinite slab with thickness 1 = R is 
striking and provides theoretical justification for the obser- 
vations of Michael and Yeh,B and for the imprisonment 
treatment used by Breckenridge and  coworker^.^ 

Spherical Geometry. To solve eq 1 for a spherical vessel, 
angular terms in the spherical Laplacian may be neglected, 
so that eq 1 assumes the form 

f $  (62:) (n* + an* 
at 
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Figure 1. Plots (solid lines) of the “imprisonment” lifetime r1 rela- 
tive to the natural lifetime r,  as a function of equivalent opacity kl 
(kR) for infinite slab and infinite cylinder vessel geometry. (See 
text.) Data points are experimental measurements of Hg(3P1) life- 
times (see text for explanation): (0) ref 21; (A) ref 9; (0) ref 8; (+) 
ref 10. 

Separation of variables (n*(r,t) = G(r)-f(t)) leads to a radi- 
al equation 
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Figure 2. Plots (solid lines) of the “imprisonment” lifetime rels- 
tive to the natural lifetime r,  as a function of equivalent opacity kR 
for spherical vessel geometry. (See text.) Data points are experi- 
mental measurements of HgePl) lifetimes (see text for explanation): 
(0) ref 21; (A) ref 9; (0) ref 8. 

TABLE I: Calculated Imprisonment Lifetimes r ,  /r as a 
Function of Opacity For Different Vessel Geometries 

7, IT 

Opacity Infinite Infinite 
( k l  or k R )  slab cylinder Sphere 

0.1 1.103 1.105 1.069 
(12) 0.2 1.214 1.220 1.144 

d2G 2dG - + - - + h 2 G = 0  
dr2 r d r  0.3 1.331 1.347 1.225 

The associated time equation is identical with eq 8 ob- 0.4 1.458 1.485 1.312 
0.5 1.586 1.634 1.405 
0.6 1.725 1.790 1.505 tained for an infinite cylinder.’Equation 12 may be solved 

by first making the substitution u(r) = r1l2G(r). After some 0.7 1.870 1.962 1.612 
rearrangement the following equation is obtained: 0.8 2.020 2.153 1.725 

0.9 2.183 2.343 1.845 ( 1.0 2.355 2.562 1.972 -+--+ d2u l d u  h 2 - -  

dr2 r d r  1.1 2.526 2.774 2.106 
with x = hr this simplifies to 

d2u du 
dx dx 

x 2 y +  x -+ ( x 2 -  Y*)u = 0 

which is the differential equation obeyed by the half-inte- 
ger Bessel function J1/2(x). Thus u(r) = Jl/z(Xr) and G ( r )  = 
r-l12u(r) = r-l12J1/2(hr) 4 jdhr ) ,  where jo is the zero-order 
spherical Bessel function. The general solution is therefore 
n*(r , t )  = A, jo (X,r)e-t/Tm which is identical in form 
with eq 10 for an infinite cylinder. 

The condition of zero inward radiation flux on the sur- 
face (r = R )  of the sphere leads to the equivalent of eq 9 
with J1 and JO replaced by j1 and jo, respectively. The first 
zero of this modification of eq 9 was found by means of a 
Newton-Raphson iteration routine and then used in eq 11 
to calculate imprisonment factors r1/r for spherical geome- 
try (shown in Figure 2, solid line). 

Selected values of r1/r for infinite slab, infinite cylinder, 
and sphere are given in Table I. 

The Approach t o  Steady State. Experimental measure- 
ments are often made under “steady-state” conditions, 
where the rate of formation of excited state atoms by ab- 
sorption of external resonance radiation is equal to the rate 
of disappearance of the excited atoms (via fluorescence or 
collisional quenching). In this section we investigate the ef- 
fect of radiation imprisonment on the approach to the 
steady state when the external source of radiation is turned 
on a t  t = 0. We treat, as an example, the case of an infinite 
cylindrical vessel irradiated with a surrounding coaxial 
light source. The basic rate equation is 

. 

1.2 2.708 3.017 2.249 
1.3 2.898 3.265 2.397 
1 .4  3.096 3.502 2.554 
1.5 3.304 3.775 2.718 
1.6 3.519 4.058 2.890 
1.7 3.737 4.353 3.070 
1.8 3.966 4.667 3.257 
1.9 4.201 4.998 3.452 
2.0 4.470 5.340 3.655 

dn*ldt = K - On* - k ~ [ Q ] n *  (13) 

where (i) K is the rate of absorption of external radiation 
(in photons per second per unit volume), and of course is a 
function of n; (ii) kq is the bimolecular rate constant for 
the quenching of n*  by an added gas Q; (iii) [Q] is the con- 
centration of Q; (iv) is a composite of the decay modes 
discussed above and in the Appendix, and may be found by 
taking the first time derivative of n* (i.e., as given in eq 
10): 

In the limit of very long times ( t  > lor), P reduces to l/rl 
and single mode behavior will be observed. 

The lifetimes r ,  found in the previous section for a 
pulsed decay experiment are equally valid in the descrip- 
tion of a steady-state experiment. Due to the cylindrical 
symmetry of the cell and the surrounding coaxial source, 
the distribution of excited atoms within the cell is symmet- 
ric for all times t .  This is in marked contrast to the infinite 
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slab case when only one side is illuminated. As shown by 
Van Volkenburgh and Carrington5 the resulting asymmet- 
ric distribution of excited atoms gives rise to imprisonment 
factors which not only depend on viewing location but also 
are different for pulsed and steady-state experiments. 

The approach to steady state is therefore provided by 
the solution of eq 13 

For short times ( t  < T, also depending on the opacity; see 
Appendix), the rise of n* is not a true exponential, since p 
itself is a function of t .  For times sufficiently long that the 
first mode predominates: 

indicating true exponential behavior. When t = m (the 
steady state): 

which is of the familiar Stern-Volmer form. Thus Stern- 
Volmer quenching measurements a t  low opacity can be cor- 
rected for radiation imprisonment simply by substituting 
the lowest mode lifetime 71 for the natural lifetime T. 

In addition to the surrounding coaxial light source, two 
other common experimental arrangements need to be con- 
sidered: (1) excitation from a source placed at  one end of a 
long cylindrical cell. In this case the distribution will be ax- 
ially symmetric if the excitation beam is coaxial with the 
cell. Hence eq 14 and 15 are valid; (2) excitation lamp 
placed alongside the cell and parallel to it. This clearly 
leads to an asymmetric distribution. A special solution of 
eq 12 for this case is required and will lead to a new set of 
decay times 7,. 

111. The Use of Equivalent Opacity in the Diffusion 
Model 

The idealized “step-function” atomic absorption and 
emission line shape adopted in the previous section is of 
course not observed in nature. For the usual situation a t  
low total pressures, for example, the line-shape spectral 
function is determined by Doppler broadening13 and is 
Gaussian: 

k , /ko  = F(w) = e-w2 (17) 

where k, is the absorption coefficient at any frequency u; ko 
is the absorption coefficient a t  the Doppler line center: 

where g2 and gl are the statistical weights of the upper and 
lower states, respectively, ho is the wavelength at the center 
of the atomic line, and 

2 R T l n 2  112 
A m  = (?)(I) 

where c is the velocity of light, R is the gas constant, T is 
the absolute temperature, and M the atomic weight; and w 
is a convenient frequency variable defined in terms of the 
Doppler breadth: 

To utilize the simple diffusion model, an “equivalent” 
opacity E l  is defined which an idealized atomic gas must 
have in order for resonance radiation to be propagated in 
the same way as the actual Doppler radiation under real 
conditions. The equivalent opacity for a generalized line 
shape F(w)  is given by:3J3@ 

1:- F(o) exp[-kol F(w)] d o  

s-Lm F ( w )  dw 
(18) ,-x1= 

The right-hand side of eq 18 merely describes the trans- 
mission of incoherently scattered atomic radiation with line 
shape F(w); the probability of light absorption is propor- 
tional to F(w), but the intensity of the scattered light also 
follows an F(w) spectral distribution. 

The original criticism of Holstein6 that the use of such 
an “equivalent” opacity E1 is incorrect is based on the valid 
contention that any diffusion theory of radiation imprison- 
ment assumes that the probability of a photon penetrating 
a certain distance in the atomic gas is given by a single ex- 
ponential expression, which is true strictly speaking only if 
the absorption coefficient of the gas varies little over the 
frequency spectrum of the resonance quantum. That is 
never exactly true, of course, and Holstein proved that be- 
cause it is therefore impossible to apply the concept of 
mean free path of resonance-radiation quanta, any simple 
kinetic theory of radiation diffusion is bound to be incor- 
rect. 

Doppler Line Shape. We accept Holstein’s argument 
and agree that at high opacities the use of a simple equiva- 
lent opacity is entirely incorrect, leading to the failure of 
the diffusion model.6,s However, it  can be shown that a t  
low opacities the propagation of a Doppler-broadened line 
can be described adequately by a single exponential func- 
tion, so that the concept of a photon mean free path leads 
to negligible error and diffusion theory expressions are con- 
sequently meaningful. Yang9 has shown, for example, by 
numerical integration that for opacities (hol) up to 1.00, 
the probability P(1) that a Doppler photon will travel a dis- 
tance 1 can be given accurately (less than 2% error) by the 
expression: exp( -0.675kol) (Le., an equivalent opacity El = 
0.675kol is strictly valid up to kol = 1.00). Only a t  much 
higher opacities, then, will the assumption of a photon 
mean free path invalidate the diffusion treatment for the 
Doppler line shape. Values of El for the Doppler case, ob- 
tained by interpolation of values obtained by Zemansky by 
graphical integration,13 are shown in Table 11. 

The only extensive low-opacity imprisonment measure- 
ments with which to test the diffusion theory are those for 
Hg(3P1) under Doppler conditions.a10*21 In the Hg(3P1) 
case, the resonance line is actually split into five separate 
Doppler-broadened hyperfine and isotopic components, 
which to a good approximation can be taken to be equal in 
intensity.22 Thus the diffusion theory can be applied by 
simply assuming that the imprisonment would be equiva- 
lent to that of a single line with maximum absorption coef- 
ficient ko/5.13 The reaction vessels used in experimental 
studies, which are usually cylindrical, are rarely good ap- 
proximations to the theoretical geometries treated in the 
previous section, so that the experimental points in Figures 
1 and 2 were plotted in the following manner. For a given 
experimental determination of TJT, ko/5 was calculated 
from the known mercury vapor concentration. The charac- 
teristic length needed to obtain the opacity was taken as 
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TABLE 11: Equivalent Opacity El as a Function of Opacity 
k,Z for a Doppler-Broadened Atomic Line 

El 

0.00 
1.00 
1.50 
2.00 
2.50 
3.00 
3.50 
4.00 

0.00 
0.665 
0.965 
1.241 
1.49 
1.72 
1.92 
2.10 

0.67 5 
0.665 
0.643 
0.621 
0.597 
0.572 
0.549 
0.526 

follows.23 (i) The thickness 1 of the hypothetical infinite 
slab or the radius R of the hypothetical infinite cylinder 
was set equal to the radius of the experimental vessel. (ii) 
The diameter of the hypothetical sphere was set equal to 
the average of the diameter and the length of the experi- 
mental vessel. The equivalent opacity El was then obtained 
from Table 11. I t  is obvious that no matter which geometric 
approximation is used, the diffusion model predicts both 
the onset of imprisonment and the form of the q / r  curve a t  
effective opacities (hol) less than 1.0 ( E l  < 0.7) for Doppler- 
broadening conditions. Approximating the experimental 
vessels as spheres seems to give the best fit of all the avail- 
able data, but more experimental measurements in the 1.0 
< E1 < 2.0 region are required to test the theory adequate- 
ly. 

Further proof that the diffusion theory is valid in the 
low-opacity region can be obtained by comparing the exact 
calculations of Van Volkenburgh and C a r r i n g t ~ n ~ ~  for the 
one-dimensional infinite slab Doppler-broadening case 
with the imprisonment lifetime predictions of the diffusion 
theory (as shown in the first column in Table I). 

Since tabulated values of n / T  were not given in ref 24, 
estimates were read from the plots, yielding satisfactory 
agreement with the predictions of the diffusion theory (Ta- 
bles I and 11) for opacities kol up to 3.0. 

Lorentz Line Shape. It  is useful to extend the concept of 
equivalent opacity to other commonly encountered absorp- 
tion line shapes. At very high total pressures, the absorp- 
tion profile is dictated almost entirely by the perturbing 
collisions of the absorbing or emitting atoms with each 
other or with a “bath” gas (Le., Holtsmark or Lorentz 
broadening). In these cases the line-shape function can be 
expressed as 

where kmax is the maximum absorption coefficient (at the 
center of the Lorentz line), y = o/a ,  a = (AuL/AuD) (In 2)ll2, 
and AVL is the Lorentz breadth (which is given in simplest 
form as ZL/a, where ZL is the effective number of broaden- 
ing collisions per second per absorbing atom).13 Note that 
kmax = k ~ / d / ~ a .  l3 In the Lorentzian case, the right side of 
eq 18 can be integrated exactly to yield: 

where Io(kmaxl/2) is the modified Bessel function of order 
zero. Values of El for various values of kmaJ are given in 
Table 111. 

Although E1 is not a strictly linear function of kma,l even 
at  low km,,l, use of E1 at values of kmaxl I 2  should not lead 
to significant error. 

Also, for a given atomic vapor concentration, kmax/ko will 

TABLE 111: Equivalent Opacity El as a Function of k,,l 
for a Lorentz-Broadened Atomic Line 

k,aXb E1 Ellk 1 

0.0 0.000 0.500 
0.2 0.098 0.488 
0.4 0.190 0.475 
0.6 0.278 0.463 
0.8 0.360 0.450 
1.0 0.439 0.439 
1.2 0.512 0.427 
1.4 0.581 0.415 
1.6 0.651 0.407 
1.8 0.707 0.393 
2.0 0.764 0.382 

be less than -0.05 for the line to be accurately described as 
a Lorentz-broadened line, with no contribution from Dop- 
pler broadening13 (i.e., because of the severe broadening of 
the line, the maximum absorption coefficient k,,, will be 
much less than the maximum absorption coefficient under 
Doppler-only conditions, ko) .  Radiation imprisonment is 
therefore much less severe under Lorentz broadening con- 
ditions. 

Voigt Line Shape. Unfortunately, it is often convenient 
to conduct experiments with a buffer gas present a t  pres- 
sures greater than 1 Torr but less than several atmo- 
spheres, in which case the line shape is influenced by Dop- 
pler, Lorentz, and sometimes natural (Heisenberg) broad- 
ening.13s25 The line shape functional dependence, F(w) 
(often called the Voigt profile), will therefore vary with the 
total pressure of buffer gas: 

where z = (~{ /AuD)  (In 2)’12, and {is the frequency variable 
for integration in this equation (Le., w - z = [2(ln 2)1/2/ 

AUD](V - vo - {I); a’ = [(AuL h v ~ ) / A u ~ ] ( l n  2)1/2, where 
AUN is the natural linewidth and can be expressed as 1/2nr. 
Equation 20 can be understood as the summation of all the 
Doppler-broadened infinitesimal components of a pure 
(Lorentz + natural)-broadened line. 

Values of F(w) for appropriate values of w for a’ = 0.5, 
1.0, 1.5, and 2.0 have been determined by Zemansky by a 
series expansion and are found in the Appendix of ref 13. 
Using these values, approximate determinations of the 
right-hand side of eq 18 have been made for a’ = 0.5, 1.0, 
1.5, and 2.0 by replacing the integrals with summations. 
The values of the equivalent opacities E l  thereby calculated 
are given in Table IV. To obtain an indication of the accu- 
racy of the summation approximation, we have also deter- 
mined equivalent opacities for a’ = 0, which is identical 
with a purely Doppler line shape, and included these values 
in Table IV. Summation intervals were chosen to be com- 
parable to thoRe used for a’ = 0.5-2.0. Comparison with the 
more accurate determinations in Table I1 shows that the 
summation approximation is a good one with an error of 
less than 3%. 

Values of a’ greater than 2.0 will rarely be encountered in 
laboratory work. Even for the state of the heavy atom 
mercury, a‘ = 2.0 corresponds roughly to the line shape in 
300 Torr of Ar at  room temperature. For lighter atoms, a’ = 
2.0 would describe experimental situations nearer 1 atm of 
buffer gas. 

Complications Due to  Hyperfine and Isotope Splitting. 
For atomic transitions where the line shape is affected by 
isotopic and/or hyperfine splitting, there may be compli- 
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TABLE IV: Equivalent Opacity zl as a Function of Opacity 
k,l for a Voigt-Profile Atomic Line at Different Values of 
a' (See Text) 

- El z l / k m m l  

(kmaxl  = 0.428kJ) 

(kmaxl  = 0.322k01) 

(kmaxZ = 0.256k01) 

a' = 0.00 
1.0 
2.0 
3.0 
4.0 

a' = 0.50 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 
5.00 

0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 
5.00 
6.00 

a' = 1.00 

a' = 1.50 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 

0.50 
1.00 
2.00 
4.00 
6.00 
8.00 

10.00 
12.00 

a '  = 2.00 

0.683 
1.273 
1.764 
2.161 

0.104 
0.205 
0.304 
0.400 
0.758 
1.07 
1.34 
1.57 

0.0664 
0.132 
0.195 
0.258 
0.495 
0.710 
0.905 
1.08 
1.23 

0.0508 
0.101 
0.150 
0.199 
0.384 
0.556 
0.714 
0.859 
0.990 
1.11 

0.0817 
0.162 
0.316 
0.605 
0.866 
1.10 
1.31 
1.50 

0.683 
0.636 
0.588 
0.540 

0.674 
0.666 
0.658 
0.650 
0.616 
0.580 
0.544 
0.509 

0.621 
0.615 
0.609 
0.603 
0.579 
0.554 
0.529 
0.504 
0.481 

0.632 
0.627 
0.622 
0.617 
0.597 
0.576 
0.555 
0.534 
0.513 
0.493 

0.638 
0.632 
0.618 
0.591 
0.564 
0.537 
0.511 
0.487 

cated and irregular line shapes, especially under Voigt pro- 
file conditions. In such cases, F(w)  may have to be deter- 
mined graphically by summation of each spectral compo- 
nent, and eq 18 must then be integrated g r a p h i ~ a l l y . ~ J ~  

IV. Use of the Diffusion Model 
I t  is instructive to summarize here the procedure for the 

use of the low-opacity diffusion model in a particular ex- 
perimental situation. From the atom concentration n ,  the 
maximum absorption coefficient ko for Doppler conditions 
may be calculated using the expression following eq 17. 
The theoretical geometry (infinite slab, infinite cylinder, or 
sphere) which best approximates the experimental vessel is 
adopted, a characteristic length 1 (or R )  is chosen, and the 
opacity kol (or k&) calculated. 

The equivalent opacity E1 (KR) is determined as follows. 
(i) If the line shape can be represented as pure Doppler 
broadening of a single component, E1 (ER) can be found 
using Table 11. (ii) For a pure Lorentz-broadened single 

line, k,,, (= k o / d 2 u )  is calculated (see following eq 19 for 
definition of the quantity (a ) ) ,  and x1 (RR) is obtained 
using Table 111. (iii) For a single line with a Voigt profile, a' 
is calculated (see following eq 20 for definition), and El  is 
determined using Table IV (by interpolation between given 
values of u') .  (iv) For atomic lines with hyperfine and/or 
isotopic structure, F(w) must be estimated graphically by 
direct summation of the line shape of each component (for 
the applicable broadening conditions). The equivalent 
opacity E l  ( h R )  must then be calculated by graphical inte- 
gration of eq 18. 

Finally, when E1 (ER) has been determined for the par- 
ticular atomic line and experimental conditions of interest, 
T ~ / T  can be obtained directly from Table I. 
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Appendix 

tial distribution within the cylindrical geometry 
The amplitudes {A, )  of eq 10 are determined by the ini- 

m 

n*(r;t = 0 )  = A ,  JO (X,r) 
m = l  

which is assumed to be axially symmetric and of the form 
f(r) = e-k(R+r) + e-k(R-r) (11) 

simulating the effect of a surrounding coaxial source. 
In our numerical studies, series I was arbitrarily truncat- 

ed at five terms. By means of standard least-squares and 
matrix inversion techniques the five coefficients ( A I ,  -, Ab) 
were adjusted to give the best fit of the functions (Jo (Xlr),  
-, Jo (X j r ) )  to the distribution f(r) at 10 equally spaced 
points ranging from the center of the cylinder to the wall. 
The results for different opacities are summarized in Table 
V. The agreement between the calculated distribution 
A ,  JO (X,r) and the assumed distribution (eq 11) was ex- 
cellent for the lowest opacity and fair for the highest opaci- 
ty (kR = 2.0) employed in the calculations. 

As indicated in eq 10 the time behavior of the excited 
atoms after cutoff is given by a series of exponential terms 
e-t/rm each with a weighting factor A ,  JO ( X,r). It is inter- 
esting to inquire under what conditions the decay may be 
adequately described by a single decay mode. Table VI 
gives the first five terms of the expansion for selected opa- 
cities kR = 0.2, 1.0, and 2.0 and for times ranging from 0.1 
to 10.0 (in units of the natural decay time 7). The terms are 
evaluated at the center ( r  = 0) of the reaction vessel where 
JO (h,r) = 1.0 for each m. We adopt an arbitrary definition 
of single mode behavior when the first term is a t  least a fac- 
tor of 10 greater in magnitude than the largest of the re- 
maining terms (i.e., IAle-t/711 1 10(A,e-t'rml). Thus we 
see that for t = 0.17, this criterion is not satisfied for any 
opacity in the range 0-2.0, and one or more of the higher 
terms will contribute significantly to the radiation decay. 
When t = 7 single-mode behavior will be observed when 
the opacity kR < 1.0. When t = lor, single mode behavior 
is found throughout the range kR = 0-2.0. For any given 
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TABLE V: Expansion Coefficients for an Infinite Cylinder 
(A, = 1.00) 

kR A2 A3 A4 A *  
0.2 
0.4 
0.6 
0.8 
1 .o 
1.2 
1.4 
1.6 
1.8 
2.0 

-0.117 
0.074 

-0.151 
-0.066 
-0.252 
-0.195 
-0.369 
-0.327 
-0.490 
-0.452 

0.039 
-0.144 

0.020 
-0.161 

0.008 
-0.161 

0.009 
-0.149 

0.024 
-0.129 

-0.015 
0.077 

-0.018 
0.129 

-0.008 
0.168 
0.012 
0.202 
0.032 
0.230 

TABLE VI: Mode Structure for Infinite Cylinder 
(A,e-t/ri = 1.00) 

~~ 

0.004 
-0.052 
-0.007 
-0.081 
-0.016 
-0.115 
-0.033 
-0.149 
-0.054 
-0.178 

t l r  
kR = 0.2 0.1 

1.0 
10.0 

kR = 1.0 0.1 
1.0 

10.0 
kR = 2.0 0.1 

1 .o 
10.0 

IA2e-t/rd IA,e-t/T,l IA,e-t/rd IA,e-t/rd 

0.115 0.038 0.014 0.004 
0.099 0.032 0.012 0.003 
0.021 0.007 0.002 0.001 
0.242 0.008 0.008 0.015 
0.164 0.005 0.005 0.009 
0.003 0.000 0,000 0.000 
0.435 0.122 0.215 0.166 
0.307 0.071 0.116 0.086 
0.010 0.000 0.000 0.000 

opacity the relative importance of the lowest mode in- 
creases with time, since the higher modes decay more rap- 
idly. 

References and  Notes 
(1) Dreyfus Foundation Teacher-Scholar. 
(2) Alfred P. Sloan Fellow. 
(3) W. H. Breckenridge, T. M. Broadbent, and D. S. Moore, J. Phys. Chem., 

(4) R. J. CvetanoviC, Prog. React. Kinet., 2, 39 (1964). 
(5) G. V. Van Volkenburgh and T. Carrington, J. Quant. Spectrosc. Radiat. 

(6) T. Holstein, Phys. Rev., 72, 1212 (1947). 
(7) T. Holstein, Phys. Rev., 83, 1159 (1951). 
(8) J. V. Michael and C. Yeh, J. Chem. Phys., 53, 59 (1970). 
(9) K. Yang, J. Am. Chem. SOC., 88,4575 (1966). 

79, 1233 (1975). 

Transfer, 11, 1181 (1971). 

(IO) J. Hong end G. J. Mains, J. Photochem., I,  463 (1972-1973). 
(11) A. J. Yarwood, 0. P. Strausz, and H. E. Gunning, J. Chem. Phys., 41, 

1705 (1964). 
(12) L. F. Phillips, J. Photochem., 2, 255 (1973-1974). 
(13) A. C. G. Mitchell and M. W. Zemansky, "Resonance Radiation and Ex- 

cited Atoms", Cambridge University Press, London, 197 1. 
(14) W. H. Breckenridge and T. W. Broadbent. Chem. Phys. Lett., 29, 421 

(1974). 
(15) The "opacity" of an absorbing system is conventionally defined as the 

product of the maximum absorption coefficient, ko, at the line center 
when Doppler broadening alone Is present, and some characteristic 
length, I ,  of the vessel geometry (e.g., the radius of an infinite cylinder). 
The magnitude of ko is obviously directly proportional to the concentra- 
tion of ground-state atoms. 

(16) P. Alpert, A. 0. McCoubrey, and T. Holstein, Phys. Rev., 76, 1257 
(1949). 

(17) E. A. Milne, J. London Math. SOC., 1, 40 (1926). 
(18) E. W. Samson, Phys. Rev., 40, 940 (1932). 
(19) L. M. Biberman, Zh. Eksp. Teor. F l z ,  17, 416 (1947). 
(20) M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Func- 

(21) L. B. Thomas and W. D. Gwinn, J. Am. Chem. SOC., 70,2643 (1948). 
(22) R. Wallenstein and T. W. Hansch, Opt. Commun., 14, 353 (1975). 
(23) The characteristlc length for the irregular vessel in the Hong-Mains 

study was taken to be their quoted value of 2.31 cm in all cases. 
(24) See Figures 7 and 8 in ref 5. 
(25) P. J. Walsh, Phys. Rev., 118, 511 (1959). 

tions", Dover Publications, New York, N.Y., 1965. 

On the Stereochemistry of the Bromine for Chlorine Exchange following 79Br(n,y)80mBr 
and 82m(80m)Br( IT)82(80)Br in Diastereomeric 2,3-Dichlorobutanes1 

Ying-yet Su and Hans J. Ache* 

Department of Chemistry, Virginia Polytechnic Institute and State Univefslty, Blacksburg, Virginia 2406 7 (Received August 7 7, 7975) 

The stereochemistry of bromine for chlorine substitution a t  asymmetric carbon atoms was studied in the 
pure liquid diastereomeric 2,3-dichlorobutanes and in organic solutions of these compounds. The reactive 
bromine species were either energetic (hot) 80mBr atoms generated via the 79Br(n,y)somBr nuclear process 
or bromine species formed as a result of Coulomb fragmentation of 80mBr- or 82mBr-labeled molecules. Dis- 
tinct differences in the stereospecificity of the Br for C1 exchange have been observed depending on the 
type of nuclear process by which the reactive bromine species are formed and on the amount and nature of 
the additives present. In the case of the decay induced 80Br for C1 exchange the observed results can be ex- 
plained in terms of a model in which the neutralization time for the Br+ and the time for radical recombi- 
nation are the determining factors for the stereochemical course of the exchange process. The Br for C1 ex- 
change initiated by "hot" 80mBr atoms appears to be primarily the result of a "hot" one-step replacement 
reaction, as indicated by the presence of a strong conformational effect on the stereochemical course of the 
reaction. 

One of the major objectives in these studies was to assess 
the effect of the type of the nuclear reaction by which the 
radiobromine is generated on the final product spectrum of 
radiobromine labeled compounds. 

Earlier work stressed the similarity of the chemical prod- 

Introduction 
The reactions of radiobromine generated by nuclear pro- 

cesses, such as the radiative neutron capture (n,-y) or the 
isomeric transition activation process, have been the 
subject of a large number of investigations.2 
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