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One of this author’s earliest independent achievements was inspired by his participation as a student
at a Battelle-sponsored summer school held in Seattle, Washington at which Professor Paldus and
many other pioneers of many-body methods in quantum chemistry were instructors. In particular, soon
after arriving at the University of Utah in 1971, the author undertook a project aimed at utilizing
many-body methods, specifically the equations of motion (EOM) point of view that McKoy and
co-workers had applied to electronic excitations. His objective was to achieve computationally
tractable working equations for an EOM-based method for directly computing molecular electron
affinities. Much of his life-long involvement in studying anions derives from that work in 1971, which
produced his first publication on the subject “Theory of Electron Affinities of Small Molecules”
(Simons J., Smith W. D.: J. Chem. Phys. 1973, 58, 4899). For this reason, the author wishes to
express his special debt and gratitude to Prof. J. Paldus and to wish him continued happiness and
scientific success.

The ab initio calculation of molecular electron affinities (EA) and ionization potentials (IP) is
a difficult task because the energy of interest is a very small fraction of the total electronic
energy of the parent species. For example, EAs typically lie in the 0.01–10 eV range, but the
total electronic energy of even a small molecule, radical, or ion is usually several orders of
magnitude larger. Moreover, the EA or IP is an intensive quantity but the total energy is an
extensive quantity, so the difficulty in evaluating EAs and IPs to within a fixed specified
(e.g., ±0.1 eV) accuracy becomes more and more difficult as the system’s size and number of
electrons grows. The situation becomes especially problematic when studying extended sys-
tems such as solids, polymers, or surfaces for which the EA or IP is an infinitesimal fraction
of the total energy. EOM methods such as the author developed in the 1970s offer a route
to calculating the intensive EAs and IPs directly as eigenvalues of a set of working equations.
A history of the development of EOM theories as applied to EAs and IPs, their numerous
practical implementations, and their relations to Greens function or propagator theories are
given in this contribution. EOM methods based upon Møller–Plesset, multiconfiguration
self-consistent field, and coupled-cluster reference wave functions are included in the discus-
sion as is the application of EOM methods to metastable states of anions.
Keywords: Quantum chemistry; Koopmans’ theorem; Coupled-cluster; EOM theory;
MC-SCF; Metastable anion states.
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The vertical electron affinity (EA) of a molecule can be estimated by (ap-
proximately) solving the Schrödinger equation for the energy E(0,N) of the
N-electron neutral molecule and the Schrödinger equation for the energy
E(K,N+1) of the K-th state of the N+1-electron anion and subtracting the
two energies:

EA = E(0,N) – E(K,N+1) . (1a)

The corresponding vertical ionization potential (IP) is given as

IP = E(K,N–1) – E(0,N) . (1b)

Here, we use K to label the electronic state of the anion or cation that one
wishes to study, and 0 to label the state of the neutral (usually but not neces-
sarily the ground state) to which the electron is being attached or from
which it is removed.

In using such an approach to obtaining the EA or IP, one is faced with a
very difficult numerical challenge because E(0,N), E(K,N–1), and E(K,N+1)
tend to be extremely large (negative) numbers, whereas EA and IP nearly al-
ways lie in the range 0–20 eV. For example, the EA of the 4S3/2 state of the
carbon atom1 is 1.262119 ± 0.000020 eV, whereas the total electronic en-
ergy of this state of C is –1030.080 eV (relative to a C6+ nucleus and six elec-
trons infinitely distant and not moving that defines the zero of energy).
Since the EA is ca. 0.1% of the total energy of C, one needs to compute the
C and C– electronic energies to accuracies of 0.01% or better to calculate
the EA to within 10%.

However, the problem is even worse than this example suggests because
E(0,N), E(K,N–1), and E(K,N+1) are extensive properties whereas EA and IP
are intensive quantities. For example, the EA of C2 in its X2Σg

+ ground elec-
tronic state1 is 3.269 ± 0.006 eV near the equilibrium bond length Re but
only 1.2621 eV at R → ∞ (i.e., the same as the EA of a carbon atom). How-
ever, the total electronic energy of C2 is –2060.160 eV at R → ∞ and lower
by ca. 3.6 eV (the dissociation energy2 of C2) at Re, so again EA is a very
small fraction of the total energies. For buckyball C60, the EA is1 2.666 ±
0.001 eV, but the total electronic energy is sixty times –1030.080 eV minus
the atomization energy (i.e., the energy change for C60 → 60 C) of this com-
pound. Clearly, the challenge of evaluating EA (or IP) to within even 50%
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becomes more and more difficult as the size (i.e., number of electrons) in
the molecule grows, and it becomes impossible when the system of interest
is an infinite solid, surface, or polymer. This same kind of difficulty (i.e.,
calculating an intensive quantity as the difference between two extensive
energies) plagues the computation of EAs and of IPs, bond energies, and
electronic excitation energies.

The problems discussed in the preceding paragraph do not disappear if
one uses a computer with higher numerical precision (i.e., a longer word
length) or algorithms that compute the one- and two-electron integrals to
more significant figures. No matter how precise the integrals and how long
the floating point word length (as long as they are finite), the evaluation of
intensive properties such as IPs, EAs, and excitation energies as differences
between pairs of extensive total electronic energies is doomed to fail.

Of course, much progress can be made in computing EAs and IPs as dif-
ferences between anion and neutral or cation and neutral total energies3 be-
cause of large systematic cancellation in energy errors4. For example, the
pair correlation energies of the two 1s electron pairs in C2 is quite large, but
is very nearly the same as in C2

–, so even a large per cent error made in
computing these contributions to the total energy may not greatly affect
the EA computed by subtracting E(K,N+1) from E(0,N). Some of the earliest
high quality ab initio calculations of EAs were carried out using wave
function techniques5 and calculating separate neutral and anion energies.
Nevertheless, in the late 1960s and early 1970s, workers were motivated to
develop methods that would allow intensive energy differences such as EAs,
IPs and excitation energies (∆E) “directly” rather than as differences in two
very large numbers. This point of view is what led to the development of
so-called equations of motion (EOM) methods as well as Greens function
methods6 and, more recently, response function approaches7. In all of these
theories, one performs a derivation in which the two total energies (i.e., ion
and neutral or ground and excited states) are subtracted analytically (rather
than numerically) thereby achieving an analytical expression for the de-
sired intensive energy difference. It is by thus dealing with equations that
involve only intensive energies that one can overcome the problems de-
tailed earlier.

Among the earliest practitioners of EOM methods in the chemistry com-
munity were McKoy8 and his group at Cal Tech. They imported many ideas
and mathematical tools from the nuclear physics literature9, where EOM
theories had been used to study excited states of nuclei, and they focused
their efforts on electronic excitation energies ∆E, not IPs or EAs. In the early
1970s, the author used the framework of EOM theory10 as expressed by the
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McKoy group to develop a systematic (i.e., order-by-order in the Møller–
Plesset perturbation theory sense) approach for directly computing molecular
EAs and IPs as eigenvalues of the EOM working equations. It is this devel-
opment and its subsequent improvement and extensions11 by our group
and others that we now describe.

BASICS OF EOM THEORY

The EA Equations of Motion

The fundamental working equations of any EOM theory can be derived by
writing the Schrödinger equations for the neutral and anion (or neutral and
cation or ground and excited) states of interest and subtracting the two
equations as a first step toward obtaining a single equation that will yield
the EA or IP or ∆E. That is, the EOM theory produces the intensive energy
difference directly as an eigenvalue of the working equation. As above, we
use |0,N〉 to denote the 0-th electronic state of the N-electron neutral and
|K,N+1〉 to denote the K-th state of the N+1-electron anion and write the
two Schrödinger equations as

H |0,N〉 = E(0,N) |0,N〉 (2a)

H |K,N+1〉 = E(K,N+1) |K,N+1〉 . (2b)

Because |0,N〉 and |K,N+1〉 contain different numbers of electrons, it is con-
venient in developing EOM theories of EAs to express the electron Hamil-
tonian H in second-quantized form12:

H = Σi,j h(i,j) i+j + 1/2 Σi,j,k,l 〈i,j | k,l〉 i+j+lk , (3)

where h(i,j) represents a matrix element of the one-electron operators (i.e.,
kinetic energy, electron-nuclear Coulomb attraction, etc.) within the ortho-
normal molecular spin-orbital basis {φj}, 〈i,j | k,l〉 is a matrix element of the
two-electron operators (i.e., electron–electron repulsion), and the set of
Fermion creation operators {i+} create an electron in the {φi} spin-orbitals,
whereas the {i} operators destroy such an electron. Writing H in such a form
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allows us to use the same H in Eqs (2a) and (2b) even those these two
Schrödinger equations relate to N and N+1 electrons, respectively.

The next step in developing an EOM equation is to assume that the anion
state |K,N+1〉 can be related to the neutral state |0,N〉 through an operator
Q+(K):

|K,N+1〉 = Q+(K) |0,N〉 (4)

that maps the neutral molecule wave function into the desired anion wave
function. For the EA case at hand, the operator Q+(K) is usually written in
terms of scalar coefficients t(K,l) multiplied by operators T+(l), also ex-
pressed in second-quantization language, each of which involves adding an
electron

Q+(K) = Σl t(K,l) T+(l) . (5)

Manne showed13 that a complete set of such T+(l) operators consists of the
union of sets of operators {p+} that add an electron to a spin-orbital φp, opera-
tors {p+q+a} that add an electron to φp and excite another electron from φa to
φq, operators {p+q+r+ab} that add an electron to φp excite an electron from φa
to φr and excite another electron from φb to φq as well as higher-level
electron addition and excitation operators up to the highest-level operators
that add an electron and induce N excitations. In labeling these operators,
the indices a, b, c, d, etc. are used to denote spin-orbitals occupied in a
so-called reference Slater determinant within |0,N〉 and p, q, r, s, etc. are
used to denote unoccupied (i.e., virtual) spin-orbitals. The reference deter-
minant, which is what defines the concept of occupied and unoccupied
spin-orbitals, is usually chosen to be the determinant |0〉 within the neutral-
molecule wave function

|0,N〉 = ΣJ=0,M C(0,J) |J〉 (6)

with the largest amplitude C(0,0), but it has been shown13 that |0〉 can actu-
ally be taken to be any determinant within |0,N〉 that possesses non-zero
amplitude. Later we will deal with how one determines the C(0,J) ampli-
tudes in the wave function |0,N〉 ; for now, suffice it to say these amplitudes
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can, for example, be taken from Møller–Plesset (MP) perturbation theory,
from multiconfiguration self-consistent field (MC-SCF) theory, from configu-
ration interaction (CI) theory or from coupled-cluster (CC) theory.

Using Eq. (4) in Eqs (2) and subtracting Eq. (2a) from (2b) gives a single
equation whose eigenvalue gives the desired EA:

(H Q+(K) – Q+(K) H) |0,N〉 = (E(K,N+1) – E(0,N)) Q+(K) |0,N〉 (7a)

or, in terms of the commutator [H,Q+(K)]

[H,Q+(K)] |0,N〉 = E Q+(K) |0,N〉 , (7b)

where the eigenvalue E is the negative of the EA. The key point is that one
now has a single equation to be solved that produces the intensive EA as its
eigenvalue. This equation appears to be of the conventional eigenvalue-
eigenfunction form, but it is somewhat different because the operator that
acts on the eigenfunction Q+(K) |0,N〉 is not the Hamiltonian but a commu-
tator involving the Hamiltonian. The fact that the commutator appears is
what allows the eigenvalue to be an intensive energy difference.

To progress further toward practical implementation, specific choices
must be made for how one is going to approximate the neutral-molecule
wave function |0,N〉 and at what level one is going to truncate the expan-
sion of the operator Q+(K) given in Eq. (5). It is also conventional to reduce
Eq. (7) to a matrix eigenvalue equation by projecting this equation onto an
appropriately chosen space of N+1-electron functions. Let us first deal with
the latter issue.

Once the number of T+(l) operators used to construct Q+(K) has been cho-
sen (we discuss this choice later), the total number lmax of t(K,l) amplitudes
has been determined. Multiplying Eq. (7) on the left by the adjoint T(j) of
any one of the T+ operators, and then projecting the resultant equation
against 〈0,N| gives one form of the working EOM EA equations:

Σl 〈0,N| T(j) [H,T+(l)] |0,N〉 t(K,l) = E Σl 〈0,N| T(j)T+(l) |0,N〉 t(K,l) . (8)

To make use of this equation, the 〈0,N| T(j) [H,T+(l)] |0,N〉 and 〈0,N| T(j)T+(l) |0,N〉
matrices of dimension lmax × lmax must first be evaluated in terms of one- and
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two-electron integrals (appearing in H) and one-, two-, and higher-body
density matrices (depending upon the level at which the {T+(l)} operator ex-
pansion is truncated). Subsequently, the EA values (i.e., EAs for the various
anion states, K, relative to the |0,N〉 state of the neutral) are computed as
minus the eigenvalues E of Eq. (8).

The Analogous Equations of Motion for Ionization Potentials

It is useful to explore how this same framework has been used to compute
molecular ionization potentials (IPs). It is fairly straightforward to show
that an equation analogous to Eq. (7) but reading

〈0,N| (H Q+(K) – Q+(K) H) = (E(0,N) – E(K,N–1)) 〈0,N| Q+(K) (9)

is valid if the operators {Q+(K)} are as given in Eq. (5) but with the {T+(l)} de-
fined to include operators of the form {a+, a+ b+ p, a+ b+ c+ q r, etc.}. Of
course, in Eq. (9), the operators within Q+(K) act to the left on 〈0,N| to gen-
erate cationic states. As a result, neutral-cation energy differences appear in
Eq. (9) and thus this offers a route to computing IPs. Multiplying this equa-
tion on the right by any one of the T(j) operators and then projecting
against |0,N〉 gives

Σl 〈0,N| [H,T+(l)] T(j) |0,N〉 t(K,l) = E Σl 〈0,N| T+(l) T(j) |0,N〉 t(K,l) (10)

but now the eigenvalues E denote values of (E(0,N) – E(K,N–1)), which are
the negatives of the IPs.

Thus far, we see that EOMs can be written that allow EAs or IPs to be
computed. The fundamental constructs within these equations are as fol-
lows:

1. for the EA case, matrix elements 〈0,N| T(j) [H,T+(l)] |0,N〉 involving the
commutator of H with the T+(l) operators then multiplied on the left by a T(j)
operator, as well as an analogous overlap matrix element 〈0,N| T(j) T+(l) |0,N〉;

2. for the IP case, matrix elements 〈0,N| [H,T+(l)] T(j) |0,N〉 of the same
commutator but with the T(j) operator on the right, as well as the corre-
sponding overlap matrix element 〈0,N| T+(l)T(j) |0,N〉 ;

3. the neutral-molecule wave function |0,N〉 with respect to which the EA
or IP is to be evaluated.
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The Rank of the Operators

It is now useful to analyze the density matrix elements14 that enter into
these equations. Each of the T+(j) operators contains an odd number of crea-
tion or annihilation operators, and the Hamiltonian H contains two (i.e.,
i+j) or four (i.e., i+j+lk) such operators. It can be seen that the commutator
[H,T+(l)] does not contain four plus the number of creation or annihilation
operators in T+(l), but two fewer operators. For example, the commutator
[i+j+lk, p+q+a] does not yield any terms with four creation and three annihi-
lation operators but only terms with three creation and two annihilation
operators. We say that the act of forming the commutator (which is what
causes the higher-order operators to cancel) gives rise to a reduction in the
rank of the operators. As a result, both the operator products T(j) [H,T+(l)]
and [H,T+(l)] T(j), which appear in the EA and IP equations of motion, re-
spectively, contain terms only involving both creation and annihilation
operators equal to the number of creation operators in T+(l) plus one plus
the number of creation operators in T(j). For example, if T+(l) = p+q+a and
T(j) = b+rs, then T(j) [H,T+(l)] and [H,T+(l)] T(j) will contain terms with no
more than four creation and four annihilation operators. This means
that the density matrices needed to from 〈0,N| T(j) [H,T+(l)] |0,N〉 and
〈0,N| [H,T+(l)] T(j) |0,N〉 will be, at most, fourth-order density matrices of the
〈0,N| ... |0,N〉 density.

Equations of Lower Rank for Both EAs and IPs

Indeed, in the early years of using EOM methods15 to compute EAs and IPs,
operator manifolds of the form {T+(l)} = {p+; p+q+a, p+ q+ r+ b a, etc.} or {T+(l)} =
{a+, a+ b+ p, a+ b+ c+ q r, etc.} were employed with MP approximations to |0,N〉
(usually taken through first order) to form the kind of matrix elements ap-
pearing in Eqs (8) and (10) and to then evaluate EAs and IPs from their
eigenvalues E. However, it became more common to use a combination of
the EA and IP EOMs formed by adding Eqs (8) and (10), while expanding
the {T+(l)} operator manifold to include both those needed to evaluate EAs
{p+; p+q+a, p+ q+ r+ b a, etc.} and those needed for the IPs {a+, a+ b+ p, a+ b+ c+ q r,
etc.}, to simultaneously compute both such energy differences.

To understand why such a combination has proven beneficial, it suffices
to examine the form and rank of the operators whose 〈0,N| ... |0,N〉 matrix
elements must be evaluated
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Σl 〈0,N| [H,T+(l)] T(j) + T(j) [H,T+(l)] |0,N〉 t(K,l) =

= E Σl 〈0,N| T+(l) T(j) + T(j) T+(l) |0,N〉 t(K,l) . (11)

Recall that the T+(j) operators contain an odd number of creation or annihi-
lation operators. Each of the products [H,T+(l)] T(j), T(j) [H,T+(l)], T+(l) T(j),
and T(j) T+(l) thus contain an even number of such operators. However, be-
cause of the fundamental anti-commutation properties of these operators

i+ j + j i+ = δi,j (12a)

i j + j i = 0 (12b)

i+ j+ + j+ i+ = 0 (12c)

it can easily be shown that the operator combinations T+(l) T(j) + T(j) T+(l)
and [H,T+(l)] T(j) + T(j) [H,T+(l)] contain one fewer creation and one fewer
annihilation operator than does either of the two terms in the sums. So, by
combining the EA and IP EOMs, one effects an additional rank reduction in
the operators appearing in the equations although the dimensions of the
matrices one needs to construct are doubled (because the {T+(l)} operator
manifold is doubled) when both EA and IP operators were included. The
rank reduction is important because it means that the density matrices that
need to be evaluated to compute the 〈0,N| ... |0,N〉 matrix elements are of
lower rank in Eq. (11) than in either Eq. (8) or (10). As we said, it has be-
come more common to use the combined EA and IP Eq. (11) because
lower-order density matrices are required.

Summary

Thus far, we have shown how one can obtain eigenvalue equations, in
which the energy eigenvalues correspond to the intensive EAs (or IPs), by
postulating that the anion (or cation) wave function can be related to the
neutral-molecule wave function through an operator. We have also shown
how the EA and IP equations of motion can be combined to generate a
combined EOM from which both EAs and IPs can be obtained. The advan-
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tage to the latter approach is that the operators appearing in the resultant
equations are of lower rank and thus lower-order density matrices must be
evaluated to carry out the calculations. Let us now move on to address
more specific embodiments of such EOM theories that result from different
choices of the neutral-molecule wave function and of the operator connect-
ing the neutral and anion wave functions.

PRACTICAL IMPLEMENTATIONS OF EOM THEORIES FOR EAs AND IPs

The basic ideas underlying any EOM method for computing EAs or IPs
appear above. However, as discussed earlier, in any specific embodiment of
such a method, one must commit to (i) a specific approximation to the
neutral-molecule wave function |0,N〉 , (ii) a specific choice of how large an
operator manifold {T+(l)} to employ, and (iii) how to solve the resultant
EOM equations for the eigenvalues E that then produce the EAs or IPs. In
the following subsections, we describe the most commonly used choices for
these three issues.

The Møller–Plesset-Based Approximations

In the earliest implementation of EOM approaches to EAs, the author’s
group10,15 chose to represent the |0,N〉 wave function in MP expansion

|0,N〉 = ψ0 + ψ1 + ψ2 + ... (13)

with the single-determinant unrestricted Hartree–Fock (HF) function being
ψ0 and the corresponding neutral-molecule HF Hamiltonian being H0. This
choice was made because there existed substantial evidence that EAs and
IPs computed at the Koopmans’ theorem level would not meet the desired
0.1 eV accuracy. The evidence on atoms and small molecules also showed
that EAs and IPs computed using standard second-order MP theory were
much more accurate but not sufficient to approach the 0.1 eV standard. For
this reason, the author’s group set their sites on the next reasonable level,
that of third-order MP theory and by expanding |0,N〉 in the MPn series, we
were able to properly keep track of the orders of various contributions to
the working equations.

The operator manifold {T+(l)} was taken to consist of {p+; p+q+a} and {a+, a+ b+ p}
because this choice of operator manifold was shown to be capable of producing
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EAs and IPs that were precise through third order6o in the MP perturbation,
which is why this choice was made.

The resultant variant of Eq. (11) was not solved by finding the eigen-
values of this matrix eigenvalue equation whose dimension is the sum of
the dimensions of the {p+; p+q+a} and {a+, a+ b+ p} operator manifolds.
Rather, that large matrix eigenvalue problem was partitioned10 using a pri-
mary subspace defined by the {p+, a+} operators and a secondary subspace
defined by the {p+ q+ a, a+ b+ p} operators. This choice was made because the
class of anion wave functions we wanted to study were those described, at
the lowest level, by adding an electron to a virtual orbital of the neutral.
The partitioned eigenvalue problem

Σj=a,p Hi,j(E) Xj = E Xi , (14)

whose dimension is that of the {p+, a+} operator space was used to find the
eigenvalues E. Of course, the act of partitioning the higher-dimension ma-
trix eigenvalue problem does not change the values of E that represent solu-
tions to the equations. That is, the same E values that fulfil the original
equations are also solutions to the partitioned equations. However, once
one introduces approximations designed to evaluate elements of the parti-
tioned Hi,j(E) matrix to a chosen order in perturbation theory, this
equivalence is lost. It is precisely by making such an order analysis (e.g., comput-
ing Hi,j(E) through second or third order) that EOM theories capable of evaluating
EAs or IPs to a given order were obtained.

When the elements of the partitioned matrices were evaluated through
second order in the MP series, the following expression was obtained for
the matrix elements Hi,j:

Hi,j(E) = εiδi,j – Σp,q,a 〈i,a||p,q〉 〈 p,q||j,a〉/(εp + εq – εa – E) +

+ Σa,b,p 〈i,p||a,b〉 〈 a,b||j,p〉/(εa + εb – εp – E) . (15)

Here, the εi denote the UHF spin-orbital energies of the neutral molecule
and the 〈 i,j||k,l〉 denote differences in two-electron integrals (〈 i,j||k,l〉 =
〈i,j|k,l〉 – 〈i,j|l,k〉). Such expressions were obtained earlier by Reinhardt and
Doll6n within the Greens function framework, but they had not extended
their efforts to third or higher orders as the author’s group was aiming for.
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The expression for Hi,j(E) valid through third order in the MP series is
more complicated and is derived in lit.6o,10 where the partitioned matrix
eigenvalue equation was written as follows:

H(E) X = E X ,

where the elements of the H matrix are defined as follows:

Hi,j(E) = A B B E Ei j
m

m i m j m, , [ * ] / [ ] –
, ,

+ +
<

Σ α β α β α β αβ

– Σ ΣN
N n

Nn i n N j n N m n
B B E E+ <

+
+ <+ + <

− −1
1

11 1, , , ,
[ * ] / [ ] [α α α α α B B E E

i n m j n m

mn
, ,

* ] / [ ] .α α α −

In turn, the elements of the A and B matrices are shown below:

B im im pq K
i m p q

pq

,
| |, ( )

( )
α β αβαβ= − 〈 〉 − 〈 〉 +1 2Σ

+ 〈 〉 − 〈 〉Σ γ βγ αγγ α γ β, ( )
( )

( )
( )[ | | ]p

mp mpi p K i p K

B i mn i K
i n m

mn

,
| |, ( )

( )
α γ δ δγα α γδ= − 〈 〉 − 〈 〉 +1 2Σ

+ 〈 〉 − 〈 〉Σ γ αγ αγγ γ, ( )
( )

( )
( )[ | | ]p

mp npip n K ip m K

A ik jl Fi j i j i k l kl, , , |= + 〈 〉δ ε Σ

to which one adds the following E-independent terms

δ δ δβ β ε εδ β δA jp i mn mn pi j p m n p, , , , , || || || / [( )(= 〈 〉 〈 〉 〈 〉 −Σ ε ε ε εδ β+ − − +m n )]

+ 〈 〉 〈 〉 〈 〉 − +Σ δ β δ δ βδ β δβ ε ε ε ε, , , , || || || / [( )(p m n pj ip p mn mn − − +ε εm n )]

+ 〈 〉 〈 〉 〈 〉 − +Σ δ α β δ α βδ δ βα αβ ε ε ε ε, , , , || || || / [( )(p n pjp i n pn − − +ε εp n )]

+ 〈 〉 〈 〉 〈 〉 − +Σ δ α β δ α βδ δ βα αβ ε ε ε ε, , , , || || || / [( )(p n pj ip n pn − −ε εp n )] .

The energy denominators appearing in the Hij matrix elements are
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E m m n n mn mnmn
m nα αε ε ε α α α α= + − − 〈 〉 − 〈 〉 + 〈 〉| | |

E p p p pp
pδγ δ γε ε ε δ δ γ γ δγ δγ= + − − 〈 〉 − 〈 〉 + 〈 〉| | | .

Finally, the F quantities appearing above are given as

F K K K K K Kkl p
pk pl kp lp

p q l
pq

k
p= + − <Σ Σα < β αβ αβ αβ αβ α α α, ,[ ] [ q

l
pq

k
pqK K+ α α ] ,

where

K K Kpq pq qp
αβ αβ αβ

( ) = −

K K Kpq pq pq
( αβ) αβ βα= −

K K K K Kpq pq qp pq qp
(

( ) ,αβ) αβ αβ βα βα= − − +

and the latter quantities are the MP expansion coefficients of the first-order
wave function:

K mnmn
m nαβ α βαβ ε ε ε ε= 〈 〉 + − −| / ( ) .

Although more complicated than their second-order counterparts, the basic
structure of the above expressions for Hi,j(E) are the same as those in second
order.

These third-order equations have been used in many applications in which
molecular EAs have been computed for a wide variety of species as illus-
trated in lit.15. Clearly, all of the quantities needed to form the second- or
third-order EOM matrix elements Hj,k are ultimately expressed in terms of
the orbital energies {εk} and two-electron integrals 〈 j,k | l,h〉 evaluated in the
basis of the neutral molecule’s HF orbitals that form the starting point of
the MP theory. However, as with most electronic structure theories, much
effort was subsequently devoted to recasting the working EOM equations in
a manner that involves the atomic-orbital (AO) two-electron integrals
rather than the molecular-orbital based integrals. Because such technical
matters of direct AO-driven calculations are outside the scope of this
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work, we will not delve into them further here although we note that
Oddershede16 in collaboration with our group looked into how to express
EOM-type calculations in the AO basis.

Relationship to Greens Functions/Propagators

It turns out that in the early 1970s when we were developing and imple-
menting the EOM method for treating EAs and IPs, several groups had
taken a different approach to the evaluation of atomic and molecular elec-
tronic energy differences using what were called Greens functions (GFs) or
propagators. Linderberg and Öhrn pioneered6p,6y the use of such methods
in quantum chemistry, while Cederbaum and co-workers6q,6r,6s, Reinhardt
and Doll6n, Taylor, Yaris, and co-workers6t and Pickup and Goscinski6u were
among the first to apply the methods to EAs and IPs using an ab initio
approach. Purvis and Öhrn6v,6w soon thereafter expanded the range of the the-
ory to include open-shell systems. These workers as well as Jørgensen and
Oddershede6b and others4h,6c,6f,6g,6i,6j,6k developed MP-based GFs for evaluat-
ing electronic excitation energies but we will not discuss these develop-
ments further here because our emphasis is on IPs and EAs.

The GF EA and IP theories were derived from consideration of the follow-
ing time-dependent matrix elements:

G t t N H t j H t k Nj k, ( ) ( ) ( ) , | exp( ) exp(– ) | ,= 〈 〉 ++1 0 0i i ih h hΘ

+ − 〈 〉+( ) ( ) , | exp( ) exp(– ) | , .1 0 0i i ih h hΘ t N k H t j H t N (16)

Here, Θ(t) is the Heaviside step function, which equals unity when t is posi-
tive and zero when t is negative, j+ and k are the same creation and annihi-
lation operators discussed earlier, and |0,N〉 is the neutral-molecule refer-
ence wave function. Introducing complete sets of N–1 and N+1 electron
Hamiltonian eigenfunctions into the first and second terms in Eq. (16), it
is straightforward to see that one observes time dependences varying as
exp (i[E(0,N) – E(K,N–1)]t/h and exp (i[E(K,N+1) – E(0,N)]t/h, respectively.

Taking the time derivative of Eq. (16), one obtains expressions involving
commutators of the form [H,j+]k and k[H,j+] just as one finds in Eq. (11). By
analyzing the resulting time-derivative equations, workers in this field were
able to obtain equations that such Gj,k(t) matrix elements obey (n.b., these
were called the equations of motion for these matrix elements). The work-
ers named above were able to express the resulting equations in terms of
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one- and two-electron integrals and corresponding density matrices much
as the author had done within the EOM framework. In fact, it turned out
that the final working equations of the so-called one-electron GF or elec-
tron propagator defined in Eq. (16), when Fourier transformed from the
time to the energy domain, were exactly the same as the EOM equations
given above (i.e., Eq. (15) and those reproduced from lit.6o,10). However,
only the Cederbaum group achieved the full third-order expressions within
the GF framework analogous to what we achieved from the EOM point of
view as reviewed above.

Especially in recent years, much of the work aimed at calculating EAs and
IPs using these direct-calculation EOM and GF methods has been per-
formed within the notation of GF and has been carried out by Ortiz group17

as well as by the Cederbaum group. To further illustrate the impact that
such advances have had within the quantum chemistry community, we
note that the Ortiz group has implemented various (i.e., Møller–Plesset up
to third-order and other) variants of these theories within the highly
successful Gaussian18a suite of computer codes as a result of which many
workers worldwide now employ EOM of GF-type methods to evaluate EAs
and IPs. However, the extension of the working EOMs to higher than
third order in the MPn series has not yet been made, at least not in a
widely used framework. Instead, as we discuss later, alternative (i.e., non-
perturbative) approximations to the function |0,N〉 have been used to extend
the accuracy and range of applicability of EOM and GF methods.

The Natural Orbital or Extended Koopmans’ Theorem Approach

In the mid 1970s, Parr and co-workers19 and, independently, Smith and
co-workers20 proposed to use an equation such as Eq. (10) for computing
IPs and they referred to these methods as natural-orbital or extended
Koopmans’ theorem theories. Subsequently, Andersen and the author21 ana-
lyzed the working equations of this approach through second and third or-
der in the MP series and noted differences between them and the GF and
equivalent EOM theories computed through these same orders. Of course,
based on the discussion of the next Section, these differences relate to the
ranks of the operators appearing in the working equations and are not sur-
prising. More recently, Cioslowski and co-workers22 have shown that these
extended Koopmans’ theorem approaches indeed offer a very efficient and
reasonably accurate route to computing IPs or EAs, so it is likely that these
methods will continue to develop. One of the more attractive aspects of the
extended Koopmans’ approaches is that they have been shown23 to be
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capable, at least in principle, of giving the correct lowest ionization poten-
tial of a neutral molecule because they are capable of generating the
proper asymptotic form for the electron density, which is known to vary
as exp (–2(2 IP)1/2r).

Multiconfiguration-Based Approximations

Following on the proof by Manne13 that the operator spaces {T+(l)} = {p+;
p+q+a, p+ q+ r+ b a, etc.} and {T+(l)} = {a+, a+ b+ p, a+ b+ c+ q r, etc.} can be used
(i.e., are capable of forming complete sets of ion states) even when no sin-
gle determinant forms a dominant component of the neutral-molecule
wave function |0,N〉 , the author’s group extended the combined EA and IP
EOM theory to the case in which |0,N〉 is of an arbitrary multiconfiguration
self-consistent field (MC-SCF) form11g and the ionization operator manifold
{T+(l)} included operators of the form {p+; p+q+a} and {a+, a+ b+ p}. The resul-
tant working equations were written as in Eq. (14), with the Hj,k matrix ele-
ments given in Eqs (18) of lit.11g, which we do not reproduce here because
of their complexity. The primary additional difficulty involved in imple-
menting these multiconfiguration-based equations is the fact that
three-electron density matrices 〈0,N| i+ j+ k+ l h n |0,N〉 taken with respect to
the MC-SCF wave function |0,N〉 are involved. These density matrices arise
when the commutators [H, p+q+a] and [H, a+ b+ p] are evaluated.

To date, not much use has been made of the MC-SCF-based EOM theories
as developed in the author’s group. Instead, the framework of time-
dependent response theory, which can treat essentially any kind of refer-
ence wave function |0,N〉 including the MC-SCF variety, has superseded the
EOM-based developments for such cases. It is important to keep in mind,
however, that both the EOM and response function theories involve formu-
lating and solving sets of equations whose solution (i.e., the unknown
energy) is an intensive energy and, as such, they are all members of the
same family of methods.

Coupled-Cluster-Based EOM

Of course, the coupled-cluster framework that Prof. Paldus was a pioneer in
developing24, has also been used as a basis for deriving equations of mo-
tion. The use of coupled-cluster (CC) wave functions within EOM theory
for excitation energies, IPs, and EAs has been developed25,26 upon slightly
different lines than outlined in previous Section. The CC wave function

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

594 Simons:



ansatz for |0,N〉 is written as usual in terms of an exponential operator act-
ing on a single-determinant (e.g., unrestricted HF) “reference function” |0〉

| , exp( ) | .0 0N T〉 = 〉 (17)

The so-called cluster operator T is expressed in terms of spin-orbital
excitation operators of the form {T1} = {p+ a}, {T2} = {p+ q+ b a}, {T3} = {p+ q+ r+ c b a},
etc. with Tk relating to the excitation of k electrons from occupied
spin-orbitals (a, b, c, etc.) to virtual spin-orbitals (p, q, r, etc.). Prior to form-
ing any EA EOM, the neutral-molecule CC equations need to be solved for
the amplitudes {tn} that multiply the {Tn} operators to form the CC T opera-
tor. For completeness, let us briefly review how the conventional CC wave
function evaluation is carried out.

We recall the CC equations are formed by manipulating the Schrödinger
equation

H T E Texp( ) | exp( ) |0 0〉 = 〉 (18)

to read

exp( ) exp( ) | |− 〉 = 〉T H T E0 0 (19)

and subsequently projecting this equation against the set of functions {〈0| Tn
+}.

Because the T operator contains only creation operators for unoccupied
spin-orbitals and annihilation operators for occupied spin-orbitals, it turns
out that the commutator expansion

exp( ) exp( ) [ , ] [ ,[ , ]] ![ ,[ ,[ , ]]− = − + −T H T H T H T T H T T T H1 2 1 3 ] +

+ +1 4![ ,[ ,[ ,[ , ]]]] ...T T T T H (20)

exactly truncates at the fourth-order term. So, the final working equations
of CC theory can be written as
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〈 − + − ++0 1 2 1 3| { [ , ] [ ,[ , ]] ![ ,[ ,[ , ]]]T H T H T T H T T T Hn

+ 〉 =1 4 0 0![ ,[ ,[ ,[ , ]]]] } | .T T T T H (21)

Once the CC amplitudes {tn} are determined by solving these quartic equa-
tions, the CC energy is computed as

〈 − + − +0 1 2 1 3| [ , ] [ ,[ , ]] ![ ,[ ,[ , ]]]H T H T T H T T T H

+ 〉 =1 4 0![ ,[ ,[ ,[ , ]]]] | .T T T T H E (22)

The operator Q+(K) that maps the CC wave function |0,N〉 into an anion
or cation state is expressed as in Eq. (5) with the {T+(l)} operators including,
for example, {T+(l)} = {p+; p+q+a, p+ q+ r+ b a, etc.} when EAs are to be com-
puted and the adjoints of {a+, a+ b+ p, a+ b+ c+ q r, etc.} when IPs are com-
puted. The basic EOM analogous to Eq. (7b) is then written as

[ , ( )] exp( ) | ( ) exp( ) | .H Q K T E Q K T+ +〉 = 〉0 0 (23)

Multiplying on the left by exp (–T) and realizing that T and Q+(K) commute
reduces this equation to

[ , ( )] | ( ) | ,′ 〉 = 〉+ +H Q K E Q K0 0 (24)

where

′ = −H T H Texp ( ) exp ( ) , (25)

which can be expanded as in Eq. (20) to involve at most quartic terms in
the {tn} amplitudes. Then, multiplying on the left by 〈0| T(j) reduces the EOM
equations to their final working form

Σ l T j H T H T T H T T T H〈 − + − +0 1 2 1 3| ( ) { [ , ] [ ,[ , ]] ![ ,[ ,[ , ]]]

+ 〉 = 〈+ +1 4 0 0![ ,[ ,[ ,[ , ]]]] }, ( ) | ( , ) | ( )T T T T H T l t K l E T j TlΣ ( ) | ( , ) .l t K l0〉 (26)
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This set of matrix eigenvalue equations is then solved to obtain E which
gives the EA or the IP (depending on what operator set was used). Such
so-called electron-attached and electron-removed equations of motion
(EA-EOM and IP-EOM) approaches have proven highly successful25,26 in
computing EAs and IPs of a wide range of atoms and molecules primarily
because the coupled-cluster treatment of electron correlation provides such
a highly accurate treatment of the dynamical electron correlation. At pres-
ent there is a great deal of activity within this framework of utilizing EOM
theories for computing EAs, IPs, and ∆Es.

It should be noted that Eq. (26) does not contain an E-dependent matrix
element on its left-hand side as do the MPn EOM equations (Eq. (14)) or
the equivalent GF equations. This is because the EOM-CC equations are
usually not subjected to the operator-space partitioning that the GF and
MPn-based EOM theories commonly employ. It should also be noted that
the operators appearing on the left-hand side of Eq. (26) produce non-
Hermitian matrices. As a result, there arise non-orthogonal left- and right-
eigenvectors in solving Eq. (26). As is discussed25,26, it is important to
compute both sets of eigenvectors if one wishes to compute, for example,
photoelectron intensities.

METASTABLE ANION STATES

A special kind of problem arises when one attempts to compute the EA of a
molecule whose anion is not electronically bound relative to the correspond-
ing neutral. For example, the X1Σg

+ state of the N2 molecule does not bind
an electron to form an electronically stable anion. Instead the X2Πg state of
N2

–, formed by adding an electron to the πg anti-bonding orbital of N2 is a
so-called resonance state that lies higher in energy than N2 and can sponta-
neously eject its excess electron. One cannot simply employ conventional
basis sets and ab initio electronic structure methods (including EOM or GF
or response-function methods) to correctly determine the energies of such
states.

The most common and powerful tool for studying such metastable states
theoretically is the so-called stabilization method (SM). This method, pio-
neered by Taylor’s group27, involves embedding the system of interest (e.g.,
the N2

–1 anion) within a finite “box” in order to convert the continuum of
states corresponding, for example, to N2 + e, into discrete states that can be
handled by conventional square-integrable basis functions using, for
example, the EOM method. By varying the size of the box, one can vary the
energies of the discrete states that correspond to N2 + e (i.e., one varies the
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box size to vary the kinetic energy KE of the orbitals containing the excess
electron). As the box size is varied, one eventually notices (e.g., by plotting
the orbitals) that one of the N2 + e states obtained in the EOM process pos-
sesses a significant amount of valence character. That is, one such state has
significant amplitude not only at large r but also in the region of the two
nitrogen centers. It is this state that corresponds to the metastable reso-
nance state, and it is the EOM eigenvalue E of this state that provides the
stabilization estimate of the resonance state energy relative to that of the
neutral N2.

Let us continue using N2
–1 as an example for how one usually varies the

box within which the anion is constrained. One uses a conventional
atomic orbital basis set that likely includes s and p functions on each N
atom, perhaps some polarization d functions and some conventional dif-
fuse s and p orbitals on each N atom. These basis orbitals serve primarily to
describe the motions of the electrons within the usual valence regions of
space. To this basis, one appends an extra set of diffuse π-symmetry
orbitals. These orbitals could be pπ (and maybe dπ) functions centered on
each nitrogen atom, or they could be dπ obitals centered at the midpoint of
the N–N bond. Either choice can be used because one only needs a basis ca-
pable of describing the large-r L = 2 character of the metastable 2Πg state’s
wave function. One usually would not add just one such function; rather
several such functions, each with an orbital exponent αJ that characterizes
its radial extent, would be used. Let us assume, for example, that K such ad-
ditional diffuse π functions have been used.

Next, using the conventional atomic orbital basis as well as the K extra π
basis functions, one carries out an EOM calculation for the EA of the N2
molecule. In this calculation, one tabulates the energies of many (say M) of
the EOM EA eigenvalues. One then scales the orbital exponents {αJ} of the K
extra π basis orbitals by a factor η:αJ → η α J and repeats the calculation of
the energies of the M lowest EOM eigenvalues. This scaling causes the extra
π basis orbitals to contract radially (if η > 1) or to expand radially (if η < 1).
It is this basis orbital expansion and contraction that produces expansion
and contraction of the “box” discussed above. That is, one does not employ
a box directly; instead, one varies the radial extent of the more diffuse basis
orbitals to simulate the box variation.

If the conventional orbital basis is adequate, one finds that the extra π
orbitals, whose exponents are being scaled, do not affect appreciably the
energy of the neutral N2 system. This can be probed by plotting the N2
energy (computed as 〈0,N| H |0,N〉) as a function of the scaling parameter η;
if the energy varies little with η, the conventional basis is adequate.
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In contrast to plots of the neutral N2 energy vs η, plots of the energies of
the M N2

–1 anion states relative to the energy of N2, obtained as EOM
eigenvalues, show significant η-dependence as Fig. 1 illustrates.

What does such a stabilization plot tell us and what do the various
branches of the plot mean? First, we notice that each of the plots of the
energy of an anion state (relative to the neutral molecule’s energy, which is
independent of η) grows with increasing η. This η-dependence arises from
the η-scaling of the extra diffuse π basis orbitals. Because most of the ampli-
tude of such basis orbitals lies outside the valence region, the kinetic energy
is the dominant contributor to such states’ relative energies. Because η
enters into each orbital as exp (–ηα r2), and because the kinetic energy opera-
tor involves the second derivative with respect to r, the kinetic energies of
orbitals dominated by the diffuse π basis functions vary as η2. It is this qua-
dratic growth with η that appear as the basic trends in the energies vs η
plots in Fig. 1.

For small η, all of the π diffuse basis functions have their amplitudes con-
centrated at large r and have low kinetic energy. As η grows, these functions
become more radially compact and their kinetic energies grow just as the
particle-in-a-box energies grow as the box length decreases. For example,
note the three lowest energies shown above in Fig. 1 increasing from near
zero as η grows. As η further increases, one reaches a point at which the
third and fourth anion-state energies in Fig. 1 undergo an avoided crossing.
At higher η values, it is the second and third states and then the first and
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FIG. 1
Plots of the EOM EA eigenvalues for several anion states vs the orbital scaling parameter η.
Note the avoided crossing of state energies near 1 eV

Orbital scaling parameter η

Resonance state energy, eV

Anion state energy, eV4

3

2

1

0

E



second states whose energies undergo such avoided crossings. At such η
values, if one examines the nature of the two anion wave functions
(obtained as in Eq. (4)) whose energies avoid one another, one finds they
contain substantial amounts of both valence and extra diffuse π function
character. Just to the left of the avoided crossing, the lower-energy state
(the third state in Fig. 1 for the smallest η at which an avoided crossing
occurs) contains predominantly extra diffuse π orbital character, while the
higher-energy state (the fourth state) contains largely valence π* orbital
character. To the right of the avoided crossing, the situation is reversed –
the lower-energy state (the third state in Fig. 1 for small η) contains pre-
dominantly valence orbital character, while the higher-energy state (the
fourth state) contains largely diffuse orbital character.

However, at the special values of η where the two states nearly cross, the
kinetic energy of the diffuse state (as well as its radial size and local de
Broglie wavelength) are appropriate to connect properly with the valence
state to form a single resonance state. By connect properly we mean that
the two states have wave function amplitudes, phases, and radial slopes
that match. It is such boundary condition matching of valence-range and
long-range character in the wave function that the stabilization method
achieves. So, at such special η values, one can achieve a description of the
resonance state that correctly describes this state both in the valence region
and in the large-r region. Only by tuning the energy of the large r states using
the η scaling can one obtain this proper boundary condition matching.

Another observation helps to understand the content of such stabiliza-
tion plots. One considers the density of states (i.e., how many states are
there between energy E and E + dE for a fixed small value of dE?) in a plot
such as Fig. 1. Clearly, in the range of energies near the avoided crossings,
there is an enhanced density of states, while the state density is lower at
“off-resonance” energies. When viewed either from the point of view of
state densities or avoided crossings, there is something special about the re-
gion of energies near such resonances. As noted above, it is the fact that the
valence range and continuum components of the wave function can be
properly matched at such energies that is “special”.

If one attempts to study metastable anion states without carrying out such
a stabilization study, one is doomed to failure, even if one employs an
extremely large and flexible set of diffuse basis functions. In such a calcula-
tion, one will certainly obtain a large number of anion “states” with ener-
gies lying above that of the neutral, but one will not be able to select from
these states the one that is the true resonance state because the true state
will be buried in the myriad of “states” representing the N2 + e continuum.
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In summary, by carrying out a series of anion-state energy calculations
for several states and plotting them vs η, one obtains a stabilization graph.
By examining this graph and looking for avoided crossings, one can iden-
tify the energies at which metastable resonances occur. It is absolutely criti-
cal to identify these resonance energies if one wishes to probe metastable
anions. It is also possible28 to use the shapes (i.e., the magnitude of the
energy splitting between the two states and the slopes of the two avoiding
curves) of the avoided crossings in a stabilization graph to compute the life-
times of the metastable states. Basically, the larger the avoided-crossing en-
ergy splitting between the two states, the shorter is the lifetime of the reso-
nance state.

CONCLUSIONS

We have tried to illustrate how, by focusing on the intensive energies that
one wishes to compute when studying EAs, IPs, or electronic excitation
energies, one can replace the solution of the Schrödinger equation by the
solution of so-called equations of motion. It is the eigenvalues of these
EOMs that produce the EAs and IPs directly. We have reviewed some of the
history of the development of EOM theory, especially as it applied to EAs
and IPs, and we have attempted to show its relationships to Greens func-
tions and extended Koopmans’ theorem approaches to these same intensive
energies. We have shown that a wide variety of EOM theories can be devel-
oped depending on how one chooses to describe the neutral molecule’s
wave function (i.e., in MP, MC-SCF, or CC fashion). Finally, we discussed
some of the pitfalls that one encounters when applying EOM theory to EAs
of molecules whose anion states are not bound but are metastable reso-
nance states. It is our hope and belief that EOM methods have proven use-
ful computationally and for gaining insight and will continue to have a
bright future.

Readers who wish to learn more about how molecular EAs (and, to a
lesser extent, IPs) have been studied theoretically are directed to this au-
thor’s web site http://simons.hec.utah.edu as well as to a series29 of his
reviews and chapters. The species that this group have examined include
dipole-bound anions, zwitterion ions, conventional valence anions, multi-
ply charged anions, as well as a wide variety of metastable anions.

This work was supported by NSF grants No. 9982420 and No. 0240387.
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