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The ab initio calculation of molecular electron affinities (EA) is a difficult task

because the energy of interest is a very small fraction of the total electronic energy of the

parent neutral. That is, EAs typically lie in the 0.01-10 eV range, but the total electronic

energy of even a small molecule is usually several orders of magnitude larger. Moreover,

because the EA is an intensive quantity but the total energy is an extensive quantity, the

difficulty in evaluating EAs to within a fixed specified (e.g., ± 0.1 eV) accuracy becomes

more and more difficult as the size and number of electrons in the molecule grows. The

situation becomes especially problematic when studying extended systems such as solids,

polymers, or surfaces for which the EA is an infinitesimal fraction of the total energy.

The equations of motion (EOM) methods offer a route to calculating the intensive EAs

directly as eigenvalues of a set of working equations. A history of the development of

equations of motion theories as applied to EAs, their numerous practical

implementations, and their relations to Greens function or propagator theories are

covered in this contribution. EOM methods based upon Møller-Plesset,

Multiconfiguration self-consistent field, and coupled-cluster reference wave functions are

included in the discussion as is the application of EOM methods to metastable resonance

states of anions.
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I. Background

The vertical (i.e., at any given fixed molecular geometry) electron affinity (EA) of

a molecule can be computed by (approximately) solving the Schrödinger equation for the

energy E(0,N) of the N-electron neutral molecule and the Schrödinger equation for the

energy E(K,N+1) of the Kth state of the N+1-electron anion and subtracting the two

energies:

EA = E(0,N) – E(K,N+1) (1)

Here, we use K to label the electronic state of the anion that one wishes to study, and 0 to

label the state of the neutral (usually but not necessarily the ground state) to which the

electron is being attached.

In using such an approach to obtaining the EA, one is faced with a very difficult

numerical challenge because both E(0,N) and E(K,N+1) tend to be extremely large

(negative) numbers, whereas EA nearly always lies in the range 0-10 eV. For example,

the EA of the 4S3/2 state of the carbon atom is1 1.262119 ± 0.000020 eV, whereas the total

electronic energy of this state of C is –1030.080  eV (relative to a C6+ nucleus and six

electrons infinitely distant and not moving that defines the zero of energy). Since the EA

is ca. 0.1 % of the total energy of C, one needs to compute the C and C- electronic

energies to accuracies of 0.01 % or better to calculate the EA to within 10%.

This observation shows only the “tip of the iceberg”, however as the major

problem relates to the fact that E(0,N) and E(K,N+1) are extensive properties whereas

EA is an intensive quantity. For example, the EA of C2 in its X 2Σg
+ ground electronic

state is1 3.269 ± 0.006 eV near the equilibrium bond length Re but only 1.2621 eV at R

→∞ (i.e., the same as the EA of a carbon atom). However, the total electronic energy of

C2 is –2060.160 eV at R → ∞ and lower by ca. 3.6 eV (the dissociation energy2 of C2) at

Re, so again EA is a very small fraction of the total energies. For buckyball C60, the EA is1

2.666 ± 0.001 eV, but the total electronic energy is sixty times –1030.080  eV minus the

atomization energy (i.e., the energy change for C60 → 60 C) of this compound. Clearly,

the challenge of evaluating EA to within even 50% becomes more and more difficult as
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the size (i.e., number of electrons) in the molecule grows, and it becomes impossible

when the system of interest is an infinite solid, surface, or polymer.  This same kind of

difficulty (i.e., calculating an intensive quantity as the difference between to extensive

energies) plagues the computation of EAs and of ionization potentials (IPs), bond

energies, and electronic excitation energies.

Of course, much progress can be made in computing EAs as differences between

anion and neutral total energies3 because of large systematic cancellation in energy errors.

For example, the pair correlation energies of the two 1s electron pairs in C2 is quite large,

but is very nearly the same as in C2
-, so even a large percent error made in computing

these contributions to the total energy may not greatly affect the EA computed by

subtracting E(K,N+1) from E(0,N). Nevertheless, in the late 1960s and early 1970s,

workers were motivated to develop methods that would allow intensive energy

differences such as EAs, ionization potentials (IPs) and excitation energies (∆Es)

“directly” rather than as differences in two very large numbers. This point of view is what

led to the development of so-called equations of motion (EOM) methods within

electronic structure theory.

Among the earliest practitioners of EOM methods in the chemistry community

were Prof. V. McKoy4 and his group at Cal Tech. They imported many ideas and

mathematical tools from the nuclear physics literature5, where EOM theories had been

used to study excited states of nuclei, and the focused their efforts on electronic

excitation energies, not IPs or EAs. Because the present Chapter is dedicated to how such

methods are used to compute EAs, not much more will be said about the McKoy group’s

pioneering work on EOM theory for excitation energies, although its ultimate relationship

to other excitation-energy methods will be discussed briefly later.

In 1973, the author used the framework of EOM theory6 to develop a systematic

(i.e., order-by-order in the Møller-Plesset perturbation theory sense) approach for directly

computing molecular EAs as eigenvalues of the EOM working equations. It is this

development and its subsequent improvement and extensions7 by our group and others

that we now wish to describe.

II. Basics of EOM Theory as Applied to EAs
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A. The EA Equations of Motion

The fundamental working equations of any EOM theory are derived by writing

the Schrödinger equations for the neutral and anion states of interest and subtracting the

two equations as a first step toward obtaining a single equation that will yield the EA.

That is, the EOM theory produces the intensive energy difference directly as an

eigenvalue of the working equation. As above, we use  |0,N> to denote the 0th electronic

state of the N-electron neutral and |K,N+1> to denote the Kth state of the N+1-electron

anion and write the two Schrödinger equations as

H |0,N> = E(0,N) |0,N> (2a)

H |K,N+1> = E(K,N+1) |K,N+1>. (2b)

Because |0,N> and |0,N+1> contain different numbers of electrons, it is convenient and

most common in developing EOM theories of EAs to express the electronic Hamiltonian

H in second-quantized form8:

H = Σi,j  h(i,j) i+ j + 1/2 Σi,j,k,l <i,j | k,l> i= j= l k (3)

where h(i,j) represents a matrix element of the one-electron operators within the

orthonormal molecular spin-orbital basis {φj}, <i,j | k,l> is a matrix element of the two-

electron operators, and the set of Fermion creation operators {i+} create an electron in the

{φi} spin-orbitials, whereas the {i} operators destroy such an electron.  Writing H in such

a form allows us to use the same H in Eq. (2a) and Eq. (2b) even those these two

Schrödinger equations relate to N and N+1 electrons, respectively.

The next step in developing an EOM equation is to assume that the anion state

|K,N+1> can be related to the neutral state |0,N> through an operator Q+(K):

|K,N+1> = Q+(K) |0,N>. (4)
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For the EA case at hand, the operator Q+(K) is usually written in terms of scalar

coefficients t(K,l) multiplied by operators T+(l) each of which involves adding an electron

Q+(K) = Σl t(K,l) T+(l) . (5)

It has been shown9 that a complete set of such T+(l) operators consists of the union of sets

of operators {p+} that add an electron to a spin-orbital φp, operators {p+q+a} that add an

electron to φp and excite another electron from φa to φq, operators {p=q+r+ab} that add an

electron to φp excite an electron from φa to φr and excite another electron from φb to φq as

well as higher-level electron addition and excitation operators up to the highest-level

operators that add an electron and induce N excitations. In labeling these operators, the

indices a, b, c, d, etc. are used to denote spin-orbitals occupied in a so-called reference

Slater determinant within |0,N> and p, q, r, s, etc. are used to denote unoccupied spin-

orbitals. The reference determinant, which is what defines the concept of occupied and

unoccupied spin-orbitals, is usually chosen to be the determinant |0> within

|0,N> = ΣJ=0,M  C(0,J) |J> (6)

with the largest amplitude C(0,0), but it has been shown9 that |0> can actually be taken to

be any determinant within |0,N> that possesses non-zero amplitude.

Using Eq. (4) in Eqs. (2) and subtracting Eq. (2a) from (2b) gives a single

equation whose eigenvalue gives the desired EA:

(H Q+(K) – Q+(K) H) |0,N> = (E(K,N+1) – E(0,N)) Q+(K) |0,N> (7a)

or, in terms of the commutator [H,Q+(K)]

[H,Q+(K)] |0,N> = E Q+(K) |0,N>, (7b)

where the eigenvalue E is the negative of the EA. The key point is that one now has a

single equation to be solved that produces the intensive EA as its eigenvalue.
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To progress further toward practical implementation, specific choices must be

made for how one is going to approximate the neutral-molecule wave function |0,N> and

at what level one is going to truncate the expansion of the operator Q+(K) given in Eq.

(5). It is also conventional to reduce Eq. (7) to a matrix eigenvalue equation by projecting

this equation onto an appropriately chosen space of N+1-electron functions. Let us first

deal with the latter issue.

Once the number of T+(l) operators used to construct Q+(K) has been chosen (we

discuss this choice later), the total number lmax of t(K,l) amplitudes has been determined.

Multiplying Eq. (7) on the left by the adjoint T(j) of any one of the T+ operators, and then

projecting the resultant equation against <0,N| gives one form of the working EOM EA

equations:

Σl <0,N| T(j) [H,T+(l)] |0,N> t(K,l) = E Σl <0,N| T(j)T+(l) |0,N> t(K,l) (8)

To make use of this equation, the <0,N| T(j) [H,T+(l)] |0,N> and <0,N| T(j)T+(l) |0,N>

matrices of dimension lmax x lmax must first be evaluated in terms of one-and two-electron

integrals (appearing in H) and one-, two-, and higher-body density matrices (depending

upon the level at which the {T+(l)} operator expansion is truncated). Subsequently, the

EA values (i.e., for the various anion states, K) are computed as minus the eigenvalues E

of Eq. (8).

B. The Analogous Equations of Motion for Ionization Potentials

Before proceeding further, it is useful to explore how this same framework has

been used to compute molecular ionization potentials (IPs). It is fairly straightforward to

show that an equation analogous to Eq. (7) but reading

<0,N| (H Q+(K) – Q+(K) H)  = (E(0,N) – E(K,N-1)) <0,N| Q+(K) (9)

is valid if the operators {Q+(K)} are as given in Eq. (5) but with the {T+(l)} operators

defined to include {a+, a+ b+ p, a+ b+ c+ q r, etc.}. Of course, in Eq. (9), the operators

within Q+(K) act to the left on <0,N| to generate cationic states.  As a result, neutral-
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cation energy differences appear in Eq. (9) and thus this offers a route to computing IPs.

Multiplying this equation on the right by any one of the T(j) operators and then projecting

against |0,N> gives

Σl <0,N| [H,T+(l)] T(j)|0,N> t(K,l) = E Σl <0,N| T+(l) T(j) |0,N> t(K,l) (10)

but now the eigenvalues E denote values of (E(0,N) – E(K,N-1)), which are the negatives

of the IPs.

Thus far, we see that EOMs can be written that allow EAs or IPs to be computed.

The fundamental constructs within these equations are as follows:

i. For the EA case, matrix elements  <0,N| T(j) [H,T+(l)] |0,N> involving the commutator

of H with the T+(l) operators multiplied on the left by a T(j) operator, as well as an

analogous overlap matrix element <0,N| T(j) T+(l) |0,N>;

ii. for the IP case, matrix elements <0,N| [H,T+(l)] T(j)|0,N> of the same commutator but

with the T(j) operator on the right, as well as the corresponding overlap matrix element

<0,N| T+(l)T(j)|0,N>;

iii. the neutral-molecule wave function |0,N> with respect to which the EA or IP is to be

evaluated.

C. The Rank of the Operators

It is now useful to analyze the density matrix elements10 that enter into these

equations. Each of the T+(j) operators contains an odd number of creation or annihilation

operators, and the Hamiltonian H contains two (i.e., i+j) or four (i.e., i+j+lk) such

operators. It can be seen that the commutator [H,T+(l)] does not contain four plus the

number of creation or annihilation operators as T+(l), but two fewer. For example, the

commutator [i+j+lk, p+q+a] does not yield any terms with four creation and three

annihilation operators but only terms with three creation and two annihilation operators.

We say that the act of forming the commutator (which is what causes the higher order

operators to cancel) gives rise to a reduction in the rank of the operators. As a result, both

the operator products T(j) [H,T+(l)] and [H,T+(l)] T(j), which appear in the EA and IP

equations of motion, respectively, contain terms only involving both creation and
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annihilation operators equal to the number of creation operators in T+(l) plus one plus the

number of creation operators in T(j). For example, if T+(l) = p+q+a and T(j) = b+rs, then

T(j) [H,T+(l)] and [H,T+(l)] T(j) will contain terms with no more than four creation and

four annihilation operators. This means that the density matrices needed to from

<0,N|T(j) [H,T+(l)] |0,N> and <0,N|[H,T+(l)] T(j)|0,N> will be, at most, fourth order

density matrices of the <0,N| ... |0,N> density.

D. Equations of Lower Rank for Both EAs and IPs

Indeed, in the early years of using EOM methods11 to compute EAs and IPs,

operator manifolds of the form {T+(l)} = {p+; p+q+a, p+ q+ r+ b a, etc.} or {T+(l)} = {a+, a+

b+ p, a+ b+ c+ q r, etc.} were employed with Møller-Plesset approximations to |0,N>

(usually taken through first order) to form the kind of matrix elements appearing in Eqs.

(8) and (10) and to then evaluate EAs and IPs from their eigenvalues E. However, it

became more common to use a combination of the EA and IP EOMs formed by adding

Eqs. (8) and (10), while expanding the {T+(l)} operator manifold to include both {p+;

p+q+a, p+ q+ r+ b a, etc.} and {a+, a+ b+ p, a+ b+ c+ q r, etc.}, to simultaneously compute both

such energy differences.

To understand why such a combination has proven beneficial, it suffices to

examine the form and rank of the operators whose <0,N| ... |0,N> matrix elements must

be evaluated

Σl <0,N| [H,T+(l)] T(j) + T(j) [H,T+(l)] |0,N> t(K,l) 

= E Σl <0,N| T+(l) T(j) + T(j) T+(l) |0,N> t(K,l) (11)

Recall that the T+(j) operators contain an odd number of creation or annihilation

operators. Each of the products [H,T+(l)] T(j), T(j) [H,T+(l)],  T+(l) T(j), and  T(j) T+(l)

thus contain an even number of such operators. However, because of the fundamental

anti-commutation properties of these operators

i+j + j i+ = δi,j (12a)
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i j + j i = 0 (12b)

i+ j+ + j+ i+ = 0 (12c)

it can easily be shown that the operator combinations T+(l) T(j) + T(j) T+(l) and [H,T+(l)]

T(j) + T(j) [H,T+(l)] contain one fewer creation and one fewer annihilation operator than

does either of the two terms in the sums. So, by combining the EA and IP EOMs, one

effects a rank reduction in the operators appearing in the equations although the

dimensions of the matrices one needs to construct are doubled (because the {T+(l)}

operator manifold was doubled.  The rank reduction is important because it means that

the density matrices that need to be evaluated to compute the <0,N| ... |0,N> matrix

elements are of lower rank in Eq. (11) than in either Eq. (8) or Eq. (10). As we said, it has

become more common to use the combined EA and IP Eq. (11) because lower-order

density matrices are required.

E. Summary

Thus far, we have seen how one can obtain eigenvalue equations in which the

energy eigenvalues correspond to the intensive EAs (or IPs) by postulating that the anion

(or cation) wave function can be related to the neutral-molecule wave function through an

operator. We have also seen how the EA and IP equations of motion can be combined to

generate a combined EOM from which both EAs and IPs can be obtained. The advantage

to the latter approach is that the operators appearing in the resultant equations are of

lower rank and thus lower-order density matrices must be evaluated to carry out the

calculations. Let us now move on to address more specific embodiments of such EOM

theories that result from different choices of the neutral-molecule wave function and of

the operator connecting the neutral and anion wave functions.

III. Practical Implementations of EOM Theories for EAs
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The basic ideas underlying any EOM method for computing EAs or IPs appear

above. However, in any specific embodiment of such a method, one must commit to

i. a specific approximation to the neutral-molecule wave function |0,N>,

ii. a specific choice of how large an operator manifold {T+(l)} to employ, and

iii. how to solve the resultant EOM equations for the eigenvalues E that then produce the

EAs or IPs. In the following subsections, we describe the most commonly used choices

for these three issues.

A. The Møller-Plesset Based Approximations

In the earliest implementation of EOM approaches to EAs, the author’s group6,11

chose to represent the |0,N> wave function in a Møller-Plesset (MP) expansion

|0,N> = ψ0 + ψ1 + ψ2 + ... (13)

with the single-determinant unrestricted Hartree-Fock (HF) function being ψ0 and the

corresponding neutral-molecule HF Hamiltonian being H0. The operator manifold {T+(l)}

was taken to consist of {p+; p+q+a} and {a+, a+ b+ p}. This choice of operator manifold

was shown to be capable of producing EAs and IPs that were precise through third order12

in the MP perturbation.

The resultant variant of Eq. (11) was not solved by finding the eigenvalues of this

equation whose dimension is the sum of the dimensions of the {p+; p+q+a} and {a+, a+ b+

p} operator manifolds. Rather, that large matrix eigenvalue problem was partitioned6

using subspaces defined by the {p+, a+} operators as the primary subspace and the {p+ q+

a, a+ b+ p} operators as the secondary subspace. The partitioned eigenvalue problem

Σj=a,p Hi,j (E) Xj = E Xi (14)

whose dimension was that of the {p+, a+} operator space was used to find the eigenvalues

E. When the elements of the partitioned matrices were evaluated through second order in

the MP series, the following expression was obtained for the matrix elements Hi,j;
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Hi,j(E) = εi δi,j - Σp,q,a <i,a|p,q> <p,q|j,a>/(εp + εq - εa –E)

+ Σa,b,p <i,p|a,b> <a,b|j,p>/(εa +εb -εp –E) (15)

The expression for Hi,j(E) valid through third order in the MP series is more complicated

and is given in Eqs. (31)-(37) of ref. 6, which are reproduced for historical perspective in

Fig. 1.
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Figure 1. Working equations of third-order (in Møller-Plesset perturbation theory)
equations of motion of ref. 6.
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These third-order equations have been used in many applications in which molecular EAs

have been computed for a wide variety of species as illustrated in refs. 11. Clearly, all of

the quantities needed to form the second- or third- order EOM matrix elements Hj,k are

ultimately expressed in terms of the orbital energies {εk}  and two-electron integrals

<j,k | l,h> evaluated in the basis of the Hartree-Fock orbitals that form the starting point

of the Møller-Plesset theory. However, as with most electronic structure theories, much

effort has been devoted to recasting the working EOM equations in a manner that

involves the atomic-orbital two-electron integrals rather than the molecular-orbital based

integrals. Because such technical matters are beyond the scope of this work, we will not

delve into them further.

B. Relationship to Greens Functions/Propagators

It turns out that in the early 1970s, several groups had taken a different approach

to the evaluation of atomic and molecular electronic energy differences using what were

called Greens functions (GF) or propagators. Linderberg and Öhrn pioneered13 the use of

such methods in quantum chemistry, while Cederbaum and co-workers14, Reinhardt and

Doll15, Taylor, Yaris, and co-workers16 and Pickup and Goscinski17 were among the first

to apply the methods using an ab initio approach. Purvis and Öhrn18 soon thereafter

expanded the range of the theory to include open-shell systems.

These theories were derived from consideration of the following time-dependent

matrix elements:

Gj,k(t) = (1/ih) Θ(t) <0,N| exp(iHt/h) j+ exp(-iHt/h) k |0,N>

+ (1/ih) Θ(-t) <0,N| k exp(iHt/h) j+ exp(-iHt/h) |0,N>. (16)

Here, Θ(t) is the Heaviside step function, which equals unity when t is positive and zero

when t is negative,  j+ and k are the same creation and annihilation operators discussed

earlier, and |0,N> is the neutral-molecule reference wave function. Introducing complete

sets of N-1 and N+1 electron Hamiltonian eigenfunctions into the first and second terms
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in Eq. (16), one observes time dependences varying as exp(i[E(0,N) – E(K,N-1)]t/h) and

exp(i[E(K,N+1) – E(0,N)]t/h), respectively.

Taking the time derivative of Eq. (16), one obtains expressions involving

commutators of the form [H,j+] k and k [H,j+] just as one finds in Eq. (11). By analyzing

the resulting time-derivative equations, workers in this field were able to obtain equations

that such Gj,k(t) matrix elements obey (n.b., these were called the equations of motion for

these quantities). The workers named above were able to express the resulting equations

in terms of one-and two-electron integrals and corresponding density matrices much as

the author had done within the EOM framework. In fact, it turns out that the final

working equations of the so-called one-electron Greens function or electron propagator

defined in Eq. (16), when Fourier transformed from the time to the energy domain, were

exactly the same as the EOM equations given above (i.e., Eq. (15) and those shown in

Fig. 1).

Especially in recent years, much of the work aimed at calculating EAs and IPs

using these direct-calculation EOM and GF methods has been performed within the

notation of Greens functions and has been carried out by Vince Ortiz’s group19 as well as

by the Cederbaum group. To further illustrate the impact that such advances have had

within the quantum chemistry community, we note that the Ortiz group has implemented

various (i.e., Møller-Plesset and other) variants of these theories within the highly

successful Gaussian20 suite of computer codes as a result of which many workers

worldwide now employ EOM-type methods to evaluate EAs and IPs.

C. The Natural Orbital or Extended Koopmans’ Theorem Approach

In the mid 1970s, R. G. Parr and co-workers21 and, independently, D. Smith and

co-workers22 proposed to use an equation such as Eq.(10) for computing IPs and they

referred to these methods as natural orbital or extended Koopmans’ theorem theories.

Subsequently, E. Andersen and the author analyzed23 the working equations of this

approach through second and third order in the MP series and noted differences between

them and the Greens function and equivalent EOM theories computed through these same

orders. Of course, based on the discussion of Sec. II. D, these differences relate to the

ranks of the operators appearing in the working equations and are not surprising. More
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recently, Cioslowski and co-workers24 have shown that these extended Koopmans’

theorem approaches indeed offer a very efficient and reasonably accurate route to

computing IPs or EAs, so it is likely that these methods will continue to develop.

D. Multi-configuration Based Approximations

Following on the proof by R. Manne that the operator spaces {T+(l)} = {p+; p+q+a,

p+ q+ r+ b a, etc.} and {T+(l)} = {a+, a+ b+ p, a+ b+ c+ q r, etc.} can be used (i.e., is capable

of forming complete sets of ion states) even when no single determinant forms a

dominant component of the neutral-molecule wave function |0,N>, the author’s group

extended the combined EA and IP EOM theory to the case in which |0,N> is of an

arbitrary multi-configuration self-consistent field (MC-SCF) form25 and the ionization

operator manifold {T+(l)} included operators of the form {p+; p+q+a} and {a+, a+ b+ p}.

The resultant working equations were written as in Eq. (14), with the Hj,k matrix elements

given in Eqs. (18) of ref. 25, which we do not reproduce here because of their

complexity. The primary additional difficulty involved in implementing these multi-

configuration-based equations is the fact that three-electron density matrices <0,N| i+ j+ k+

l h n |0,N> taken with respect to the MC-SCF wave function |0,N> are involved. These

density matrices arise when the commutators [H, p+q+a] and [H, a+ b+ p] are evaluated.

E. Coupled-Cluster Based EOM

The use of coupled-cluster (CC) wave functions within EOM theory for excitation

energies, IPs, and EAs has been developed26,27 upon slightly different lines than outlined

in Sec. II. The CC wave function ansatz for |0,N> is written as usual in terms of an

exponential operator acting on a single-determinant (e.g., unrestricted HF) “reference

function” |0>

|0,N> = exp(T) |0>. (17)

The so-called cluster operator T is expressed in terms of spin-orbital excitation operators

of the form {T1} =  {p+ a}, {T2} = {p+ q+ b a}, {T4} = { p+ q+ r+ c b a}, etc. with Tk relating
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to the excitation of k electrons from occupied spin-orbitals (a, b, c. etc.) to virtual spin-

orbitals (p, q, r, etc.). Prior to forming any EA EOM, the neutral-molecule CC equations

need to be solved for the amplitudes {tn} that multiply the {Tn} operators to form the CC

T operator. For completeness, recall that the CC equations are formed by manipulating

the Schrödinger equation

H exp(T) |0> = E exp(T) |0> (18)

to read

exp(-T) H exp(T) |0> = E |0> (19)

and subsequently projecting this equation against functions {<0| Tn
+}. Because the T

operator contains only creation operators for unoccupied spin-orbitals and annihilation

operators for occupied spin-orbitals, it turns out that the commutator expansion

exp(-T) H exp(T) = H – [T,H] + 1/2 [T, [T,H]] –1/3! [T, [T, [T,H]]]

+1/4! [T,[T, [T, [T,H]]]] (20)

exactly truncates at the fourth order term. So, the final working equations of CC theory

can be written as

<0| Tn
+ {H – [T,H] + 1/2 [T, [T,H]] –1/3! [T, [T, [T,H]]]

+1/4! [T,[T, [T, [T,H]]]] }|0> = 0. (21)

Once the CC amplitides {tn} are determined by solving these quartic equations, the CC

energy is computed as

<0|  H – [T,H] + 1/2 [T, [T,H]] –1/3! [T, [T, [T,H]]]
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+1/4! [T,[T, [T, [T,H]]]] |0> = E. (22)

The operator Q+(K) that maps |0,N> into an anion or cation state is expressed as in

Eq. (5) with the {T+(l)} operators including {T+(l)} = {p+; p+ q+ a, p+ q+ r+ b a, etc.} when

EAs are to be computed. The basic EOM analogous to Eq. (7b) is then written as

[H, Q+(K)] exp(T) |0> = E Q+(K) exp(T) |0>. (23)

Multiplying on the left by exp(-T) and realizing that T and Q+(K) commute reduces this

equation to

 [H’,Q+(K)] |0> = E Q+(K) |0> (24)

where

H’ = exp(-T) H exp(T), (25)

which can be expanded as in Eq. (20) to involve at most quartic terms in the {tn}

amplitudes. Then, multiplying on the left by <0| T(j) reduces the EOM equations to their

final working form

Σl <0| T(j) [{H – [T,H] + 1/2 [T, [T,H]] –1/3! [T, [T, [T,H]]]

+1/4! [T,[T, [T, [T,H]]]] }, T+(l) |0> t(K,l) = E Σl <0| T(j) T+(l) |0> t(K,l). (26)

This set of matrix eigenvalue equations are then solved to obtain E which gives the EA.

Such so-called electron-attached equations of motion (EA-EOM) approaches have proven

highly successful27 in computing EAs of a wide range of atoms and molecules primarily

because the coupled-cluster treatment of electron correlation provides such a highly

accurate treatment of the dynamical electron correlation.
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IV. Some Tricks of the Trade

A. Calculating EAs as IPs

In this discussion, we have focused on computing EAs by forming a neutral-

molecule wave function |0,N> and computing the EA as an eigenvalue of an EOM.

Consider applying such an approach to evaluate the EA of the X2Π state of the NO

molecule. Because the X-state wave function of NO is spatially degenerate (i.e., the πx

and πy orbitals should be degenerate), one may encounter artifactual symmetry breaking

when forming this neutral-molecule function. That is, the πx and πy orbitals may not turn

out to be degenerate.  It would then be unwise to use this symmetry-broken wave

function to compute any property of this state of NO, including the EA. To overcome

such difficulties, one could use the X3Σ+ state of NO- as |0,N> and employ an EOM

method to evaluate the IP of NO- (actually the electron detachment energy of NO). The

advantage to this approach is that the open-shell 3Σ+ state of NO- would not be susceptible

to symmetry breaking because it is not spatially degenerate. This example shows that it

may sometimes be better to compute an EA of a molecule as the IP of the corresponding

anion.

B. Treating Metastable Anion States

A different kind of problem arises when one attempts to compute the EA of a

molecule whose anion is not electronically bound relative to the corresponding neutral.

For example, the X1Σg
+ state of the N2 molecule does not bind an electron to form an

electronically stable anion. Instead the X2Πg state of N2
-, formed by adding an electron to

the πg anti-bonding orbital of N2 is a so-called resonance state that lies higher in energy

than N2 and can spontaneously eject its excess electron. One cannot simply employ

conventional basis sets and ab initio electronic structure methods (including EOM

methods) to correctly determine the energies of such states.

The most common and powerful tool for studying such metastable states

theoretically is the stabilization method (SM). This method, pioneered by Professor

Howard Taylor’s group28, involves embedding the system of interest (e.g., the N2
-1 anion)
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within a finite“box” in order to convert the continuum of states corresponding, for

example, to N2 + e-, into discrete states that can be handled by, for example, the EOM

method. By then varying the size of the box, one can vary the energies of the discrete

states that correspond to N2 + e- (i.e., one varies the box size to vary the kinetic energy

KE of the orbital containing the excess electron). As the box size is varied, one

eventually notices (e.g., by plotting the orbitals) that one of the N2 + e- states obtained in

the EOM process possesses a significant amount of valence character. That is, one such

state has significant amplitude not only at large-r but also in the region of the two

nitrogen centers. It is this state that corresponds to the metastable resonance state, and it

is the EOM eigenvalue E of this state that provides the stabilization estimate of the

resonance state energy relative to that of the neutral N2.

Let us continue using N2
-1 as an example for how one usually varies the box

within which the anion is constrained. One uses a conventional atomic orbital basis set

that likely includes s and p functions on each N atom, perhaps some polarization d

functions and some conventional diffuse s and p orbitals on each N atom. These basis

orbitals serve primarily to describe the motions of the electrons within the usual valence

regions of space. To this basis, one appends an extra set of diffuse π-symmetry orbitals.

These orbitals could be pπ (and maybe dπ) functions centered on each nitrogen atom, or

they could be dπ obitals centered at the midpoint of the N-N bond. Either choice can be

used because one only needs a basis capable of describing the large-r L = 2 character of

the metastable 2Πg state’s wave function. One usually would not add just one such

function; rather several such functions, each with an orbital exponent αJ that characterizes

its radial extent, would be used. Let us assume, for example, that K such additional

diffuse π functions have been used.

Next, using the conventional atomic orbital basis as well as the K extra π basis

functions, one carries out an EOM calculation for the EA of the N2
-1 anion. In this

calculation, one tabulates the energies of many (say M) of the EOM EA eigenvalues. One

then scales the orbital exponents {αJ} of the K extra π basis orbitals by a factor η: αJ → η

αJ and repeats the calculation of the energies of the M lowest EOM eigenvalues. This

scaling causes the extra π basis orbitals to contract radially (if η > 1) or to expand

radially (if η < 1). It is this basis orbital expansion and contraction that produces
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expansion and contraction of the “box” discussed above. That is, one does not employ a

box directly; instead, one varies the radial extent of the more diffuse basis orbitals to

simulate the box variation.

If the conventional orbital basis is adequate, one finds that the extra π orbitals,

whose exponents are being scaled, do not affect appreciably the energy of the neutral N2

system. This can be probed by plotting the N2 energy (computed as <0,N| H |0,N>) as a

function of the scaling parameter η; if the energy varies little with η, the conventional

basis is adequate.

In contrast to plots of the neutral N2 energy vs. η, plots of the energies of the M

N2
-1 anion states relative to the energy of N2, obtained as EOM eigenvalues, show

significant η-dependence as Fig. 2 illustrates.

Orbital Scaling Parameter η

Anion State Energy (eV) 

Resonance State Energy (eV) 

E

0

1

2

3

4

Figure 2. Plots of the EOM EA eigenvalues for several anion states vs. the orbital scaling

parameter η. Note the avoided crossing of state energies near 1 eV.



21

What does such a stabilization plot tell us and what do the various branches of the

plot mean? First, we notice that each of the plots of the energy of an anion state (relative

to the neutral molecule’s energy, which is independent of η) grows with increasing η.

This η-dependence arises from the η-scaling of the extra diffuse π basis orbitals. Because

most of the amplitude of such basis orbitals lies outside the valence region, the kinetic

energy is the dominant contributor to such states’ relative energies. Because η enters into

each orbital as exp(-ηα r2), and because the kinetic energy operator involves the second

derivative with respect to r, the kinetic energies of orbitals dominated by the diffuse π

basis functions vary as η2. It is this quadratic growth with η that is shown in Fig 2.

For small η, all of the π diffuse basis functions have their amplitudes concentrated

at large r and have low kinetic energy. As η grows, these functions become more radially

compact and their kinetic energies grow. For example, note the three lowest energies

shown above in Fig. 2 increasing from near zero as η grows. As η further increases, one

reaches a point at which the third and fourth anion-state energies in Fig. 2 undergo an

avoided crossing. At this η value, if one examines the nature of the two anion wave

functions (obtained as in Eq.(4)) whose energies avoid one another, one finds they

contain substantial amounts of both valence and extra diffuse π function character. Just to

the left of the avoided crossing, the lower-energy state (the third state in Fig. 2 for small

η) contains predominantly extra diffuse π orbital character, while the higher-energy state

(the fourth state) contains largely valence π* orbital character. To the right of the avoided

crossing, the situation is reversed- the lower-energy state (the third state in Fig. 2 for

small η) contains predominantly valence orbital character, while the higher-energy state

(the fourth state) contains largely diffuse orbital character

However, at the special value of η where these two states nearly cross, the kinetic

energy of the diffuse state (as well as its radial size and de Broglie wavelength) are

appropriate to connect properly with the valence state to form a single resonance state.

By connect properly we mean that the two states have wave function amplitudes, phases,

and slopes that match. It is such boundary condition matching of valence-range and long-

range character in the wave function that the stabilzation method achieves. So, at this

special η value, one can achieve a description of the resonance state that correctly

describes this state both in the valence region and in the large-r region. Only by tuning
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the energy of the large-r states using the η scaling can one obtain this proper boundary

condition matching.

If one attempts to study metastable anion states without carrying out such a

stabilization study, one is doomed to failure, even if one employs an extremely large and

flexible set of diffuse basis functions. In such a calculation, one will certainly obtain a

large number of anion “states” with energies lying above that of the neutral, but one will

not be able to select from these states the one that is the true resonance state because the

true state will be buried in the myriad of “states”.

In summary, by carrying out a series of anion-state energy calculations for several

states and plotting them vs. η, one obtains a stabilization graph. By examining this graph

and looking for avoided crossings, one can identify the energies at which metastable

resonances occur. It is absolutely critical to identify these resonance energies if one

wishes to probe metastable anions. It is also possible29 to use the shapes (i.e., the

magnitude of the energy splitting between the two states and the slopes of the two

avoiding curves) of the avoided crossings in a stabilization graph to compute the lifetimes

of the metastable states. Basically, the larger the avoided crossing energy splitting

between the two states, the shorter is the lifetime of the resonance state.
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