The electron propagator and superoperator resolvent
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In this paper we demonstrate how the definition of the one-particle Green’s function, or electron
propagator, can be extended to include averages over nonexact reference states without affecting the exact
nature of the poles of this function. We also make connections between this Green’s function and an

average value of the superoperator resolvent.

It is the purpose of this paper to present a few
clarifying remarks concerning the definition and pole
structure of the one-electron Green’s function or elec-
tron propagator! and to show its relationship to the
resolvent of the superoperator Hamiltonian within the
scalar product introduced by Goscinski and Lukman.?
The most common definition! of the representation of
the double-time electron propagator within the (com-
plete) set of Fermion creation {C';} and annihilation {C ,}
operators is

Gyt Y= (1/D{TCy(D C,(t"), (1)

where T denotes the time-ordered product, the opera-
tors are in the Heisenberg representation, and the
symbol () represents an average value either over a
pure state or an ensemble, ® ()=, P, (K| |K). If one
assumes that the states {!K)} defining the average value
_

are exact eigenstates of the (time independent) Hamil-
tonian H, then it is easy to show! that G(Z, ') depends
only on the time difference ({-t’). However, if the
states in the average value are taken to be merely a
convenient set of reference states (e.g., a Hartree—
Fock single determinant or an ensemble of such Slater
determinants), then G(¢, {’) depends on both ¢ and ¢',
Because we are interested in defining an electron
propagator with a minimum of restrictive condi-
tions, we propose that Eq. (1) be replaced by the
new definition

G () =(1/D)(TCY(#) C,(0)) . (2)

To examine the formal properties of this G(¢), we ex-~
pand the states {IK)} which appear in the average value
in terms of the exact eigenstates {19 ,)} of H (1K)

=), 8k, 1¥,)) to obtain (N indicates the number electrons)

GuD =120 22 Py, {00 W1 €31 1] € | o) explitB® - BX4)e] - 6(= 1)t | ¢, ) (ot] 3 )

K u,v,y

from which we immediately see that the Fourier trans-
form G(E) of G(f) has simple poles at the, in principle,
exact energy differences E=E, " - E¥ and E=EY — EF*1,
i.e., at the ionization potentials and electron affinities
of the system, The residues of G(E) are seen from
Eq. (3) to be related to the transition elements

@ e l9hy, @i t1Ciph), and the matrix 3, Pyak,
X@y,.* The most important point made possible by
this analysis is that the definition given in Eq. (2) al-
lows an electron propagator to be defined with respect
to an average () over nonexact reference states while
still preserving the exact nature of its poles (electron
affinities and ionization potentials). Of course, one is
still faced with the problem of how to best go about
computing the elements of G; Eq. (3) is of no help
since it contains all of the exact eigenstates of H.

To make progress toward the practical calculation
of G, let us look more carefully at the Fourier trans-
form of Eq. (2):

Gi(E)=([(E1 -Mciey+(c BT -]y, (4)

which contains the superoperators iand# introduced
by Goscinski and Lukman® (1C}=c%, AcC,=[C}, H]). To
obtain Eq. (4) we made use of the identity

exp(iHt)A exp(- iHt)=[exp(~ i) A], (5)
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x expli(Ey" — EN)H}, (3)

|

which can easily be verified by expanding the exponen-
tials and using the above definition of #. Thus the Fou-
rier transform operation has led to an expression for
G(E) which contains the superoperator resolvent (Ei
~#).! Finally, by employing the scalar product intro-
duced in Ref. 2[(AI1B)=(A*B+BA*), (AI1A1B)=(4A*(#B)
+(#B)A")], G(E) can be written as

G(EY=(Ci| (E1 - Cyy. (6)

From the discussion presented earlier, we know that,
if G(E) could be computed without further approxima-
tion, its poles would correspond to exact electron af-
finities and ionization potentials even though the aver-
age () is not over exact eigenstates,

For the moment, let us assume that we have con-
structed a set of orthonormal operators {q}(}, which we
collect into a column vector q*, which are complete in
the sense that a resolution of the identity superoperator
can be written as

i=la" (@l =ZKZ|q;) AR (7)

where the average () used in defining this set is identi-
cal to that used in defining G. The reader is referred
to Appendix A for a discussion of how such a complete
set is constructed in practice. Let us further assume
that the set of operators {q}} is constructed by taking
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the set of simple creation operators {C}} followed by
the remainder of the complete set (which will contain
operators of the form C;C;Cy, CC;CxC,C,, etc.) re-
ferred to as {h}{},

q'=[C", h']. (8)

This assumption is neither an approximation nor an
inconvenient restriction.

The set of operators ¢* introduced above can be used
to obtain a computationally tractable form for the de-
sired propagator G(E) by first using the fact that G is
simply a subblock of the larger matrix €(E) defined by

@y, (E) =(q;] (E1-2)Yq}). (9

Using Eq. (7) and the fact that the q* are orthonormal
we can also write

8e1= 9 (a| (BT =) a3) (@[ (E1 - )Y g3), (10)

whichAstaAtes that # is the inverse of the matrix
(@*1E1-H!q"). By decomposing q* as [C*,h’] we parti-
tion the matrix ¢! into four blocks,

(c'|E1-Alc) (c'|E1-A|n")
“\wlEi-Ale) @|E1-2|m) (11)
The desired G is then obtained by solving for the in-
verse of the matrix shown in Eq. (11) in terms of its
four blocks, the result being

G(E)=[(C'| E1-A|Cc") - (C'| E1 -A|n) ('] E1 - B n*)]
x(h*| E1-A|lcH]t.  (12)

Equation (12) is identical in form to the result obtained
by Pickup and Goscinski, * the fundamental difference
being that the average value used in Eq. (2), and thus
in Eq. (12), is not assumed to be a trace over exact
eigenstates of H, In principle, if the set of operators
[c*, h'] is complete, then Eq. (12) is correct for any
average () and the poles of the resulting G(E) are exact
jonization potentials and electron affinities., This con-
clusion is very similar to that reached by Lowdin in
his elegant study of resolvents, reduced resolvents,
and the partitioning technique.®” In these works, Loéw-
din showed, for example, that the function W(E)
2(¢|(E -=H)*| ¢) has poles whenever E is equal to one
of the exact eigenergies of H, provided that the (arbi-
trary, normalized) reference function |¢) is not or-
thogonal to the corresponding eigenfunction of H. Just
as it is the occurrence of the exact operator (E —H)™?
which makes the poles of W(E) exact, it is the presence
of the exact superoperator (E1 -2)1in Eq. (9) which

make the poles of ®(E) exact, even if the reference
states used in () are not.

Various approximations to the electron propagator as
expressed in Eq. (12) have been developed by several
authors.*® ! Each approximation involves choosing
a convenient set of reference states {| X } and weights
P, to define the average () as well as choosing a set
of operators {h}. ma previous publication, Jgrgensen
and the author® demonstrated how one could obtain ele-
ments of the G"}(E) matrix correct through third order
in electron interactions by choosing {h‘} to include only
operators of the form CjC;C}, and choosing a single ref-
erence state | ¢) equal to the second-order Rayleigh-
Schrodinger ground state wave function. According to
the analysis presented here, there are other choices of
the average ( ) and other choices of h* which could
also yield 6™ through third order. It is not the purpose
of the present paper to discuss such uses of Eq. (12),
therefore we shall not dwell further on these points
now, Our purpose has been to demonstrate how, by
defining the electron propagator as in Eq. (2), one can
derive, for an arbitrary average value { ), the funda-
mental equation [Eq. (12)] which has been used by many
investigators as a starting point for the development
of computationally tractable approximations. It is our
hope that, by making a clear analogy with Lowdin’s
work on resolvents in which the reference function I¢)
need not be an exact eigenstate, we have extended the
present understanding of Green’s functions and super-
operator resolvents.
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APPENDIX A

Our goal is to establish and clarify the completeness
relation given in Eq. (7) which has been used in the
developments presented in this paper. We assume that
we have found a set of operators {O;} which, when
operating on some reference state, '* generate a com-
plete orthonormal set of functions {0} !¢} for the sys-
tem of interest, We further assume that these opera-
tors obey the consistency equation O, ¢)=0.

The completeness relation indicated in Eq. (7) must
be proven within the framework of the scalar product
given below:

(A| BY=(¢| A*B +BA*| ¢) (A1)

which can, using the assumed completeness relation,
be written as

(A BY=Y_{<p|A*0;| 6) (0| 0,B ¢) + (9| BOL| 6) (8] 0,4*| o)} (A2)

=;{<¢ |A%0; + 0}A°| &) (#] 0,B + BO,| ) +{| A°0, +0,4"| $){¢| 03B+ BO}| $)}, (A3)
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which is equivalent to
(A| B)= Z{(AI 03)(03] B) + (4] 0,) (0, BY} . (A%)

Thus the desired superoperator completeness relation
is

i- Z{I 003 +10))(0,l}. (A5)

If, for example, the reference state | ¢) is chosen to
be the N electron ground state Hartree—Fock Slater
determinant in which spin orbitals {¢ ,a=1,...N} are
occupied and spin orbitals {¢,p=N+1, ...} are unoc-
cupied, then the set {O}} consxsts of {C;, C,, C3C,C.,
CiCiCqr ...+ and {0, }is {C,, €L, C,CLC,, CLC,Chy. . .}
Moreover, in this special case the general complete-
ness relation given in Eq. (A5), when operating on the
functions Ig;), which were shown in the text to involve
creation of an electron, reduces to

1=Ylan@l, (AB)

because the terms (051q")=0 when 0} =C,, C,C;C,, etc.,
and (0,1¢q")=0 when O0,=C,, C,C..C,, etc. Thus, the
only terms which remain when Eq. {A5) operates on a
function which involves electron creation are those
components of O} and O, which also involve addition of
an electron, e.g., C;, C;C,C,, ...; Cu, CoCyChy.. .,
these operators are simply the set of operators q*,
Therefore, the completeness relation required in the
text is given by Eq. (A6). The analogous resolution of
‘the identity for operators which conserve the number
of electrons is demonstrated below in Appendix B.

APPENDIX B

Although the scalar product defined above is some-
what unusual, it is still possible to provide a conve-
nient resolution of the identity for number-conserving
operators within this definition. If the above reference
function | ¢) is taken to be the Hartree—Fock Slater
determinant composed of the N spin orbitals {q&a, o
=1,2,.. .N} having the lowest orbital energies, we can
construct a complete set of antisymmetric N-electron
functions by forming all Slater determinants in which
one, two, three,... up to N of the spin orbitals in [¢)
have been replaced by “excited orbitals” {¢,}. These
singly, doubly, etc. excited determinants will be rep-
resented in terms of the orbital creation and annihila-
tion operators® as CjC, | ¢), C;CiC4sCqold), CiCiCIC,Ch
XC,l¢), etc., which can be represented collectively
as {0}1¢)}. Notice that the adjoint O, of each of the
above excitation operators obeys 0,1¢)=0, e.,g.,
C.C,19)=0,

Within the normal scalar product involving simple
integrals between Slater determinants, the complete-
ness relation is 1=1¢){p | +2,05¢){¢|0,. By in-
serting this well-known result into the superoperator
scalar product, we can write? (41B)=(¢|A*B - BA*}¢)
as

Z{<¢IA+ 11 ) (6] 0,B] $) — (0| BOY| 0) (9] 0,4°] 9}

®)(o| Bl o) - (0| Bl ) (p] A" | ¢),

or by using the fact that 0,(¢)=0, as
2_{olaro;-
by

-(plaro, -

+oplar

0;A*| 9)(¢|0,B - BO,| ¢

1B - BOj| ¢)} .

Notice that each term in this result is itself a super-
operator scalar product, so we can finally write

| B)=2_{(4] o) (03| B) - (4] 0,) (0,| BY}, (B1)
X
and thus the desired resolution of the identity is

1 =Z{| 003l =10y (0,[}. (B2)

It is important to understand that the Hartree—Fock
reference state | ) can be employed here because it
generates a complete set of determinants through the
action of the set of basic excitation operators {O;}; it
is not necessary that |¢) be the exact N-electron
ground state, So, if one is interested in evaluating
operator matrix elements of the form (¢ 14°B - BA*[ ¢),
where | ¢) is the Hartree—Fock determinant, then the
resolution of the identity given in Eq. (2) will prove to
be useful.
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