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Abstract 
      In this Chapter, we discuss several classes of anions and dianions for which short-
range valence attractive forces are not the only or primary factors in determining the 
electronic stability. In particular, we examine: 
 

a. dipole-bound anions in which the long-range charge-dipole potential is crucial;  
b. quadrupole-bound anions where the underlying neutral has no dipole moment so the  
    shorter-range charge-quadrupole potential may dominate; 
c. anions formed by attaching an electron to a Rydberg orbital; 
d. dianions formed by adding two electrons to a dipole-bound orbital;  
e. dianions formed by attaching two excess electrons to distinct (and often distant) sites;  
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and finally,  
f. dianions formed by attaching two electrons to quite proximate sites.  
 

 In addition to examining these classes of anions, we also discuss physical models 
(e.g., the point dipole and fixed finite dipole models and the role of Coulomb repulsions) 
that are useful in understanding their behavior.  
 

Introduction 
 If a molecule possesses a vacant or half-filled valence orbital, it may be able to bind 
an ‘‘extra’’ electron within this orbital to form a stable (with respect to electron 
detachment) anion.  An anion formed in this manner is termed a valence-bound anion. 
Examples include CN-  in which the extra electron occupies a non-bonding σ orbital; O2

-  
where the electron resides in an anti-bonding π* orbital;  ArF- with the electron in a 2p 
orbital of F-  van der Waals bound to Ar,;  H3C-COO- with the electron in a delocalized  
π orbital of the carboxylate group, and countless others. Such anions are not a primary 
subject of this Chapter; instead, we focus attention on: 
a. anions formed when an electron is bound in a manner that does not involve placing the 
electron into a valence-type orbital, and 
b. dianions that may involve electrons attached to valence or non-valence orbitals. 
In all of the species we discuss, the interaction of the excess electron(s) with various 
electrostatic moments of the underlying molecule plays a central role in determining the 
strength of the electron binding. 
 This Chapter is not intended to offer a thorough review of the topics it covers; 
rather, it is intended to survey a wide range of anions and dianions and to provide 
connections to other Chapters in this book. There are several recent reviews that one can 
consult to learn more about negative molecular ions in general as well as about several 
of the classes of anions treated here. These include reviews on gas-phase anions by 
Kalcher and Sax [1] and by Kalcher [2], on ab initio treatment of anions by Simons and 
Jordan [3], on anions of polar molecules by Jordan [4], on dipole-bound anions by 
Gutowski and Skurski [5], on multiply charged anions by Compton [6] and by Scheller, 
Compton, and Cederbaum [7], and on Double-Rydberg anions by  Simons and Gutowski 
[8].  
 

I. One electron attached to a molecule 
 In the present Section, we will treat species that arise when one “excess” electron is 
attached to a non-valence orbital, and, in Section II, we deal with species in which two 
or more such electrons are attached. In the latter cases, the mutual Coulomb repulsion 
among the negative charges generates additional complexities in both the experimental 
and theoretical treatments. Let us now move on to examine the singly charged anion 
cases. 
 

A. Binding to polar molecules 
 If a molecule has no empty or half-filled valence orbitals available to bind an 
electron, then how else might the electron be attracted and bound to the molecule? The 
answer lies in considering the types of potentials an electron experiences as it 
approaches a neutral molecule (i.e., in examining the long-range interactions operative 
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between an electron and a neutral molecule). Because the molecule is neutral, there 
exists no long-range Coulomb potential (of the form -qe2/r). The potential that has the 
longest range (i.e., the smallest inverse power of the distance r between the electron and 
the molecule) is the charge-dipole potential  
 

 
 
Here, µ is the dipole moment of the molecule and θ is the angle between the dipole 
vector µ and the electron’s position vector r. Of course, there are other potentials whose 
dependence on r is different. For example, the charge-induced-dipole potential is  
 

 

 
where α is the polarizability tensor of the molecule and again r is the position vector of 
the attached electron, and the charge-quadrupole potential has the form 
 

 

 
where Q is the quadrupole tensor of the molecule and 1 is the unit tensor. Of course the • 
symbol implies the dot product between vectors or tensors. 
 For any molecule with a non-vanishing dipole moment µ, it is the charge-dipole 
potential that must be treated first when considering weakly bound electrons because this 
potential has the longest range. If µ = 0, one must consider the effects of the charge-
quadrupole potential, and, if Q vanishes, one has to look at even shorter-range potentials 
as possible electron binding sources. 

 
1. The point and fixed finite dipole models 
 Over fifty years ago, Fermi and Teller [9] and Wightman [10] carried out analyses 
of the Schrödinger equation 
 

 
 
describing the motion of a single electron of mass me in the presence of a purely 
attractive charge-dipole potential. This is commonly called the point dipole (PD) model 
because it contains no compensating repulsive potential at small r. The above authors 
showed that if the magnitude of the dipole moment µ exceeded 1.625 Debyes (or 0.6393 
ea0, where a0 is the Bohr radius 0.529 Å and e is the charge of the electron), the potential 
is strong enough to support bound states of σ symmetry (i.e., having exp(iλφ) azimuthal 
angle dependence with λ = 0) . On the other hand, if µ < 1.625 D, no σ bound states can 
exist. Even higher critical dipole moments were found to be required to bind π and 
higher-λ states (e.g., 9.6375 D for π states and 24.218 D for δ states). 
 Later, Crawford [11] and Dalgarno [12] and Byers-Brown and Roberts [13] among 
others considered both the point dipole and the fixed finite dipole (FFD) model for one 
electron moving in the presence of a pure dipole potential. The former model was 
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discussed above; the latter considers two charges 
q  and  -q separated by a distance R to define a 
dipole moment of magnitude µ = qR as shown in 
Fig. 1.  
The Schrödinger equation for an electron moving 
under attraction to the center (A) of charge q and 
repulsion from center B of charge −q  
 

  
 
can be rewritten in confocal eliptical coordinates  

 

  
 
and the azimuthal angle φ. Doing so is appropriate because of the φ-independence of the 
potential and yields 

 

 
 
Here ε = - meR

2E/2 h2 , and β = 2meRqe/ h2 are variables that contain the energy E and 
the dipole moment Rq, respectively. The dependence of ψ on ρ and ν can be separated 
using ψ = u(ρ) n(ν) exp(iλφ). Doing so produces separate equations for the u and v 
functions: 
 

 
 

where B is the separation constant arising when the two-dimensional differential 
equation is reduced to two one-dimensional equations.  
 It is important to notice that the variable ε depends on both the energy E and the 
dipole’s “length” variable R. In contrast, the variable β is independent of E and depends 
only on the dipole’s magnitude µ = q R (i.e., only on the product of q and R). Byers-
Brown and Roberts noted that these dependences of ε and β allow one to conclude that 
requiring solutions u and n to exist having vanishingly small positive ε would place 
demands on the magnitude of β and thus only on the magnitude of µ, not of R and q 
separately. In other words, for the FFD model, the conditions for critical electron binding 
were shown to depend not on R and q separately, but only on their product q R = µ.  
 Moreover, as discussed in the review by Turner [14], several groups found that the 
value of µ for which the FFD model barely binds an electron in a σ state is exactly the 

R

rA rB

q -q

Figure 1. Parameters of the Fixed Finite
Dipole Model 
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same 1.625 D as for the PD model. The critical moments for binding π and δ states in 
the FFD model are also the same as in the PD model. The main difference between the 
predictions of the two models lies in the binding energies they predict for µ > 1.625 D. 
For µ greater than the critical values, the PD model gives infinite binding energy 
whereas the FFD model gives finite binding (more on the FFD binding energies will 
be offered later).  
 

 Furthermore, it was shown that, even if one adds to the PD or FFD potential any 
short-range (decaying more rapidly than 1/r2) repulsive potential, exactly the same 
minimum values of µ are needed to critically bind an electron, but the binding predicted 
in the PD case is no longer infinite.  
 

 What do these results have to do with binding electrons to real molecules that 
contain other electrons and that might be rotating or vibrating? The answer is that, 
although the PD and FFD models suggest the existence of a critical dipole moment 
above which electron binding will occur, the quantitative predictions of these models do 
not fit real molecules very well. As noted above, the PD model predicts that once µ 
exceeds 1.625 D, an electron will bind in a σ state and the binding energy of this 
electron will be infinite! Clearly this prediction is incorrect since an infinite binding is 
unphysical and because one expects the binding energy to depend on the magnitude of 
the dipole.  
 

 For µ > 1.625 D, the FFD model predicts finite binding, but the binding energies it 
suggests tend to be considerably larger than for real molecules having the same dipole 
moment. Moreover, an experimental chemist wants to know how large µ must be before 
significant electron binding (i.e., large enough to render the anion stable enough to be 
examined and to be within the range of experimental resolution) will occur, but neither 
model can do this very accurately.  
 

 For example, Turner shows [14] that for µ = 1.696 D, the FFD model predicts a 
binding energy of 10-18 eV. However, to achieve a binding energy of 1 cm-1 (about as 
small as could be experimentally probed) with a charge q =1, this model suggests [15] 
one needs µ > 2 D. It is the latter value that is of more experimental relevance.  
 

 Another example of the limitation of the models is provided by KH- at its 
equilibrium bond length (2.38 Å) where its dipole moment is 9.465 D. It turns out that 
LiH- stretched to R = 3.2 Å has the same dipole moment, µ = 9.465 D.  Because these 
species have the same µ values, the FFD model would suggest they have binding 
energies whose ratio is the square of the inverse ratio of their bond lengths: E2/E1 = 
(R1/R2)

2. This relationship follows because the ε parameter of this model is proportional 
to ER2, and it is ε that is uniquely determined by µ. The ratio of these two anions’ 
binding energies is 0.35 eV/0.90 eV = 0.39, but the ratio of bond lengths squared is 
(2.38/3.2)2 = 0.55. So, again, we see that the quantitative predictions of the FFD model 
are not very good. 

 

 What is wrong with these models that limits their applicability to realistic molecular 
systems? Jordan and Luken [16] examined a generalization of the fixed finite dipole 
model in which one center has charge Z+q and the other center has charge -q, and the 
former center is surrounded by an electron distribution containing Z electrons. This 
electron distribution’s influence on the “extra” electron was approximated in terms of 
Coulomb and exchange potentials  
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These potentials, in turn, were expressed in terms of orbitals {φj j = 1, Z} obtained by 
solving the Hartree-Fock (HF) equations for the Z electrons in the presence of the two 
centers of charge Z+q and -q.  Results showed that this modified FFD model could 
produce electron binding energies more accurately than could the original model. This 
therefore suggests that the primary deficiencies of the simple PD and FFD models are: 
 
a. that they ignore Coulomb and exchange repulsion produced by inner-shell electrons; 
b. that they ignore orthogonality of the “extra” electron’s orbital to those of the other 

electrons in the molecule (this causes the extra electron’s orbital to not have the 
proper nodal structure); 

c. that they ignore the indistinguishability of the electrons and thus the antisymmetry 
of the many-electron wave function within which the “extra” electron resides. 

 
 So, does this mean that the critical dipole moment suggested by the PD and FFD 
models is wrong? Not really! It is true that any non-rotating molecule with µ > 1.625 D 
and any number of inner-shell electrons (i.e., any short-range repulsion) will bind an 
electron. However, the binding energy may be so small as to be experimentally 
irrelevant and certainly will depend on the nature of the inner-shell repulsions. In 
contrast, the modified FFD model discussed immediately above gives more useful 
approximations to the binding energies of real molecules. More recently, the kind of 
ideas introduced by Jordan and Luken have been extended and a new model [17] 
developed in which dipole, quadrupole, and polarization attractions as well as valence 
repulsions are included.  
 
2. Binding to real molecules 
 There have been many theoretical and experimental studies of electrons bound to 
polar molecules in which the binding is ascribed primarily to the charge-dipole attractive 
potential. Recent reviews [18, 19] offer excellent insight into the current state of affairs 
of the theoretical studies most of which have been carried out in the laboratories of Drs. 
Jordan [16,18,20-24], Adamowicz [25-42], Chipman [43], Bartlett [44-46], Gutowski 
[5,18,23,24,47-55], Desfrançois [56,57], and the two authors [5,18,20,23,24,47-
55,58,59]. Much of the early experimental work on dipole-bound anions was produced 
in the Brauman [60-68], Lineberger [68-75], Desfrançois [76-89], Compton [83,90,91] 
and Bowen [92-96] laboratories. More recently, the Johnson group [97-107] has also 
generated a substantial body of data on such anions, and many other experimental and 
theoretical groups are joining these exciting studies.  
 In nearly all of these studies, there is good reason to believe that the binding is due 
primarily to the dipole potential but, in no case can it be shown that the resultant anions 
are purely dipole-bound. Let us illustrate by examining a few anions that have been 
termed dipole-bound. The H3C-CN molecule has a dipole moment of 4.34 D and has 
been shown to form an anion with an electron binding energy of 108 cm-1. Calculations 
show that the excess electron occupies an orbital localized on the positive end of this 
dipole within the H3C- group’s “pocket” and rather distant from the underlying 
molecule’s valence orbitals as shown below in Fig. 2.  
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 Clearly, CH3CN has no vacant or half-
filled valence orbitals that could attach the 
excess electron (its CN π* orbital is very high 
in energy), so it is quite appropriate to call its 
anion dipole-bound. However, not all 
molecules having this dipole moment bind an 
electron to the same extent; for example, 
H2CCC also has a dipole moment of 4.34 D 
but binds by 173 cm-1 [102]. So, the binding 
energy is determined not only by µ but also 
by the nature of the molecule’s other occupied 
orbitals as reflected in their Coulomb and 
exchange potentials. Moreover, when one 
examines the contributions to the electron 

binding energy of the H3C-CN- anion, one finds that the electron-dipole attraction (plus 
other charge-multipole interactions) combined with the Coulomb and exchange 
interactions do not reproduce the full electron binding energy. In fact, 57 cm-1 or 53 % of 
the binding arises from the dispersion interaction [23] between the excess electron and 
the other electrons. Such dispersion contributions have been found to be substantial in 
many dipole-bound anions. Hence, it is not entirely correct to think of these species as 
being entirely dipole-bound although the charge-dipole potential is the effect that attracts 
the excess electron at the longest range. 
 

 Let’s consider another example- that of acetaldehyde enolate [68] H-COCH2
- - 

which has a valence-bound ground state and a dipole-bound excited state. In the 
ground valence-bound state, the excess electron occupies a delocalized orbital of π 
symmetry that ranges over the Oxygen and the two Carbon centers. In the excited 
state, an electron is promoted from this π orbital into an orbital that is bound primarily 
by the underlying radical’s dipole potential. However, again the binding energy of this 
dipole-bound state is not entirely determined by the radical’s dipole moment and the 
Coulomb and exchange repulsions of the other electrons. Dispersion interactions 
between the excess electron and the others are important, so again, the anion is not 
entirely dipole-bound. This example teaches another lesson- that even species such as 
the H2C-CHO radical that has a half-filled valence orbital can form dipole-bound 
states if their dipole moments are large enough. That is, the fact that a species forms a 
valence-bound anion does not preclude it from also forming a dipole-bound state. 

 
 

 A more extreme example of the roles played by shorter-range potentials is offered 
when one considers anion states of alkali halides or alkali hydrides such as LiF- or 
NaH-, or the alkaline earth analogs such as BeO- or MgO-. For example, in neutral LiF, 
the bonding at the equilibrium internuclear distance is very ionic. Hence, one can view 
the neutral as a closed-shell F- anion sitting next to a closed-shell Li+ cation. 
Undoubtedly, at very long range, the excess electron is attracted primarily by its dipole 
interaction with the Li+F-. However, in regions of space closer to the Li and F centers, 
the excess electron experiences both the repulsive Coulomb and exchange interactions 
mentioned earlier as well as attractive interactions when it is near the Li+ center, which 
has an empty 2s orbital. As a result, the excess electron feels the dipole potential at 
long range but a potential more like that experienced by a Li 2s electron polarized by a 

�
�

�

�

�
�

Figure 2. Orbital in which the excess
electron resides in H3C-CN-. 
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nearby F- charge. So, in such cases, shorter-range valence potentials combine with the 
long-range dipole potential to bind the excess electron.  
In our opinion, calling an anion state “dipole-bound” reflects the fact that the state exists 
primarily due to the longe-range attractive - µe cosθ/r2  potential, which produces an 
orbital localized primarily on the positive side of the molecular dipole and outside the 
range of the valence orbitals.  
 
3. Summary 
 The ‘‘bottom line’’ in terms of our understanding of binding an excess electron to 
polar molecules is that: 
a. Dipole moments considerably in excess of the predictions of the PD and FFD models 
(1.625 D) are needed before binding exceeds a few cm-1. Experience shows that at least 
2.5 D is necessary. 
b. The FFD model overestimates binding energies, but, when Coulomb and exchange 
potentials of inner shell electrons are included, the model is reasonable but not reliably 
accurate.  
c. Dispersion interaction of the excess electron with the remaining electrons is usually 
important to include if one wants accurate results. 
d. Relaxation of the neutral’s orbitals caused by attaching an excess electron is usually 
small. As a result, a Koopmans' theorem treatment of the excess electron using specially 
designed basis sets [103] followed by inclusion of the dispersion interactions [23, 104] 
between the excess electron and the others is often adequate. 
e. When electron binding energies exceed the spacings between rotational levels of the 
molecule, it is safe [105] to neglect non-Born-Oppenheimer (non-BO) couplings that can 
induce electron ejection. Likewise, when the binding energy exceeds vibrational level 
spacings, it is usually safe to neglect vibrational non-BO couplings that can lead to 
electron loss. 
f. Even species that form valence-bound anions may also form dipole-bound states if 
their dipole moments are large enough. 
g. The range of molecules that have been determined to form dipole-bound states is large 
and growing. In addition to those mentioned above, such states are formed in clusters 
such as (H2O)n

- and (HF)n
- [47, 48, 96,106] and in nucleic acid bases such as uracil [32]  

and thymine [33]. 
 
B. Binding an electron to quadrupolar molecules 
 This subject is dealt with in considerable detail in the Chapter by Prof. Compton, so 
the present coverage will be rather limited. Here, we will primarily deal with the 
theoretical differences between dipole and quadrupole binding and mention a few recent 
attempts to identify species that might be classified as quadrupole-bound.  
 
1. Is there a critical value for the quadrupole moment? 
 The interaction of an electron with a point quadrupole moment of magnitude Q is 
governed by the potential 
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The Schrödinger equation governing the motion of an electron in this potential is 
 

 
 
The angular part of the quadrupole potential, which is proportional to the L = 2 spherical 
harmonic, is a quantity that ranges from -1/3 to +2/3. So, at all points in r, θ, φ space, the 
potential - Qe (3 cos2(θ) -1)/(3r3) is less negative than the isotropic potential 
 

 
 
Therefore, for any wave function ψ (r,θ, φ), the expectation value of the spherical 
Hamiltonian 
 

 
 
will lie below the expectation value of the original Hamiltonian H = T + V: 
 

  
 
The main question is whether bound states of H exist and, if so, for what values of Q. 
  Landau and Lifschitz [107] demonstrated that, because of the attractive r-3 form of 
the potential and independent of the magnitude of Q, H0 has bound states of infinitely 
negative energy in which the electron is bound infinitessimally close to the origin. They 
speak of the electron “falling” into the origin of the potential. So, unlike the dipole case 
for which µ has to exceed 1.625 D for bound states to exist, the quadrupole potential can 
support bound states for any Q > 0. 
 However, neither V nor V0  is a realistic representation of the electron-molecule 
interaction as r approaches zero; any real molecule has inner-shell electrons whose 
repulsions will more than offset the attractive V (or V0) at small r. Hence, it is of more 
relevance to consider whether H or H0  can support bound states but with V or V0  “cut 
off” at small r values by a repulsive potential chosen to represent the core and other 
valence electrons. In this work, we consider the simplest realistic cut off, an infinite 
‘‘wall’’ at r = rc. Specifically, we consider the L = 0 case of H0 with the quadrupole V0 
applying for r > rc and with V0 = ∞ for r < rc. Introducing ψ = Φ/r into the Schrödinger 
equation gives the following equation for Φ: 
 

 
 
The function Φ is normalized so that  
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and Φ vanishes at r = rc.  Let us now try to determine whether this equation can have 
bound states.  
 Because the Hamiltonian H0 is bounded from below (since we cut V0 off at rc), we 
know that the lowest exact eigenvalue of H0 will 
a. lie below the expectation value of the above Hamiltonian H0 taken for any trial 
function Φtrial and 
b. lie above the minimum in the potential -Qe/rc

3. We now choose the following trial 
function [ 108] 
 

 
 
and Φtrial = 0 elsewhere, where C is the normalization constant. It can be shown that the 
expectation value of H0 for this Φtrial is equal to: 
 

 
 
where I is the following positive integral: 
 

 
 

Because the positive kinetic energy scales as rc
-2 and the negative potential energy as rc

-3, 
it is clear that the total energy can be negative if Q is large enough or rc is small enough. 
 This analysis shows that a quadrupole potential of any strength (Q) can bind an 
electron if the repulsion due to inner shell electrons is weak enough. Conversely, a 
molecule of any “size” (i.e., having any number of inner-shell electrons) can bind if its 
quadrupole moment is sufficiently large. Thus, unlike the dipole case, there is no 
“critical value” for the quadrupole moment.  
 
2. Real molecules that quadrupole bind 
 As in the case of anions that one says are dipole-bound, it is 
impossible to find a species for which one can confidently say the excess 
electron is purely quadrupole bound. For example, the (BeO)2

- anion 
considered by Jordan and Liebman [109] and more recently by Gutowski 
and Skurski [110] has been suggested to be a quadrupole bound anion. At 
its equilibrium geometry, the neutral (BeO)2 is a rhombus and has zero 
dipole moment but a quadrupole tensor with principal values of 36.4, 0.4, 
and -36.8 DÅ. In the ground state of the (BeO)2

- anion, the excess 
electron is bound by more than 1 eV in an orbital that is shown below.  
 If one were able to show that a quadrupole potential consistent with 
the above principal values, cut off by Coulomb and exchange 
interactions of the inner shell orbitals, would reproduce the above 
orbital and the 1 eV binding energy, one would have a strong case 

Figure 3. Orbital
holding the excess
electron in (BeO)2

- 
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for claiming a dominance of quadrupole binding. However, it is likely that a 
significant part of the 1 eV binding is due to valence-range attractions in the regions of 
the two Be+2 centers. So, although it is valid to categorize (BeO)2

-  as quadrupole 
bound because the longest range potential experienced by an excess electron is indeed 
the charge-quadrupole potential and the d-symmetry charge distribution of the excess 
electron is consistent with this L = 2 potential, there are other potentials that contribute 
to the binding.  
 Other molecules that have been suggested to form quadrupole-bound anions 
include: CS2 [111], the anti-conformer of succinonitrile (NC-CH2-CH2-CN) [57], and 
p-di-nitro-benzene [112]. However, as with (BeO)2

-, it remains difficult to show in a 
convincing manner that the charge-quadrupole attraction is the dominant contributor to 
determining the binding energy. For these reasons, we prefer to use the terms dipole-
bound and quadrupole-bound to label the longest range potential that contributes to 
electron binding but to realize that other shorter-range potentials also often play 
significant roles in determining the total electron binding energy as well as the orbital 
containing the excess electron. 
 
C. Binding to Rydberg and Zwitterionic sites 
 Molecules that contain closed-shell cationic 
sites such as protonated amines R-NH3

+ and 
protonated alcohols R-OH2

+ can bind an electron 
to form a Rydberg neutral species [113]. In such 
cases, the long-range Coulomb attraction of the 
cation site is the dominant contributor to binding, 
and the repulsions of the inner shell electrons 
provide the opposing forces. The net result is that 
the electron is bound to an orbital that is centered 
on the cation site but has most of its density outside the region where the cation's valence 
orbitals reside. Two examples of such Rydberg orbitals are shown above.  
 The same Rydberg orbitals that are formed by the Coulomb attraction of the cation 
site and that attach one electron to form the neutral Rydberg species (e.g., by ca. 4 eV for 
NH4 and H3C-NH3) can attach another electron to form so-called [114] double Rydberg 
anions. In the ground states of these anions, the excess electron is typically bound by 
only a few tenths of an eV (e.g., by 0.4 eV for 
NH4). Moreover, this electron undergoes very 
correlated motions with the other electron in the 
Rydberg orbital because the Coulomb repulsions 
between the two electrons are of the same 
magnitude as their attractions to the cation center. 
This means that any successful treatment of such 
species must allow for a correlated multiconfi-
gurational treatment of at least the two electrons in 
the Rydberg orbital.  
 Similar cation-site binding occurs in a class of 
anions formed when an excess electron is attached 
to the zwitterion tautomers  H3N

+-CHR-COO- of 

H

H H
H

Figure 4. Rydberg orbitals of NH4

and H3N-CH3 

Figure 5. Cation-site orbitals holding
the excess electron in anions formed
from urea (left) and arginine (right). 
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molecules such as amino acids. Again, the electron occupies the orbital that is 
localized primarily on the cation site within the zwitterion neutral. For example, in 
arginine and urea, the cation-localized orbitals into which the excess electron is 
attached are as depicted above.  
 In these zwitterion-derived anions, the binding energy of the excess electron is 
determined primarily by two factors:  
 
a. the intrinsic binding strength of the cation site, which is similar to the binding energy 
in the neutral H3C-NH3 (i.e., 3-4 eV), and 
b. the Coulomb repulsion (e2/R) exerted on the excess electron by the negatively charged 
end of the zwitterion, which depends on the distance R between the positive and 
negative sites (e.g., this is ca. 1.9 eV in arginine and 3.7 eV in urea). 
 

This suggests that the longer the chain separating the two charged sites in the zwitterion, 
the stronger the net binding energy should be to the cation site. Indeed, such trends are 
observed here and in numerous other situations where internal Coulomb repulsion plays 
a crucial role in determining the electron binding energy.  
 

II. Two electrons attached to a molecule 
 Not surprisingly, to bind two electrons to a single molecule in the absence of 
stabilizing solvation effects, one must either 
a. have an electron binding site of unusual intrinsic strength or 
b. have two distinct binding sites that are far enough apart. 
In either case, the primary obstacle to forming dianions is the mutual Coulomb repulsion 
between the two excess electrons. For example, two electrons localized 10 Å from one 
another experience a Coulomb repulsion of 1.4 eV, which can exceed the intrinsic 
electron binding energy of most sites. Nevertheless, dianions do exist in the absence of 
solvation, but they often present special challenges to experimental and theoretical study. 
In this Section, we discuss several classes of dianions that have been subjected to 
considerable study in recent years.  
 
A. Binding to polar molecules 
1. What the PD and FFD models suggest 
 When the fixed finite dipole (FFD) model is reconsidered for binding two electrons, 
one faces the following Schrödinger equation [115]:  
 

 
 
where q is the charge on the two centers and R is their separation. Introducing scaled 
electron radial coordinates: q�r 11 /=  and q�r 21 /=  as well as the scaled internuclear 

distance R = ρ/q, transforms the above equation into: 
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where the radial derivatives in ∇2 now refer to ρj derivatives. The Hamiltonian H on the 
left side of the above equation can be written as: 
 

  
 
where h(1) and h(2) are the FFD Hamiltonians for the two separate electrons: 
 

  
 
In the limit, q → ∞, R → 0, with qR = ρ finite, H/q2 becomes h(1) + h(2), so the 
solutions to  
 

  
 
become, in this limit, antisymmetrized products (i.e., Slater determinants) of solutions of 
the one-electron FFD equation  
 

 
 
multiplied by α or β spin functions. The lowest-energy such solution would be of the 
form: 
 

 
 
with the vertical lines denoting the Slater determinant. The total energy of this ground-
state solution of the two-electron FFD model in the large-q limit is given as the sum of 
the two energies of the one-electron FFD problem: 
 

  
 

This shows that as the FFD model approaches the PD limit of large q and small R with 
fixed qR (n.b., qR is the dipole moment µ), the conditions needed for two electrons to 
barely bind to form the lowest-energy state are that ε1 be slightly negative. This is 
exactly the same condition needed for the one-electron PD model to critically bind. 
Hence, the critical dipole for binding two electrons to the PD is exactly the same as for 
binding one electron.  
 In contrast to these findings for the PD model, numerical calculations [115,116] 
suggest that for the FFD model there is no unique critical µ = q R value to achieve 
binding the second electron. Instead, for each q value, there is a critical µ value, and 
there exists a rather strong dependence of µcritical on q as shown in the figure below. 
 Although it is difficult to glean from Fig. 6, the large-q limit for µcritical  is indeed 
1.625 D, as noted earlier. It turns out that there is another asymptote that arises in the 
FFD model; the minimum value of q for which a bound dianion exists. In this limit, one 
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has µcritical → ∞ as q → 0.91. This means that the 
center with charge +0.91 can bind two electrons 
but only if the other center of charge -0.91 is 
infinitely far away (and, thus µ = qR is infinite). 
For comparison, when q = 1.0, two electrons can 
be bound to the +q center (to form H-) if the -q 
center is 19.19 Å distant (for which µ = 92.17 D.  

These examples introduce a concept that is 
important to appreciate when considering the 
stability of dianions- the role of Coulomb 
repulsion. It turns out that the critical distance Rc 
(and hence the critical dipole) for q values in the 
range 0.91 <q < 2 can be predicted by: 
a. first computing the electron binding energy for 
the second electron attached to the +q center (this 
we call the intrinsic binding energy), and then 
b. reducing this binding energy by the Coulomb 

repulsion energy e2/R produced by the other center, where R is the distance to the -q 
center, and finally 
c. determining for what value of R the intrinsic binding energy will be totally offset by 
the Coulomb repulsion (this value of R is Rc). As we will see later and as discussed in 
greater detail in the Chapter by Lai-Sheng Wang, competition between intrinsic binding 
and Coulomb repulsion plays a major role in determining the net stability of multiply 
charged anions. Recall that the Coulomb repulsion concept also was useful in 
understanding the binding energies obtained in the zwitterion anions discussed earlier. 
 

2. Real cases 
 To our knowledge, there have been no experimental observations of species that can 
be classified as dipole-bound dianions. Moreover, there has been only one theoretical 
prediction [117] of such a dianion, and the structure of this unusual species is shown 
below.  
 In this dianion, the second electron is bound by ca. 0.8 eV and resides in the same 
orbital as does the first excess electron. The relatively large binding energy suggests that, 
once again, shorter-range attractive potentials also contribute to the binding energy. This, 
of course, is not surprising considering that the underlying molecule shown above 

contains nominally a Ca+2 center. It is 
our hope that in the not-too-distant 
future, experiments will find such 
dianions formed by adding two excess 
electrons to a dipole-binding site. 
 
B. Binding to two distant sites 
in a single molecule 
 As discussed above, when 
considering the possibility of binding 
two electrons to two distinct sites 

Figure 6. Plot of critical dipole
moments for various q values for the
FFD model. 

Figure 7. Structure of predicted dipole-bound
dianion (left) and of the orbital (right) containing
the two excess electrons. This orbital is localized on
the Ca end of the molecule. 
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(e.g., two orbitals localized far from one 
another) in a molecule, one must consider 
the mutual Coulomb repulsion energy 
between the two anion sites. An excellent 
illustration of this effect is presented in the 
photoelectron spectra of dicarboxylate 
dianions [118] taken in the Wang 
laboratory (about which one can read much 
more in Prof. Wang’s Chapter). In these 
spectra (see below), mass-selected dianions 
are exposed to radiation having more than 
enough energy hν to detach one electron.  
 The kinetic energy KE of the detached 
electrons is then subtracted from the photon 
energy to obtain the electron binding 
energy EB = hν - KE. These binding 
energies are determined for dicarboxylate 
dianions -O2C-(CH2)n-CO2

-  having various 
number of -CH2- units.  
 In Fig. 8, the detachment energies of   
dianions -O2C-(CH2)n-CO2

- of varying length (the Coulomb repulsion is thought to cause 
the chain to adopt an all-trans geometry in the gas-phase) are plotted as a function of the 
inverse of the distance rn between the two carboxylate centers. The linear slope is 
interpreted in terms of the intrinsic binding energy of a R-CO2

- anion (the y-axis 
intercept of ca. 3 eV) being lowered by the Coulomb repulsion e2/rn.  
 

 This Coulomb model has proven to be very useful both in interpreting experimental 
data on such non-proximate dianions [118] and in theoretically predicting binding 
energies of dianions [119].  For example, we extended earlier studies of dipole binding 
to LiCN and (LiCN)n clusters to a model system [120] consisting of two (LiCN)2 units 
oriented oppositely and separated by  an H-C≡C-H “spacer”: (LiCN)2 H-C≡C-H 
(NCLi)2. We knew that each (Li CN)2 unit would bind an excess electron by 1.35 eV (at 
the Koopmans’ theorem level), and we determined that 
a. the (LiCN)2 H-C≡C-H (NCLi)2

-1 anion has two nearly degenerate (gerade and 
ungerade) states that bind the electron by 1.3 eV, which is not surprising based on the 
above binding energy for (LiCN)2

- ; 
b. the (LiCN)2 H-C≡C-H (NCLi)2

-2 binds its second electron by 0.8 eV. 
 

 The 0.5 eV difference between the anion and dianion electron binding energy is 
consistent with a Coulomb repulsion of two negative charges 29 Å from one another. 
The distance between the two Li centers in the (LiCN)2 H-C≡C-H (NCLi)2

-2  dianion is 
26.2 Å. Clearly, the fact that the centroids of negative charge are displaced somewhat 
from the Li canters suggests that the Coulomb repulsion is the cause of the 0.5 eV 
reduction in binding energy when comparing the anion and dianion.  
 

 Before closing this sub-section, it is useful to point out a distinction between dipole 
and quadrupole binding, and the (LiCN)2 H-C≡C-H (NCLi)2 system offers a good 
example. In this molecule, we have two oppositely directed highly polar (LiCN)2 units. 
The entire (LiCN)2 H-C≡C-H (NCLi)2  molecule has no dipole moment, so it is tempting 

Figure 8. Measured detachment energies of
dicarboxylates having various (n) CH2 units. 
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to consider its anion a quadrupole-bound 
anion because the quadrupole moment is the 
lowest non-vanishing moment of its charge 
distribution. However, when the orbital into 
which an excess electron is examined for this 
case (see below), one sees that this orbital 
(actually, both the σg and σu orbitals show 
this behavior) has a radial extent that is small 
compared to the entire length of the 
molecule.  
 Moreover, one finds two nearly 
degenerate (i.e., within 4 cm-1 [120]) such 
orbitals of σg and σu  symmetry, 

respectively. This means that the left- and right-localized orbitals L = 2-1/2 (σg + σu) 
and R = 2-1/2 (σg - σu) are nearly exact and degenerate eigenstates. Hence, this system 
really consists of two very weakly interacting dipole-bound systems rather than a 
quadrupole-bound system.  
 The lesson this example teaches is that it is important to ask whether an anion 
claimed to be bound by a moment of order n can more properly be viewed as being 
locally bound by moments of order n’ < n  that happen to cancel in the full molecule. 
As explained, the answer for (LiCN)2 H-C≡C-H (NCLi)2 is that the excess electron (s) 
are dipole-bound. However, in the (BeO)2

- anion discussed earlier, the authors found a 
stable anion of 2Ag symmetry (see Fig. 3), but their attempts [110] to identify a 
corresponding state of 2B2u symmetry showed that this state was not electronically 
stable. That is, the pair of g and u states are split by a very large amount. Hence, for 
(BeO)2

-, the facts that one does not obtain a nearly degenerate pair of anion states and 
that the excess electron’s orbital extends throughout the entire molecule support 
calling this a quadrupole-bound anion rather than a dipole-bound anion.   
 
C. Binding to proximate sites 
 Based on the discussion of Coulomb repulsion presented in earlier Sections, one 
might wonder if it is possible to form dianions in molecules where the two excess 
electrons reside in more proximate orbitals. Such systems include many ubiquitous 
species (e.g., SO4

-2 and CO3
-2 [119, 121]) as well as more exotic systems [122, 123] 

(e.g., TeF8
-2 [124] and MgF4

-2 [125, 126]).  
 Of course, if the two sites are too close, as they are in O2

-2, the Coulomb repulsion 
is too large to be offset by the intrinsic binding of each site. However, for the systems 
listed above and many others, the intrinsic bindings and Coulomb repulsions are close 
enough to balancing to make such species fascinating to study. Let us consider a few 
examples.  
 For tetrahedral MgF4

-2 and square antiprism D4d TeF8
-2 , the intrinsic binding of 

the Fluorine ligands as well as the delocalization of the two excess electrons over four 
or eight equivalent sites, respectively, more than offsets the Coulomb repulsion e2/RLL 
(RLL is the ligand-ligand distance). As a result, these dianions are electronically stable 
by ca. 5 eV and 3 eV, respectively; that is, they bind their second excess electrons by 
amounts comparable to or in excess of the binding energies of halogens. 

Figure 9. The σg  and σu orbitals of
(LiCN)2 H-C≡C-H (NCLi)2. 
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 In contrast, for SO4
-2 and CO3

-2, the Coulomb repulsion more than offsets the 
intrinsic binding strengths of the Oxygen ligands, so these dianions turn out to be 
unstable with respect to electron loss. However, there is more to this interesting 
competition between Coulomb repulsion and intrinsic valence-range attraction that 
needs to be discussed.  
 If one “constructs” any of the dianions mentioned above by bringing a second 
excess electron toward the corresponding mono-anion, one can imagine what 
potential this second electron would experience. Certainly, at long range, it would 
experience Coulomb repulsion caused by the mono-anion’s negative charge. This 
repulsion would depend on the distance of the second excess electron from the site 
(s) where the mono-anion’s excess charge is localized. Such long-range repulsive 
potentials are shown on the right-hand sides of the figure displayed below. 
 As the second excess electron approaches closer, it eventually enters the 
region of space where the attractive valence-range potentials (e.g., near the 
Fluorine or Oxygen ligand orbitals) are strong. In such regions, the total potential 
will be a sum of these short-range 
attractions and the Coulomb 
repulsions. If the former are strong 
enough, a deep attractive “well” 
will develop as shown in the top 
figure, and the dianion will be 
stable with respect to the mono-
anion plus a free electron.  Such is 
the case for TeF8

-2 and MgF4
-2.  

 On the other hand, as for SO4
-2 

and CO3
-2, if the valence-range 

attractions are not strong enough, 
the total potential can display a 
minimum (as in the lower part of 
Fig. 10) that lies above the mono-
anion plus free electron asymptote. 
In such cases, the dianion will not 
be stable, but can be metastable 
with a substantial lifetime. The 
lifetimes in such cases are 
determined by 
a. the height and thickness of the 
barrier shown in Fig. 10 (the 
barriers, in turn, are determined by 
the maximum Coulomb repulsion), 
and  
b. the energy at which the dianion 
state exists (determined by the 
intrinsic binding energy minus the 
Coulomb destabilization). 
 The lifetimes of such metastable 
anions have been estimated [119] by 

(-n+1) charged 
anionEnergy of (-n)  

charged anion

RCB
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N 
E 
R 
G 
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(-n+1) charged 
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Energy of (-n)  
charged anion
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N 
E 
R 
G 
Y

Distance to Ejected Electron

(a)

RCB

Figure 10. Effective potentials experienced by
second excess electron when a stable (top) or
metastable (bottom) dianion is formed. 
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using a simple tunneling model 
in which the potential parameters 
shown in Fig. 11 below are: 
a. the height of the Coulomb 
barrier,  approximated as e2/RLL, 
where RLL is taken to be the 
ligand-ligand distance;  
b. the energy of the dianion 
relative to that of the mono-anion 
plus a free electron, approxi-
mated as the intrinsic binding 
energy reduced by the ligand-
ligand Coulomb repulsion 
e2/RLL; 
c. a straightforward quantum 
integral is used to compute the 
probability of escape via tunne-
ling through the Coulomb 
barrier.  
 When this kind of model is 
applied to SO4

-2 and CO3
-2, the 

dianions are predicted to be 
unstable by 0.75 and 1.50 eV 
and to have lifetimes of 2.7 x10-8 
and 1.3 x10-11 s-1, respectively.  
 

Concluding remarks 
 In this Chapter, we have attempted to survey several families of anions and dianions 
whose existence as stable or metastable species depends on one or more of various 
electrostatic potentials. Included in our treatment have been: 
a. dipole-bound anions 
b. quadrupole-bound anions 
c. double-Rydberg anions and zwitterion anions 
d. dipole-bound dianions 
e. dianions formed by valence or dipole binding at distant sites. 
f. stable and metastable dianions formed by attaching electrons to proximate sites. 
 It is, of course, possible to imagine anions and dianions formed by combining the above 
“building blocks” to form clusters. As noted earlier, this has provided an active area of 
research when two or more molecules with large dipole moments are combined to form such 
clusters (e.g., (HF)n, (H2O)n, etc.). In the limit of a large number of molecules clustered 
together, one approaches what could be considered a solvated-electron situation. We have 
chosen, in this Chapter, to not extend our discussion in these directions, but to limit our 
treatment to the fundamental building blocks that arise when electrostatic effects play 
dominant roles in electron binding. 
 Many of the other Chapters in this book deal with some of the same families of 
anions that we discuss. The entire science of anion chemistry is a rapidly growing 

r(distance of electron from orbital)

E
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y

(-n+1) charged 
anion

Energy E of  
(-n) charged 
anion

RCB Barrier Height

Closest distance RLL
to other negative sites

Intrinsic 
Binding 
Energy 
BE

Figure 11. Simple Coulomb barrier model potential in
terms of RLL, the ligand-ligand distance and the intrinsic
binding energy. 
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discipline that we believe will continue to attract active attention from both experimental 
and theoretical groups.  
 

References 
1. J. Kalcher and A. F. Sax, Chem. Rev. 94, 2291 (1994). 
2. J. Kalcher, Ann. Reports, Sec. C, Royal Soc. of Chem. 93, 147-186 (1996). 
3. J. Simons and K. D. Jordan, Chem. Rev. 87, 535 (1987). 
4.  K. D. Jordan, Acc. Chem. Res. 12, 36 (1979). 
5. M. Gutowski and P. Skurski, Recent Res. Dev. Phys. Chem. 3, 245 (1999). 
6. R. N. Compton, in Negative Ions, V. A. Esaulov, Ed., Cambridge Univ. Press, London 

(1995). 
7.   M. K. Scheller, R. N. Compton, and L. S. Cederbaum, Science,  270 1160-1166 (1995). 
8. J. Simons and M. Gutowski, Chem. Rev. 91, 669 (1991). 
9. E. Fermi, E. Teller, Phys. Rev., 1947, 72, 399. 
10.   A.S. Wightman, Phys. Rev., 1950, 77, 521. 
11.   O.H. Crawford, Proc. Roy. Soc. (London) 91, 279-284 (1967). 
12.   O.H. Crawford and A. Dalgarno, Chem. Phys. Lett. 1, 23 (1967). 
13. W.B. Brown and R.E. Roberts, J. Chem. Phys. 46, 2006 (1967). 
14. J. E. Turner, Am. J. Physics, 45, 758-766 (1977). 
15. J. E. Turner, V. E. Anderson, and K. Fox, Phys. Rev. 174, 81 (1968). 
16. K.D. Jordan, W. Luken, J. Chem. Phys., 1976, 64, 2760. 
17. H. Abdoul-Carime, Y. Bouteiller, C. Defrancois, L. Philippe, and J. P. Schermann, Acta 

Chemica Scandanavia, 51, 145 (1997); H. Abdoul-Carime and C. Defrancois, Eur. Phys. J. D. 
2, 149 (1998). 

18. M. Gutowski, K.D. Jordan, and P. Skurski, J. Phys. Chem. A 102, 2624-2633 (1998). 
19. C. Desfrançois, Phys. Rev. A 51, 3667-3675 (1995). 
20. K. D. Jordan, K. M. Griffing, J. Kenney, E. L. Andersen and J. Simons,  J. Chem. Phys. 64, 

4730-4740 (1976). 
21. K.D. Jordan and J.J. Wendoloski, Chem. Phys. 21, 145-154 (1977). 
22. Y. Yoshioka and K.D. Jordan, J. Chem. Phys. 73, 5899-5900 (1980). 
23. M. Gutowski, P. Skurski, A.I. Boldyrev, J. Simons, K.D. Jordan, Phys. Rev. A, 1996, 54, 

1906 
24.   M. Gutowski, P. Skurski, J. Simons, and K.D. Jordan, Int. J. Quantum Chem. 64, 183-191
 (1997). 
25.   L. Adamowicz and E.A. McCullough, Chem. Phys. Lett. 107, 72-76 (1984). 
26. L. Adamowicz and E.A. McCullough, Jr., J. Phys. Chem. 88, 2045-2048 (1984). 
27. L. Adamowicz and R.J. Bartlett, Jr., J. Chem. Phys. 83, 6268-6274 (1985). 
28. L. Adamowicz and R.J. Bartlett Chem. Phys. Lett. 129, 159-164 (1986). 
29. L. Adamowicz and R.J. Bartlett, J. Chem. Phys. 88, 313-316 (1988). 
30 L. Adamowicz, J. Chem. Phys. 91, 7787-7790 (1989). 
31 G.L. Gutsev and L. Adamowicz, Chem. Phys. Lett. 246, 245-250 (1995). 
32. N.A. Oyler and L. Adamowicz, J. Phys. Chem. 97, 11122-11123 (1993). 
33. N.A. Oyler and L. Adamowicz, Chem. Phys. Lett. 219, 223-227 (1994). 
34. G.H. Roehrig, N.A. Oyler, and L. Adamowicz, Chem. Phys. Lett. 225, 265-272 (1994). 
35. G.H. Roehrig, N.A. Oyler, and L. Adamowicz, J. Phys. Chem. 99, 14285-14289 (1995). 
36. G.L. Gutsev, A.L. Sobolewski, and L. Adamowicz, Chem. Phys. 196, 1-11 (1995). 
37. J. Smets, W.J. McCarthy, and L. Adamowicz, J. Phys. Chem. 100, 14655-14660 (1996). 
38. J. Smets, W.J. McCarthy, and L. Adamowicz, Chem. Phys. Lett.  256, 360-369 (1996). 
39. J. Smets, D.M.A. Smith, Y. Elkadi, and L. Adamowicz, J. Phys. Chem. A 101, 9152-9156 

(1997). 
40. J. Smets, D.M.A. Smith, Y. Elkadi, and L. Adamowicz, Pol. J. Chem. 72, 1615-1623 (1998). 



Jack Simons & Piotr Skurski ��*

41. D.M.A. Smith, J. Smets, Y. Elkadi, and L. Adamowicz, J. Phys. Chem. A 101, 8123-8127 
(1997). 

42. Y. Elkadi and L. Adamowicz, Chem. Phys. Lett. 261, 507-514 (1996). 
43. D.M. Chipman, J. Phys. Chem. 83, 1657-1662 (1979). 
44. G.L. Gutsev, M. Nooijen, and R.J. Bartlett, Chem. Phys. Lett. 267, 13-19 (1997). 
45. G.L. Gutsev, M. Nooijen, and R.J. Bartlett, Phys. Rev. A 57, 1646-1651 (1998). 
46. G.L. Gutsev and R.J. Bartlett, J. Chem. Phys. 105, 8785-8792 (1996). 
47. M. Gutowski and P. Skurski, J. Chem. Phys. 107, 2968-2973 (1997). 
48. M. Gutowski and P. Skurski, J. Phys. Chem. B 101, 9143-9146 (1997). 
49. P. Skurski and M. Gutowski, J. Chem. Phys. 108, 6303-6311 (1998). 
50. M. Gutowski and P. Skurski, Chem. Phys. Lett. 300, 331 (1999). 
51. P. Skurski and M. Gutowski, J. Chem. Phys. 111, 3004 (1999). 
52. M. Gutowski, P. Skurski, and J. Simons, J. Am. Chem. Soc. 122, 10159 (2000). 
53. R. Barrios, P. Skurski, J. Rak, and M. Gutowski  J. Chem. Phys. 113, 8961 (2000). 
54. P. Skurski, M. Gutowski, and J. Simons, J. Chem. Phys. 114, 7443 (2001). 
55. J. Rak, P. Skurski, and M. Gutowski, J. Chem. Phys. 114, 10673 (2001). 
56. Y. Boutellier, C. Desfrançois, H. Abdoul-Carime, and J.P. Schermann, J. Chem. Phys. 105, 

6420-6425 (1996). 
57. H. Abdoul-Carime and C. Desfrançois, Eur. Phys. J. D 2, 149-156 (1998). 
58. P. Skurski, M. Gutowski, and J. Simons, J. Chem. Phys. 110, 274-280 (1999). 
59. P. Skurski, M. Gutowski, and J. Simons, J. Phys. Chem. A 103, 625-631 (1999. 
60. A.H. Zimmerman and J.I. Brauman, J. Chem. Phys. 66, 5823-5825 (1977). 
61. R.L. Jackson, A.H. Zimmerman, and J.I. Brauman, J. Chem. Phys. 71, 2088-2094 (1979). 
62. R.L. Jackson, P.C. Hiberty, and J.I. Brauman, J. Chem. Phys. 74, 3705-3712 (1981). 
63. J. Marks, P.B. Comita, and J.I. Brauman, J. Am. Chem. Soc. 107, 3718-3719 (1985). 
64. J. Marks, D.M. Wetzel, P.B. Comita, and J.I. Brauman, J. Chem. Phys. 84, 5284-5289 (1986). 
65. D.M. Wetzel and J.I. Brauman, J. Chem. Phys. 90, 68-73 (1989). 
66. E.A. Brinkman, S. Berger, J. Marks, and J.I. Brauman, J. Chem. Phys. 99, 7586-7594 (1993). 
67. B.C. Romer and J.I. Brauman, J. Am. Chem. Soc. 119, 2054-2055 (1997). 
68. R.D. Mead, K.R. Lykke, W.C. Lineberger, J. Marks, and J.I. Brauman, J. Chem. Phys. 81, 

4883-4892 (1984). 
69. T. Andersen, K.R. Lykke, D.M. Neumark, and W.C. Lineberger, J. Chem. Phys. 86, 1858-

1867 (1987). 
70. K.R. Lykke, D.M. Newmark, T. Andersen, V.J. Trapa, and W.C. Lineberger, J. Chem. Phys. 

87, 6842-6853 (1987). 
71. J. Marks, J.I. Brauman, R.D. Mead, K.R. Lykke, and W.C. Lineberger, J. Chem. Phys. 88, 

6785-6792 (1988). 
72. A.S. Mullin, K.K. Murray, C.P. Schultz, D.M. Szaflarski, and W.C. Lineberger, Chem. Phys. 

166, 207-213 (1992). 
73. A.S. Mullin, K.K. Murray, C.P. Schultz, and W.C. Lineberger, J. Phys. Chem. 97, 10281-

10286 (1993). 
74. K. Yokoyama, G.W. Leach, J.B. Kim, and W.C. Lineberger, J. Chem. Phys. 105, 10696-

10705 (1996). 
75. K. Yokoyama, G.W. Leach, J.B. Kim, W.C. Lineberger, A.I. Boldyrev, and M. Gutowski, J. 

Chem. Phys. 105, 10706-10718 (1996). 
76. C. Desfrançois, N. Khelifa, A. Lisfi, J.P. Schermann, J.G. Eaton, and K.H. Bowen, J. Chem. 

Phys. 95, 7760-7762 (1991). 
77. C. Desfrançois, B. Baillon, J.P. Schermann, S.T. Arnold, J.H. Hendricks, and K.H. Bowen, 

Phys. Rev. Lett. 72, 48-51 (1994). 
78. C. Desfrançois, H. Abdoul-Carime, C. Adjouri, N. Khelifa, and J.P. Schermann, Europhys. 

Lett. 26, 25-30 (1994). 



Electrostatics in anions �����#�

79. C. Desfrançois, H. Abdoul-Carime, N. Khelifa, J.P. Schermann, V. Brenner, and P. Millie, J. 
Chem. Phys. 102, 4952-4964 (1995). 

80. C. Desfrançois, H. Abdoul-Carime, C.P. Schulz, and J.P. Schermann, Science 269, 1707-1709 
(1995). 

81. C. Desfrançois, Phys. Rev. A 51, 3667-3675 (1995). 
82. C. Desfrançois, H. Abdoul-Carime, and J.P. Schermann, J. Chem. Phys. 104, 7792-7794 

(1996). 
83. R.N. Compton, H.S. Carman, Jr., C. Desfrançois, H. Abdoul-Carime, J.P. Schermann, J.H. 

Hendricks, S.A. Lyapustina, and K.H. Bowen, J. Chem. Phys. 105, 3472-3478 (1996). 
84. C. Desfrançois, H. Abdoul-Carime, and J.P. Schermann, Int. J. Mod. Phys. B 10, 1339-1395 

(1996). 
85. H. Abdoul-Carime, A. Wakisaka, Y. Bouteiller, C. Desfrançois, and J.P. Schermann, Z. Phys. 

D 40, 55-61 (1997). 
86. H. Abdoul-Carime, W. Wakisaka, J. Flugge, H. Takeo, V. Periquet, J.P. Schermann, and C. 

Desfrançois, J. Chem. Soc. Faraday Trans. 93, 4289-4293 (1997). 
87. C. Desfrançois, V. Periquet, Y. Boutellier, and J.P. Schermann, J. Phys. Chem. A 102, 1274-

1278 (1998). 
88. C. Desfrançois, V. Periquet, C. Carles, J.P. Schermann, and L. Adamowicz, Chem. Phys. 239, 

475-483 (1998). 
89. C.E.H. Dessent, C.G. Bailey, and M.A. Johnson, J. Chem. Phys. 103, 2006-2015 (1995). 
90. J.A.D. Stockdale, F.J. Davis, R.N. Compton, and C.E. Klots, J. Chem. Phys. 60, 4279-4285 

(1974). 
91. R.N. Compton, P.W. Reinhardt, and C.D. Cooper, J. Chem. Phys., 68, 4360-4367 (1978). 
92. J.V. Coe, G.H. Lee, J.G. Eaton, S.T. Arnold, H.W. Sarkas, and K.H. Bowen, Jr., J. Chem. 

Phys. 92, 3980-3982 (1990). 
93. J. H. Hendricks, H.L. de Clercq, S.A. Lyapustina, C.A. Fancher, T.P. Lippa, J.M. Collins, 

S.T. Arnold, G.H. Lee, and K.H. Bowen, in Proceedings of the Yamada Conference No. 
XLIII, May 1995, Structure and Dynamics of Clusters, Universal Academy Press: Tokyo, 
1995. 

94. J. H. Hendricks, S.A. Lyapustina, H.L. de Clercq, J.T. Snodgrass, and K.H. Bowen, Jr., J. 
Chem. Phys. 104, 7788-7791 (1996). 

95. A.W. Castelman, Jr., and K.H. Bowen, Jr., J. Phys. Chem. 100, 12911-12944 (1996). 
96. J.H. Hendricks, H.L. de Clercq, S.A. Lyapustina, and K.H. Bowen, Jr., J. Chem. Phys. 107, 

2962-2967 (1997). 
97. C.E.H. Dessent, C.G. Bailey, and M.A. Johnson, J. Chem. Phys. 103, 2006-2015 (1995). 
98. C.E.H. Dessent, J. Kim, and M.A. Johnson J. Phys. Chem. 100, 12-14 (1996). 
99. D. Serxner, C.E.H. Dessent, and M.A. Johnson, J. Chem. Phys. 105, 7231-1234 (1996). 
100. C.E.H. Dessent, J. Kim, and M.A. Johnson, Acc. Chem. Res. 31, 527-534 (1998). 
101. C.G. Bailey, C.E.H. Dessent, M.A. Johnson, and K.H. Bowen, Jr., J. Chem. Phys. 104, 6976-

6983 (1996). 
102. This molecule also has a valence-bound anion in addition to the dipole-bound state we refer to 

here. 
103. P. Skurski, M. Gutowski, and J. Simons, Int. J. Quantum Chem. 80, 1024 (2000). 
104. F. Wang and K. D. Jordan, J. Chem. Phys. 114, 10717 (2001). 
105. O. H. Crawford and W. R. Garrett, J. Chem. Phys. 66, 4968 (1977). In this paper, the authors 

examine a rotating FFD model and determine how large_must be to effect electron binding 
for various rotational constants (i.e., various moments of inertia).  

106. J.V. Coe, G.H. Lee, J.G. Eaton, S.T. Arnold, H.W. Sarkas, and K.H. Bowen, Jr., J. Chem. 
Phys. 92, 3980-3982 (1990);  

107. L. D. Landau and E. M. Lifschitz, Quantum Mechanics(2nd Ed.), Pergamon Press, Oxford, 
England (1965). 



Jack Simons & Piotr Skurski ��%

108. This trial function was suggested by Prof. E. R. Davidson in August of 1998 in a personal 
communication to J. S. We are most appreciative for the thoughtful analysis given to this 
problem by Prof. Davidson. 

109. K. D. Jordan and J. F. Liebman, Chem. Phys. Lett. 62, 143 (1979). 
110. M. Gutowski and P. Skurski, Chem. Phys. Lett. 303, 65 (1999). 
111. R. N. Compton, F. B. Dunning, and P. Nordlander, Chem. Phys. Lett. 253, 8 (1996). 
112. C. Desfrancois, V. Periquet, S. A. Lyapustina, T. P. Lippa, W. Robinson, K. H. Bowen, 

H.Nonaka, and R. N. Compton, J. Chem. Phys. 111, 4569 (1999). 
113. See, for example, G. Herzberg, Faraday Discuss. Chem. Soc. 71, 165-173 (1981) and G.I. 

Gellene, D.A. Cleary, and R. Porter, J. Chem. Phys. 77, 3471-3477 (1982). 
114. For example, see: J. Kalcher, P. Rosmus, and M. Quack, Can. J. Phys. 62, 1323-1327 (1984); 

H. Cardy, C. Larrieu, and A. Dargelos, Chem. Phys. Lett. 131, 507-512 (1986); D. Cremer 
and E. Kraka, J. Phys. Chem. 90, 33-40 (1986); J.V. Ortiz, J. Chem. Phys. 87, 3557-3562 
(1987); J. V. Ortiz, J. Phys. Chem., 94 4762-4763 (1990); K.H. Bowen and J.G. Eaton, The 
Structure of Small Molecules and Ions, R. Naaman and Z. Vager, Eds., Plenum Press:  New 
York, 1987, p 147; S.T. Arnold, J.G. Eaton, D. Patel-Misra, H.W. Sarkas, and K.H. Bowen, 
Ion and Cluster Ion Spectroscopy and Structure, J.P. Maier, Ed., Elsevier:  Amsterdam, 1989; 
M. Gutowski, H.  Taylor, R. Hernandez and J. Simons, J. Phys. Chem. 92, 6179 (1988); J. 
Simons and M. Gutowski, Chem. Rev. 91, 669 (1991). 

115. P. Skurski, M. Gutowski and J. Simons, Int. J. Quant. Chem., 76, 197 (2000). 
116. C. Sarasola, J. E. Fowler, and J. M. Ugalde, J. Chem. Phys. 110, 11717 (1999); C. Sarasola, J. 

E. Fowler, J., M. Elorza, and J. M. Ugalde, Chem. Phys. Lett. 337, 355 (2001). 
117. P. Skurski and J. Simons, J. Chem. Phys, 112, 6563 (2000). 
118. L.-S. Wang and X-B. Wang, J. Phys. Chem. 104, 1978 (2000). 
119. J. Simons, P. Skurski, and R. Barrios, J. Am. Chem. Soc. 122, 11893 (2000). 
120. P. Skurski, M. Gutowski, and J. Simons, Chem. Phys. Lett. 322, 175 (2000). 
121. T. Sommerfeld, J. Phys. Chem., A104, 8806 (2000) 
122. M. Gutowski, A. I. Boldyrev, J. V. Ortiz, and J. Simons, J. Am. Chem. Soc., 116, 9262-9268 

(1994). 
123. P. Weis, O. Hampe, S. Gilb, and M. M. Kappes, Chem. Phys. Lett. 321, 426 (2000). 
124. A. I. Boldyrev and J. Simons, J. Chem. Phys. 97, 2826 (1992). 
125. M. K. Scheller, R. N. Compton, and L. S. Cederbaum, Science, 270 1160-1166 (1995). 
126. H-G. Weikert, L. S. Cederbaum, F. Tarantelli, and A. I. Boldyrev, Z. Phys. D 18, 229 (1991); 
127. H-G. Weikert and L. S. Cederbaum, J. Chem. Phys. 99, 8877 (1993). 
 
 


