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An analytical model for vibrational non-Born–Oppenheimer induced
electron ejection in molecular anions
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We introduce an analytical model designed to capture the most important features of the electronic
matrix elements arising in non-Born–Oppenheimer couplings between a bound anion state and a
neutral-molecule-plus-ejected-electron state. In this particle-in-a-radial-box model, vibrations are
assumed to cause modulations in the depth (U0) and length (L) parameters of the box. The most
important elements of this model are thatL is chosen to reproduce the proper dependence of the
radial size of the anion’s orbital on electron binding energy, andU0 is chosen to produce the correct
electron affinity. Within this model, which is shown to be consistent with trends seen inab initio
calculations of associated electron ejection rates, the coupling matrix elements can be evaluated
analytically to provide closed-form expressions for how the rates depend upon~1! the kinetic energy
of the ejected electron,~2! the energy spacing between the anion and neutral energy surfaces as a
function of geometry,~3! the difference in the slopes of the anion and neutral energy surfaces, and
~4! overlaps of the neutral’s vibration–rotation wave function with the spatial derivative of that of
the anion. ©2002 American Institute of Physics.@DOI: 10.1063/1.1515766#
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I. INTRODUCTION

For nearly 30 years, our research group has been
volved in theoretical studies of molecular anions.1 As a part
of these studies, the mechanism by which excess vibrati
energy can be converted into electronic energy to cause e
tron ejection to produce an unbound electron and a neu
molecule has been the subject of considerable study.2–7 Ab
initio electronic structure calculations have allowed us
gain considerable insight into these detachment proces
However, until now, we did not possess a simple phys
picture in terms of which to understand, in a semiquantiat
manner, many results of our simulations. It is the prima
focus of the present effort to produce a physical model t
provides such insight. In particular, this work deals with t
electronic non-Born–Oppenheimer~non-BO! matrix ele-
ments that enter into the expression for the electron ejec
rates and produces a closed analytical expression for
these rates depend upon the essential physical paramete
the anion and neutral.

A. Nature of the non-BO processes

Before describing the model we have developed, it
important to clarify the physical origins of the phenome
that this model is designed to address. To explain what is
involved in the radiationless transitions we study, let us co
pare these events to what happens when an electroni
excited molecule emits a photon~see Fig. 1!.

The electron ejection event illustrated here is very d
ferent from photon emission. In the latter, a photon com
out and the molecule evolves to a state of lower total a
lower electronic energy. In the former, an electron comes
and the system evolves to a state of lower total energy bu
a state of higher electronic energy. So, in photon emiss
9120021-9606/2002/117(20)/9124/9/$19.00
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the final state has lower electronic energy; in the elect
ejection events of interest here, the final state has the hig
electronic energy.

B. Perturbative treatment of non-BO rates

What causes the molecule to be able to move to a s
of higher electronic energy is the coupling between the e
tronic and nuclear-motion~i.e., vibrational and rotational!
energies. These non-Born–Oppenheimer~non-BO! cou-
plings provide a means for excess vibrational energy to
converted into electronic energy, which then leads to an e
tron being ejected. We showed long ago2,8 that, within a
perturbative regime where the non-BO couplings are w
and thus the rate of electron ejection slow, the ratesR ~in
ejections per second! at which these processes can eject el
trons can be written as follows:

R5~2p/\!E u^x i u^c i uPuc f&~P/m!x f&u2

3d~« f1E2« i !r~E!dE. ~1!

Here,x i andx f are the vibration–rotation wave functions o
the anion and neutral, respectively,c i is the electronic wave
function of the anion,c f is that of the neutral-plus-ejecte
electron, andr(E) is the density of translational states of th
electron ejected with kinetic energyE. The d(« f1E2« i)
quantity guarantees that the total energy of the initial state« i

matches that of the final state« f plus the ejected electronE.
The momentum operators (P) appearing above act on bot
the electronic and vibration–rotation functions as follows

~Pc f !~P/m!x f5Sa~2 i\“ac f !~2 i\“ax f !~1/ma!. ~2!
4 © 2002 American Institute of Physics
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FIG. 1. Ejection of photons from an electronically excited molecule in a specific vibrational level to two different vibrational levels of the ground electronic
state~left-hand side!. Ejection of an electron from an excited vibrational level of an electronically stable anion to a less excited vibrational level of the
~right-hand side!.
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This expression involves a sum over all of the nuclei~labeled
a) of derivatives (“a) with respect to the positions of th
nuclei, as well as the masses of the nuclei (ma); the notation
P/m is used to remind one that there are 1/ma factors in the
operator.

The above rate expression contains two kinds of ma
elements:~1! those that involve integration over the ele
trons’ coordinates~they form the focus of the present work!

mi , f5^c i u~2 i\“a!uc f& ~3!

and ~2! vibration–rotation integrals~that we have treated in
earlier works7,9–11!

^x i umi , f~2 i\“ax f !&. ~4!

In the latter, the electronic non-BO integral appears ins
the integral because the quantitymi , f is a function of the
internal coordinates~i.e., bond lengths, angles, and orient
tion! of the anion.

C. Contrasts with the photon absorption rate
expression

The rate expression for photon absorption connec
initial electronicc i and vibration–rotationx i states to final
statesc f and x f involves analogous integrals. In particula
the electric dipole integral

m i , f5^c i umuc f& ~5!

and the vibrational integral

^x i um i , fx f& ~6!

appear in such expressions. In the optical spectroscopy c
one often expands the geometry dependence ofm i , f about the
equilibrium geometry of the ground state:

m i , f5m i , f
0 1Sa~]m i , f /]Xa!0~Xa2Xa

0!1... , ~7!

whereXa denotes the Cartesian coordinates of theath atom,
and Xa

0 denotes its equilibrium value. Inserting this expa
sion into the^x i um i , fx f& integral and retaining only the lea
term (m i , f

0 ) reduces the vibrational integral to those occ
ring in the well known Franck–Condon factors:
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^x i um i , fx f&5m i , f
0 ^x i ux f&. ~8!

The intensities of photon absorption lines are thus relate
squares of them i , f

0 electronic matrix elements and of th
vibrational overlap integralŝx i ux f&.

The treatment outlined above is predicated on the
sumptions that

~1! the electronic transition momentm i , f has a significant
value at the equilibrium geometry wherex i also is most
significant, and

~2! this momentm i , f is rather slowly varying for geometrie
somewhat displaced from the equilibrium geome
$Xa

0%, which is why the Taylor expansion in Eq.~7! is
used.

Our experience2–6 has shown us that the analogs of these t
assumptions are not usually valid when dealing with non-
matrix elements. In particular, the electronic integralmi , f

cannot be assumed to be significant at geometries where
initial vibrational wave function has large amplitude. Instea
the results of our manyab initio calculations of such matrix
elements convinced us thatmi , f is largest when the anion an
neutral electronic energy surfaces are closest. Moreove
has not been found in theab initio calculations we have
performed thatmi , f varies weakly with geometrical displace
ments. Instead, as the geometry moves away from where
anion and neutral surfaces are closest,mi , f decreases rapidly
We illustrate this kind of behavior in Fig. 2.

Based on a substantial number ofab initio
calculations,2–6 we have concluded that contributions to th
rate expression given in Eq.~1! are large whenever

~1! the anion and neutral electronic energy surfaces are c
in energy, and

~2! the phases and local de Broglie wavelengthsl i , f of x i

and of dx f /dXa are similar at the same geometrie
wheremi , f is large.

The first condition appears to be what causesmi , f to be
large, as we address in further detail later and as our ana
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 2. Two examples of anion~lower! and neutral~upper! surfaces that approach closely showing wheremi , f is largest and howmi , f varies with geometry.
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cal model correctly reproduces. The second condition
what causes contributions to the integral involving the pr
uct of mi , f , x i , and dx f /dXa to be significant. That
dx f /dXa and notx f appears in the rate expression relates
the fact that momentum as well as energy is transferre
the radiationless transition; so, the momentum opera
(2 i\“a) must act onx f to couple it tox i . Within the har-
monic approximation, the derivativesdx f /dXa produce vi-
brational wave functions having one higher and one low
quantum number; it is the latter that contributes to the in
gral and allows one unit of vibrational momentum to be co
verted to electronic momentum@as reflected in the fact tha
mi , f5^c i u(2 i\“a)uc f& also contains a momentum trans
tion element#.

D. Focus of the present work

Most of our past works in this area have been direc
toward either~1! usingab initio electronic structure method
to calculate, via. Eq.~1!, non-BO induced electron ejectio
rates for specific anions of experimental interest, or~2!
analyzing2,7,9–11 the vibrational or rotational components
the ^x i umi , f(2 i\“axf)& matrix elements that govern th
rate to arrive at propensity rules with respect to angular m
mentum and vibrational energy and momentum changes

In the present paper, our efforts are focused on obtain
further insight into the electronic matrix elementsmi , f by
introducing an approximate yet reasonable model that all
us to derive analytical expressions for how these matrix
ments depend on~a! the energy gap between the anion a
neutral potential energy surfaces, and~b! the kinetic energy
carried away by the ejected electron. It is these analyt
expressions and the model used to achieve them that re
sent the primary results of this work.

II. ANALYSIS OF THE ELECTRONIC NON-BO
ELEMENTS

A. Physical meaning of the non-BO elements

The electronic integralsmi , f5^c i u(2 i\“auc f& can be
expressed in terms of the overlap of either the initial~anion!
or final ~neutral-plus-free-electron! wave function with the
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derivative of the other wave function. That is, because
two functions are orthogonal for all values of the nucle
positions@denoted (Xa)],

^c i uc f&50, ~9!

the following identity holds for derivatives with respect
any nuclear position:

^c i ud/dXauc f&52^c f ud/dXauc i&. ~10!

So, in computing the non-BO electronic matrix elementsmi , f

we can differentiate either the anion or the neutral plus f
electron wave function.

The most general form for the anion wave functionc is
the linear combination of determinants form

c5(
J

CJufJ1 fJ2¯fJNu, ~11!

where theCJ are the so-called configuration interaction c
efficients,fJk is the spin–orbital occupied by thekth elec-
tron, and theu¯u notation denotes the determinant form
from the product ofN such spin–orbitals. In turn, each of th
molecular spin–orbitals~MO! is written as a linear combina
tion of atomic orbital~AO! basis functions$hm% multiplied
by a linear combination of atomic orbital to form molecul
orbital ~LCAO–MO! coefficientsCk,m .

The derivative of such a wave function with respect
any internal vibrational distortion of the molecule, which w
denoted/dX, will involve three distinct kinds of factors:

~1! derivatives of theCJ coefficientsdCJ /dX,
~2! derivatives of theCk,m coefficientsdCk,m /dX, and
~3! derivatives of the atomic orbital basis function

dhm /dX.

The dhm /dX contributions can induce different angula
character into the function, but are usually found to ma
small contributions to the net rate of detachment whene
the dCk,m /dX contributions are significant. For example,
Fig. 3 we show how the radial and angular derivatives,
spectively, of app orbital on the nitrogen center of NH2

producedp andps character, respectively. The radial deriv
tive arises when considering vibration-assisted electron
tachment processes such as we are dealing with here.
angular derivative relates to rotational detachment eve
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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9127J. Chem. Phys., Vol. 117, No. 20, 22 November 2002 Electron ejection in molecular anions
that do not form the focus of the present discussion~but
which we and others have discussed earlier5,7,12!.

As stated above, thedhm /dX derivatives do not usually
contribute strongly to thedc/dX factors; instead, the
dCk,m /dX factors are found to dominate in most cas
Moreover, because most anions and their correspon
ground-state neutrals are described qualitatively correctl
the single-determinant level, it is common for thedCJ /dX
contributions to also be small~because only oneCJ is sig-
nificant and thus has the fixed value of unity!. For these
reasons, we will focus further attention on the usually dom
nant,dCk,m /dX factors and their contributions to the detac
ment rates.

Assuming that the abovedCk,m /dX are the primary de-
rivatives in dc/dX, and making a single-determinant a
proximation to the anion and the neutral-plus-free-elect
wave functions, the non-BO electronic integral can be
duced as follows:

^c i ud/dXauc f&5^f i udf f /dX&

5Sm,vCi ,m dCf ,v /dX^hmuhv&. ~12!

The integral between the two Slater determinants reduce
an integral between the orbitalf i from which the electron is
ejected and the continuum orbitalf f into which it is ejected.
That one-electron integral, in turn, reduces to the sum
overlap integralŝ hmuhv& between pairs of basis orbita
multiplied by LCAO–MO coefficientsCi ,m and their deriva-
tives dCf ,v /dX. The physical meaning of an orbital deriva
tive such asdf i /dX is illustrated in Fig. 4 where we show
how the radial extent of an orbital changes as the bond c
necting atoms near this orbital vibrate.

The molecular orbitalsf i depicted above change the
radial sizes by modifying their LCAO–MO coefficientsCk,m

in a way that causes theCk,m for more diffuse basis orbitals
hm to grow at the expense of theCk,m for more compact
basis orbitals as theA–B bond shortens. The reason behi
this expansion of the orbital size as theA–B bond contracts
lies in the fact that the anion’s electron binding energy~EA!
shrinks as theA–B bond shortens. That is, the energy spa
ing between the anion and neutral energy surfaces decre
as the bond shortens.

Such variation of EA withR would, for example, occur
in species such as FLi2 where the excess electron is bound
a s orbital ~such as that shown in Fig. 4! localized on the
positive Li center; as the negative F atom moves closer to
the potential binding this electron becomes less attractive

FIG. 3. Radial~left-hand side! and angular~right-hand side! derivatives of a
pp orbital on the nitrogen center of NH2.
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the EA decreases. Hence, for shortA–B distances, the EA is
smaller, so the orbital’s radial extent is large. It is this d
namical expansion and contraction~as the vibrational motion
subsequently lengthens theA–B bond! of the orbital that
allows for vibration-to-electronic energy and momentu
coupling. Another example of the variation in orbital siz
and binding energy is given in Fig. 5 where the orbital ho
ing the excess electron of an enolate anion is depicted. In
example, as the twist angle evolves away from 0°, the de
calization of thepp orbital containing the excess electron
lost making this orbital less stable, so its electron bind
energy is reduced, and, in turn, its radial extent grows.

FIG. 4. Change in radial extent of an orbital induced by shortening theA–B
bond length for an orbital ofs ~left-hand side! or of p ~right-hand side!
character.

FIG. 5. Orbital holding excess electron in an enolate anion as a functio
the twist angle of the terminal H2C group.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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B. An analytical model for the bound and continuum
orbitals

An elementary model for describing one excess elect
~whose position is given by coordinatesr , u, f! interacting
with a molecule~whose vibrational coordinates are denot
$X% and whose spatial orientation is described by Eu
anglesa, b, x! involves a one-electron Schro¨dinger equation
of the form

$2\2/2mr22 ]/]r ~r 2]/]r !1\2L2/2mr21V%C5EC.
~13!

In this equation, the potentialV depends on the coordinate
of the excess electron with respect to the molecular fra
For example, in the two cases depicted in Fig. 4,V could be
of the form

V52me cosu/2r 2 ~14a!

or

V52v~r !sin2 u. ~14b!

The form in Eq.~14a! could be appropriate to thes state
shown in Fig. 4 if the dominant potential were the charg
dipole potential. Here,m is the magnitude of the dipole mo
ment of theA–B molecule,r is the distance of the electro
from the positiveB atom, andu is the angular coordinate o
the electron relative to theA–B bond axis. Equation~14b!
would apply to thep state of Fig. 6. Then, the sin2 u depen-
dence shows the axially symmetric nature of the poten
about theA–B bond axis, andv(r ) would characterize how
V depends on the distance (r ) of the excess electron from th
atom to which it is most strongly bound. In this case,v(r )
cannot be written in terms of a single dominant power ofr as
in the electron–dipole example becausev(r ) arises from
the attraction of the valence excess electron to the nuc
where its orbital is localized. However, in all cases, t
radial dependence ofV is attractive at larger and repulsive
at smallr .

FIG. 6. Electron-molecule radial potentialsV(r ) at two values of the vibra-
tional coordinateX. At X1 the potential is less attractive than atX2 .
Downloaded 23 May 2003 to 155.101.19.15. Redistribution subject to A
n

r

e.

-

l

us

An example of the former case is provided by the dipo
bound anion FLi2(X 2S1) and of the latter by the valence
bound anion HN2(X 2P2). Of course, in the above ex
amples, there is only one internal vibrational coordinate,
A–B bond length, upon whichV depends. In general,V will
depend on all of the anion’s vibrational coordinates, althou
it usually depends strongly on only one or a few~i.e., those
that vibrate atoms to which the excess electron is bou!
such coordinates.

To further develop our model, we now assume that

~a! the angular form of the orbitalC is known ~e.g., it
would be as orbital comprised primarily ofs and ps

basis orbitals for the first case shown in Fig. 4 or ap
orbital comprised primarily ofpp basis orbitals in the
latter!, and

~b! the vibration effecting the electron ejection does n
change the angular form of this orbital~e.g., theA–B
bond vibration shown in Fig. 4 retains thes and p
symmetries of the two orbitals shown; only the rad
character ofC is altered!.

Even in cases such as that depicted in Fig. 5 where
precise angular character of the orbital is not maintained~al-
though that of its dominant carbonpp nature is retained!, the
above two assumptions are nearly met, so the analysis
fered below is assumed to still apply.

In such cases, the orbitalC can be expressed as a pro
uct of a fixed angular partF(u,f) and a radial partR(r ),
with the latter containing all of the vibration-coordinate~X!
dependence

C5F~u,f!R~r uX!. ~15!

Such a separation of fixed angular andX-dependent radia
parts holds for both the anion orbital (C5f i) and the con-
tinuum free-electron orbital (C5f f),

f i5F~u,f!Ri~r uX!, ~16a!

f f5F~u,f!Rf~r uX!. ~16b!

When these product forms are separated into the Sc¨-
dinger equation @Eq. ~13!#, and one premultiplies by
F* (u,f)sinu and integrates overu and f, one obtains an
equation for the radial partsRi , f of the two orbitals,

$2\2/2mr22 ]/]r ~r 2 ]/]r !1\2^L2&/2mr21^V&%Ri , f

5Ei , fRi , f . ~17!

In these two radial equations, the symbol^L2& is used to
denote the average value of the angular momentum squ
L2 taken with respect to the angular ‘‘shape’’ of the orbita
F(u,f):

^L2&5E F* ~u,f!L2F~u,f!sinu du df. ~18!

The symbol^V& is used to denote the electron–molecu
interaction potentialV averaged over the angular coordinat
with respect to this sameF(u,f),

^V&5E F* ~u,f!V F~u,f!sinu du df. ~19!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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By next rewriting theRi , f functions as

Ri , f5c i , f /r , ~20!

Eq. ~17! can be rewritten as a Schro¨dinger equation for the
c i , f functions,

$2\2/2m ]2/]r 21U%c i , f5Ei , fc i , f . ~21!

Here, we introduced the short-hand notationU to represent
the sum13 of the angularly averaged electron–molecule p
tential ^V& and the average centrifugal potenti
\2^L2&/2mr2:

U5^V&1\2^L2&/2mr2. ~22!

Recall that it is only througĥV& that the potential in the
Schrödinger equation acquires its dependence on the vi
tional coordinates$X%.

Now, we introduce a simple yet reasonable treatmen
how U depends onX to further develop our model. In par
ticular, we pose that it is the strength of the attract
electron-molecule potentialV(r ) that is modulated as th
vibration alongX takes place. Typical forms for the attractiv
portions of such radial potentials are shown in Fig. 6 for t
values (X1 and X2) of the vibration coordinateX. In these
plots, we show the longer-range attractive portion of the
tential only; of course, at smallerr values, core repulsion an
exchange effects dominate andV(r ) becomes positive. Also
shown in Fig. 6 are the ground-state anion energy levels« i1

and« i2 as well as the classical outer turning pointsL1 andL2

of these levels for each of the two geometries. Because
potentialU is less attractive atX1 than atX2 , the electron
binding energy« i1 is smaller in magnitude than« i2 . In ad-
dition, the outer turning pointL1 for the less tightly bound
level is larger~as is the radial extent of the correspondi
orbital! than L2 . These characteristics of the potential pl
very important roles in how we choose the parameters of
model potential as we now illustrate.

For the model potential introduced below, we use a
dial ‘‘box potential’’ whose outer wall~at r 5L) and whose
depth (U0) parameters are chosen to reflect the attribute
the actual radial potential discussed above~i.e., as in Fig. 6!.
In particular, the depthU0 is chosen so that the resulta
lowest eigenvalue« i gives ~through EA5U02« i) the cor-
rect electron affinity~EA! at each particular value ofX. In
addition, the box lengthL is chosen so that the radial exte
of the corresponding orbital depends onX as expected~i.e.,
grows as the EA decreases!. Specifically, we use the fact tha
the true anion orbital varies asr exp(2r(2mEA/\2)1/2) for
large r , which suggests that the average value ofr should
depend on EA as follows:

^r &53\/~2~2m EA!1/2!5~3/23/2!~\/m1/2!EA21/2. ~23!

Below, we use this relationship between^r & and EA to relate
the radial potential’s box length parameterL to EA.

It is important to stress that our primary goal in th
work is not to accurately calculate~i.e., obtain a numerica
value for! the mi , f non-BO matrix elements; we alread
know how to do this usingab initio quantum chemistry. In-
stead, our objective is to obtain analytical expressions
how mi , f depends on the EA~as a function of geometry! and
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To this end, we introduce a rather simple, but we belie
qualitatively correct, model for the effective potential and f
how this potential depends on the vibrational coordinatesX.
Within this model, we are then able to analytically evalua
mi , f in a way that allows us to display its EA andE depen-
dencies. Because this model is qualitatively representativ
actual electron-molecule interactions, we thus believe tha
E and EA dependencies are suggestive of what is found
reality.

Proceeding with the development of our model, the
fective radial potentialU(r ) is represented by a square-we
box potential such as shown in Fig. 7. The energy differe
between the well depthU0 and the bound-state energy« i is
the electron affinity EA~X!. The dependence of this EA o
the vibrational coordinates$X% is assumed to arise totall
from modulations in the well depthU0 andL parameters. In
particular, we use the relation thatU05EA1« i and we as-
sume that« i is given in terms of the particle in a box ground
state energy expression~see below for justification!

« i5\2p2/~2mL2!. ~24!

Next, since the average value of the radial coordinate^r & for
the corresponding ground-state wave function is

^r &5L/2 ~25!

we use Eqs.~23! and ~25! to relate the box lengthL to the
EA as follows:

L52^r &5~3/21/2!~\/m1/2!EA21/2. ~26!

Using this value forL in Eq. ~24! allows « i and U0 to be
rewritten in terms of EA,

« i5p2 EA/9, ~27a!

U05EA~11p2/9!, ~27b!

and, of course, Eq.~26! givesL in terms of EA.
As noted above, the radial extent of the bound-state

ion orbital ^r & is related to the outer turning point~i.e., the
box length parameterL). On the other hand, the free-electro

FIG. 7. Radial effective potentialU(r ) showing bound-state energ
« i , continuum-state kinetic energyE, well depthU0, and potential radial
extentL.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



s
In
ll

ta

s

ve

r

s
r,
on

d
he

e

the
-

g

lt

ion

n
al

tes

s-

9130 J. Chem. Phys., Vol. 117, No. 20, 22 November 2002 Jack Simons
orbital, whose asymptotic~kinetic! energy isE, is assumed
to be ‘‘box normalized’’ to unity over the range 0<r<L
1D.

The normalized bound-state radial wave functionc i(r )
will be assumed to vanish atr 5L to keep the analysis a
simple as possible while remaining qualitatively correct.
principal, this function should also contain an exponentia
decaying component in ther .L1D region, but this compo-
nent will be neglected. The resultant normalized ground-s
anion wave function is

c i~r !5~2/L !1/2sin~pr /L ! ~28!

and the corresponding energy is as given in Eqs.~24! and
~27a!.

The free-electron solution to the radial Schro¨dinger
equation is expressed as follows:

c f~r !5C sin~p1r /\!, for 0<r<L, ~29a!

c f~r !5D exp~ ip~r 2L !/\!1D8 exp~2 ip~r 2L !/\!,

for L<r<L1D. ~29b!

Here, p5(2mE)1/2 and p15(2m(U01E))1/2 are the mo-
menta of the electron in the asymptotic regionL<r<L1D
and in the region whereU(r ) is nonzeror<L, respectively.
Matchingc f anddc f /dr at r 5L and normalizingc f such
that the integral ofucu2 betweenr 50 andr 5L1D is unity

E uc f~r !u2 dr51 ~30!

produces~in the D→` limit ! equations for the amplitude
C, D, andD8. These results are

C5~2/D!1/2$sin2~p1L/\!1~p1/p!2 cos2~p1L/\!%21/2,
~31a!

D51/2@sin~p1L/\!2 i ~p1/p!cos~p1L/\!#C, ~31b!

D851/2@sin~p1L/\!1 i ~p1/p!cos~p1L/\!#C. ~31c!

Notice that all three amplitudes scale as (1/D)1/2 as expected
for a box-normalized function.

C. Non-BO matrix elements

The non-BO electronic matrix elementmi , f connecting
c i andc f can, within the above approximations to the wa
functions, be written as

mi , f52 i\E ~2/L !1/2sin~pr /L !d/dX Csin~p1r /\!dr,

~32!

whereC is given in Eq.~31a! and the integral ranges ove
0<r<L, and the derivatived/dX is meant to denote a sum
of derivatives with respect to all vibrational coordinate
Changes in these coordinates are, as discussed earlie
sumed to modulate the depth of the attractive electr
molecule potentialU0 and thus the EA, which isU02« i .
We re-express the derivatived/dX (C sin(p1r/\)) as follows:

d/dX~C sin~p1r /\!!5~dC/dX!sin~p1r /\!

1C~r /\!dp1/dX cos~p1r /\!. ~33!
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The first term,dC/dX, does not contribute tomi , f as the
integral *sin(pr/L)sin(p1r/\)dr vanishes because the boun
and continuum orbitals are orthogonal to one another. T
dp1/dX factor in the second term is rewritten as

dp1/dX51/2~2m!1/2@dU0/dX#$U01E%21/2. ~34!

The result is that the non-BO matrix element becomes

mi , f52 i\~2/L !1/2C~2m!1/2~1/2\!@dU0/dX#

3$U01E%21/2E sin~pr /L !r cos~p1r /\!dr.

~35!

The integral involving the trigonometric functions can b
carried out and yields

mi , f52 i\2p/2~2/L !1/2C@dU0/dX#

3$2m~U01E!%21/2$U01E2« i%
21. ~36!

Inserting the expression forC given in Eq.~31a!, again iden-
tifying the momenta p5(2mE)1/2 and p15(2m(U0

1E))1/2, and recalling thatU05EA(11p2/9) gives

mi , f52 i\2p~LD!21/2d EA/dX~11p2/9!@EA1E#21

3~p/p1!$p2 sin2~p1L/\!

1p12 cos2~p1L/\!%21/2. ~37!

Again, we stress that the rate of change of the EA along
vibrational coordinateX is assumed to result from the modu
lation in the well depthU0 andL parameters accompanyin
this vibration; this is what allows us to replacedU0/dX by
(11p2/9)d EA/dX. Equation~37! represents our final resu
for the non-BO electronic matrix elements@keeping in mind
that L53\/(2m EA)1/2].

D. The electron ejection rate expression

To obtain an expression for the rate of electron eject
induced by vibrational non-BO coupling, we insert Eq.~37!
into Eq. ~1!. This produces the following rate expressio
~here m is the mass factor associated with the vibration
coordinateX):

R5~2p2\4/3m2!~11p2/9!2E UE x i* d EA/dX

3@EA1E#21~p/p1!~2m EA/\2!1/4$p2 sin2~p1L/\!

1p12 cos2~p1L/\!%21/2dx f /dX dXU2

dp

5~2p2\3/3m2!~11p2/9!2E UE x i* d EA/dX

3@EA1E#21@E/~E1U0!#1/2EA1/4~2m!21/4$E

1U0 cos2@~E1U0!/EA#%21/2dx f /dX dXU2

dp, ~38!

where we have also substituted the density of sta
r(E)dE5(D/p\) dp and the expression for L
53\/(2m EA)1/2. The key ingredients in this rate expre
sion that we wish to emphasize are
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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~1! The energy gap (« i2« f) between the anion’s statex i

and the neutral’sx f determines the kinetic energyE car-
ried away by the ejected electron.

~2! As expected, we obtain a rate that is proportional to
square of an integral connecting the anion’s vibratio
rotation wave functionx i to the derivative of the neutra
molecule’s corresponding wave functiondx f /dX.

~3! In this integral, a factord EA/dX@EA1E#21 appears
that is large when the anion and neutral energy surfa
are close~i.e., EA is small! and when the ‘‘gap’’ between
these surfaces is changing rapidly~i.e., d EA/dX is
large!. This is one of the most important quantitativ
suggestions of this model, and is what helps us iden
the geometries near wheremi , f is large as in Fig. 2.
Moreover, it is this factor that seems to fit what we ha
observed in all of ourab initio calculations when we
searched for geometries wheremi , f is largest.

~4! Also within this integral, the factor@E/(E1U0)#1/2 ap-
pears. This factor disfavorsE values near zero, and is
rather slowly varying function ofE at higherE values.
Recalling thatU05(11p2/9)EA, this factor also disfa-
vors geometries where EA is large.

~5! The quantity$E1U0 cos2@(E1U0)/EA#%21/2, which also
occurs within this integral, is limited in magnitude b
tween ~i! E21/2 and ~ii ! (U0)21/2. This is also a rather
weak function ofE and ofU0 ~which is proportional to
EA!.

III. SUMMARY

We have introduced a one-dimensional particle-in
radial-box model for the electron-molecule potential of
molecular anion. In this model, the vibrations of the und
lying nuclear framework are assumed to cause modulat
in the depth (U0) and length (L) of the attractive potentia
well. These modulations, in turn, induce dynamical chan
in the radial size and electron binding energy~EA! of the
anion. The two most significant assumptions introduced i
the model relate to howU0 andL are designed to reflect th
proper dependence on EA. Specifically, theL parameter is
chosen to reproduce the known relationship between the
dial size of the anion’s orbital and the electron binding e
ergy. TheU0 parameter is chosen so that the model’s pred
tion of the electron binding energy~asU02« i) is the correct
EA.

The non-BO couplings can be evaluated analytica
within this model, and yield an electron detachment rate
pression that offers insight into the electron ejection proce
In particular, the crucial factors appearing multiplicatively
the integrals whose squares are proportional to the ejec
rate are as follows:

~1! A factor d EA/dX@EA1E#21 that will be large if the
separation between the anion and neutral energy surf
~EA! is small and strongly varying (d EA/dX is large!,
and if the kinetic energyE carried away by the electro
is small.

~2! A factor @E/(E1U0)#1/2$E1U0 cos2@E1U0/EA#%21/2

that ~a! is small whenE is small or whenU0 is large
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@recall U05EA(11p2/9)] ~b! is rather weakly depen
dent onE, otherwise, and~c! is also small at highE.

As noted earlier, these factors seem to agree with p
pensities that we have observed in ourab initio simulations
of electron ejection rates.

In addition to the above propensities for transitions
occur near geometries where the anion and neutral surf
approach closely and for which the ejected electron has
ther very small nor very large kinetic energy, there are a
vibrational energy and momentum propensities that cont
ute to the net rate.

Let us first consider the case in which the electronicmi , f

matrix elements do not vary strongly with geometry. Accor
ing to Eq. ~38!, this will occur when the anion and neutra
energy surfaces have slope differences (d EA/dX) and spac-
ings ~EA! that are smoothly varying over the range of geo
etries accessed by the anion’s vibrational motion. Suc
situation would not arise, for example, for the cases show
Fig. 2, where themi , f elements are large in a narrow range
geometries, but could arise in the case illustrated in the r
hand panel of Fig. 1.

In such cases, the geometry dependence of themi , f can
be factored out of the vibrational integral after which t
latter reduces to an integral of the form

^x f udx i /dX&. ~39!

This integral can be treated as one does when compu
Franck–Condon factors among vibrational states of two
ferent electronic states, but with one modification. In t
present case, as explained earlier, it is the derivative of
of the vibrational functions that occurs, because the elec
ejection process requires that momentum~as well as energy!
be transferred from the vibrational mode to the electron.
the propensities arising in this case relate to the square
the overlap of the anion’s vibrational state lowered by o
quantum level with the neutral molecule’s vibrational fun
tions x f . The anion’s function is lowered by one quantu
becausedx i /dX generates, within the harmonic approxim
tion, functions of one lower and one higher quantum num
and only the former contributes to transfer of energy out
the vibrational mode.

The other limiting case to consider occurs when themi , f

elements are large over only a narrow range of molecu
geometries~e.g., as in Fig. 2!. In such a case, The integra
*(mi , fx f dx i /dX)dX ranges only over that region~e.g., 0
,X,d) wheremi , f is significant. In this range,x i and x f

oscillate with local de Broglie wave lengths ofh/(2m@« i

2E2(X)#1/2) and h/(2m@« f2E0(X)#1/2), respectively.
Here, E2(X) is the anion’s energy surface,E0(X) is the
neutral’s,m is the reduced mass belonging to the vibration
mode, and« i and « f are the anion and neutral vibration
energies. Within the approximation where themi , f elements
are factored out of this integral~for this limited range ofX),
one can show that the integral will be small unless these
local de Broglie wavelengths are similar. In turn, this su
gests that the local momenta (2m@« i2E2(X)#)1/2 and
(2m@« f2E0(X)#)1/2 should be similar or that« i2« f

2E2(X)1E0(X) should be small. Notice that« i2« f and
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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@2E2(X)1E0(X)# are both positive quantities, so, onc
again, the propensities favor geometries where the anion
neutral surfaces are close and transitions for which« i2« f

5E is not large.
Although we find it gratifying that we now have analyt

cal expressions for theE and EA dependencies of the no
BO-induced electron ejection rates, the fact is that the cur
experimental state of affairs does not yet permit a thoro
testing of these predictions. Experiments in which anions
prepared in various known vibrational states and the rat
detachment of electrons into various vibrational levels of
neutral are what we need to test our model’s predictions.
the other hand, the predictions offered by the model int
duced here do agree with the results that we earlier obta
by carrying out state-to-state electron ejection rate calc
tions usingab initio quantum chemistry methods. This offe
some evidence in favor of the validity, and thus the poten
utility, of our analytical model.
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