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The equations of motion (EOM) which correspond to electronic excitation or ionization events are analyzed
within the framework of perturbation theory. The choice of the Hartree-Fock Hamiltonian as the zeroth
order Hamiltonian permits the perturbation equations to be solved in a convenient closed form. A
comparison of the results for excitation processes with those given by the random phase approximation
(RPA) is made. The role of two particle-two hole excitation operators, which are absent in the RPA, is
discussed. Finally, conpections are made between the Green's function approach to calculating ionization
energies and the perturbation theory treatment of the EOM corresponding to ionization processes.

I. INTRODUCTION

For some time now, equations-of-motion' (EOM) and
Green’s function? (GF) methods have been successfully
employed to compute energy differences (electronic ex-
citation®® or ionization* %) and transition probabilities
for atomic and molecular systems. These approaches
have an advantage in that they permit the direct calculation
of the desired energy difference; separate calculations on
the parent and daughter species are not required.

In both the EOM and GF formalisms, one must even-
tually choose a set of basis operators in terms of which
the electronic excitation or ionization process is to be
described, For example, in the random phase approxi-
mation'® (RPA) or time-dependent Hartree— Fock approxi-
imation”!” (TDHF), one expresses the electronic exci-
tation operator as a combination of particle-hole
{c*c,} and hole—particle operators {C%C,}, where the
Ci(C,) are Fermion creation (destruction) operators,
and indices «, 8, ete. (m, n, etc.), refer to occupied
(unoccupied) Hartree—Fock spin orbitals. In this paper,
our attention is directed toward developing a systematic
scheme for choosing the set of basis excitation or ion-
ization operators. This scheme isbased uponan order-
by-order perturbation theory solution of the EOM in
which the zeroth order Hamiltonian is taken to be the
Hartree—Fock Hamiltonian. By treating the problem in
a perturbative manner, we are able to identify those
operators that must be included in any EOM or GF the-
ory to guarantee that the excitation or ionization energy
is obtained correctly through a given order.

In Sec. II we develop the general perturbation theory
framework within which the electronic excitation and
ionization problems are to be analyzed. In Sec, II we
show that the operator space which is used in the RPA
treatment of electronic excitation processes is not suf-
ficient to guarantee that the excitation operator (excita-
tion energy) is correct through first order (second or-
der). Section IV contains our treatment of the EOM for
ionization events as well as a comparison with the re-
sults of second-order Green’s function calculations. In
Sec. V we present our concluding remarks.

Il. PERTURBATION THEORY FOR THE EOM

The EOM governing the excitation operator O} and
the excitation energy E, is written as!
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A03=[H, 0})=E,03, oY)

where H is the electronic Hamiltonian of the system.
By decomposing O}, E,, and the Hamiltonian H into
zeroth, first, etc. order terms

H=Hy+V, (2a)
0}=05+ O+ 0%+« -+, (2b)
s (2c)

one obtains from Eq. (1) a series of operator equations,
the first three of which are shown below:

Ex= Em+ EAI+E13+ cen

roO;o =E5On, (3a)
HyOp1+ VO = EygOla+ E, 0% , (3b)
H,0%2+ VO = EyyOl + Ey1031 + Ey20% . 3c)

Let us, for the moment, assume that the exact zeroth-
order excitation operators {0},} have been determined.
Later, the precise forms of the O}, for both electronic
excitation and ionization processes will be explicitly
displayed. For now, we need only assume that the com-
plete set of Oy; and E,, have been found. To solve Eq.
(3b) for the first-order excitation operator 01 and en-
ergy E,1, we first take the commutator of Eq. (3b) with
the adjoint excitation operator O,.,, after which we form
the expectation value of the result with respect to the
reference state |g). The requirements imposed upon

| g) by the form of O}, and by the assumption that the
{0}, 12} form a complete set of excited (or ionic) states
are discussed in Appendix A. For now if suffices to say
that |g) does not have to be the exact ground state of the
system of interest. In fact, for the specific choice of
Hy made in the next section, i.e., the Hartree-Fock
Hamiltonian, |g) can, without loss of generality, be
chosen to be the Hartree—-Fock ground state 0).

The result of carrying out the above steps can be ex-
pressed as follows:

(O%o| Hy| O31) + (O30 | V| Ofp) = Erg (O} | O31) + Ex1(O3eg

O;ﬂ) ’

4)
where we have introduced the shorthand notation!®

(A|V|B)=(g| AV, Bl [V, Bla*| ), (5)

in which the + (- ) sign is used if A and B are Fermion
(Boson) type operators.2 The assumption that the exci-
tation operators can be chosen to obey the normalization
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condition (03103) =1, through each order in the pertur-
bation allows one to conclude that

(03] 030) =1 6)
and
(03| 031) =0 )

with Egs. (6)-(7), the result shown in Eg. (4) reduces
to two equations which yield E,1 and O1:

(0% V] 0y = Ey1 (for ' =1X) @)
and

(O3eo| O1) = (O3 | 7] O%0) [Erg = Bneo]™ (9)
for M’ #X. In writing Eq. (9) we have assumed that the

states A and A’ are not degenerate in zeroth order. To
simplify the mathematical development of this paper,
this assumption will be maintained; the treatment of
degenerate cases would involve the application of the
degenerate perturbation theory formalism in a straight-
forward fashion. In zeroth order, it is quite likely that
the excitation or ionization operators {03} would con-
tain degeneracies. However, by forming linear com-
binations of these degenerate operators, we obtain a
set of operators which possess the correct symmetry
(spin and space) to map the parent’s ground state |g)
into an excited or ionic state which is also of pure sym-
metry. In what follows, we assume that we have al-
ready formed this symmetry-adapted set of zeroth-
order operators which block diagonalize our perturba-
tion equations. Thus, in writing Eq. (9), we need only
assume that no two zeroth-order operators which are
of the same symmetry are degenerate.

Although it appears that Eq. (9) gives the exact first-
order excitation operator O} in terms of the zeroth-
order operators Of.,, care must be taken in interpret-
ing Eq. (9). It is certainly true that the number (O}.|

%) gives the expansion coefficient of 031 in terms of
Ol.o; however, knowledge of such expansion coefficients
is not sufficient to determine Of1 unless the zeroth-
order operators form a complete set of excitation oper-
ators. It is shown in Appendix A that the Oy, form a
complete set if this set of zeroth-order operafors in-
cludes both the full set of excitation operators 05, for
which 0,,lg) =0 and the full set of de-excitation opera-
tors O}, which are merely the adjoints of the excita-
tion operators (0%4= 0,4, 0,9= 0%y, for which (g10,
=0. Collecting the 0}, and O}, into vectors, the com-
pleteness relation derived in Appendix A within the
scalar product defined in Eq. (5) and used in Eq. (9) is
given by

-+
A0

1=10, 02087 | 0 |5 (10)

ud
or

Ol

Oy (11)

1= 10;0: om)A-l

where the matrix A is expressed as

o [ (©halOh) (©]0) 2)
(00]0%) (0|0y) )
Thus, in Eq. (9) one needs to compute both the matrix
elements (03.o1031) and (0}.41051)= (0,4 O31). The first-
order excitation operator is then given in terms of the
zeroth-order operators by

(O | O31)
(OX'D l 0;1)

This is the general result for Oj1; later in this paper we
discuss Eq. (13) in a more specific manner for opera-
tors Oy which correspond either to electronic excitation
or ionization processes. Before these subjects are
treated, however, it should be mentioned that, in addi-
tion to the above expressions for E,1 and Oj;, one can
obtain the following equations for the second- and third-
order excitation energies:

‘ O31) = ‘O;Jo’ OX'O)A-l (13)

Eye= (05 V|0}), (14)
and

Eys= (03| V = Ex1|0%2), (15)
where

(O] 032)

|0f2) = |0}, Opeg)a™ Ol 0t | (16)
and

(Of] O%2) = (O | V- Ey | O31) [Erg = Epso]™ . a7

Equations (14) and (15) are analogous to the usual sec-
ond- and third-order energy expressions of Rayleigh—
Schrddinger perturbation theory.!®

In summary, we have shown how the EOM given in
Eq. (1) can be solved in a perturbative fashion. Closed
expressions for E,i, E,s, E,3, and O} have been given,
It now remains for us to evaluate the matrix elements
appearing in these expressions for specific choices of
H,, ig), and the {O;O}. This is carried out in the follow-
ing two sections.

Hl. ELECTRONIC EXCITATION PROCESSES

If the zeroth-order Hamiltonian is chosen to be the
Hartree~Fock Hamiltonian

HO: Z:i,C;C,, (18)

the exact zeroth-order excitation operators which con-
serve the number of electrons (generate excited states
rather than ionic states) are given by

O;O;OM): C:rlcu’ C:nC;CBCa’ Tt C;Cm’ C;C;Cncm’
(a<p m<n..-) (9)

and the reference state |g) which is consistent (i.e.,
for which O,5!g)={g! 0}, =0) with these operators is the
Hartree—Fock ground state 10). Operators of the form
C;C; or C;C, are excluded from our set of zeroth-
order excitation operators because they do not generate
excited Slater determinants when operating (either fo
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the right or to the left) on 10). As was mentioned in
Sec. I, the zeroth-order operators must be chosen to
process the correct space and spin symmetry. Thus,
for example, if we are interested in studying singlet -
singlet transitions from a closed-shell parent, the oper-
ator C:C, becomes (more explicitly) (1/v2)[C?,C,,
+C?,C,,], where the up and down arrows label the z
component of the excited electron’s spin. Spatial sym-
metry considerations must also be added to this singlet
operator. Because the inclusion of spin and spatial
symmetry adds significantly to the complication of the
equations obtained here, and because our major concern
is to demonstrate how the perturbation equations can be
used to generate order-by-order approximations to ex-
citation or ionization energies, we shall employ the non-

oy}

A= Z {03:0(0314] O31) = 045 (Oysg
X'

1415

symmetry adapted spin orbital operators C;C, in our
discussion. Of course, in actval calculations, proper
account of spin and space symmetry must be taken.

For the set of excitation operators given in Eq. (19),
the A matrix reduces to

A= , (20)

0 -1
which allows us to write E,1 and Oy;, for a state whose
zeroth-order excitation operator is C;C,, as
En=(CHC.|V|C1C,) = (ma| am) 1)

and

= Z;' [(mBl ANN€y— €4 — €,+ €)1CCs + (mnl aB)(€m+ €,- €,—€)'CiC,]

+ D [8,0(pn|mB) = Bgalpn|m¥)+ 8,0lap | ¥B) = 6,dan | YBY (€ — €4 — €5~ €, + €5+ €)1CC3C,Cy .
[3]

<8

The second-order energy E,2 is seen from Egs. (9),
(13), and (14) to be obtainable from Eq. (22) by remov-
ing the creation and annihilation operators and squaring
the two-electron integrals in the numerators.?! It can
be shown that the particle-hole {C?C,} and hole-parti-
cle {C?%,C,} components of O}1 given in Eq. (22) are iden-
tical to those which would be obtained by a first-order
perturbation theory solution of the random-phase ap-
proximation (RPA) equations which is briefly discussed
in Appendix B. The two particle~two hole (2p-2k)
{c1CCsC,} components of 01 must be included to ob-
tain O; correctly through first order. In higher RPA
treatments, such 2p-2h terms are included.” The pri-
mary role of the 2p—~2# terms in O}1 is to provide an
accurate description of the electron correlation in the
excited state which through zeroth order is given by
C,C,10). For example, the first 2p—2k terms in Eq.
(22) generate, when operating on |0), the following con-
figurations (pnlmpB)C;C;C,Cy10), each of which is
identical to {pnrlmg)C;C;C,Cs(C}C,10)). Expressed

in this form, it is clear that such configurations are
doubly excited relative to the zeroth-order excited
states C}C,10), which allows one to conclude that they
involve the correlation of the excited orbital (m) with all
of the occupied orbitals (8) except the orbital a(8+ a)
from which the electron has been excited. The other
2p-2h terms in Eq. (22) can be given analogous physical
interpretations,

In carrying out an actual calculation, one must first
evaluate the orbital energies and two-electron integrals
which appear in Eqs. (21) and (22). For the specific ex-
cited state which is described in zeroth order by the en-
ergy difference ¢, - €,, one obtains the first-order cor-
rection to the excitation energy from Eq. (21). The

@2)

|
second-order correction is computed by forming the
sums in Eq. (22), e.g.,

2 |8l @) (e = €a= €y €0+ 2 [(onn | EB)[?

X (€,,+ €, — €, — €g)"  + the (2p=21) terms.

In this manner, one is able to calculate, in terms of the
orbital energies and two-electron integrals, the first-
and second-order corrections to the specific zeroth-
order excitation energy of interest. The state is labeled
by the single electron promotion ¢, ~ ¢,. To study ex-
cited states whose zeroth-order energy differences cor-
respond to two-electron excitations (€,,+ €, — €, — €5),

one must derive expressions analogous to Egs. (21) and
(22) in which the zeroth-order excitation operator for
the state of interest is C1,C;CsC,. We are presently in-
volved in carrying out such a derivation of the first- and
second-order corrections to the excitation energies of
these doubly excited states.

The principal conclusion of the above analysis is that the
first-order correctiontoan excitation operator which in
zeroth-order equals C;,C, contains particle—hole, hole—
particle, and certain two particle~two hole components.
Thus, the common RPA procedure does not describe (04
correctly through first order; it is lacking the 2p~2# con-
tributions. If one carriesout a perturbative analysis of
O3, onecan, by including p—k, h—p, and 2p~2h contribu-
tions, compute Oy throughfirstorder. Perturbation
corrections to states which are described in zeroth order
by C,C, or C,;C,C, couldalso betreatedusing the above
analysis. Inthe z-p case (C?C,)onefindsthat the excita-
tion energy is, order by order, equal to minus the excita-
tion energy corresponding to the zeroth-order operator
C,C,. By assuming that O}, is a 2p~2k operator
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(C*1CrCsC,), one is ableto develop corrections to zeroth-
order states which are dominated by doubly excited con-
figurations. Suchdoubly excited states are currently
receiving a great deal of attention from both experimental
and theoretical researchers, 2 We planto use the present
analysis to investigate the excitation energiesassociated
with such states. We are also pursuing a study of the
third-order excitation energies of states which, in
zeroth-order, are described by the single-excitation
operators C,C,.

1V. IONIZATION PROCESSES

Again choosing the Hartree~Fock Hamiltonian as Hy,
one can proceed as in Sec. III to find the set of exact
zeroth-order excitation operators. In the present case,
however, one restricts the class of operators to those
which either remove or add an electron, i.e., ioniza-
tion operators. The desired set of operators is

{0;0;010}:{(;:"’ Ca’ C:ncac;’ CBC:ncou U ;Cmy C;’

C,C.LC,, CLC,Ch -}  (a<8, m<n, etc.),

(23)
which obey the required O0,y1g)=0={gl 0}, if Ig)is
taken to be the Hartree-Fock ground state [0).

For the above set of operators, the A matrix appear-
ing in Eq. (13) reduces to the unit matrix, and the re-
sulting first-order energy and excitation operator cor-

responding to a zeroth-order operator Oj,=C; is given
by
E,=(C}|V|CcY=0, (24)
and
Ojy = 2; {08(03 1 031) + 03(03 | O1)}
= Z{(ia | i) e, + €4 — €= €,11C1C,C 2
m;n
+ 2 {m| )€+ eu-camelCLC,CH.  (25)
alB

m

The second-order ionization energy E,; is obtained from
Eq. (25) by removing the creation and annihilation oper-
ators and squaring the two-electron integrals. As for
the electronic excitation operators discussed in Sec.

III, the third-order ionization energy can be computed
by using Eqs. (15)-(17).

To carry out a calculation of the ionization potential
or electron affinity of a molecule which is described in
Koopmans’ theorem by €,;, one must first evaluate the
orbital energies and two-electron integrals appearing
in Eq. (25). The second-order correction to the Koop-
mans’ theorem energy difference can then be computed
from Eq. (25) as

Z |Ga|mn)|2(e;+ €q = €€
m°<‘n

+ 2 [m| @B | M€+ €pm €= €.
a<lB

m

Ionic states which are described in zeroth order by en-
ergy differences of the form ¢+ ¢,— €, Or €,+ €5 €,
are usually referred to as shake-up states because they
can be thought of as corresponding to the removal or
addition of an electron followed by the excitation of
another electron. To handle such states within the per-
turbative formalism presented here, one must derive
an expression analogous to Eq. (25) for the second-
order correction to the ionization energy of the specific
shake-up state of interest. We are currently carrying
out such a derivation,

It is interesting to notice that the second-order ioniza-
tion energy obtained above is identical to that which re-
sults from a second-order Green’s function (G (E)) cal-
culation in which the pole of G (E) is approximated by
€ + Z;; (¢;), where T (E) is the self-energy appearing
in the Dyson equation® for G (E),

6=6%+6"Z¢G . (28)

Thus, unlike the electronic excitation case, the space
of operators needed to compute O}1 is identical to the
space used in the conventional second-order Green’s
function studies. A comparison of the third-order en-
ergy obtained in this fashion to that which is obtained in
a diagrammatic Green’s function analysis!! is now being
carried out in our research group. The results of this
study will appear in a future publication.

This completes our analysis of those ionization opera-
tors which, in zeroth order, are described by C;. An
analogous derivation can be carried through for the
zeroth-order operators C; C, C}, which correspond to
shake-up states of the ion.

V. CONCLUSION

In this paper we have presented a perturbation theory
analysis of the EOM in which the excitation or ioniza-
tion energy (and operator) are obtained in order-by-
order expansions. By choosing the Hartree~Fock
ground state |0) as our reference function and the Har-
tree—Fock Hamiltonian as our zeroth-order Hamiltonian,
we were able to obtain exact expressions for E,1, E,2,
E,3, and Oj1 in terms of a set of zeroth-order energies
{E, o} and operators {0}y, Oyol- Closed formulas for
these quantities were given for electronic excitations
whose zeroth-order operators are C,, C, as well as for
ionizations whose zeroth-order operators are Cj.

In our analysis of electronic excitation processes, we
were able to show that certain two particle~two hole
operators {C,. C} CyC,} are present in the correct first-
order excitation operator. The fact that these terms
are not included in the conventional random-phase ap-
proximations implies that the RPA is not capable of
yielding excitation energies (excitation operators) which
are correct through second (first) order.

In analyzing those ionization states which are de-
scribed in zeroth order by C;, we found that the cor-
rect first-order ionization operator contains only those
terms which are present in the second-order Dyson
equation of Green’s function theory. We can, therefore,
conclude that a solution of the Dyson equation is capable
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of yielding ionization energies which are correct
through second order.

Although the results of this paper do not necessarily
provide more economical or more highly accuracte
methods for studying excitation and ionization processes,
they do allow us to generate, in a systematic and rea-
sonable fashion, that set of operators which must be
included in any theory (EOM, GF, etc.) in order to
guarantee that Oj or E, is computed correctly through
some chosen order. This primary result will hopefully
be a valuable tool for use in developing new approaches
to investigate electronic or ionization spectroscopy.
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APPENDIX A

Our goal is to establish and clarify the completeness
relation given in Eq. (11) which has been extensively
used in the developments presented in Sec. II. We as-
sume that we have found a set of (number conserving or
ionizing) operators {O},} which, when operating on some
reference state |g), generate (with 1g))* a complete
set of functions {0 s0lg) for the system of interest. We
further assume that these operators obey the consis-
tency equation O,,lg)=0.

The completeness relation indicated in Eq. (11) must
be proven within the framework of the scalar product

|

given below:
(A|B)=(g|A*B+BA*|g) . (A1)

If Eq. (11) does express a resolution of the identity
operator, we can rewrite (4| B) as

(A| B)=[(A|O3), (A]0y)] A [ (A2)

(O B)

If the set of operators 03, O,, are chosen as indi-
cated in Secs. III and IV, the basis operators can easily
be shown to obey the following orthonormality condi-
tions:

(O] Bj

(0|0%)=1, (A3)
(© ;ol Oy)= (oxol 03)=0, (A4)
(oxol Owl=%1; (A5)

then the A matrix reduces to

10
A= 0s1 | (A6)

and Eq. (Al) can be rewritten as

(4] B)=3_ {(A]| 03)(030] B)£ (4] 0,0)(04| BY}. (A7)

Writing out explicitly the four scalar products which
appear on the right hand side of Eq. (A7) and using the
consistency conditions (0,o|g)=0), we obtain

(A| B)=2_ {(g]| A* 03+ 03,4°| &) (g] Osp B+ BOyy| g) (| A* 0,0x 050 4%| 2) (g 03B+ BOY| g)}
A

= 2. {(2|4* 03| 2) (2] 00 B| 2)+ (2| BOLo| &) (2] OroA| 23} (A8)

Since the set of functions {03},|g)} forms a complete set
of excited electronic or ionic states, e.g., in the elec-
tronic excitation case they generate the set of singly,
doubly, triply, etc. excited Slater determinants which
are known to be complete if the spin orbital basis used
in their construction is complete, we can use the com-
pleteness relation within the common (wavefunction)
scalar product

for ionic states (A9)

1=3" 0%/ &) (gl O
A
or

1=2 0%/ 2) (2] Oro+ | 8) (g] for excited states (A9")
A

to express Eq. (A8) as
(A| B)={(g|A*B|g)+(g| BA*|g) . (a10)

The term [(g1A*1g) (g| Blg) - {(g| Blg) (gl A*|g) ], which
arises in the electronic excitation case, vanishes iden-
tically. Thus, we are left with

(A| B)=(g|A*B+ BA*|g),

which demonstrates that the completeness relation

r

given in Eq. (11) is indeed consistent with our definition
of the scalar product.

APPENDIX B

In the random phase approximation (RPA), as dis-
cussed by Rowe, ! or in the equivalent TDHF which has
been previously reviewed by Jgrgensen,’ the approxi-
mate electronic excitation operator

0%= D {¥na)C} Cy - ZnaN)CL C, } (B1)

mya

is substituted into the basic equations of motion

(glo\.[H,03]1-[H,03]0,.|8)
=8y AE, (g| 0,05~ 030,.|2)

or
(0| H| 03)=6,,.AE (01| OF) _ (B2)
to yield the folloWing working equations:
A B Y () Y Q)
_a*-m> Z () =AE‘(<z w)
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The A and B matrices are defined by

Apans={8|[CiCpy [H, C1 Collg) = (CaC,|H| €1 Cp)  (BA)
and
Be,no={81[C2 Cus [H, C5C 11| 2) = (Cr .| B C5 C,), (B5)
which, if evaluated using the Hartree—Fock ground
state |0) for } g), reduce to

Apg,n6= OmnDeo{€m — €5) + (mb| en) (B6)
and

B no=(mn| €6) . (B7)

If Eq. (B3) is solved by the partitioning technique %%
in which the {Z,,} and {Y,,..} are eliminated in favor
of the single expansion coefficient Y, ,, one obtains
{through second order)

AEL = Ama.ma + E
n,8
(#m, )

[AZ, &(AE, - €, +€)?

+BZ, s(AE,+e,— €)t].  (B8)

Making use of Eqs. (B6) and (B7) and approximating
AE, by €, — €, on the right hand side of Eq. (B8), one
obtains

n— €q+(mal am+E | (mB|@n)|?

(#m.a)

AE,= €

(€p— €u+ € — €)1+ | (mn| @B)|Hep+ €, — €4~ €)'].

(B9)

This is precisely the same as E,1[see Eq. (21)] plus
the p—h and h—-p contributions to E,2z which were dis-
cussed following Eq. (22) of the text.

*Alfred P. Sloan Fellow.

TOn leave from Dept. of Chem., Aarbus University, Aarhus,
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isee, for example, D. J. Rowe, Rev. Mod. Phys. 40, 153
(1968); D. J. Rowe, Nuclear Collective Motion: Models and
Theory (Methuen, London, 1970). The eigenoperators and
eigenvalues of the super operator Hamiltonian are easy to
understand. The eigenoperator O can be expanded in a com~
plete set of fe.g., for ionization potentials) basis operators
-1y a¥

0i=% T C i ar,
N=0 E,1

where the functions |2¥-1yand 11¥) are exact N—1and N elec-
tron eigenstates, The Eq. (1) can then be written as

m’ O;] =El O;

or

D) C(N) {EN—I EN —El}lkNA)(lN =0
N=0 E,1

Because the Ik” -1%(1¥| are complete and linearly independent,

we can conclude that either C{ =0 or E,=E}-! —~EY; that is,
the O, are given by

Oy = BV (1Y |
and
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