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Molecular anions possessing excess internal vibrational and/or rotational energy can eject their “extra” electron
through radiationless transitions involving non-Born-Oppenheimer coupling. In such processes, there is an
interplay between the nuclear and electronic motions that allows energy to be transferred from the former to
the latter and that permits momentum and/or angular momentum to also be transferred in a manner that
preserves total energy, momentum, and angular momentum. There are well established quantum mechanical
expressions for the rates of this kind of radiationless process, and these expressions have been used successfully
to compute electron ejection rates. In this paper, we recast the state-to-state quantum rate equation into the
time domain and into a form in which the departing electron tunnels through a radial potential. The time
domain expressions are especially useful for polyatomic systems where the multidimensional time correlation
function decays to zero on a very short time scale. The tunneling framework is more appropriate when the
perturbative assumptions, upon which the time-domain expressions are based, are questonable.

I. Introduction

A. Relation to Experiments.Numerous specroscopy experi-
ments have been carried out over a number of years in the
Lineberger,1 Brauman,2 and Beauchamp3 laboratories in which
electronically stable negative molecular ions prepared in excited
vibrational-rotational states have been observed to eject their
“extra” electron. For the anions considered in those experiments,
it is unlikely that the anion and neutral molecule potential energy
surfaces undergo crossings at geometries accessed by their
vibrational motions. It is therefore believed that the mechanism
of electron ejection must involve vibration-rotation to electronic
energy transfer in which couplings between nuclear motions
and electronic motions known as non-Born-Oppenheimer (BO)
couplings cause the electron ejection rather than curve crossings
in which the anion’s energy surface intersects that of the neutral
at some geometries.

In earlier works, we4 and others5 have formulated (within a
first-order Fermi “golden rule” perturbative framework)6 and
computed non-BO coupling strengths for several of the anion
systems that have been studied experimentally including the
following.

(1) Dipole-bound anions4f,5a,b in which the extra electron is
attracted primarily by the dipole force field of the polar molecule
and for which rotation-to-electronic coupling is most important
in inducing electron ejection.

(2) NH- (X2Π) for which4d vibration of the N-H bond
couples only weakly to the nonbonding 2pπ orbital and for which
rotation-to-electronic coupling can be dominiant in causing
electron ejection for high rotational levels.

(3) Enolate anions4e that have been “heated” by infrared
multiple photon absorption for which torsional motion about
the H2C-C bond, which destabilizes theπ orbital containing
the extra electron, is the mode contributing most to vibration-
to-electronic energy transfer and thus to ejection.

Our calculations have been successful in interpreting trends
that are seen in the experimentally observed rates of electron
ejection. However, in our opinion, there is a need to extend the
theoretical framework in two directions. First, the time-
independent state-to-state golden rule expressions used to date
are too cumbersome for use in highly excited polyatomic anions
(containingN atoms); it is simply not feasible to compute the
3N-6-dimensional vibrational wave functions at high internal
energies. Second, a tool that does not rely on the perturbative
treatment upon which the golden rule expressions are based is
needed; this is essential whenever the non-BO couplings are
not weak enough to be viewed as weak perturbations.

It is the purpose of this paper to effect such extensions in the
theoretical frameworks by recasting the rate equations both (a)
in the time domain rather than state-to-state expressions and
(b) using a radial electron tunneling framework5 that does not
require perturbative assumptions.

B. Review of State-to-State Quantum Rate Expression.
Within the Born-Oppenheimer approximation, the electronic
Schrödinger equation

is solved to obtain electronic wave functionsψk(r|Q), which
are functions of the molecule’s electronic coordinates (col-
lectively denotedr) and atomic coordinates (denotedQ), and
the corresponding electronic energiesEk(Q), which are functions
of the Q coordinates. The electronic Hamiltonian

contains, respectively, the sum of the kinetic energies of the
electrons, the electron-electron repulsion, the electron-nuclear
Coulomb attraction, and the nuclear-nuclear repulsion energy.

he(r|Q) ψκ(r|Q) ) Ek(Q) ψk(r|Q) (1)

he(r|Q) ) Σi{- p/2me∇i
2 + 1/2 Σj*ie

2/ri,j - ΣaZae
2/ri,a } +

1/2Σa*bZaZbe
2/Ra,b (2)
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The rateR (sec-1) of transition from a Born-Oppenheimer
initial stateΨi ) ψiøi (ψi is the anion electronic function and
øi is the anion vibration/rotation function) to a final stateΨf )
ψføf (ψf andøf are the neutral plus ejected electron electronic
and vibration/rotation functions) is given, via first-order per-
turbation theory,4,6 as

Here,εi,f are the vibration-rotation energies of the initial (anion)
and final (neutral) vibration-rotation states (øi and øf ,
respectively), andE is the kinetic energy carried away by the
ejected electron (e.g., the initial state corresponds to an anion
and the final state to a neutral molecule plus an ejected electron).
The densityF of translational energy states of the ejected elec-
tron is related to the kinetic energy byF(E) ) 4πmeL3(2meE)1/2/
p. Here and elsewhere, we use the short-hand notationPψPø/µ
to symbolize the action of the multidimensional derivative
operators arising in the non-BO couplings:

whereRa runs over the Cartesian coordinates (Xa,Ya,Za) of the
ath atom whose mass isma.

It should be noted that the energy conservingδ(εf + E -
εi) appearing in eq 3 doesnot imply a crossing between the
anion and neutral energy surfacesEi(Q) andEf(Q), respectively.
For all of the anions discussed in this paper, the anion’s
electronic energyEi(Q) lies below the neutral’s electronic energy
Ef(Q) for all geometriesQ accessed by vibrational/rotational
motion of the anion. However, because the anion has “excess”
vibrational and/or rotational energy, itstotal energyεi exceeds
the total energyεf of the (vibrationally/rotationally) colder
neutral. As a result, thetotal energy conservation conditionδ(εf

+ E - εi ) can be fulfilled when the ejected electron carries
away the excess energyE as its asymptotic kinetic energy.

C. The Electronic Non-BO Matrix Elements.The integrals
over the anion and neutral plus free electron electronic states

are known to be large in magnitude only under the following
special circumstances.

(1) The orbital of the anion from which an electron is ejected
to form the stateψf of the neutral (usually the anion’s highest
occupied molecular orbital (HOMO)) mustbe strongly modu-
latedor affected by movement of the molecule in one or more
directions (Q). That is,∂ψi/∂Q, which appears inPψi , must be
significant or the above integral will be small.

(2) The state-to-state energy gap,εi - εf , which is equal to
the kinetic energyE of the ejected electron, must not be too
large; otherwise, the spatial oscillations in the ejected electron’s
wave functionψf will be so rapid as to render overlap with
∂ψi/∂Q negligible, again making the above integral small.

Moreover, symmetry can causemi,f ) 〈ψf|P|ψi〉 to vanish if
the direct product of the symmetry ofψi and of ∂/∂Q do not
match that ofψf . Viewed another way, the direct product of
the HOMO’s symmetry and the symmetry of the vibration or
rotation coordinate (Q) from which energy is transferred
determines the symmetry of the ejected electron’s continuum
orbital which, in turn, determines the angular distribution of
the ejected electron.

The derivatives (i.e., the dynamic responses) of the anion’s
orbitals to nuclear motions∂ψi/∂Q arise from two sources.

(1) An orbital’s LCAO-MO coefficients depend on the
positions of the atoms (or, equivalently, on the anion’s bond
lengths and internal angles). For example, theπ* orbital of an
olefin anion that contains the “extra” electron is affected by
stretching or twisting the C-C bond involving this orbital
because the LCAO-MO coefficients depend on the bond length
and twist angle. As the bond stretches or twists, theπ* orbital’s
LCAO-MO coefficients vary, as a result of which the orbital’s
energy, radial extent, and other properties also vary.

(2) The atomic orbitals (AOs, which are denotedøµ)
themselves dynamically respond to the motions of the atomic
centers. These dynamical responses occur in∂ψ/∂Q as∂øµ/∂Q,
which can be evaluated using the same analytical derivative
methods that have made computation of potential energy
gradients and Hessians powerful tools in quantum chemistry.
For example, vibration of the X2Π NH- anion’s N-H bond
induces dπ character into the 2pπ orbital containing the extra
electron as shown in Figure 1, because the radial derivative of
a px orbital, ∂pz/∂R, produces a function of dxz symmetry.
Alternatively, rotation of this anion’s N-H bond axis causes
the 2pπ HOMO to acquire some 2pσ character because∂px/∂θ
contains terms of pz character (see Figure 1 for a pictorial
explanation).

Further insight into how the LCAO-MO coefficients vary with
geometry can be achieved by way of the Hellmann-Feynman
theorem in the form

One sees that the electronic non-BO matrix elements will be
enhanced at geometries where the anion and neutral potential
surfaces approach closely. Note that this requirement (of small
Ei - Ef) meaning that the energy surfaces are close says nothing
about the anion-to-neutral state-to-state energy gapεi - εf ,
which determines the kinetic energyE carried away by the
electron. Enhancement is also effected when the initial and final
states have a strong matrix element of the “force operator”∂he/
∂Q. The latter is effectively aone-electronoperator involving
derivatives of the electron-nuclear Coulomb attraction potential
Σi Σa Zae2/ri,a, so the matrix element〈ψf|∂he/∂Q|ψi〉 can be
visualized as〈φf|∂he/∂Q|φi〉, whereφi is the anion’s HOMO and
φf is the continuum orbital of the ejected electron. At geometries
where the anion-neutral energy surfaces are far removed, the
denominator in eq 6 will attenuate the coupling. If the state-
to-state energy differenceεi - εf ) E accompanying the electron
ejection is large, the integral〈φf|∂he/∂Q|φi〉 will be small because
the continuum orbitalφf will be highly oscillatory and thus will
not overlap well with (∂he/∂Q)φi.

In summary, for non-BO coupling to be significant,4 the
anion’s HOMO must be strongly modulatedby a motion
(vibration or rotation) of the molecule’s nuclear framework and

Figure 1. Orbital response of NH-’s 2pπ orbital to (a) vibrtation of
the N-H bond (left) and (b) rotation of the N-H bond (right).

〈ψf|-ip∂he/∂Q|ψi〉/(Ei - Ef - E) ) 〈ψf|-ip∂/∂Q|ψi〉 )
〈ψf|P|ψi〉 ) mi,f (6)

R ) (2π/p) ∫|〈øi|〈ψi|P| ψf〉(P/µ)øf〉|2δ(εf + E - εi )

F(E) dE (3)

(Pψf)(P/µøf ) ) Σa(-ip∂ψf/∂Ra)(-ip∂øf/∂Ra)/ma (4)

mi,f ) 〈ψf|P|ψi〉 (5)

Electron Ejection in Molecular Anions J. Phys. Chem. A, Vol. 103, No. 47, 19999409



the state-to-state energy gap must not be too largeas to render
the HOMO-to-continuum orbital overlap insignificant. For the
HOMO to be strongly modulated, it is helpful ifthe anion and
neutral energy surfaces approach closelyat some accessible
geometries.

It should be emphasized that it is necessary but not sufficient
for Ef(Q) - Ei(Q) to be small over an appreciable range of
geometries; this only guarantees that the denominator in eq 6
is small. It is also necessary thatEf(Q) - Ei(Q) decrease at a
significant rate as the point of closest approach is reached; this
is why we say the surfaces mustapproach closely. If Ef(Q) -
Ei(Q) were small yet unvarying over some range of geometries,
then the HOMO’s electron binding energy (and thus radial
extent) would remain unchanged over this range of geometries.
In such a case, movement alongQ would not modulatethe
HOMO, and thus∂ψi/∂Q would vanish. Let us consider a few
examples to further illustrate.

D. A Few Examples.In Figure 2 are depicted anion and
neutral potential curves that are qualitatively illustrative of1b,4d

the X2Π NH- case mentioned earlier. In this anion, the HOMO
is a nonbonding 2pπ orbital localized almost entirely on the N
atom. As such, its LCAO-MO coefficients are not strongly
affected by vibration of the N-H bond (because it is a
nonbonding orbital). Moreover, the anion and neutral surfaces
have nearly identicalRe andωe values, and similarDe values,
as a result of which these two surfaces are nearly parallel to
one another over a wide range of internuclear distances and are
separated by ca. 0.4 eV or more than 3000 cm-1 at their minima.
It has been seen experimentally that excitation of NH- to the
low rotational states of theV ) 1 vibrational level (which lies
aboveV ) 0 NH of the neutral and thus has enough energy to
eject the electron) results in very slow (e.g., ca. 108 s-1) electron
ejection, corresponding to 1 million vibrational periods before
detachment occurs. However, excitation to high rotational levels
(e.g., J ) 40) of V ) 1 produces much more rapid electron
ejection (109-1010 s-1). These data have been interpreted as
saying that vibrational coupling is weak (i.e.,∂ψi/∂R is small)
because of the nonbonding nature of the 2pπ MO, while
rotational coupling becomes significant (i.e.,∂ψi/∂θ large) for
high J.

In Figure 3 are shown anion and neutral potential curves, as
functions of the “twist” angle of the H2C-C bond in a typical
enolate anion2,4e such as acetaldehyde enolate H2CCHO-.
Angles nearθ ) 0 correspond to geometries where the pπ orbital

of the H2C moiety is delocalized over the two pπ orbitals of the
neighboring C and O atoms, thus forming a delocalizedπ
HOMO. At angles nearθ ) 90°, the pπ orbital of the H2C group
is no longer stabilized by delocalization, so the HOMO’s energy
is much higher. In this case, excitation of, for example,V ) 7
in the H2C-C torsional mode of the anion might be expected
to produce electron ejection becauseV ) 7 of the anion lies
aboveV ) 0 of the neutral. However, over the range ofθ values
accessible to both theV ) 7 vibrational function of the anion
and theV ) 0 function of the neutral, the anion-neutrral energy
surface gap is quite large (i.e.,Ef(Q) - Ei(Q) is large even
thoughεi - εf is small). In contrast, excitation ofV ) 9 of the
anion could produce more rapid electron ejection (toV ) 2 of
the neutral, but not toV ) 0 of the neutral) because for theV )
9 f V ) 2 transition there are angles accessed by bothV ) 9
anion andV ) 2 neutral vibrational functions for whichEf(Q)
- Ei(Q) is small and changing; moreover, the state-to-state gap
εi - εf is also small in this case.

II. Time Correlation Function Expression for Rates

1. Time Domain Expression for Electron Ejection Rates.
We begin with the6,4gWentzel-Fermi “golden rule” expression
given in eq 3 for the transition rate between electronic states
ψi,f and corresponding vibration-rotation statesøi,f appropriate
to the non-BO case. We recall thatεi,f are the vibration-rotation
energies of the molecule in the anion and neutral molecule states,
E denotes the kinetic energy carried away by the ejected
electron, and the density of translational energy states of the
ejected electron isF(E). Also recall that we use the short hand
notation to symbolize the multidimensional derivative operators
that embody the momentum exchange between the vibration/
rotation and electronic degrees of freedom:

whereRa is one of the Cartesian coordinates (Xa,Ya,Za) of the
ath atom whose mass isma.

In the event that some subset{Qi} of internal vibration or
rotation coordinates have been identified as inducing the
radiationless transition, (Pψf)(P/µøf) would representΣj(-ip∂ψf/
∂Qj)(-ip∂øf/∂Qj)/(µj), whereµæ is the reduced mass associated
with the coordinateQj. It is usually straightforward to identify
which distortional modes need to be considered by noting which
modes most stronglymodulate the anion’s HOMO. So, for the

Figure 2. Anion (lower) and neutral (upper) potential energy surfaces
illustrative of NH- where the surface spacing does not vary strongly
alongR.

Figure 3. Anion (lower) and neutral (upper) potential energy surfaces
illustrative of enolate cases where the surface spacing varies strongly
along the H2C-C torsion angleθ and becomes very small nearθ )
90°.

(Pψf)(P/µøf) ) Σa(-ip∂ψf/∂Ra)(-i p∂øf/∂Ra)/ma (4)
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remainder of this work, we will assume that such active modes
have been identified as a result of which the sumΣj(-ip∂ψf/
∂Qj)(-ip∂øf/∂Qj)/(µj) will include only these modes. The
integration over all of the other vibration/rotation coordinates
contained in the matrix element〈øi|〈ψi|P| ψf〉(P/µ)øf〉 can then
be carried out (assuming the electronic element〈ψi|P|ψf〉 to not
depend significantly on these coordinates) to produce an
effective Franck-Condon like factor (FC) for these inactive:

Since, by assumption, the anion and neutral molecule do not
differ significantly in their geometries (and vibrational frequen-
cies) along the coordinates contributing to the FC factor
(otherwise, the anion-neutral energy gap would depend sub-
stantially on these modes), the FC factor is probably close to
unity in magnitude. Hence, for the remainder of this paper, we
will focus only on the active-mode part of this expression and
will do so assuming only one such mode is operative (i.e., we
treat one active mode at a time).

Recalling the definition of the electronic coupling matrix
elementmi,f ) 〈ψf|P|ψi〉, and realizing thatP is a Hermitian
operator, allows the non-BO rateR to be rewritten as

If the Fourier integral representation of theδ function is
introduced and the sum over all possible final-state vibration-
rotation states{øf} is carried out, thetotal rate RT can be
expressed as

Using (εf + E)〈øf| ) 〈øf|(T + Vf + E), (εi)|øi〉 ) |(T + Vi)øi〉,
andΣf|øf〉〈øf| ) 1, gives

In this form, the rate expression looks much like that given
for the photon absorption rate given in many sources,7 but with
mi,f(P/µ) replacing the molecule-photon electronic transition
matrix elementµi,f. That is,RT is given as theFourier transform
of the oVerlap of two time propagated functions Fi andF2.

(a) F1 is the initial vibration-rotation stateøi upon which
the non-BO perturbationmi,f(P/µ) acts after which propagation
on theneutral molecule’s potential surfaceVf is effected via
exp(-it(T + Vf)/p).

(b) F2 is the initial functionøi propagated on the anion’s
surface Vi via exp(-it(T + Vi)/p) (producing, of course,
exp(-itεi/p)øi) after which the perturbationmi,f(P/µ) is allowed
to act. The time correlation function〈F2|F1〉 is then Fourier
transformed at energyE ) εi - εf and multiplied by the density
of statesF(E) appropriate to the electron ejected with kinetic
energyE.

2. Electron Ejection is Not Closely Analogous to Photon
Emission.It is tempting to conclude that the process of electron

ejection induced by non-BO coupling can be viewed as very
similar to photon emission. However, such is not at all the case,
as we now illustrate (also consult Figure 4). The rate of photon
emission from an excited state with energyεi to a final state
with energyεf is expressed in many sources6,7 as

Introducing the electronic dipole transition matrix elementµi,f

) 〈ψf|V|ψi〉 and using identities analogous to those employed
above to move from the state-to-state to the time domain, this
rate expression can be reduced to

which is the photon-emission analogue of eq 10.
If one makes the (classical) assumption that the nuclear

motion kinetic energy operatorT commutes withVi,f and with
mi,f in the non-BO case and withµi,f in the photon case, the
time integrations can be carried out and the following expres-
sions are obtained from eqs 10 and 12:

For anions that are electronically bound, the anion’s electronic
energyVi(Q) liesbelowthe neurtral molecule’s electronic energy
Vf(Q) as depicted in Figures 2-4. As a result,Vf(Q) - Vi(Q) is

〈øi|〈ψi|P|ψf〉(P/µ)øf〉 )

Πj)inactive∫dQj〈øi,j|øf,j〉 Πj)active∫dQj〈øi,j|〈ψi|P|ψf〉

(P/µ)øf,j〉 ) FCΠj)active∫dQj〈øi,j|〈ψi|P|ψf〉(P/µ)øf,j〉 (7)

R ) (2π/p) ∫〈(P/µ)øi|mi,f* |øf〉〈øf|mi,f(P/µ)øi〉

δ(εf + E - εi) F(E) dE (8)

RT ) (2π/p)Σf ∫(1/2πp) ∫exp[it(εf - εi + E)/p]

〈(P/µ)øi|mi,f* |øf〉〈øf|mi,f(P/µ)øi〉 dt F(E) dE (9)

RT ) (2π/p) ∫(1/2πp) ∫F(E)〈mi,f(P/µ)

exp(-it(T + Vi)/p)øi|exp(-it(T + Vf)/p)mi,f(P/µ)øi〉 dt

exp(-itE/p) dE (10)

Figure 4. (a) Ground (lowest) and excited (upper) potential energy
surfaces arising in the photon emission case. (b) Anion (lower) and
neutral (upper) potential energy surfaces for the electron ejection case.

R ) (2π/p)|〈ψiøi|V|ψføf〉|2 δ(εf - εi + pω) (11)

RT ) (2π/p)(1/2πp) ∫exp[-itω]〈µi,f exp(-ithi/p)øi|exp

(-ithf/p)µi,f|øi〉 dt (12)

RT ) (2π/p) ∫F(E)〈mi,f(P/µ)øi|δ(Vf + E - Vi)mi,f

(P/µ)øi〉 dE (10a)

RT ) (2π/p)〈µi,føi|δ(Vf + pω - Vi)|µi,føi〉 (12a)
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positive at all geoemtries, and becauseE is also a positive
quantity, there are no values ofQ for which the argument of
the δ function in eq 10a vanishes. In contrast, in the photon
emission case, the final (ground) state surfaceVf(Q) lies below
the initial (excited) state surfaceVi(Q), soVf - Vi is a negative
quantity. Therefore, values of (the positive)pω can be found
for which the argument of theδ function in eq 12a vanishes.

The fact that the simplest (purely classical) picture of the
electron ejection and photon emission events produce entirely
different results (the former predicts a vanishing rate, the latter
does not) indicates that these two processes are not analogous.
The essential difference lies in how the total electronic energy
changes in the two events.

(a) In photon emission, a positive energy photon is ejected,
and the system moves from a state of higher electronic energy
to a state of lower electronic energy. The vibration/rotation
energy is altered only in a secondary way (i.e., because the
forces experienced on the nuclei changes once the electronic
state changes).

(b) In the electron ejection case, a positive energy electron
is ejected, but the system moves from a state oflowerelectronic
energy (the anion) to a state ofhigher electronic energy (the
neutral). The vibration/rotation energy plays anessentialrole
because its depletion provides the energy (and momentum) that
allows the electronic energy toincrease.

3. When is the Time-Domain Expression Useful?The rate
expressions given in eqs 3 and 10 are formally identical.
However, the practical implementation of eq 10 will be favorable
when one is treating polyatomic molecules and, especially, if
one can identify specific geometries (Q*) near which the
electronic non-BO matrix elementsmi,f are most strongly
focused. Examples of two such situations are shown in Figure
5. In these cases, the initial (t ) 0) wave functionmi,f(P/µ)øi〉
to be propagated on the final (neutral) energy surface will be
localized to those regions (Q*) wheremi,f is localized. The other
time-evolved function entering into the correlation function of
eq 10 is mi,f(P/µ) exp(-it(T + Vi)/p)øi , which is equal to
exp(-it(εf/p)mi,f(P/µ)øi; this function is also spatially localized
becausemi,f is. As a result of this localization, the time
correlation function

will rapidly (i.e., on a time scale of the molecular vibrations
that are most important in promoting the non-BO coupling)
decay to zero.C(t) will display nonzero values again at later
times as the time evolving function exp(-it(T + Vf)/p) mi,f(P/
µ)øi〉 returns to near where it started att ) 0. However,
especially in polyatomic anions, these recurrences will contribute
little amplitude toC(t) because of rapid dephasing along each
of the 3N - 6 vibrational modes.

Because of the rapid decay ofC(t) and because of the
availability of efficient tools8,9 for handling short-time quantum
wave function propagation even in mulitdimensional systems,
the time-dependent prescription given in eq 10 will be favored
over the state-to-state time-independent eq 3 when treating
polyatomic anions. However, both eqs 3 and 10 are based on a
perturbative treatment of the non-BO coupling and, thus, are
expected to be restricted to cases where the perturbation is weak
as reflected in the fact that the rate of electron ejection is orders
of magnitude slower than rates of vibrations or rotations. For
the examples discussed earlier (e.g., NH-, enolates, etc.), it was
indeed the case that electron ejection rates were much slower

than even rotations, so the golden rule perturbative approach
could be used.

However, there are species for which the electron is so weakly
bound (and thus the separation in time scales between rotation/
vibration motion and electronic motions is not large) that a
perturbative approach likely will not work. We now turn our
attention to a framework that allows such extreme cases to be
more adequately addressed.

III. Tunneling View of Electron Ejection

When considering anions with very weakly bound (e.g.,
1-100 cm-1) electrons, it may be more appropriate to reverse
the conventional assumption of fast moving electrons and slow
moving nuclei as postulated in the BO approximation. In
particular, in such systems, it is useful to introduce potential
energy surfaces that describe the interaction of an electron (at
a fixed locationr, θ, φ) with a neutral molecule whose geometry
is averaged over its vibrational motion. Let us proceed to explore
this role-reversed point of view.

The following Hamiltonian is used5 to describe the neutral
molecule (whose vibrational and orientational coordinates are
collectively denotedQ) and the “extra” electron (whose spatial
coordinates arer,θ,φ) and the interaction potentialV between
the electron and the neutral:

The electronic (n), vibrational (V), and rotational10 (J,M)
eigenstates{ψn,V,J,M} of the neutral are solutions of the Schro¨-

C(t) ) exp(itεf/p)〈mi,f(P/µ)øi|exp(-it(T + Vf)/p)mi,f(P/µ)øi〉
(13)

Figure 5. Two illustrations of how the electronic non-BO matrix
elementmi,f tends to be largest at geometries where the anion and neutral
surfaces approach closely.

H ) h(Q) + L2(θ,φ)r-2/2me+ V(r ,Q) - pr-2/

2me{∂/∂r(r2
∂/∂r)} (14)
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dinger equation for whichh(Q) is the Hamiltonian

and theEn,V,J,M are the electronic/vibrational/rotational energy
levels of the neutral molecule.

To generate a series of “diabatic” energy surfaces that
describe the potential energy of interaction of the extra electron
with the neutral moleculeaVeragedover the internal (electronic,
vibrational, and rotational) motions of the neutral, we evaluate
the diagonal elements of the Hamiltonian that contains all terms
in eq 14 except the radial motion of the extra electronH′ )
h(Q) + L2(θ,φ)/2mer2 + V(r ,Q) within a basis{Ψa,l,m,n,V,J,M )
Yl,m(θa,φa)ψn,V,J,M(Q)} consisting of products of neutral molecule
functions ψn,V,J,M(Q) and angular functionsYl,m for the extra
electron (relative to each atomic center a in the molecule).

In this product basis, thediagonal elementsof the Hamilto-
nian H′ are labeled by the quantum numbers of the neutral
molecule (n,V,J,M) as well as by the atomic center (a) and
electronic angular momentum quantum numbersl and m and
are given by

For notational simplicity in describing how these diagonal
elements and the off diagonal elements discussed below couple
to generate diabatic energy surfaces, we use a single index (V)
to represent the neutral molecule quantum numbers (n, V, J,
M). Each neutral molecule level with product wave function
ΨV,a,l,m is coupled throughV(Q,r ) to other levelsΨV,a′,l′,m′ as
reflected in the off-diagonal elements of this same Hamiltonian:

Both the diagonal and off-diagonal matrix elements remain

functions ofr, the radial distance of the extra electron from the
neutral molecule.

The nature and strength of the coupling elementsHV,l,m,V′,a′,l′,m′
is governed by howV depends on (a) the angular location of
the extra electronθa,φa relative to the atomic centersa, (b) the
distance of the extra electronra from these centers, and (c) the
variation ofV along the 3N - 6 internal vibrational modes of
the neutral. The latter dependence is often represented in terms
of a series expansion ofV about some reference geometry (Q0)
(usually some equilibrium geometry):

The characteristics ofV described above in (a) and (b) allow
V to couple basis states belonging to thesameneutral molecule
level (n, V, J, M) but having different atomic centersa and
different angular dependencel,m to produce what we will call
diabatic states (for reasons made clear later). Let us consider
an example to illustrate such couplings. In Figure 6 are shown
the conventional Born-Oppenheimer energy surfaces for a
typical alkali halide (LiX) and its anion in which the extra
electron is bound to the positive end of the polar LiX molecule
in an orbital consisting primarily of s and pσ atomic orbitals on
the Li center. This bound orbital results from the coupling ofl
) 0, m ) 0 andl ) 1, m ) 0 basis orbitals located primarily
on the Li atom. Also shown in Figure 6 is the anion orbital of
a typical enolate. This orbital results from couplingl ) 1 orbitals
(having m ) 0 with the z-axis directed perpendicular to the
molecular plane) on the left C, middle C, and O centers. In
terms of the diabatic states discussed above, these orbitals are
solutionsF(r) to a radial Schro¨dinger equation

whereEdiabatic(r) is the attractive diabatic potential obtained by
coupling basis states having indenticaln, V, J, M quantum
numbers but differenta, l, m values, andε is the orbital energy
of the HOMO orbital(s) shown in Figure 6.

Figure 6. Anion and neutral energy curves (top) representative of the alkali halide species together with a depiction of the anion HOMO of such
LiX species (bottom left) and of the anion HOMO of an enolate (bottom right).

h(Q)ψn,V,J,M ) En,V,J,Mψn,V,J,M (15)

Hn,V,J,M,a,l,m) En,V,J,M+ p2l(l + 1)/2mera
2+

∫|Yl,m(θa,φa)|2 |ψn,V,J,M(Q)|2 V(ra,θa,φa,Q) dQ sin θadθadφa

(16)

HV,a,l,m,V′,a′,l′,m′ ) ∫ΨV,a,l,m*

V(Q,r,θ,φ) ΨV′,a′,l′,m′ dQ sin θ dθ dφ (17)

V(Q,r ) ) V(Q0,r ) + Σk)1,3N-6(∂V/∂Qk)(r)(Qk - Qk
0) +

Σk,m(∂2V/∂Qk∂Qm)(r )(Qk - Qk
0)(Qm- Qm

0) + ... (18)

-p/2mer
2{∂/∂r(r2

∂/∂r)F} + Ediabatic(r)F ) εF (19)
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Because it is rare for a neutral molecule to support more than
one bound anion state (i.e., to have more than one bound virtual
orbital), the effects discussed in (a) and (b) most commonly
will couple basis states having commonn, V, J, M quantum
numbers to produce only one attractive diabatic potential plus
a family of repulsive potentials. Each of the repulsive surfaces
can be labeled by anl quantum number because, at large
electron-molecule distances, these surfaces vary withr as l(l
+ 1)p2/2mer2. This situation is illustrated in Figure 7 where the
single attractive and many repulsive surfaces are shown for one
n,V,J,M level.

The above discussion covered howV(Q,r) couples basis states
with different a,l,m but with identicaln,V,J,M (i.e., all states
derived from a given state of the neutral molecule). However,
V also couples states having differentn, V, J, andM quantum
numbers; in fact, it is only through such interactions that
transitions among various internal states of the neutral occur
and, hence, energy flows to the extra electron. It is by way of
these interactions that the diabatic curves discussed in the
preceding two paragraphs evolve into adiabatic curves that we
detail further below.

The strength of the coupling to various internal states depends
on the magnitudes of the derivatives appearing in eq 18. For
example, in the LiX systems, radial vibrational motion modu-
lates the anion’s HOMO most strongly, so∂V/∂R is the dominant
term in the expansion of eq 18. In the enolate cases, twisting
motion (θ) of the R2C group is the primary source of HOMO
modulation, so∂V/∂θ is largest. If a dominant motion can be
identified as in these two examples, then one can approximate
the effect ofV in terms of a single contribution (∂V/∂Q) (Q -
Q0) to first order. Such terms can be expected to give rise to
couplings between internal states of the neutral which differ
(by unity, within the harmonic approximation) in their quantum
numbers that label that motion (Q) which dominates∂V/∂Q.
Again considering the LiX and enolate cases, states with

different bond stretching (LiX) or torsional (enolate) vibrational
quantum numbers should experience the most important cou-
plings.

In Figure 8, are shown thefamilies of diabatic curVes (one
attractive and numerous repulsive for eachV level of the neutral)
appropriate for the LiX case where radial vibrational motion
dominates. The attractive diabatic curve that connects, at large
r, to the Vth level of LiX undergoes crossings with various
repulsive diabatic curves connecting toV - 1, V - 2, andV -
3 of LiX. Because (∂V/∂R) (R - R0) is linear in the bond length
displacement, within a harmonic treatment, (a) those crossings
of diabatic curves whoseV quantum numbers differ by one will
be coupled and (b) those crossings whoseV quantum numbes
differ by 2 or more will not be coupled. As a result, the attractive
curve of theVth level will interact (to undergo anaVoided
crossing) at the left-most dot in Figure 8 to acquireV - 1
character (simultaneously causing the electronic function to
acquire morel ) 1 character). At largerr, near the second dot,
this evolvingadiabatic curVe will acquireV - 2 character (and
the electron will gainl ) 2 nature) and so forth until, at the
last dot, theV - 3 character is gained (as the electron gains
even higherl dependence). It is through this sequence of avoided
crossings that (a) thediabatic curVes generate an adiabatic
curVe through which the extra electron must tunnel radially,
(b) the vibrational energy decreases fromV, to V - 1, V - 2, and
V - 3 while the electron gains energy (and angular momentum)
as it detaches.

To determine the rate of electron ejection from the anion
(diabatic) level having quantum numbersn,V,J, andM (repre-
sented by the single quantum numberV in Figure 8), one must
solve for the rate at which tunneling occurs on the corresponding
adiabatic curve by solving the Schro¨dinger equation

Figure 7. Family of one attractive and many repulsive curves generated
for eachn,V,J,M neutral molecule level by coupling variousa,l,mvalues.
Couplings that arise in alkali halide (bottom left) and enolate (bottom
right) cases.

Figure 8. Families of attractive and repulsive curves arising from
neutral molecule levelsV, V - 1, V - 2, andV - 3 showing the crossings
of repulsive curves from lowerV levels with attractive curves from
higherV levels. For the anion level labeledV, the crossings indicated
by dots show how the attractive diabatic curve (connecting to the neutral
level V) acquiresV - 1, V - 2, andV - 3 components asr increases.
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whereV(r) is the adiabatic curve (shown as the evolving red/
yellow/blue/fucia curve in Figure 8). The energyε-

V is found
by solving the bound-state radial Schro¨dinger equation in which
V(r) is the corresponding attractive diabatic potential (shown
in red in Figure 8).

In practice, the (red)diabatic surfacecan be found, using
conventional quantum chemistry tools, as follows.

(1) One obtains the anion’s (bound) HOMOψ(r,θ,φ) and its
orbital energyε- as well as the neutral molecule’s occupied
molecular orbitals{ψj}using conventional BO quantum chem-
istry. These orbitals are expressed as expansions (e.g., for the
HOMO, ψ(r,θ,φ) ) Σa,l,m,jCa,l,m,jYl,m(θa,φa)Ra,j(ra)) in terms of
angular and radial basis functions centered on the various atoms
(a). Of course, the LCAO-MO coefficients and the orbital
energies depend on the geometry (Q) at which this calculation
is performed.

(2) One can next define an electron-molecule interaction
potential V(Q,r ) in terms of the Coulomb minus exchange
potential generated by the neutral’s occupied orbitals{ψj} plus
the Coulomb attraction potential of the underlying neutral’s
nuclei:

(3) The diabatic surfaceV(r) appropriate to the neutral
molecule in aspecifiedinternal state (n,V,J,M) is obtained from
V(Q,r ) by (a) averaging over theQ coordinates using the square
of the neutral’s vibration/rotation wave functionψn,V,J,M(Q) as
the weighting factor, (b) averaging over the extra electron’s
angular coordinatesθ,φ using|ψ(r,θ,φ)|2 as the weighting, and
(c) adding in the electronic angular kinetic energy (i.e., the
centrifugal potential) for the extra electron occupyingψ:

Because the HOMOψ(r,θ,φ) has been obtained by mixing basis
functions on all centers and with variousl,mvalues, it explicitly
contains all of the couplings among basis states with fixedn,
V, J, andM but with variousa, l, andm quantum numbers. It
is thisV(r) function that the red curve in Figure 8 represents; it
is the potential that the extra electron experiences as the nuclei
in the molecule undego their motions if there were no couplings
between the internal (i.e., electronic, vibrational, rotational)
energy of the molecule and of the extra electron.

The adiabatic curVe derived from each such diabatic curve
can be approximated by finding where the (red) diabatic curve
(computed as detailed above) belonging to a given internal level
(e.g., the level denotedV in Figure 8) intersects the first repulsive
diabatic curve connecting to the nearest lying lower level (e.g.,
that denotedV - 1 in Figure 8). This first repulsive curve can
be approximated in terms of the asymptotic energy of the
underlying (V - 1 in Figure 8) neutral level plus the extra
electron’s centrifugal potential corresponding tol ) 1, EV-1 +
1(1 + 1)p/2mera

2, and where it crosses the (red) diabatic curve
can easily be determined. Likewise, the location of the second
crossing (the second dot in Figure 8) can be estimated by finding
whereEV-1 + 1(1 + 1)p/2mera

2 andEV-2 + 2(2 + 1)p/2mera
2

intersect. In this manner, it is possible to “piece together” a
description of the red/yellow/blue/fucia adiabatic curve by

following the red diabatic curve until the first dot, moving to
the yellow curve until the second dot, then on to the blue curve
until the third dot, and, finally, on to the fucia curve (EV-3 +
3(3 + 1) p/2mera

2 ) from then on.
The rate of electron ejection is then obtained by computing

the radial tunneling rate on the red/yellow/blue/fucia curve at
an energyε-

V obtained by solving the Schro¨dinger equation (eq
20) for the radial motion of the extra electron on the red diabatic
curve. It is through this process that one can evaluate5 electron
ejection rates in terms of tunneling. As stated earlier, this
framework is especially useful when the extra electron is so
weakly attached that it makes sense to reverse the conventional
separtion of electronic and nuclear motion time scales.

IV. Summary

The rate of ejection of electrons from anions induced by non-
BO couplings can be expressed rigorously and quantum
mechanically as a Fourier transform of an overlap function
between two functions

one of which is the anion vibration-rotation functionøi acted
on by the non-BO perturbationmi,f(P/µ) and then propagated
on theneutral molecule surface, the other being the initialøi

propagated on the anion surface and then acted on bymi,f(P/µ).
In computer applications involving polyatomic anions, it is
especially efficient to computeRT in this manner using short-
time quantum wave function propagation techniques.

For an anion having a very weakly bound extra electron, it
can prove more fruitful to evaluate the rate of non-BO induced
electron detachment in terms of the radial tunneling of this
electron through an adiabatic potential. This approach arises
when one reverses the conventional BO assumption of fast
electrons and slow nuclei and introduces families of diabatic
radial potentials (for each electronic, vibrational, rotational level
of the daughter neutral molecule) that are coupled by the
electron-molecule interaction potential to generate adiabatic
radial potentials through which the electron tunnels.
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