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An analysis of the equation-of-motion (EOM) method for computing molecular electron affinities and ionization poten-
tials is presented. The method is compared with the Dyson equation approach of Green function theory. Particular empha-
sis is devoted to clarifying the similarities between these two theories when carried out to second and to third order. The
Epstein—Nesbet hamiltonian and the notion of diagonal scattering renormalization have been used to systematize this com-

parison.

1. Introduction

Until recently, most of the theoretical studies of
molecular electron affinities (EA) were based on sep-
arate calculations of the energies of the neutral and
ion species; the EA would then be obtained from the
difference of these two quantities. As discussed by
one of us in ref. [1] (hereafter referred to as EOM-I),
simple calculations based on Koopmans’ theorem [2]
or on separate Hartree—Fock (HF) treatments of
both the neutral and the ion frequently result in poor
EAs due to the inadequacy of such approaches in
dealing with charge redistribution and the change in
electron correlation energy associated with adding the
“extra” electron. The conventional approach for over-
coming these difficulties has been to perform more
accurate calculations by some form of perturbation
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theory or configuration interaction (CI) on the two
species and to then compute the energy difference.
As a result, one frequently has to subtract two num-
bers of almost equal magnitude. Furthermore, it is
found that many identical terms appear in the neutral
and ion energy expressions and therefore cancel when
the difference is considered [3]. Therefore, a direct
calculation technique which is aimed at the significant
aspects of the problem is to be preferred. The EOM
method as developed by Rowe [4] and applied by
McKoy [5] and other authors [6—13] to atomic and
molecular problems provides a means for directly cal-
culating excitation energies, transition moments, and
other quantities of interest. This method is capable of
providing highly accurate results without explicitly re-
quiring calculations of correlated ground and excited
state wavefunctions.

Recently, several papers [1, 14, 15] have appeared
in which the EOM theory has been developed and ap-
plied to the problems of molecular ionization poten-
tials (IP) and EAs. In addition to these ion—neutral
energy differences one can also obtain other useful
information including the one-particle density matrix
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of the parent closed-shell species. Further, just asin »
the case of electronic excitation energies, there is a
close connection between the Green function [16—27]
and EOM treatments. One of the goals of this paper

is to establish this connection.

In section 2, we present expressions for the various
hamiltonians used in the development of our theory.
In section 3, we summarize the well-known results of
the Dyson equation approach. Finally, in sections 4
and 5, we establish the connections between the EOM
and the perturbational treatment of one-particle
Green functions [16, 18,2225, 28, 29].

2. The hamiltonian
The hamiltonian describing the electronic structure

of molecules (neglecting relativistic effects and in-
voking the Born—Oppenheimer approximation) is

H=H}p + Wy + (01H|0), (1)
whele

HYy= Z)eA[c‘fC] Q)
and

Wup=14 Z;E (GiWIKDNICI G GGyl 3)

The €;’s are spin—orbital energies in the Hartree—Fock
(HF) approximation and Wy is the perturbational
part of the hamiltonian. Note that we have expressed
the zeroth-order approximation HHF and the residual
perturbation part Wy in normal product form [30].
The third term in eq. (1) is the expectation value of
the hamiltonian for the zeroth-order approximation
to the ground state of the neutral molecule. We have
adopted the convention for two-electron integrals
that (ijlvlkl) = CjlvikD) — (ijlvilk), i.e., the integrals
involve direct and exchange terms. The partitioning
of H described in egs. (1)—(3) is widely used in the
current literature in the application of perturbation
theory to correlation problems. There is another par-
titioning scheme, proposed by Epstein and Nesbet
[31] (EN) which is also used in this article, and which
we now describe.

The EN decomposition of H is defined as follows:

H=Hgy + Wpy +(0IHI0), 4)
where
Hpn =Hjr + V., (5)
and
=1 ? @wi)NIC] GG )
and
Ven = Wur—Vq - (7

The zeroth order of the EN hamiltonian differs from
the Hﬁp in eq. (2) by the diagonal scattering term V4.
The perturbation term Wgy is the same as Wy when
the diagonal scattering term is omitted. The operator
Hy:y has the following diagonal properties. For a gen-
eral p-particle hi-hole vector |4),

=c ct .c;,,‘,pq,lc Gy 10), @)

my~my

The expectation value of Hgy is given by

p h
AIHENIA)= 23 €m; Z} €ay
g= =

+ 2

‘?jj(ffh"“}") s ©)
i, j€(mj, o)

where
a;= 1 if i, j are both particle states or both
hole states, (10)
=-1 otherwise ,
and
MIIHENIAZ)ZO lflAl>"a£ LA2> (I])

For convenience in using the EN hamiltonian in sub-
sequent sections, we introduce the following short
hand notation for diagonal scattering terms:

@wlif) = (1] , (12)
and for non-diagonal scattering terms:
Gilvikl) = [ilkl] £k j#1), (13)

and in general (without distinguishing the diagonal
and non-diagonal):

GilwIkD) = (ijIkD) . (14)
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In the EOM method, as described in ref. [1] and
briefly outlined later, Hgy is treated as the zeroth or-
der approximation and Wy is considered as the per-
turbation. However, in the Green function develop-
ment, the introduction of Hry and Wy is avoided
in the perturbation expansion, but the notion of diag-
onal scattering terms is found to be very useful (see
refs. [32,40]). With this discussion of the two decom-
positions of H completed, let us now turn to a review
of Green function theory and then to the connections
with our EOM theory.

3. Many-body Green functions

The perturbational approach to Green functions is
now well-established [16, 18,22-25,28,29]. The
Dyson equation may be formulated as a pseudo-
eigenvalue problem [33],

2 ;8 + My (AE) X; = AE X;, (15)
j

where the matrix elements Mij(AE) of the mass oper-
ator or self-energy M(AF) are represented by the sets
of Hugenholtz diagrams in figs. 1 and fig. 2 in second
and third orders, respectively [23]. The rules for as-
signing contributions to each of these diagrams depend
on whether the diagonal scattering renormalization
(DSR) [32] is used. For the case where renormaliza-
tion is neglected, the rules are well-known [34], and
are given, along with their DSR generalizations as fol-
lows:

Rule (1): To each vertex in a diagram,

()] (2)

Fig. 1. Second order Hugenholtz diagrams.

(e

un (18)

Fig. 2c.

Fig. 2. Third order Hugenholtz diagrams.
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Table 1

Second order contribution to Green function and EOM

Green function

Equation-of-motion

Numerical Numerical
Diagram factor Denominator 3) Term factor Denominator @) Numerator Casel Case Il  Case Il
1 II v A Vi Vil Vil X
1 12 Emn o [g 9 B} [2 ?] 1/2 gmn (icdmmn) (mnlja) * .
2 -12 ED @Ry o3 - EM (imlo) (eBljm) * .
off 13 31 of
00 00 mif
3) [1 5] {5} [5 1‘] ~1/8 Eqy .
3) For the energy denominators in tables 1 and 2, the following notation is employed:
Eg}f:.%q =legtegtate, teg) (e te,t.t et eq).
Egg_’_-_';rgq = (qtegtote,teg) = (e, te,t.t et eq) + {sgn(ny—np) Y ak + E byl .
i, .
where i and j run through the set of indices {m, n, ..., P g B, v, b }, "p and ny, are the number of particle and hole lines, respectively, and
bji=-1 if i, j are both particle or both hole states,
= 1 otherwise.
Table 2
Third order contributions to Green function and EOM
Green function Equations-of-motion
Numerical Numerical Case
Diagram factor Denominators Term factors Denominators Numerator I i1 111
I 11 111 v AY VI Vil VIII X X XI XI1
00 P - -T—- .
1 1/4 g ER4 ) [1 3] {3}33) (3 }B,?. 1/4 En EPA (ielmn)[mnipq] (pqljo)  * * *
i 00 01 . ; ;
2 1/4 £ g;f;"! ) [1 3] {3} 3 1] 1/4 ESH e;{g' (ialmn) (mnly8) (y6ljo)  * * .
00 00 3 mnj
3 | 3] (3l39 {5}[5 1-:\ 1/8 EZR - B ’
i 1 : . g
3 1/4 gmi g @ [19] @) 2{]’] 1/4 U EM (alys)Gsimn)omalje)  * * ¥
00
_® 09 ) 3){3}[_3,?] §
4 -1/4 EVSi EM (6) E’ %] 3133 3} %a‘f] ~1/4 ER BN (mlop)[alvs) (xsljm)  *  * %
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Table 2 (continued)

Green function

Equations-of-motion

Numerical Numerical Case
Diagram factor Denominators Term factors Denominators Numerator 1 I I
I 11 11 v v VI vil vl IX X XU XI
™ [? 4 @Y ~1/8 EM  EMi .
® [29] 6xs DY -1/8 B M .
©) B’ 2] {s}5 %) {5}[2 9 ~1/16 Emi  gmi .
s /4 emi gy o[04 () E}ﬂ ~1/4 EG L3 mpp@aled)@im)  + o+
an [?%] 3135 {5} 2?._ ~1/8 Em ey *
2 B’ g_ {5} 5'){5'}@.?] =116 EMi gy *
s - omg s a0y mfig 14 B8 EM medpGam)  * t
as 9] sxs nm§Y -1/8 04 Em .
(s) B’{s’ {s}5 55"} 2?] -116  ERgl  Em .
7 1 ETm  EMP (16 [‘,’ ‘3’] (3}33) {3} B‘f 1 EM™ EMP (Gamn)[nylpal(mpliy) % * *
8 1 o B ?2] {3}[‘3’ }} 1 g Galmn)(pnlay) myljp) ~ *  * =
as 93] Glas sy 1/2 g gl .
9 1 B ERR g [:2] {S}B‘ﬂ 1 £ EJ" Gpr(eyinp)(mnijo)  * o+ w
o 99 6)s» 339 172 gpni - pmn .
10 -1 Euquf Eggl" (21) ?%] {?}(Ii'){ﬁ’}lg.?, =] Egy E (imiap) [Bplym) (ayljp)  * ¥ x
@ [}Y] masi6) lg 2 -1/2 ER EM .
@3) ?2] {535 » {3} 2‘1}] -1/2 B .
o 29 s16 ) o ~1/4 B2 gy +
1 -1 EQi EpM s) [‘l’ﬂ {I}Bﬂ -1 Eapg ey’ (vlep)Omphp)(epjm)  * v
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Table 2 (continued)

Green function LEquations-of-motion

Numerical

Numerical Case
Diagram factor Denominators Term factors Denominators " S I I =
, 1 P v v VI Vil VIl IX X Xl X
(26) B’Eﬂ {T}(FS){S}E?» -112 Em  EpM §
2N [?2] {5}s 5'){5‘}.[2.‘1’] —1/4 Eny Egymj i
12 21 ERM EMi (28 [‘f‘:ﬂ {I}B‘ﬂ -1 g Em il % &3
@ [0 srsm[§Y G e gm .
(30) [?2] 5365 5H {5 Eﬂ 1 g gmi .
B i2 g eg ov[ji] 12 B A5 pliGpled) et D o+ *
32) Bg] {5} 2?] 1/4 els EZY lipliq) (splaB) (eflsq) *
(33) B’g {5}@‘& ” R el *
28 ]:?ﬂ {5} 5'){5'}[2-?] 1/8 ER  EZY *
14 -1/2 ERS EDY (35) B }J ~1/2 B9 P DGl * x
co 14 ©Y) =14 BT EPY lialig) (ralpq) (aiv) .
on VY ®f1] s Bl ‘
@ [0 6355153 9 s Epe kpw "
15 1/2 EM ERY  (39) B”ﬂ {3} g}] 1/4 EM g Gelim)emipaghye) * ¢
) [? I 1/4 G .
@ 89 slen 1] 1/4 Em gy ‘
16 12 EPS EM @) Bg] {3}[‘;?] 14 AR R SR
@ [}} Ry e

@4 ?‘sﬂ {sks 3){3}B?* 1/4 ga g "
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X1

I

X

I
E 3

Case

(iad jm) (v8lpa) (pmly8)

Numerator
IX

m
{8

VIl
€

Denominators
o

VII
Emj
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Numerical
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VI
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Denominators
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o

EMj

-1/2

Green function
Numerical

Diagram factor
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Table 2 (continued)
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assign a factor (if|kl) for the case without DSR; a fac-

R tor [ijlkl] with DSR.
Rule (2): To each vertical cut between two neigh-
* " 8 boring vertices, assign an energy denominator equal to
= 2 (hole line energies) — z (particle line
a
2 ‘ P
A energies) + C
&
© where
% C= {Sgn(np—nk)} AE,
_:g for the case without DRS, where n,, and ny, are the
s number of particle and hole lines, respectively; and
-3
SR c= E}b,-,-[fn + {sgn(n,-ny) }AE,
o for the case with DSR, where i,/ are line indices be-
£y o Be e g_?. longing to this vertical cut, and
W ) w w =
ba‘;’ =—1 if i, j are both particle indices
or both hole indices,
= X == 3 = otherwise .
' : : : l e Rule (3): Assign a sign factor (—l)”h” where [ is
T the number of closed loops [35].
% g Rule (4): Assign a factor 27¢, where e is the num-
e o g E‘ ber of pairs of equivalent lines in the given diagram..
=20 Ea1 5% Rule (5): Multiply all the factors assigned above,
e <2 é;& and sum over all the internal line indices.
= EI = 53 For convenience, we have written the contributions
"é = é 23 to the second and-third-order Green function dia-
e — = | 22 grams in the tables 1 and 2. To aid in our comparison
i i If_f_”:ﬁg;_l _E g with the EOM method, discussed in the next section,
L‘GTI L'EJ = & 5 |5 g we have also listed the contributions of each second
T T 2 2 L2 |BE and third order diagram to the effective hamiltonian
E E HH(AE) of our EOM theory. As can be seen from
E5 = = tables 1 and 2, the principal differences, between the
9 £35 two approaches is the assignment of energy denomi-
- £ E nators to each diagram and the overall numerical fac-
Se g § tor multiplying each diagram. Before going further in-
= g to the comparison, we now give a brief outline of vari-
g3 ous approximations which are made to generate work-
- Eo Eo ing EOM theories of molecular electron affinities.
o
i 5 5
22 4. The equation-of-motion method
= &
= 22

Following the formulation of Rowe [4] and



152 T.-T. Chen et al. [EOM theory of electron affinitics and ionization potentials

McKoy [5], we consider a Fermion operator QI
which is constructed from products of odd numbers
of creation and annihilation operators, describing the
addition of an electron to the ground state IgN) of an
N-electron closed-shell molecule. As shown by Rowe
and in ref. [1], one can obtain the basic EOM in sym-
metrized [36] “‘double commutator” form,

@V1{69Q,,H,21] YgNy = AE, N1 {692,, 21 g,

(16)
where the commutators are Gefined as
{x.y.z}=31{x, 2]} + 1 {[x,»].2}, an
{A,B}=AB+BA, (18)
[4,B] =AB-BA, (19)

and AE, EEN—EQJ+1 is the vertical EA (Ei\Hl is the
electronic energy of the Ath state of the negative ion
and E‘; the ground state energy of the neutral species.)
Generally, the Fermion operator ] is taken to be a
truncated linear combination of products of odd num-
bers of creation and annihilation operators,

ol ~xct + yctect +zctectoct +... (20)

The operator 6€2, is then the adjoint of any operator
within the space in which QI is expressed

58y BCEETC, U, v (21)

In practice, the criteria by which the important com-
ponents in the truncated operator QX are chosen and
the requirements for the input ground state wavefunc-
tion |gNV) to be comparable in accuracy to a chosen
Qi are not clear. This is an inherent difficulty of the
EOM approach. Furthermore, the dimensionality of
the EOM shown in eq. (16) is often very large. The
problem of large dimensionality can be avoided by
using the partitioning technique and perturbation
theory [38] to cast the original eigenvalue problem
into a new effective pseudo-eigenvalue problem of
much smaller dimension. Such an approach can be
very convenient provided the convergence of the per-
turbation expansion of the elements of the new effec-
tive hamiltonian matrix is fast enough to permit the
inclusion of only second and third order terms (the
probable limit of our present computing facilities).
Based upon the assumption that calculations which
are carried out through third order will be adequate to

yield EAs to an accuracy of + 0.2 eV, we shall use the
notion of order in perturbation theory to determine
whether various components in QI and in IgN) are
going to contribute to the effective eigerivalue prob-
lem through third order. Following this line of
thought, we have found that, in order to include al
the second and third order effects in the effective
pseudo-eigenvalue problem, we must choose the trup-
cated operator Q.I as follows [39]

at=2xct+ 2 ¥ cle ot
1 m<n

n
o
+
+ ag YingClC L]
m
te.cte o
+ PEQ AU e Lo ol S o (22)
y<b
= ;Z> X:'C;“ m§1 Ynmd;am ¥ a(EB Ywnﬁdimﬁ
& m
T
G p(:L":,, Yraqwdrﬁqyp ’
y<&

and the ground state wave function g/, apart from
a normalization factor, as *

IgM) =10+ (1) +12), (23)
where we have introduced the shorthand notation
=1 > (qlw) + -+
|1>_4E@—cpcqq,cp|o>, 4
pP.q

]

y=il > Qmipg)(gpive)
moa ey eg?,
\P gy Y

. (paly8)(281pm) ctc.o. (25)
m,a €M P e
P. %8 Gl

* In EOM-I, monoexcited configurations were not included
in the ground state; as a consequence of this EOM-I ne-
glects the terms (40), (43), (46), and (49) shown in table 2
of this paper. There are also second order bi-excited com-
ponents which are not included because they do not contrl-
bute until fourth order to the ionization potential or elec-
tron affinity.




T.-T. Chen et al.{EOM theory of electron affinities and ionization potentials 153

In these equations |0) is the HF ground-state wave-
function, [1) is the first order bi-excited component,
I2) is the second order monoexcited component, and

mn... i
L ol (e tegt..te, te)— (e, te, +...+ep+eq).

Y
By using eq. (22) for Q' and successively choosing
8Q s C;, G, €L G, C4C G and G, Cl €I €, 0ne
obtains from eq. (16) a set of equations for the ex-
pansion coefficients X;, ¥, .., Y6, and Yesqw:
which in matrix form becomes

o ol ™l e

Here, the coefficients X; and Y, , Y omgs Y,aq.rp,

appear in column vector form as X and Y, respectively.

The elements of the submatrices in eq. (26) are

Ai,f:@NL{Cf,H,C}?}igN), (27a)
B; x = &NI{C; H,d Hgy,
(x = nowm, emp, réqvyp), (27b)

D,y =" {dy. H,d} Yig",

(x,y = nam, amp, réqyp), (27¢)
R; = @NI{C,dl g™, (27d)
B p=@¥ild,.d Hg™. (27¢)

The dI have been introduced to represent Cj;CosC'lr ;
etc. The partitioning of eq. (26) to yield a pseudo-
eigenvalue problem of smaller dimension is easily per-
formed by rewriting eq. (26) in the form of simulta-
neous equations and eliminating the vector ¥ in favor
of X. In this manner the following equations are ob-
tained:

H(AE)X = AEX, (28a)

where

H(AE)=A + (B-AER)(AEs-D) 1 (BT —AERY).
(28b)

Eq. (28) is a pseudo-eigenvalue equation which is
solved iteratively. It should be noted that the dimen-
sion of H(AE) is equal to the dimension of the spin-
orbital basis used to generate the HF orbitals. The

most convenient way of evaluating the matrix elements
of A,B,D, Sand R in egs. (27)—(28) is to employ
Wick’s theorem and diagrammatic techniques [41] of
many-body theory. This greatly simplifies the book-
keeping.

Two difficulties remain at this stage of the analysis.
The calculation of the overlap matrices S and R in-
volve the evaluation of 1-, 2-, 3- and 4-particle density
matrices. It can be shown that R is at least of second
order and S differs from the unit matrix 1 by second
and higher order terms. The replacement of S by 1
causes a fourth order error in the second term on the
right-hand side of eq. (28b) since B is at least first or-
der while D is at least zeroth order. Since our objective
is to obtain results accurate through third order, the
approximation S§ = 1 is made. Further, as in EOM-I,
we make the approximation that R 0, turning later
to the consequences of this approximation.

Hi(AE) X = AEX, (29a)

H{(AE)=A+B(AE1-D)~ 1Bt . | (29b)

In EOM-I, we have made one additional approxima-
tion, namely, the replacement of A by Hgy to render
the D matrix diagonal. This was done in order to avoid
the very laborious calculation of the inverse matrix
(AE1-D)~L. As an improvement over this approxi-
mation, we employ the following expansion of the in-
verse matrix:

(AE1-D)~!=(AE1-Dgy)!
+ (AE‘} _DEN)_l Dl (M1 —DEN)—I

+(AE1-Dgy) 1D, (AE1-Dgy) 1D (AE1-Dpy) !

(30)
where D is decomposed as
D=Dgy tDy, 31
with
(OEn)x, y = 8y, &V {dx,HEN,d; HeM), (32)

(©))y,y = (1-8,, )& {d,, Wen. df Mg, (33)

In egs. (32)—(33), the diagonal properties [eqs. (9)—
(11)] of the EN hamiltonian have been fully ex-
ploited. Keeping in mind that we are only interested
in keeping terms in H(AF) through third order we
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need only retain the first and second terms on the
right hand side of eq. (30). The improved effective
hamiltonian operator H(AE?) thus becomes *

H(AE)= A+B(AE1 —Dgy)~!BT

+B(AE1-Dgn) 1Dy (AE1-Dpy) 18T . (34)

To aid in the description of the various terms in eq.
(34) we define the following quantities:

[f f]"(al{ WyF C,-T}lb), (35a)
ab +

[, J—(m{ Wi, dL}b), (35b)
{x} = [0l {d,, Hgy.d1 }1O)] -1, (35¢)

(xy) =<0l {dy,, Wgn, d1}10), (35d)
ba ab|*_

[x !.]=[fx] = (bI{d,, Wy, C| }ia), (35¢)

where a, b = 0, 1, 2 represent the zeroth, first, and
second order components of |gV) respectively. In ad-
dition, we shall use 1,3, 3, and 5 to denote collective-
ly the 1nd1ces: nam, amf, and réqyp respectively as
shown in egs. (27a)—(27c). With these notational sim-
plifications, we can now write down the non-zero
contributions to the matrix elements Hf_.,»(A.E') through
third order. In the tables we have specialized to the
case for which i and j are both particle states, that is
the results are presented for an electron affinity cal-
culation. For the sake of organization and clarity, we
have presented the second- and third-order contribu-
tions together with the Green function results in
tables 1 and 2. In zeroth order we obtain the Koopmans’
theorem result from the Ajj term:

A; ;= €V1{C. H,ClHg)

= ¢;0;; + (third and higher order terms).  (36)

* The referee has pointed out that this expression for H(AE)
has improper analytical properties as a function of AE and
may give non-physical results if it were applied to “shake-
up” processes. For a discussion of the use of GF methods
as applied to shake-up processes, see: L.S. Cederbaum, J.
Chem. Phys. 62 (1975) 2160, and L.T. Redmon, G. Purvis
and Y. Ohrn, J. Chem. Phys. 63 (1975) 5011.

In second order, as listed in table 1, the contribu.
tions come from the sum of the two Hugenholtz dia-
grams shown in fig. 1. To compute the contribution
of each diagram to the self-energy of Green function
theory (or the effective hamiltonian of the EOM the-
ory) one must form the product of the numerical fac-
tors listed in columns II and VII (V and VII) and
divide by the energy denominator listed in column I
(V1). The numerical factors for the Green function
contributions are a result of applying the diagram
rules discussed in section 3, whereas the factors listed
for the EOM case arise from using the diagram rules
of section 3 to evaluate the symmetrized matrix ele-
ments given in eq. (27).

The first point to be made concerning the relation-

ship of EOM and Green function theories is that ne-
glect of the CJr Cs C;C c! terms in QT leads to
equivalence between the two approaches through sec-
ond order (see table 1).
The third order terms listed in table 2 can be re-
presented by the 18 Hugenholtz diagrams shown in

fig. 2. For the Green function (EOM) theory, the con-

tribution of each diagram is the product of the num-
erical factors given in columns Il and IX (VI and IX)
divided by the product of energy denominators given
in columns I11 and IV (VII and VIII). The diagonal
scattering form of the Green function is given; the
more familiar form without renormalization of the
energy denominators is obtained by omitting all two

electron interaction terms appearing in the denomina-

tors (i.e., the Eoﬁ ~Bd form of the energy denomina-
tors should rep]ace the E g B7). In order to facili-
tate comparison between the two theories in
third order, let us now specifically consider the fol-
lowing special cases within the general EOM theory
discussed earlier in this section (recall that we have
taken R ~0and $=~1).

Cuse I: Only the first order component of |gV) is
retained:

gy =10)+11),

t. g ot en) S
and Q, is truncated by eliminating d}, o

af = ,Z.>Xi cf+ ngn Yaomam * a%:s YMdemﬁ

o m

Case IT: The full |g/) of eq. (23) is used:
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1gM)y= 100+ 1) +12), (37)

but QT is truncated:

al= Z)x cf+ EYnmdim % " -
G (38)

[+3
Case III: The full second order |g/V) is used:
gV =100+ 1) +12), (39)

and QT\ is not further truncated:

Q1r EX CT+ Z} S ;m+ EYdeLmﬁ

a<p
Q m
e :L}( , Yrsqw - (40)
y<b

In columns X, XI and XII of table 2, we have marked
with an asterisk each term which contributes to the
overall self-energy or effective hamiltonian under

each of the above three special cases of the EOM theo-
ry. From this tabulation it is seen that Case II of the
EOM bears the most similarity to the many-body
Green function (MBGF) approach; the only difference
between EOM Case II and the MBGF approach being
the form of some of the energy denominators. For
example, for term 2 of table 2 the MBGF denominator
is Em"E,;""’ while the corresponding denominator in
the EOM is E;'"€/%". Using the definitions given in
eq. (12) we find

EQ" = —€m—€q + €q—[mn] + [ma] + [na] + AE (41)

Emﬂ!__e —€ —€}+E +E$ [mn]—[n}]—[ij]
(42)

—[8] +[my]+[mb]+[ny] +[nd]+[v] +[j8] + AE

mn

€ = —Cu—Cate, teg. (43)

¢ §

From comparison of egs. (42) and (43) we see that
for term (2) of table 2 the EOM and MBGF energy
denominators differ in two ways. First, two-electron
matrix elements appear in eq. (42) but not in eq. (43)
and secondly eq. (42) also contains a AE—(-:J,- contri-
bution lacking in eq. (43). From expansion of the
energy denominator

=1
(E te,te—€ —¢; —~AE - be [xy])

~(epte, tej—€, —€ — AE)]

]

X (l +27 ot AE) (44)

x,y Em+6n+éj_‘e-y_56_

it is clear that the two electron renormalization terms
contribute in fourth and higher orders of the inter-
action. If AE is also replaced by €; then we have
agreement between the Case II EéM and MBGF re-
presentations of term (2) through third order. The re-
placement of AE by € is precisely the first step to an
iterative solution of the EOM. If a similar analysis is
performed on the other entries in table 2, we find
that through third order the MBGF and Case Il EOM
approaches agree. Consequently, Case Il EOM repre-
sents a more consistent theory than do the Case I
and Case Il EOM approaches.

The extension of our operator set to include terms
of the sort C: Cs C; C; Cp causes the EOM to differ
from the MBGF approach in second, third and higher
orders. Thus, care must be taken to ensure that the
operator set is consistent with the ground state ap-
proximation and other approximations introduced in-
to the EOM. In fact, the discrepancy between the
MBGF and EOM ap-#)rcaches that arises in second and
third order when C! C CJC‘rCP terms are included in
the operator is due to the approximation R =O.

Eq. (28) may be rewritten

[Hi(AE) +m(AE)]X = AE X, (45)
where H(AE) is given by eq. (29) and
m(AE) =B (AES—-D)~!RT +R(AES-D)~ BT
(46)
—AER(AES-D)~IRY .

When C: Cs ct G, CT terms are included in the
operator set they give rise to second and third order
contributions to m (AE). After considerable algebra
involving expansion of energy denominators and the
regrouping of terms, we find that these new terms
cancel through third order the terms involving the
ctectect operators in tables 1 and 2. Apparently,
we again have agreement between EOM and MBGF.
However, it also turns out that the CTCCT operators
contribute to m(AE) in third order due to the pre-
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sence of single excitations in the ground state given in
eq. (23). These new terms are represented by diagrams
15—18 in fig. 2 and their contribution causes a slight
disagreement between the MBGF and EOM theories in
third and higher orders. For example, let us consider
the terms contributing to diagram 15. The new contri-
bution from m(AE) enters with a coefficient of —1/8
which means that the overall coefficient is 3/8 rather
than the 1/2 of the MBGF approach [remember that
term (41) containing the contribution from the five
operator is cancelled through third order by the five
operator contribution tom(AE)]. This disagreement

is not serious since the contribution of these diagrams
to molecular electron affinities and ionization poten-
tials is small [23,42].

5. Discussion

In this paper we have established the connections
between the EOM and the one-particle Green function
approaches to ionization potentials and electron affin-
ities. The EOM derivation presented here has em-
ployed the symmetrized “double commutator” defined
in egs. (16)—(17). We note that in general

@Ni{c;, [H,cic,Ch1Ye™)
#@Ni{[c,Hl,cic c! Yigy,

n a m
since the exact ground state is not employed [42]. In
the development of this paper we have employed the
symmetrized double commutator
B; pam = 3 1€ I{[C;, H], CIC,C1 YgM)

1, nam
+@NI{C, [H, clc,ch ] HgM).

It is not obvious that the use of the symmetrized
double commutator results in a more straightforward
or consistent formulation of the EOM. In order to in-
vestigate this matter, we have also carried out the der-
ivations of this paper using B; ., =

NG, [H, C'; CQC:L] }ig™Y). The differences be-
tween this development and that of the text arises in
the coefficients of the terms contributing to diagrams
15—18 of table 2. To illustrate the resulting changes,
we will briefly discuss the various contributions to
diagram 16 with the above unsymmetrized definition
of B. Term (42) now appears with a coefficient of 1/2

rather than 1/4. Terms (43) and (44) still have coef-
ficients of 1/4, and the contribution of the five oper-
ators in term (44) again is cancelled through third or-
der due to the contribution from m(AFE). As before,
the presence of the single excitations in the approxi-
mation to |g/V) also gives rise to a third order term
due to m(AF), however the coefficient is now —1/4
rather than —1/8. Thus, through third order, we now
have agreement with the MBGF approach. Thus, if
our object were to obtain a theory correct through
third order, there is no need to include either the
operators C':"Ci5 C‘;C C! or the single excitations in
the ground state lgNg 'Fhis finding suggests that the
unsymmetrized version of the EOM approach may
be preferable.

As with the EOM for excitation energies [43],
many questions remain concerning the effects of vari-
ous choices of |g") and Qi. The role of terms such
as C'LC C:{, CLCﬁC‘;, and CJ:LCHCJr has not been
established. Similarly the significance of second-order
double excitations in |gV) has not been explored.
Our experience with the Cj G, C‘;C C; operators in-
dicates that these questions do not Ilave unambiguous
answers. Whether a certain operator or ground state
component contributes to a given order in the inter-
action depends on the other terms and ground state
components present as well as to approximations
made to R and S and whether symmetrized commuta-
tors are employed.

In this paper we have discussed various approximate
EOM theories for ionization potentials and electron
affinities. We have presented an EOM theory which is
correct through third order and sums a large number
of terms to all orders in Rayleigh—Schrodinger per-
turbation theory. This summation of a large number
of terms to all orders is a property shared with the
Green function approaches {23].

It is significant to note that even the EOM-I meth-
od, which neglects certain third order terms, gives
good ionization potentials (usually within 0.2 eV of
the experimental value). For perspective, in table 3
we compare IPs calculated via EOM-I [14, 15, 44]
with the experimental values for HF, BH, BeH™, OH™,
and CN~ (for the BeH™, OH™, and CN™ we are re-
porting the vertical detachment energies). We have al-
so included our theoretical predictions [45, 46], as
obtained from EOM-I, for the EAs of LiH, NaH, BeO,
and LiF. We believe that these calculated EAs are cor-
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Table 3
Equation-of-motion and Koopmans’ theorem estimates of
electron affinities and ionization potentials (eV)

Exptl [14, 15, 44]

Specics EAor IP EOM —ELUMO

BeO EA 1.769 1.414

LiH EA 0.299  0.200

NaH EA 0.362  0.290

LiF EA 0.464 0.425

HF Ip 15.87 17.79 16.01
BH P 9.53 9.30 9.77
BeH™ IP 0.77 0.51 0.74
OH™ Ip 176 3.06 1.825
CN~™ Ip 3.69 5.21 3.82

rect to 0.1 eV. These studies on the negative ions of
LiH, NaH, BeO, and LiF were undertaken in order to
investigate the nature of the binding of electrons to
highly polar molecules. Experimental electron affini-
ties are not available for BeO, NaH, and LiH, and our
studies have led us to conclude [46,47] that the ex-
perimental EA of LiF is in error by about 0.9 eV.

We are currently applying the EOM method to the
calculation of IPs and EAs for various polyatomic
molecules. Although, the energies given in table 3 cor-
respond to vertical processes, the method is capable
of describing the geometrical rearrangements that oc-
cur upon ionization or electron attachment. So far,
we have restricted our attention to positive electron
affinities. We plan to investigate the usefulness of
EOM methods for describing temporary negative ions
of molecules such as ethylene and butadiene [48].
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