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Using the superoperator formalism we demonstrate how the electron propagator can be obtained consistent
through third order in the electronic interaction and we establish the connection to the corresponding
diagrammatic perturbation expansion of the self-energy. We further indicate some deficiencies in the third
order theory of Simons and Smith for calculating ionization potentials and electron affinities.

I. INTRODUCTION

The electron propagator! or the one electron Green’s
function has been used for some time in the study of
electron spectroscopy.?2™® The advantages of using the
electron propagator arise because the transition ener-
gies and the transition strengths are obtained directly
as poles and residues of the propagator, respectively.
Several alternative procedures for decoupling the equa-
tion of motion for the electron propagator have been de-
veloped.?™ In this work we use the superoperator for-
malism of Goscinski and Lukman!® as the framework
for our development of an electron propagator which is
consistent through third order. In an alternative deri-
vation using the equation of motion formalism of Rowe,!
Simons and Smith” attempted to obtain an equation of
motion which was consistent through third order. Pur-
vis and Ohrn!? pointed out some deficiencies in the the-
ory of Simons and Smith"; these deficiencies are again
demonstrated in this paper. We show further how the
electron propagator can be obtained consistent through
third order, ‘The consgistency is made more transpar-
ent by demonstrating that all second and third order
self-energy diagrams® are included in our formalism.

In Sec. II we derive the expression for the desired
electron propagator and we demonstrate the relation-
ship to the third order diagrams of Cederbaum.® In
Sec. III we present our concluding remarks,

fl. THEORY

The equation of motion for the spectral electron prop-
agator® can be written within the superoperator formal-
ism as®1?

G(E)=(a|(EI- H)[a) , @)

where I and H are the superoperator identity and Ham-
iltonian, respectively, and the a are a set of annihila-
tion operators a ={a;}, which are arranged in a super
row vector. The superoperator scalar product is de-
fined in the conventional fashion.? The superoperator
resolvent (£ — H)™? can be approximated via the inner
projection technique'® and the equation of motion then
takes the form

G(E)=(alh) (h|ET- H|h)* (h|a) , (2)

where h is a projection manifold which, if chosen to be
complete and orthonormal, makes Egs. (1) and (2) iden-
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tical. The operator space

{hb h;, hs. .. }:{ai) aja,a,, A;a50,0,4,. . .t
R>1, i>j, k>1>7... (3

spans the manifold h. We now discuss appropriate se~
lections of h which, in conjunction with our choice of
the reference state, ensure that the electron propaga-
tor is calculated correctly through third order in the
electronic interaction.

It is well known that the projection manifold h;, h, in
connection with the Hartree—Fock (HF) ground state is
able to give the electron propagator correct through
second order in the electronic interactions.® We dem-
onstrate how, using a correlated ground state and the
same projection manifold, we are able to get the elec-
tron propagator correct through third order in the elec-
tronic interaction,

The effect of including h; in the projection manifold,
where the HF ground state is used as reference state,
has been discussed by Tyner ef al.,'*? and from their
analysis it is clear that h; introduces terms which are
at least fourth order in the electronic interaction, inde-
pendent of the choice of reference state. We therefore
concentrate on using h,, h; as our projection manifold
in our search for a theory which is consistent through
third order.

As the reference state in our analysis we use a cor-
related wavefunction given by

|o>=N'“2{1 +2, Bhaja)+ ) (Krianaza,ap)
FX] md>n
a>B

o Y KT asataa ) +- - }IHF> ,
m>n>p
a>>8

| (4)

where the a* are a set of HF creation operators and
where indices m,n, p, q(a, 8, 5, v) refer to unoccupied
(occupied) spin orbitals in the HF ground state and 4,7,
k,l, v are unspecified spin orbitals. We take the cor-
relation coefficients from Rayleigh—Schrodinger pertur-
bation theory
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K’=Z{<pa[ | mn) 845 = ( pB| | mn) 6,4 +(Ba||om) & - (Ba||on) 8,,} (mn| | p)
s mon o8 o8 g om (66 - Eﬁ)(ea tE€— €, — Em)
o>8
+higher order terms in the electronic interaction =K%(2, 3,...), (5)
f
_ {mn || ag) + higher order terms in the elec- correct through third order’” have used as reference

Kmn
B e teE—€ —€ I .
o BT Em " tronic interaction

=KTa(1, 2,...), (6)
ugb=ﬂ%(2’ 3; "') ’ (7)

where the first number in the bracket indicates the low-
est order in the electronic interaction. The ¢, indicate

HF orbital energies and the two electron integral

(mn| ap) refers to the charge densities ma and ng, and

(mn| | aB) =(mn | ap) -~ (mn 'Ba) . (8)

In our analysis we consider the projection manifold
{h,, h,}, where the h, space for convenience has been
redefined as

(ajay a;} . (9)

The choice of the subspace h; ensures that this space is
orthogonal to h;:

(h,|hy)=0 , (10)

even for a correlated reference state,
the following orthogonality relations:

(,|h) =1, (hy|h)=5S(0, 2, 3,...). an

Using Eqs. (10) and (11), Eq. (2) can be partitioned®
into the form

h; 2{‘1;‘1&“1 +{aapa, -

We also have

(hy | H |hy)(hy| ET~ H|hy)™ (by | H | by)
(12)

G(E)=(h,|ET- A|h,) -
=A~BDC ,
where the matrices A,B,C, and D are defined as
=(hy |ET-A|h,),
=(h, |H|hy) ,
D=(h,|EI-H|h,) ,
=(hy| A|h,)

We will now make an order by order analysis of Eq.
(12) in which we retain only those terms which are
zeroth, first, second, or third order in the electronic
interaction. Since the B and € matrices are at least of
first order, we need to consider only that part of the D
matrix which is zeroth and first order. This con-
strains the indices in the projection manifold h, to be of
the form a,a a;, @ > B, or a,a,a, m >n, since opera-
tors such as a,a,a, lead to matrix elements in the D
matrix which are at least of second order. The result-
ing subspace h; is thus identical to that used in calculat-
ing the electron propagator correct through second or-
der.® To calculate the electron propagator through
third order in the electron repulsions, we thus need to
obtain the B and € matrices through second order, the
D matrix through first order, and the A matrix through
third order.

13)

Previous attempts to obtain the electron propagator

state

|0y = N'1/2(1+Z AL, a,,)]HF) , (14)

where the K,; are determined from first order Ray-
leigh—Schrddinger perturbation theory. In calculating
the B, C, and D matrix elements correct through sec-
ond and first order, respectively, no changes are ob-
tained from considering the higher correlated ground
state in Eq. (4). The matrix elements of B, €, and D
can be found in Refs, 7 and 12, Notice that, to second
order in electron interactions, €' =B, Inthe A matrix
we need to include all terms up to third order, The A
matrix elements obtained by using Eq. (14) as a refer-
ence state need to be modified by third order terms
which result from interaction between the singly excited
states and the HF ground state. The triply excited
states which also result from a second order Rayleigh—
Schriédinger perturbation calculation do not introduce
third order terms. We thus have to add to the A ma-
trix elements given in Ref. 7 the terms 04,

<~ {ipl1i6) (88! lmmn) {mn || pB)
GA”"; (e “€p)(€o+€s"€ €n) (A3)
pmn
{jd 1 lip) {(pB | lmn) (mn || 568)
R (€= €)(€p +€5— €, — €,) (a4)
{Gplli 8y on | 18e){aB || pn) (A5)
tat (- )e,+e5—¢,—¢€,)
n
(j811ip) (Ba | 16m) (pn | laﬁ) (46)

tar (=€), +5~¢,—¢,
on
We thereby have calculated the electron propagator con-
sistently through third order.

A comparison with a diagrammatic perturbation ex-
pansion of the self-energy makes it further transparent
that we have really included all terms through third or-
der in our analysis of the electron propagator. In Fig,
1 we have displayed the terms A3-A6 as diagrams us-
ing the rules of Brandow!® which combine the Goldstone
diagrams with the antisymmetrized vertices of Hugen-
holtz, The diagrams labeled A3-A6 are identical to the
third order diagrams given by Cederbaum® in which
dots refer o antisymmetrized vertices, The diagrams
A3-A6 were shown by Purvis and Ohrn®? to be the only
missing third order diagrams® which evolve from a the-
ory where the reference state is given by Eq. (14) The
analysis of Purvis and Ohrn'? congidered (h, |EJ - A |hy)
as two matrices; u which contains E and orbital éner-
gies (zeroth order terms) and M which contains the two
electron integrals (first order terms). Making use of
the identity (u+M)™ =u™ ~uM(u+M)™ to expand the in-
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FIG. 1. The third order diagrams representing the terms
A3—A6 defined in the text.

verse, Purvis and Ohrn'® identified the diagrams C1-C6
and D1-D6 of Cederbaum’ to originate from the BD™'C*
term, while the diagrams Al-A2 were found to arise
from the A matrix previously given in Ref. 7. We thus
have accounted for all third order diagrams which arise
from an expansion of the self-energy.® The electron
propagator calculation thus needs to use the correlated
ground state given in Eq. (4) as a reference state and
the subspace {h,, h,} given by Eq. (9) as the projection
manifold to be correct through third order,

The omission of terms corresponding to diagrams
A3-A6 in the earlier work of Simons ef al.'® probably
did not cause significant (+0.1 eV) errors. Ceder-
baum® has found, from numerical experience on N, and
other molecules, that the contribution to valence-shell
ionization energies made by diagrams A3-AS are very
small, the sum being ~0.03 eV, Thus, Cederbaum’s
numerical results provide evidence that the exclusion
of diagrams A3-A6 may not have caused significant er-
rors in Simons’ early calculations.

111, DISCUSSION

We have shown how the electron propagator can be
obtained correctly through third order. Our develop-
ment stresses the fact that a complete treatment of the
inverse of the D matrix is needed to guarantee that all
desired terms are included. Computational applica-
tions have so far only been carried out using a diagonal
approximation to the D matrix.!® This situation is un-
satisfactory and should be improved. A unitary trans-
formation which brings the D matrix closer to diagonal
form is related to the theory of linear response® as dis-

cussed by Jgrgensen and Purvis.! Using this kind of
procedure we would expect to get an approximation to
the propagator which would be nearly complete through
third order. The energy shifted denominators which
result from evaluating the D matrix correspond to the
result of summing certain classes of diagrams to infi-
nite order, % which implies that the electron propagator
treatment has the computational advantage of expressing
these summations in closed form. In a diagrammatic
summation of self-energy diagrams one has to explicitly
account for each energy shifted denominator through
each order.® We finally note that the side shifted dia-
grams given in Fig, 1 do not appear in the third order
theory of Simons and Smith? for calculating ionization
potentials and electron affinities. Thesge diagrams re-
sult from using a more highly correlated wavefunction
than the one considered by Simons and Smith” as the
reference state.
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