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Ab initio computations of the potential energy surface~PES! of the ground electronic state of H2–F2

have been performed as a function of the stretching F–H2 (R) and H2 rotation ~u! coordinates.
Minima on the PES correspond to linearH–H–F2 structures, while the transition state is T-shaped.
The F2 to H2 distance increases in the transition state from 2.07 to 3.10 Å, demonstrating strong
coupling between theu andR degrees of freedom. The vibration–rotation-tunneling spectra are
calculated by diagonalizing the five dimensional Hamiltonian matrix that describes free rotation of
the triatomic~three coordinates! plus the internalu andR motions. For total angular momentum
J50, the spacing between levels in the tunneling doublets increases from 0.029 to 6.74 cm21 as the
stretching quantum numbern corresponding toRmotion varies from 0 to 5. The splittings increase
even more strongly with the bending quantum number. ForJ51, each level in the tunneling
doublets is further split by Coriolis forces.K-doubling is found to be an order of magnitude smaller
than the tunneling splitting. In the symmetric isotopomers D2–F2 and T2–F2, the tunneling splitting
drops by 3 and 4 orders of magnitude compared to H2–F2, and thus becomes comparable with the
K-doubling forJ51. Finally, incoherent tunneling, appropriate to condensed phase environments, of
the H2F

2 system is also treated. ©1995 American Institute of Physics.
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I. INTRODUCTION

Recently, the van der Waals complex of H2 and F2 has
received widespread attention due to the studies of Neum
and co-workers.1 By studying the photoelectron spectra o
H2–F2 they found that the geometry of the ground electron
state of this complex is close to that of the transition state f
the collinearneutralF1H2 reaction.

Earlierab initio computations of the PES for H2–F2 had
been carried out by Simons and co-workers.2 Two symmetric
minima, corresponding to linear HHF2 structures of the
complex, were found. Because hindered rotation of th
nearly rigid H2 moiety occurs, H2–F2 is what Nesbitt and
Naaman3 called a ‘‘pinwheel’’ complex. However, unlike the
cases considered in Ref. 3, the T-shape structure of H2–F2 is
a transition state rather than an equilibrium geometry. T
results of Simons and co-workers2 indicated that hindered
rotation is strongly coupled to interfragment oscillation o
the H2–F2. In this respect, the H2F

2 complex provides a very
relevant example involving two-dimensional~2D! tunneling.
A distinctive feature of this complex is that hydrogen bond
ing provides potential barriers for hindered rotation that a
very high, which produces long progressions of vibration
levels split by tunneling. Because the potential wells a
deep and narrow, the nuclear wave functions for low-lyin
levels are well localized. Hence, at first glance, the conce
of a single well defined ‘‘equilibrium molecular structure,’
common in spectroscopy, seems applicable, at least for lo
lying levels.

The concept of multidimensional nuclear tunneling a
tracted much attention in the early 1980s~see, for example,
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reviews in Refs. 4 and 5!. This concept emphasizes that tun
neling in many chemical systems can involve significant dis
placements along several coordinates~along and transverse
to the reaction path!. The transverse coordinates can activel
promote~for symmetric coupling with the reactions coordi-
nate! or suppress~for antisymmetric coupling! the tun-
neling.6 In the coherent tunneling regime treated in Sec. IV
this influence manifests itself in the strong dependence of t
tunneling splitting on the quantum numbers of the transver
modes.7,8 In addition to the tunneling splitting, the geometry
of the transition state also depends on the quantum numb
of the transverse modes.

The essential features of two dimensional coherent tu
neling can be elucidated by numerical diagonalization of
Hamiltonian matrix. However, analysis of incoherent tunne
ing treated in Sec. IV requires approximate semiclassic
methods, among which a multidimensional version of th
so-called instanton technique is shown to be quite promi
ing.5

The vibration–rotation-tunneling~VRT! spectra of many
molecules have already been studied both experimenta
~H2O!2,

9 ~H2O!3,
10 ~NH3!2,

11 ~HF!2,
12 ~HCl!2,

13 NH3–H2O,
14

NH3–Ar,15 C2H3
1 ,16 ~and many others reviewed in Refs. 17!

and theoretically,~H2O!2,
18 ~NH3!2,

19 ~HF!2,
20 H2He

1,21

C2H3
1 ,22 LiBH4,

23 LiCH4
1 .23 However we did not find any

earlier experimental or theoretical study of the VRT spectr
of the H2–F2 complex, which is expected to have substantia
tunneling splittings.

In this paper, the H2–F2 complex is studied in both the
coherent and incoherent regimes for which tunneling dynam
12951295/11/$6.00 © 1995 American Institute of Physicst¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



1296 Boldyrev et al.: Spectra and dynamics of H2–F2
TABLE I. Molecular parameters of the H2•F- system.

Method
Linear

Etotal ~a.u.!
H–H–F2

R ~Å! r ~Å! u~°!
v1~s!
~cm21!

v2~s!
~cm21!

v3~p!
~cm21!

V#

~cm21!

MP2~full !a 2100.922 239 2.071 0.787 180. 3607 383 1004
QCISD~T!a 2100.912 629 2.074 0.792 180. 3536 384 976
CCSD~T!b 2100.905 480 2.075 0.770 180.

Method
Angular
Etotal ~a.u.!

H2•F2

R ~Å! r ~Å! u~°!
v1~a1!
~cm21!

v2~a1!
~cm21!

v3
#~b2!

~cm21!
V#

~cm21!

MP2~full !a 2100.911 147 3.099 0.736 90. 4531 87 513i 2434
QCISD~T!a 2100.901 087 2.988 0.742 90. 4407 103 528i 2533

aUsing 6-31111G(2d f,2pd) basis set.
bData from Ref. 2.
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ics is the key feature. Microwave and far-infrared spectr
which commonly provide information on tunneling, are no
yet available for this complex, but we hope the results of o
calculations may guide experimentalists to these ends. T
paper is organized as follows: In Sec. II theab initio quan-
tum chemical calculations of the PES are described. The
pology of the PES is discussed in Sec. III. Section IV
devoted to detailing our procedure for calculating th
vibration–rotation-tunneling spectra of H2–F2 and its
HD–F2, D2–F2, HT–F2, DT–F2, and T2F

2 isotopomers in
the coherent regime. In Sec. V, temperature dependent in
herent tunneling is considered, and in Sec. VI we provide
overview of our conclusion.

II. THE AB INITIO POTENTIAL ENERGY SURFACE

We first optimized the geometries of the stable linea
H–H–F2 and T-shaped transition state H2–F2 structures em-
ploying analytical gradients24 within the GAUSSIAN 92

program25 with polarized split-valence basis sets@6-3111
1G(2d f ,2pd)# at the MP2~full ! level. Then, we repeated
the geometry optimization at a more sophisticated level
theory; the quadratic configuration interaction with singl
and double excitations and approximate incorporation
triple excitations26 @QCISD~T!# method, using the same
6-31111G(2d f ,2pd) basis sets.

At both levels of theory, the linear structure is found t
be a global minimum and the T-structure is found to be
saddle point for the internal rotation of H2. Our optimal geo-
metric parameters and harmonic frequencies for these t
structures are presented in Table I together with previo
data for the linear structure obtained by Simons an
co-workers.2

The MP2~full !/6-31111G(2d f ,2pd) equilibrium ge-
ometries are very close to those obtained at the QCISD~T!/
6-31111G(2d f ,2pd) level and to the CCSD~T! data of
Ref. 2. Therefore, the potential energy surface for our subs
quent rotation–vibration-tunneling calculations was calc
lated at the MP2~full !/6-31111G(2d f ,2pd) level. The PES
for internal rotation of H2–F2 was calculated in the internal
coordinates presented in Fig. 1, wherer is the H–H bond
length,R is a distance from the F2 to the center of the H–H
bond, andu is the angle betweenR andr . Because the H–H
bond length (r ) changes only slightly from the global-
J. Chem. Phys., Vol. 102,Downloaded¬23¬May¬2003¬to¬155.101.19.15.¬Redistribution¬subjec
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minimum structure to the saddle point, and to reduce the
number of internal coordinates from three to two, we opti-
mized r for everyR and u and the resultant energies were
used to build the PES. Energies at the MP2~full !/6-3111
1G(2d f ,2pd) level were calculated for everyR5~2.0, 1.9,
1.8, 1.7, 1.6, 1.5, 2.0705, 2.0770, 2.0965, 2.1261, 2.1630,
2.2520, 2.3619, 2.5132, 2.8803, 2.9634, 3.0336, 3.0817, and
3.0995 Å! andu5~0°, 5°, 10°, 15°, 20°, 30°, 40°, 50°, 60°,
70°, 75°, 80°, 85°, and 90°! except at points where the en-
ergy was much higher than the internal rotation barrier’s en-
ergy. The resultant number of points on the two-dimensional
PES was 345~the data are available on request from the
authors!.

III. TOPOLOGY OF THE POTENTIAL ENERGY
SURFACE

Our calculations show that the H–H distancer remains
nearly constant~nearr e50.787 Å! throughout the range ofu
andR variation. This fact and the high frequency of the H–H
vibration in the H2–F2 complex~see Table I! is used to sepa-
rate this vibration from the low frequencies describing the
relative motions of H2 with respect to F2. Because the H2
rotor is assumed to be ‘‘stiff,’’ the potential energy surface
~PES! can be considered as two dimensionalV5V(R,u),
with Re52.071 Å corresponding to the equilibrium linear
geometry of the complex. Such a PES describes theu motion
of a semirigid internal H2 rotor coupled to the low-frequency
H2–F2 vibration (R). It has minima atu50, andp, and a
saddle point atu5p/2 ~see Fig. 2!. Computing the rovibra-
tional spectra for this PES requires an analytical expression
for V to use in the numerical diagonalization. Such an ex-
pression needs to reproduce the following features of the
PES:

FIG. 1. Internal coordinatesr , R, andu used for the H2•F2.
No. 3, 15 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1297Boldyrev et al.: Spectra and dynamics of H2–F2
~1! it has minima atR5Re , ue50, p;
~2! it has a saddle point atR53.099 Å @i.e.,

r5(R2Re)51.028 Å# andu5p/2;
~3! it should reproduce the barrier heightVÞ at the saddle

point;
~4! it should reproduce theab initio vibrational frequencies

at the equilibrium and saddle points.

A potential function that satisfies these conditions wa
constructed as a polynomial in the radial displacement co
dinater5(R2Re) ~to facilitate the calculation of matrix el-
ements using the harmonic oscillator basis set!,

V~r!5V0~r!11/2V2~r!~12cos 2u!, ~1a!

where

V0~r!5b1r
21b2r

31b3r
4, ~1b!

V2~r!5V21d1r1d2r
21d3r

31d4r
4, ~1c!

and the constantsbn , dn , andVn are given in Table II. The
ab initioPES, is reproduced to within;6% by this analytical
function.

For the mixed isotopomers HD–F2, HT–F2, and DT–F2

the coordinateR as defined in Fig. 1 is no longer appropriat
since the geometric center of the internal rigid rotor does n
coincide with its center of mass. To preserve the form of th
kinetic energy operator in the full Hamiltonian, two new co
ordinates must be used, one of which is the distanceR1 be-
tween the F nucleus and the center of mass of the inter

FIG. 2. Contour plot of the potential~1! ~in kcal/mol! with the parameters
from Table II for the H2•F2 complex. Minimum energy path and calculated
instanton trajectories Eqs.~11! for temperaturesT5111 K ~a!, 100 K ~b!,
and 77 K~c! are shown.

TABLE II. The Parameters of the analytical fit of theab initio PES.

Parameter Value Parameter Value

v2~s! ~cm21!, H–H–F2 357 b1 ~cm23! 3.428 32231019

v3~p! ~cm21!, H–H–F2 899 b2 ~cm24! 22.497 00931027

v2~a1! ~cm21!, H2F
2 81 b3 ~cm25! 5.115 06631035

v3
#~b2! ~cm21!, H2F

2 458i d1 ~cm22! 24.701 78131011

V# ~cm21! 2454 d2 ~cm23! 3.172 01531019

Vmax ~cm21! 3746 d3 ~cm24! 21.741 53431027

V2 ~cm21! 3.746 363103 d4 ~cm25! 5.366 39331035
J. Chem. Phys., Vol. 102,Downloaded¬23¬May¬2003¬to¬155.101.19.15.¬Redistribution¬subjec
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rotor and the other is the angleu1 betweenR1 and the rotor’s
internuclear axis. The old coordinatesR, u and new coordi-
natesR1 andu1 are related as follows:

R5~R1
21d222R1d cosu1!

1/2'R1@12~d/R1!cosu#,
~2a!

sin2 u5R1
2 sin2 u1~R1

21d222R1d cosu1!
21

'sin2 u1@112~d/R1!cosu1#, ~2b!

whered is the distance between the center of mass and the
geometric center of the internal rotor,

d5r eum12m2u@2~m11m2!#
21.

The approximate equalities given above result from ex-
pansion in powers ofd/R. This transformation makes the
potential asymmetric with respect tou5p/2. Its analytical
form can be easily derived from Eqs.~1!, with the use of
Eqs.~2!. Note that since the distances between the center o
mass and the geometric center of internal rotor is much
smaller thanR, the polynomial form of the potential inR and
cos 2u is well preserved.

IV. SPECTRA

A. H2–F2; D2F
2, T2F

2

The methodology for accurate calculation of rovibra-
tional levels of floppy molecules is well developed~see Refs.
17–23!. The Hamiltonian for the three nuclei of a triatomic
system is

H5
\2

2 (
“ i

2

mi
1V, ~3!

where“i
2 is the Laplacian for thei th nucleus. A general

approach for calculating the rovibration spectrum of the
Hamiltonian ~3! has already been developed in connection
with H2–rare gas van der Waals complexes and atom–
diatom scattering~see, for example Ref. 27!. The strategy,
due to Eckart,28 Curtiss et al.,29 and Sutcliffe30 is to first
separate the translational motion from the kinetic energy op-
erator, thus reducing to six the number of active variables.
Then one makes an orthogonal transformation from space
fixed to body-fixed coordinates with the matrix of this trans-
formation depending parametrically on three Euler anglesa,
b, g that describe the overall rotation of the three-atom
complex.31 Because the potentialV is independent ofa, b,
andg, the Hamiltonian~3!, with the center-of-mass motion
removed, assumes the following form~the length of the stiff
internal rotor is denotedr!:

H52
\2

2m1r
2

]

]r S r2
]

]r D 2
\2

2 S 1

m1r
2

1
1

m2r e
2D 1

sin u

]

]u S sin u
]

]u D 1V~cosu,r!1HVR

[H01HVR , ~4!

whereHVR includes the rotational tumbling energy plus the
vibration–rotation interaction, both of which depend on three
Euler anglesa, b, g, and the polar angleu of the internal
No. 3, 15 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



1298 Boldyrev et al.: Spectra and dynamics of H2–F2
TABLE III. Energies~E, cm21! and tunneling splittings~D,cm21! of the vibration–rotation-tunneling states in
H2•F2, D2•F2, and T2•F2 for the caseJ50.

~1/2,n,n!
H2•F2

E D
D2•F2

E D
T2•F2

E D

~100! 983.273 720.657 599.861
~200! 983.302 0.029 720.657 0.000 047 599.861 0.000 001
~110! 1297.162 963.300 809.892
~210! 1297.287 0.125 963.300 0.000 29 809.892 0.000 003
~120! 1588.081 1195.314 1012.675
~220! 1588.495 0.414 1195.315 0.001 2 1012.675 0.000 01
~130! 1850.048 1415.283 1207.484
~230! 1851.323 1.28 1415.287 0.004 4 1207.484 0.000 06
~140! 2072.641 1621.232 1393.385
~240! 2076.317 3.68 1621.247 0.015 1393.386 0.000 21
~102! 2275.635 1763.280 1487.892
~202! 2312.187 36.6 1763.475 0.20 1487.894 0.002 5
~150! 2245.891 1810.218 1569.129
~250! 2252.628 6.74 1810.267 0.049 1569.130 0.000 75
~112! 1968.942 1675.304
~212! 1969.937 1.00 1675.321 0.017
~160! 2392.907 1977.516 1732.949
~260! 2397.957 5.05 1977.673 0.16 1732.952 0.002 7
rotor in the body-fixed frame~with the z axis chosen along
r!; the pertinent reduced masses arem1

215mF
211~2mH!21

andm25mH/2. An explicit expression forHVR is given by
Tennyson and Sutcliffe.32

It is clear from Eq.~4! that although the potentialV is
two-dimensional, we have to diagonalize a five-dimensio
Hamiltonian similar to that previously treated by Nesbitt an
Naaman3 for ‘‘hinge’’ and ‘‘pinwheel’’ floppy triatomics. The
Coriolis coupling between the external~a, b, g! and
hindered-internal rotation~u! in HVR is what makes the prob-
lem five-dimensional.

The wave function of a state withtotal angular momen-
tum J and projection onto the space-fixedZ axisM can be
written as in Ref. 30,

CJM5(
K,l

CJlK~R!–PlK~cosu!–DMK
J ~a,b,g!, ~5!

where theDMK
J ~a,b,g! are the well known rotation matrix

elements,33 and thePlK~cosu! are the normalized associate
Legendre polynomials. TheCJlK(R) are the vibrational~or
scattering! wave functions for the channel labeled by qua
tum numbersJ,l ,k.

For J50, the wave function~5! is independent of the
Euler angles and theHVR term in Eq.~4! can be omitted. In
this case, numerical diagonalization of the Hamiltonian~4!
was performed using an orthogonal basis of 40 harmo
oscillator wave functionsv~r! spanning theR-coordinate and
40 Legendre polynomialsPIK~cosu! for the u variable. An
absolute precision of 1026 cm21 is achieved for the lowest
energy level, but the precision drops to 1024 cm21 for the
highest bound level supported by the potential of Eq.~1!.

For JÞ0, the matrix elements of the Hamiltonian~4!
^J,M ,l 8,K8uH01HVRuJ,M ,K,l & among the basis state
PlKDMK

J used in constructing the wave function~5! have
been calculated by Tennyson and Sutcliffe,32 and found to be
J. Chem. Phys., Vol. 102Downloaded¬23¬May¬2003¬to¬155.101.19.15.¬Redistribution¬subje
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^ l 8K8uH0uKl &5dK8Kd l 8 l H 2
\2

~2m1r
2!

]

]r S r2
]

]r D
2\2l ~ l11!F 1

~2m1r
2!

1
1

~2m2r e
2!G J

1dKK8^ l 8KuV~r,u!u lK &, ~6a!

^ l 8K8uHVRu lK &5
\2

~2m1r
2!

$2dK8K11d l 8 lCJK
1 ClK

1

2dK8K21d l 8 lCJK
2 ClK

2 1dK8Kd l 8 l

3@J~J11!22K2#%1/2, ~6b!

whereCJK
6 5[J(J11)2K(K61)]1/2.

For J51, the wave function~5!, which has fixed values
of J andM , is a sum of three terms havingK50, 61. The
diagonalization required to find the eigenvalues ofH has
been performed in two steps. First, blocks of theH matrix
with K5K850, 61 wereseparatelydiagonalized using ba-
sis sets of 40 harmonic oscillator wave functionsv~r! and 41
associated Legendre polynomialsPlK~cosu! for each K.
Subsequently, the resultant approximate wave functionsC,
each having fixedK, were used as a basis for diagonalization
of the total matrix that includes the nondiagonal interaction
^KuK8& detailed in Eq.~6b!. We found that a precision of
1026 cm21 is achieved when 20 such basis functionsC for
K50, 61 are used.

The results of our calculation forJ50 are given in Table
III ~with energies measured from the minimum of the PES!.
The tunneling doublets for successiven values are approxi-
mately spaced by the vibrational quantum along ther coor-
dinate. Since the equilibrium configuration of H2–F2 is lin-
ear, n can be associated with the longitudinal quantum
number for small oscillations along the axis of the complex.
The tunneling splitting is seen to grow withn from 0.029
, No. 3, 15 January 1995ct¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



1299Boldyrev et al.: Spectra and dynamics of H2–F2
TABLE IV. Energies~E,cm21! of the vibration-tunneling states in H2•F2, D2•F2, and T2•F2 for the caseJ51
with ~K-doubled spectra! and without~uK u50,1! Coriolis forces.

Species K50 K51 K-doubled

H2•F2 ~1/2,n,n! E ~1/2,n,n! E ~1/2,n,n! E
~100! 987.2243 ~100! 987.2207
~200! 987.2535 ~200! 987.2499
~110! 1300.9879 ~110! 1300.9760
~210! 1301.1136 ~210! 1301.1016
~120! 1591.7727 ~120! 1591.7536
~220! 1592.1885 ~220! 1592.1691

~101! 1738.4305 ~101! 1738.4305
~101! 1738.4321

~201! 1739.7086 ~201! 1739.7086
~201! 1739.7095

~130! 1854.1320 ~130! 1854.1084
~230! 1855.3700 ~230! 1855.3448

~111! 2012.6370 ~111! 2012.6370
~111! 2012.6382

~211! 2017.5245 ~211! 2017.5183
~211! 2017.5245

~140! 2087.1328 ~140! 2087.1088
~240! 2089.9941 ~140! 2089.9665

~121! 2248.5613 ~121! 2248.5613
~121! 2248.5662

~221! 2262.9973 ~221! 2262.9637
~221! 2262.9973

D2•F2 ~100! 722.8836 ~100! 722.8820
~200! 722.8837 ~200! 722.8821
~110! 965.4826 ~110! 965.4771
~210! 965.4829 ~210! 965.4774
~120! 1197.4660 ~120! 1197.4367
~220! 1197.4472 ~220! 1197.4379

~101! 1286.9688 ~101! 1286.9688
~101! 1286.9700

~201! 1286.9722 ~201! 1286.9722
~201! 1286.9733

~130! 1417.3679 ~130! 1417.3551
~230! 1417.3722 ~230! 1417.3594

~111! 1513.5917 ~111! 1513.5917
~111! 1513.5921

~211! 1513.6107 ~211! 1513.6107
~211! 1513.6111

~140! 1623.5313 ~140! 1623.5157
~240! 1623.5457 ~240! 1623.5300

~121! 1726.8367 ~121! 1726.8363
~121! 1726.8367

~221! 1726.9132 ~221! 1726.9127
~221! 1726.9132

~102! 1765.2399 ~102! 1765.2384
~202! 1765.4357 ~202! 1765.4340
~150! 1816.4091 ~150! 1816.3915
~250! 1816.4476 ~250! 1816.4300

T2•F2 ~100! 601.4944 ~100! 601.4934
~200! 601.4944 ~200! 601.4934
~110! 811.4995 ~110! 811.4958
~210! 811.4995 ~210! 811.4958
~120! 1014.2535 ~120! 1014.2470
~220! 1014.2535 ~220! 1014.2470

~101! 1073.0643 ~101! 1073.0643
~101! 1073.0632

~201! 1073.6544 ~201! 1073.6544
~201! 1073.6536

~130! 1209.0316 ~130! 1209.0226
~230! 1209.0317 ~230! 1209.0226

~111! 1272.7340 ~111! 1272.7340
~111! 1272.7346

~211! 1272.7342 ~211! 1272.7342
J. Chem. Phys., Vol. 102, No. 3, 15 January 1995Downloaded¬23¬May¬2003¬to¬155.101.19.15.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



1300 Boldyrev et al.: Spectra and dynamics of H2–F2
TABLE IV. ~Continued.!

Species K50 K51 K-doubled

~211! 1272.7348
~140! 1394.9344 ~140! 1394.9230
~240! 1394.9346 ~240! 1394.9232

~121! 1463.8455 ~121! 1463.8455
~121! 1463.8457

~221! 1463.8466 ~221! 1463.8466
~221! 1463.8468

~102! 1489.3696 ~102! 1489.3688
~202! 1489.3721 ~202! 1489.3713
~150! 1571.3061 ~150! 1571.2928
~250! 1571.3068 ~250! 1571.2935
to
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cm21 ~n50! to 6.74 cm21 ~n55!, demonstrating the strong
promoting effect of this longitudinal mode. Moreover, exci
tations of the bending mode, even to its lowest excited sta
produces an even larger growth in the splitting~to ;37
cm21!.

Small oscillations about the minimum along theu coor-
dinate correspond to the two transverse doubly degener
bending modes whose quantum number is denotedn, which
can only be even for theJ50 case. The lower~upper! level
in eachR,u tunneling doublet is labeled with a plus~minus!
sign reflecting the wave function’s parity with respect t
u→u1p. States withn.2 lie near dissociation, and are no
included in Table IV.

For J51 ~Table IV!, the matrix elements of the Hamil-
tonian ~4! ^J,M ,K50,uHu,K851,J,M & are much smaller
than the diagonal matrix elements,@see Eqs.~6!#, their ratio
being roughly proportional tomr/mR>0.02. For this reason,
K can be approximately considered as a good quantum nu
ber, if Coriolis forces are neglected. Upon the inclusion o
Coriolis terms, theK561 degeneracy is removed~the so-
called,K-doubling phenomenon34! as is clear from Table IV,
where the exact results of diagonalization forJ51 are pre-
sented. Note, however, thatK-doubling does not affect the
tunneling splittings because of the symmetry of the rotatio
problem under the transformationu→u1p.

Along with the eigenvalues of the Hamiltonian~4!, di-
agonalization provides us with the wave functions of th
system. This allows us to define the transition state of t
system in terms of the maximum~maxima! of the wave func-
tion at the dividing lineu5p/2, a definition previously intro-
duced by Shidaet al.35 Obviously, this transition state differs
from that suggested by the topology of the PES~i.e., the
saddle point!. The results of such an evaluation for the cas
J50 are presented in Fig. 3. The ground state wave functi
at the dividing line@Fig. 3~a!# peaks atR52.37 Å, far from
the PES saddle point. Increasing the quantum numbern of
the promoting moder produces additional maxima in the
wave function. Forn51, the wave function peaks atR52.57
Å and R51.97 Å @Fig. 3~b!#; the absolute maximum~R
52.57 Å! shifts towards the saddle point, while the second
ary maximum is strongly suppressed because the poten
increases sharply for smallr. Because the topology of the
PES remains unchanged in passing to D2–F2 or T2–F2, the
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appearance of the wave functions for them is analogous
those discussed above for H2F

2.
The Hamiltonian and the numerical procedure for calcu

lating the spectra of the symmetrical isotopically substitute
species D2F

2 and T2F
2 are identical to those discussed

above for H2F
2. The corresponding results are given in

Tables III ~for J50! and IV ~for J51!. The primary obser-
vation to be made for theJ50 spectra is that the tunneling
splitting decreases dramatically@by 3 ~D2–F2! and 4~T2–F2!
orders of magnitude# when moving from the H2–F2 to D2F

2

and T2F
2. The pronounced isotope effect is due to the ver

high barriers that are present even at the saddle point.

B. HD–F2, HT–F2, and DT–F2

The potential for the mixed isotopomers given by Eq.~2!
is asymmetric. As a result, the vibrational frequenciesv in
the wells nearu50 andp are 884 cm21 and 653 cm21 for
HD–F2, 879 cm21 and 548 cm21 for HT–F2, and 628 cm21

and 526 cm21 for DT–F2. Moreover the wells are of unequal
depth atu50 andu5p, with the energy difference between
the potential minima being 23.3195, 80.1891, 4.9879 cm21

for HD–F2, HT–F2, and DT–F2, respectively. Because we
observed no accidental degeneracies between the levels a
ing from the wells nearu50 andu5p, there can exist no
tunneling splitting, as a result of which there are two inde
pendent eigenvalue ladders, one for each well~Fig. 4!. The
results of our calculations of the spectra forJ50 are pre-
sented in Table V, where the levels are measured from t
bottom of the deepest well~at u5p!.

V. INCOHERENT TUNNELING IN H2–F2

State specific coherent tunneling and the associat
vibration–rotation-tunneling spectra considered above pe
tain to gas phase conditions. An alternative experimenta
realized situation involves an impurity molecule embedde
in a chemically inert solid matrix for which interaction with
the ‘‘heat bath’’ destroys the coherence of tunneling. In suc
cases, quantum levels in the reactant well acquire widt
which give rise to a rate constant for intramolecular rea
rangement instead of a tunneling splitting.

Let us consider such incoherent tunneling in H2–F2

within a model that assumes that end-over-end rotation of t
, No. 3, 15 January 1995ct¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1301Boldyrev et al.: Spectra and dynamics of H2–F2
complex in the solid is frozen. Moreover, the low frequenc
bending vibrations of the linear complex will be incorporate
in the ‘‘bath’’ degrees of freedom. The heavy fluorine atom
allowed to oscillate only along the space-fixed axis,R, con-
necting the F to the center of mass of H2. The only rotation
that is treated is the nearly free rotation of the small rigid H2
rotor about the axis of oscillation of the F atom. As a resu
three coordinates are required to describe the reaction s
tem.

The rate of multidimensional tunneling can be related
the imaginary part of the free energyF of the system,5

TABLE V. Spectra of mixed isotopomers HD•F2, HT•F2, and DT•F2 for
J50. Symbols 0 andp show to ladder in which well~at u50 orp! the level
belongs.

HD•F2

E
HT•F2

E
DT•F2

E

p 823.100 753.716 643.229
0 921.690 944.574 685.554
p 1095.532 1003.908 866.715
0 1194.495 1192.392 908.021
p 1356.160 1244.331 1081.8878
0 1453.307 1429.981 1123.090
p 1598.531 1473.727 1287.753
0 1696.315 1656.393 1328.896
p 1822.589 1690.298 1483.056
0 1921.337 1870.570 1524.342
p 2027.254 1891.164 1665.522
0 2126.213 2070.503 1707.878
J. Chem. Phys., Vol. 102,Downloaded¬23¬May¬2003¬to¬155.101.19.15.¬Redistribution¬subjec
y

s

t,
ys-

o

K52b21 Im Z/ReZ5Im F, ~7!

whereZ is the partition function andb5\/kBT is the inverse
temperature. This expression enables one to use the path
tegral expression for the partition function due to
Feynmann,36

Z5Tr@exp~2bH !#5E D@Q~t!#exp$2SE@Q~t!#%,

~8!
Q~0!5Q~b!,

where the path integral sums all the periodic paths of th
system connecting pointsQ~0! andQ~b! SE@Q~t!# is the Eu-
clidean action along the path,

SE@Q~t!#5E
0

b

dtH~Q,dQ/dt! ~9!

andH is the classical Hamiltonian of the system.
We are now required to look for the stationary points o

the path integral~8!; in so doing, we find trajectories that
minimize the Euclidean action~9! and, thus, obey the clas-
sical equations of motion in the inverted potential2V with
the set of periodic boundary conditionsu~t1b!5u~t!. The
nontrivial solutions to these equations have been characte
ized as instantons. In one dimension, such solutions we
extensively studied by Langer,37 Callan and Coleman,38 and
Polyakov.39

It follows from Eqs.~7! and~8!, that the instanton action
S determines the incoherent tunneling rate as
FIG. 3. Scaled two-dimensional wave functionsC~r,u! for the ground~100! ~a! and first vibrationally excited~110!~b! states of the H2•F2 complex in the
rotational stateJ50. Section of the wave functionC~r,u! in the dividing lineu5p/2 are shown in insets.
No. 3, 15 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 4. Sections of two-dimensional potentials atr50 for H2•F2 ~dashed
line! and HD•F2~a!, HT•F2~b!, and DT•F2~c! ~solid lines!. Unsplit levels
for H2•F2 ~dashed lines! and vibrational ladders for the three isotopomer
~solid lines! are shown.
e

e
n

of
-
o

ts

-

a-
K~b!}exp~2Sins!. ~10!

The main feature of multidimensional instantons is that, u
like the well-known one-dimensional variants, the shape
the optimal trajectory changes with temperature. Expressi
~10! allows the determination of a transition state for inco
herent tunneling as a point at the dividing line through whic
the instanton passes. Calculation of transition state geo
etries at different temperatures thus becomes an import
goal. Then we can compare these results to evolution of t
transition state with changing quantum number in the cohe
ent problem described above.

The semiclassically exact expression forK~b! addition-
ally includes several factors.5

~1! A longitudinal prefactor, associated with the invarianc
of the instanton with respect to time shift.

~2! A transverse prefactor, stemming from Gaussian fluctu
tions around the instanton trajectory and determining t
width of the ‘‘tunneling channel.’’40

Note, that the rate constant should also be dependent
the spectral density of the coupling coefficients describin
the interaction between the reaction complex and bath.5 It is
essential, however, that until the crossover temperature fr
Arrhenius activated to tunneling regimes is smaller than t
J. Chem. Phys., Vol. 102,Downloaded¬23¬May¬2003¬to¬155.101.19.15.¬Redistribution¬subjec
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Debye temperature, which is commonly the case,5 this spec-
tral function has no effect on the temperature behavior of th
rate constant.

The numerical procedure for calculating the transvers
prefactor, which, for three-dimensional problems depends o
four stability parameters of the instanton trajectory,5 is well
developed.7,41,42Its inclusion into the expression for the rate
constant becomes crucial when the stability parameters
instanton approach zero, signaling tunneling path bifurca
tion. This phenomena is normally due to the existence of tw
or more equivalent saddle points on the PES.31 For the prob-
lem in question, however, the topology of the PES sugges
no bifurcations of the instanton. Thus, all the information on
the evolution of the transition-state geometry can be ex
tracted from the instanton solution itself, contributing to
K(b) according to Eq.~10!.

The instanton path satisfies the Euler–Lagrange equ
tions, which in spherical coordinates~R,u,w! read

m1d
2R~t!/dt25]V~R,u!/]R, ~11a!

m2d
2u~t!/dt25]V~R,u!/]u1m2 sin u cosuẇ2,

~11b!

d@sin2 u~t!ẇ~t!#/dt50, ~11c!

with the following boundary conditions
No. 3, 15 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1303Boldyrev et al.: Spectra and dynamics of H2–F2
R~t1b!5R~t!;

u~t1b!5u~t!; ~11d!

w~t1b!5w~t!.

This trajectory becomes extreme, when

ẇ50 ~11e!

and the tunneling motion is two dimensional, being confine
to the ~R,u! plane.

The results of numerical integration of Eqs.~11! are
shown in Fig. 5. The instanton action~Fig. 5! achieves a
low-temperature plateau belowT570 K. The crossover tem-
peratureb0 at which the probability of an overbarrier transi
tion equals that for underbarrier tunneling, equals 125 K. A
this temperature, the instanton appears near the saddle po
so that

b05v]/2p, ~12!

wherev] is the imaginary frequency at the saddle poin
Equation~12! reflects the fact that instanton period cannot b
smaller than the period of oscillation in the inverted potenti
near the saddle point. The temperature evolution of tunneli
trajectories in the~R,u! plane is illustrated in Fig. 2. For
b,b0, the instanton ‘‘sits’’ at the saddle point with the action
S5bV], and the Arrhenius dependence of the rate consta
k5exp~2bV]! holds. With decreasing temperatureb.b0,
the instanton gradually elongates and moves away from
MEP. The lower the temperature, the shorter the distanceR
in the T-shaped transition state of complex to the equilibriu
position in the linear complex. Finally, we see that the tem
perature behavior of the transition state geometry for inc
herent transitions is very similar to that for coherent tunne
ing described above.

According to the well-known Herring’s formula,43 the
tunneling splittingD can be expressed in the form of the
integral of the probability fluxCDC* over the dividing line.
As was shown by Schmid,44 the underbarrier wave function
of the ground state is determined by the action along t

FIG. 5. Calculated temperature dependence of instanton action Eq.~9!.
Dashed line~for T,125 K! corresponds to the Arrhenius region.
J. Chem. Phys., Vol. 102,Downloaded¬23¬May¬2003¬to¬155.101.19.15.¬Redistribution¬subjec
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tunneling trajectory, starting from the potential minimum and
coinciding with the instanton trajectory with infinite period
~zero temperature!. In this connection, one might expect that
instanton with b→~`! should intersect the dividing line
u5p/2 in the vicinity of maximum of the ground state wave
function. This is actually the case, as seen from the contou
plot of the wave function in Fig. 6. It is noteworthy that
maxima of wave functions at the dividing lineu5p/2 for
highern levels as well as the instanton path for increasing
temperature shift towards the saddle point in tandem. Thi
behavior reflects the contribution of higher vibrational states
to the statistically averaged tunneling rate constant.

VI. CONCLUSION

The complex H2F
2 is an illustrative example of a tun-

neling system for which no reduction procedure5 is necessary
to elucidate the tunneling dynamics. In this work, we start by
calculating the three dimensionalab initio PES, we then fit
our ab initio data to a reasonable and flexible functional
form. Then, we determine the vibrational–rotation-tunneling
spectra and analyze the wave functions of different vibra
tionally excited levels. This anion complex is especially at-
tractive because the potential wells are rather deep, so th
vibrational progressions are long and the variation of the
tunneling splitting within such progressions can be easily
followed. H2F

2 is thus distinct from, for example, malonal-
dehyde or the hydroxyoxalate anion,5 in which the wells are
so shallow that the vibrational progressions have only one o
two levels below the barrier.

In our study of coherent~has-phase! tunneling, we found
that the H2•••F

2 intermolecular vibration promotes tunnel-
ing, and that the tunneling splitting grows by a factor of 150
within the progression of this mode. Moreover, excitation of
the bending mode by two quanta causes the splittings t
grow by more than three orders of magnitude. This is due t
the topology of the PES for H2F

2528 which can be clarified
by examining contributions from various tunneling paths.
The optimal tunneling path can be thought of as involving a
compromise between two factors, thelengthof path and the

FIG. 6. Cut through the wave functionC~r,u! of the H2•F2 complex in the
ground vibrational state~00! ~for J50! and instanton trajectory forT520 K.
No. 3, 15 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1304 Boldyrev et al.: Spectra and dynamics of H2–F2
barrier heightalong the path. Since the barrier alongu for
frozenR is 3.6 kcal/mol higher than the saddle point, th
‘‘sudden’’ pathr50 is highly improbable. At the same time,
since the minimum-energy path~MEP! is significantly
curved, the adiabatic limit, corresponding to an effectiv
one-dimensional vibrationally adiabatic potential, cannot b
achieved either. Hence, the most effective trajectories lie
the intermediate region between the adiabatic and ‘‘sudde
paths. With increasing quantum number in ther mode, the
extreme path becomes shorter and approaches the MEP.
cause there is no reorganization alongr coordinate, this leads
to an increase in the tunneling splitting.

Studying the spectra of states with total angular mome
tum J51, we found that although rotation of the complex a
a whole shifts the vibrational ladders in the wells, it ha
almost no affect on the tunneling splittings. An influenc
appears only for the heavier isotopomers D2F

2 and T2F
2, in

which K doubling is comparable or greater in magnitud
than the tunneling splitting.

Along with these studies of coherent tunneling in H2F
2,

we also calculated the probability of incoherent tunnelin
transitions using a model in which emphasis is placed
intermolecular vibration and tunneling rotation with couplin
to the environment destroying the coherence. Within th
model, we are able not only to follow the temperature depe
dence of the rate constant of tunneling in H2F

2, but also to
compare qualitatively the dynamics of the coherent and i
coherent transitions.

The most valuable characteristic is shown to be the g
ometry of the transition state. It is found that the maxima o
the wave functions at the dividing line shift towards th
saddle point with increasing quantum number of the promo
ing mode in much the same fashion as the instanton traj
tories approach the MEF with increasing temperature.

We hope that our work will lend impetus to experimenta
studies of the tunneling spectra of H2F

2. Data from such
studies would allow one to estimate the accuracy with whic
the PES is obtained and to determine how errors in the P
in the regions far from equilibrium affect the resulting tun
neling spectra and dynamics.
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