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Ab initio computations of the potential energy surf@e&S of the ground electronic state of,H

have been performed as a function of the stretching F(R) and H, rotation (6) coordinates.
Minima on the PES correspond to lindd~H—F structures, while the transition state is T-shaped.
The F to H, distance increases in the transition state from 2.07 to 3.10 A, demonstrating strong
coupling between thé and R degrees of freedom. The vibration—rotation-tunneling spectra are
calculated by diagonalizing the five dimensional Hamiltonian matrix that describes free rotation of
the triatomic(three coordinatgsplus the internalp and R motions. For total angular momentum
J=0, the spacing between levels in the tunneling doublets increases from 0.029 to 6 74scthe
stretching quantum numbarcorresponding t&R motion varies from 0 to 5. The splittings increase
even more strongly with the bending quantum number. Fet, each level in the tunneling
doublets is further split by Coriolis forceK-doubling is found to be an order of magnitude smaller
than the tunneling splitting. In the symmetric isotopomessFD and T,-F~, the tunneling splitting
drops by 3 and 4 orders of magnitude compared te&FH, and thus becomes comparable with the
K-doubling forJ=1. Finally, incoherent tunneling, appropriate to condensed phase environments, of
the HF~ system is also treated. @995 American Institute of Physics.

I. INTRODUCTION reviews in Refs. 4 and)5This concept emphasizes that tun-
neling in many chemical systems can involve significant dis-
Macements along several coordinatabbng and transverse

to the reaction padh The transverse coordinates can actively
promote(for symmetric coupling with the reactions coordi-
pate) or suppress(for antisymmetric coupling the tun-
neling® In the coherent tunneling regime treated in Sec. 1V,
this influence manifests itself in the strong dependence of the

been carried out by Simons and co-work&Tsvo symmetric tunneli7ng splittir'lg on the quanturr_l numk.)e'rs of the transverse
minima, corresponding to linear HHFstructures of the modes. In_a_ddltlon to the tunneling splitting, the geometry
complex, were found. Because hindered rotation of thef the transition state also depends on the quantum numbers
nearly rigid H, moiety occurs, bF is what Nesbitt and ©f the transverse modes. . .
Naaman called a “pinwheel” complex. However, unlike the The essential features of two dimensional coherent tun-
cases considered in Ref. 3, the T-shape structure,df His neling can be elucidated by numerical diagonalization of a
a transition state rather than an equilibrium geometry. Thdlamiltonian matrix. However, analysis of incoherent tunnel-
results of Simons and co-workérsdicated that hindered iNg treated in Sec. IV requires approximate semiclassical
rotation is strongly coupled to interfragment oscillation of Methods, among which a multidimensional version of the
the H,-F. In this respect, the ¥~ complex provides a very so-called instanton technique is shown to be quite promis-
relevant example involving two-dimension@D) tunneling.  iNg.
A distinctive feature of this complex is that hydrogen bond- ~ The vibration—rotation-tunnelinQ/RT) spectra of many
ing provides potential barriers for hindered rotation that argnolecules have already been studied both experimentally,
very high, which produces long progressions of vibrational(H20)2.° (H;0)3," (NHg),,™* (HF),,'? (HCI),,** NH3-H,0,
levels split by tunneling. Because the potential wells aréNHsz-Ar,*® C;H3 ,'® (and many others reviewed in Refs.)17
deep and narrow, the nuclear wave functions for low-lyingand theoretically,(H,0),,"® (NH3),,*° (HF),,*° H,He"*
levels are well localized. Hence, at first glance, the concepE:Hs ,%? LiBH,,* LiCH; > However we did not find any
of a single well defined “equilibrium molecular structure,” earlier experimental or theoretical study of the VRT spectra
common in spectroscopy, seems applicable, at least for lowef the H,-F~ complex, which is expected to have substantial
lying levels. tunneling splittings.

The concept of multidimensional nuclear tunneling at- In this paper, the HF~ complex is studied in both the
tracted much attention in the early 1988=e, for example, coherent and incoherent regimes for which tunneling dynam-

Recently, the van der Waals complex of Bhd F has
received widespread attention due to the studies of Neuma
and co-workers. By studying the photoelectron spectra of
H,-F~ they found that the geometry of the ground electronic
state of this complex is close to that of the transition state fo
the collineareutral F+H, reaction.

Earlier ab initio computations of the PES forJ-" had
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1296 Boldyrev et al.: Spectra and dynamics of H,-F~

TABLE I. Molecular parameters of the - system.

Linear H-H-F w,(0) wy(0) ws() v#
Method Ejota (2.U) R (A) r (&) 6(°) (em™ (cm™ cm™) (cm™
MP2(full )2 —100.922 239 2.071 0.787 180. 3607 383 1004
QCISD(T)? —100.912 629 2.074 0.792 180. 3536 384 976
ccsoT)P —100.905 480 2.075 0.770 180.
Angular Hy-F~ wy(ay) wy(ay) wfi(by) v#
Method Ejota (2.U) R(A) r (&) 6(°) (em™ (cm™ (em™ (cm™
MP2(full 2 —100.911 147 3.099 0.736 90. 4531 87 513 2434
QCISD(T)® —100.901 087 2.988 0.742 90. 4407 103 528 2533

aUsing 6-311+G(2df,2pd) basis set.
Data from Ref. 2.

ics is the key feature. Microwave and far-infrared spectraminimum structure to the saddle point, and to reduce the
which commonly provide information on tunneling, are not number of internal coordinates from three to two, we opti-
yet available for this complex, but we hope the results of oumizedr for every R and # and the resultant energies were
calculations may guide experimentalists to these ends. Thased to build the PES. Energies at the NfBR)/6-311+
paper is organized as follows: In Sec. Il thb initio quan-  +G(2df,2pd) level were calculated for evelg=(2.0, 1.9,
tum chemical calculations of the PES are described. The tat.8, 1.7, 1.6, 1.5, 2.0705, 2.0770, 2.0965, 2.1261, 2.1630,
pology of the PES is discussed in Sec. lll. Section IV is2.2520, 2.3619, 2.5132, 2.8803, 2.9634, 3.0336, 3.0817, and
devoted to detailing our procedure for calculating the3.0995 A and #=(0°, 5°, 10°, 15°, 20°, 30°, 40°, 50°, 60°,
vibration—rotation-tunneling spectra of ,HF- and its 70°, 75°, 80°, 85°, and 90%xcept at points where the en-
HD-F~, D,-F~, HT-F, DT-F, and T,F isotopomers in ergy was much higher than the internal rotation barrier’s en-
the coherent regime. In Sec. V, temperature dependent incergy. The resultant number of points on the two-dimensional
herent tunneling is considered, and in Sec. VI we provide afPES was 345the data are available on request from the
overview of our conclusion. authors.

Il. THE AB INITIO POTENTIAL ENERGY SURFACE

. L . . lll. TOPOLOGY OF THE POTENTIAL ENERGY

We first optimized the geometries of the stable “nearSURFACE
H—-H-F and T-shaped transition stateH~ structures em-
ploying analytical gradient within the GAUSSIAN 92 Our calculations show that the H—H distanceemains
progrant® with polarized split-valence basis s€i8-311+ nearly constantnearr ,=0.787 A throughout the range df
+G(2df,2pd)] at the MPZfull) level. Then, we repeated andR variation. This fact and the high frequency of the H—H
the geometry optimization at a more sophisticated level o¥ibration in the H-F~ complex(see Table)lis used to sepa-
theory; the quadratic configuration interaction with singlerate this vibration from the low frequencies describing the
and double excitations and approximate incorporation ofelative motions of H with respect to F. Because the }
triple excitation$® [QCISD(T)] method, using the same rotor is assumed to be “stiff,” the potential energy surface
6-311++G(2df,2pd) basis sets. (PES can be considered as two dimensiona+ V(R, 6),

At both levels of theory, the linear structure is found towith R,=2.071 A corresponding to the equilibrium linear
be a global minimum and the T-structure is found to be ageometry of the complex. Such a PES describegtmetion
saddle point for the internal rotation of, HOur optimal geo-  of a semirigid internal Kirotor coupled to the low-frequency
metric parameters and harmonic frequencies for these twh,-F~ vibration (R). It has minima at¢=0, and, and a
structures are presented in Table | together with previousaddle point a¥==/2 (see Fig. 2 Computing the rovibra-
data for the linear structure obtained by Simons andional spectra for this PES requires an analytical expression
co-workers> for V to use in the numerical diagonalization. Such an ex-

The MP2Zfull)/6-311++G(2df,2pd) equilibrium ge- pression needs to reproduce the following features of the
ometries are very close to those obtained at the QCISD PES:
6-311++G(2df,2pd) level and to the CCSO) data of
Ref. 2. Therefore, the potential energy surface for our subse-
guent rotation—vibration-tunneling calculations was calcu-
lated at the MP@ull)/6-311++G(2df,2pd) level. The PES H
for internal rotation of H-F~ was calculated in the internal F_R__/
coordinates presented in Fig. 1, wherés the H—H bond 0
length,R is a distance from the Fto the center of the H—H
bond, andd is the angle betweeR andr. Because the H—H
bond length () changes only slightly from the global- FIG. 1. Internal coordinates, R, and 6 used for the B-F~.

H
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rotor and the other is the anghg betweerR; and the rotor’s
internuclear axis. The old coordinatBs # and new coordi-
natesR, and 6, are related as follows:

R=(R2+ 62— 2R, 6 cos 0;)*>~R,[1— (8/R;)cos 6],
(29

p (A)

sir? 6=R? sir? 0,(R3+ 6°—2R,8 cos f;) *
~sir? 6,[1+2(8/R;)cos 4], (2b)

where § is the distance between the center of mass and the
geometric center of the internal rotor,

o (rad) S=r¢m—my|[2(my+my)] L

FIG. 2. Contour plot of the potentidll) (in kcal/mol) with the parameters The apprOXimate equa"ties given above result from ex-

frorﬁ T-able Il f(l)Jr tFr)le H-F céomplex. Minimum energy path ar?d calculated panspn In powerS_Oﬁ/R' This transformation make,s the

instanton trajectories Eq$l1) for temperature§ =111 K (a), 100 K (b), potential asymmetric with respect ®==/2. Its analytical

and 77 K(c) are shown. form can be easily derived from Eqg€l), with the use of
Egs.(2). Note that since the distances between the center of
mass and the geometric center of internal rotor is much

(1) it has minima aR=R,, 6,=0, ; smalle_r tharR, the polynomial form of the potential iR and

(2) it has a saddle point atR=3.099 A [ie, Cos2iswell preserved.

p=(R—R,)=1.028 A] and #=m/2;
(3) it should reproduce the barrier heighif' at the saddle

. IV. SPECTRA
point; ) o
(4) it should reproduce thab initio vibrational frequencies A- Hz'F™5 DoF™, ToF
at the equilibrium and saddle points. The methodology for accurate calculation of rovibra-

A potential function that satisfies these conditions wagional levels of floppy molecules is well developesite Refs.
constructed as a polynomial in the radial displacement coort7—23. The Hamiltonian for the three nuclei of a triatomic
dinatep=(R—R,) (to facilitate the calculation of matrix el- SYStém Is

ements using the harmonic oscillator basig,set 52 v?
H=— —+V, 3
V(p)=Vo(p)+1/2V,(p)(1—cos 29), (1a 2 m; @
where where V? is the Laplacian for théth nucleus. A general

(1b) approach for calculating the rovibration spectrum of the
Hamiltonian (3) has already been developed in connection
V,(p)=V,+dip+dyp?+dgp+dyp, (1o  with H,—rare gas van der Waals complexes and atom-—
diatom scatteringsee, for example Ref. 27The strategy,
due to Eckarf® Curtiss et al,?® and Suitcliffé® is to first
separate the translational motion from the kinetic energy op-
erator, thus reducing to six the number of active variables.

the coordinatdR as defined in Fig. 1 is no longer appropriate Then one makes an orthogonal transformation from space-

. i . - ixed to body-fixed coordinates with the matrix of this trans-
since the geometric center of the internal rigid rotor does no ormation depending parametrically on three Euler angles
coincide with its center of mass. To preserve the form of the P ap y

kinetic energy operator in the full Hamiltonian, two new co- By thastl describe the overaI.I rqta.tlon of the three-atom
ordinates must be used, one of which is the distdrRcbe- complex- Because the potential is independent ok, B,

tween the F nucleus and the center of mass of the internéﬁnd 7, the Hamiltonian(3), W'th the center-of-mass motion
removed, assumes the following for(tihe length of the stiff

internal rotor is denoteg):

Vo(p)=b1p®+byp®+bgp?,

and the constants,, d,, andV, are given in Table Il. The
ab initio PES, is reproduced to withir6% by this analytical
function.

For the mixed isotopomers HB~, HT-F, and DT-F~

2 2
TABLE Il. The Parameters of the analytical fit of tla initio PES. — h i 2 i _ ﬁ_ 1
2uip? ap \P ap) 2\ wap?
Parameter Value Parameter Value
— — 1 1 0 . d

wy(o) (cm™), H-H-F 357 by (cm™®  3.428 3210"° + _2> S (sm 6 —| +V(cos,p)+Hyg
wy(m) (cm™Y), H=H-F 899 b, (cm™®)  —2.497 00107 uole) Sin @ d6 24
wy(ag) (cm™Y), HF~ 81 by cm™®  5.115066<10%
wi(b,) (cm™Y), HF~ 458 d, (cm?® —4.701 78101 =Ho+Hyr, (4)

# —1 —3 9
xm:xc?::m)*l) g‘;ig gz 222,4; j:%ﬁ géiig; whereH, includes the rotational tumbling energy plus the

V, (cmY) 3746 36<10° d, (cm®  5.36639x10®  Vibration—rotation interaction, both of which depend on three
Euler anglese, B, v, and the polar angl® of the internal
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TABLE IlI. Energies(E, cm ) and tunneling splittinggA,cm ) of the vibration—rotation-tunneling states in
H,-F~, D,-F, and T,-F~ for the case]=0.

Hy F™ D,-F™ T, F

(+/—n,v) E A E A E A
(+00) 983.273 720.657 599.861
(—00) 983.302 0.029 720.657 0.000 047 599.861 0.000 001
(+10) 1297.162 963.300 809.892
(-10 1297.287 0.125 963.300 0.000 29 809.892 0.000 003
(+20) 1588.081 1195.314 1012.675
(—20) 1588.495 0.414 1195.315 0.001 2 1012.675 0.000 01
(+30) 1850.048 1415.283 1207.484
(—30) 1851.323 1.28 1415.287 0.004 4 1207.484 0.000 06
(+40) 2072.641 1621.232 1393.385
(—40) 2076.317 3.68 1621.247 0.015 1393.386 0.000 21
(+02) 2275.635 1763.280 1487.892
(—02) 2312.187 36.6 1763.475 0.20 1487.894 0.002 5
(+50) 2245.891 1810.218 1569.129
(—50) 2252.628 6.74 1810.267 0.049 1569.130 0.000 75
(+12) 1968.942 1675.304
(—12) 1969.937 1.00 1675.321 0.017
(+60) 2392.907 1977.516 1732.949
(—60) 2397.957 5.05 1977.673 0.16 1732.952 0.002 7

rotor in the body-fixed framéwith the z axis chosen along
p); the pertinent reduced masses arg*=mg1+(2my)* (I"K'[Ho|KI) = 8k 1k 61y
and w,=mg/2. An explicit expression foH is given by
Tennyson and Sutcliffé? ) 1
It is clear from Eq.(4) that although the potentidl is —AA0+1) (2p1p°) i (ZMZFZ)“
two-dimensional, we have to diagonalize a five-dimensional ¢
Hamiltonian similar to that previously treated by Nesbitt and + ok ('K V(p, 0)[IK), (6a)
Naaman for “hinge” and “pinwheel” floppy triatomics. The
Coriolis coupling between the externdk, B, y) and
hindered-internal rotatio(¥) in H, is what makes the prob-
lem five-dimensional. L
The wave function of a state witiotal angular momen- ~Okk-101CokCik + Sk ki
tum J and .projection onto the space-fix&daxis M can be X[I(I+1)—2K2]L2, (6b)
written as in Ref. 30,

29 ( ) a)
_ 22z
(2u1p®) dp \" dp

2
(I"K'[Hygl|IK) = ) {~ 8k+181C3Cik

whereCj=[J(J+1)-K(K+1)]¥2
_ . nJ For J=1, the wave functior{5), which has fixed values
You % Ya(R)-Pic(c0s6) Dy, 8.7). ® of J andM, is a sum of three terms havirg=0, +1. The
diagonalization required to find the eigenvaluestbfhas
where theDjk(a.,7) are the well known rotation matrix been performed in two steps. First, blocks of tematrix
elements? and theP, (cos6) are the normalized associated with K=K’=0, =1 wereseparatelydiagonalized using ba-
Legendre polynomials. Th# ;«(R) are the vibrationalor  sis sets of 40 harmonic oscillator wave functiarig) and 41
scattering wave functions for the channel labeled by quan-associated Legendre polynomialy(cosd) for each K.
tum numbers], |, k. Subsequently, the resultant approximate wave functibns
For J=0, the wave function5) is independent of the each having fixe&, were used as a basis for diagonalization
Euler angles and the, term in Eq.(4) can be omitted. In  of the total matrix that includes the nondiagonal interaction
this case, numerical diagonalization of the Hamiltonidh  (K|K’) detailed in Eq.(6b). We found that a precision of
was performed using an orthogonal basis of 40 harmonid0 ® cm™! is achieved when 20 such basis functiohsor
oscillator wave functions (p) spanning thdR-coordinate and K =0, *1 are used.

40 Legendre polynomial®, (cosé) for the 6 variable. An The results of our calculation far=0 are given in Table
absolute precision of I¢ cm ™! is achieved for the lowest Il (with energies measured from the minimum of the RES
energy level, but the precision drops to~f@cm™* for the  The tunneling doublets for successinevalues are approxi-
highest bound level supported by the potential of &g. mately spaced by the vibrational quantum along gheoor-

For J#0, the matrix elements of the Hamiltonigd)  dinate. Since the equilibrium configuration ob4# is lin-
(3,M,I" K'|Hg+Hyg|J,M,K,I) among the basis states ear, n can be associated with the longitudinal quantum
PxDu« used in constructing the wave functigs) have  number for small oscillations along the axis of the complex.
been calculated by Tennyson and Sutclf#ffend found to be The tunneling splitting is seen to grow with from 0.029
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TABLE IV. Energies(E,cm 1) of the vibration-tunneling states in,H~, D,-F~, and T,-F~ for the casel=1

Boldyrev et al.: Spectra and dynamics of H,-F~

with (K-doubled spectpaand without(|K|=0,1) Coriolis forces.

Species K=0 K=1 K-doubled
Hy-F~ (+/—=.n,v) E (+/—=n,v) E (+/=n,v) E

(+00) 987.2243 (+00) 987.2207

(—00 987.2535 (—00) 987.2499

(+10) 1300.9879 (+10) 1300.9760

(-10 1301.1136 (-10 1301.1016

(+20) 1591.7727 (+20 1591.7536

(=20 1592.1885 (=20 1592.1691

(+01) 1738.4305 (401 1738.4305

(+01) 1738.4321

(=01 1739.7086 (—01) 1739.7086

(=01 1739.7095

(+30) 1854.1320 (+30 1854.1084

(=30 1855.3700 (=30 1855.3448

(+11) 2012.6370 (+11) 2012.6370

(+11 2012.6382

(-11) 2017.5245 (—11) 2017.5183

(=11 2017.5245

(+40 2087.1328 (+40) 2087.1088

(—40) 2089.9941 (+40 2089.9665

(+22) 2248.5613 (+21) 2248.5613

(+21) 2248.5662

(=21 2262.9973 (—21) 2262.9637

(=21 2262.9973

D, F~ (+00) 722.8836 (+00) 722.8820

(—00 722.8837 (—00) 722.8821

(+10 965.4826 (+10 965.4771

(=10 965.4829 (=10 965.4774

(+20 1197.4660 (+20) 1197.4367

(—20) 1197.4472 (—20) 1197.4379

(+01) 1286.9688 (401 1286.9688

(+01) 1286.9700

(=01 1286.9722 (—01) 1286.9722

(=01 1286.9733

(+30) 1417.3679 (+30) 1417.3551

(—=30) 1417.3722 (—=30) 1417.3594

(+11) 1513.5917 (+11) 1513.5917

(+11) 1513.5921

(-11) 1513.6107 (—-11) 1513.6107

(—11) 1513.6111

(+40 1623.5313 (+40) 1623.5157

(—40) 1623.5457 (—40) 1623.5300

(+21) 1726.8367 (+21) 1726.8363

(+21) 1726.8367

(—21) 1726.9132 (—21) 1726.9127

(—21 1726.9132

(+02) 1765.2399 (+02) 1765.2384

(—=02) 1765.4357 (=02 1765.4340

(+50) 1816.4091 (+50) 1816.3915

(=50 1816.4476 (=50 1816.4300

T, F (+00 601.4944 (+00) 601.4934

(—=00) 601.4944 (—00) 601.4934

(+10 811.4995 (+10 811.4958

(=10 811.4995 (—=10 811.4958

(+20) 1014.2535 (+20) 1014.2470

(=20 1014.2535 (=20 1014.2470

(+01 1073.0643 (+01) 1073.0643

(+01) 1073.0632

(=01 1073.6544 (—-01) 1073.6544

(=01 1073.6536

(+30 1209.0316 (+30) 1209.0226

(—30) 1209.0317 (—30) 1209.0226

(+11) 1272.7340 (+11) 1272.7340

(+12) 1272.7346

(—11) 1272.7342 (-11) 1272.7342

1299

Downloaded-23-May-2003-to-155.101.19 3-5CHeai s tioYels iR c New-3a 5. Janary. 4993 py right, ~see-http://ojps.aip.org/jcpoljcper.jsp



1300 Boldyrev et al.: Spectra and dynamics of H,-F~

TABLE IV. (Continued)

Species K=0 K=1 K-doubled
(-11 1272.7348

(+40 1394.9344 (+40) 1394.9230
(—40 1394.9346 (—40 1394.9232
(+21) 1463.8455 (+21) 1463.8455

(+21) 1463.8457

(=21 1463.8466 (=21 1463.8466

(=21 1463.8468

(+02 1489.3696 (+02) 1489.3688
(=02 1489.3721 (—-02 1489.3713
(+50 1571.3061 (+50 1571.2928
(=50 1571.3068 (=50 1571.2935

cm 1 (n=0) to 6.74 cm* (n=5), demonstrating the strong appearance of the wave functions for them is analogous to
promoting effect of this longitudinal mode. Moreover, exci- those discussed above fopH .
tations of the bending mode, even to its lowest excited state, The Hamiltonian and the numerical procedure for calcu-
produces an even larger growth in the splittittg ~37  lating the spectra of the symmetrical isotopically substituted
cm™ . species F~ and T,F are identical to those discussed
Small oscillations about the minimum along theoor-  above for HF . The corresponding results are given in
dinate correspond to the two transverse doubly degenerafi@bles Il (for J=0) and IV (for J=1). The primary obser-
bending modes whose quantum number is denofedhich  vation to be made for thd=0 spectra is that the tunneling
can only be even for th8=0 case. The lowefuppe) level  splitting decreases dramaticallyy 3 (D,-F ) and 4(T,-F")
in eachR,# tunneling doublet is labeled with a plisinus orders of magnitudewhen moving from the BF~ to D,F~
sign reflecting the wave function’s parity with respect toand T,F . The pronounced isotope effect is due to the very
60— 6+ . States withv>2 lie near dissociation, and are not high barriers that are present even at the saddle point.
included in Table IV.
For J=1 (Table V), the matrix elements of the Hamil- B. HD-F~, HT-F~, and DT -F~
tonian (4) (J,M,K=0,|H|,K'=1,J,M) are much smaller
than the diagonal matrix elemenisee Eqs(6)], their ratio is asymmetric. As a result, the vibrational frequenaies

1 D€ app y good quantum UMYy - 879 cm* and 548 cm® for HT-F~, and 628 cm*
ber, if Coriolis forces are neglected. Upon the inclusion of ~1 =

o . and 526 cm~ for DT-F~. Moreover the wells are of unequal
Coriolis terms, theK=*1 degeneracy is removethe so-

. : depth at6=0 and 6=, with the energy difference between
called,K-doubling phenomendf) as is clear from Table IV, 0 potential minima being 23.3195, 80.1891, 4.9879 tm
where the exact results of diagonalization fior1 are pre-

sented. Note, however, thit-doubling does not affect the for HD-F-, HT F , and DTF, re;pectlvely. Because we .
. D . _observed no accidental degeneracies between the levels aris-
tunneling splittings because of the symmetry of the rotation - . .
: ing from the wells nea®=0 and 6=, there can exist no
problem under the transformatiai- 6+ .

Along with the eigenvalues of the Hamiltoniad), di- tunneling splitting, as a result of which there are two inde-

agonalization provides us with the wave functions of thependent eigenvalue ladders, one for each Wely. 4. The

system. This allows us to define the transition state of théesuns of our calculations of the spectra 0 are pre-

; . : Sented in Table V, where the levels are measured from the
system in terms of the maximufmaxima of the wave func- bottom of the deepest welat =)
tion at the dividing lined==/2, a definition previously intro- '
duced by Shidat al*® Obviously, this transition state differs
from that suggested by the topology of the PES®., the
saddle point The results of such an evaluation for the case  State specific coherent tunneling and the associated
J=0 are presented in Fig. 3. The ground state wave functioribration—rotation-tunneling spectra considered above per-
at the dividing line[Fig. 3(@)] peaks aR=2.37 A, far from tain to gas phase conditions. An alternative experimentally
the PES saddle point. Increasing the quantum numbef  realized situation involves an impurity molecule embedded
the promoting modep produces additional maxima in the in a chemically inert solid matrix for which interaction with
wave function. Fon=1, the wave function peaks Bt=2.57  the “heat bath” destroys the coherence of tunneling. In such
A and R=1.97 A [Fig. 3b)]; the absolute maximuniR  cases, quantum levels in the reactant well acquire widths
=2.57 A) shifts towards the saddle point, while the second-which give rise to a rate constant for intramolecular rear-
ary maximum is strongly suppressed because the potentighngement instead of a tunneling splitting.
increases sharply for small Because the topology of the Let us consider such incoherent tunneling in-H
PES remains unchanged in passing tofD or T,-F, the  within a model that assumes that end-over-end rotation of the

The potential for the mixed isotopomers given by E).

V. INCOHERENT TUNNELING IN H,-F~
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TABLE V. Spectra of mixed isotopomers HB~, HT-F~, and DT-F~ for
J=0. Symbols 0 andr show to ladder in which wellat =0 or =) the level
belongs.

HD-F~ HT-F~ DT-F~
E E E
T 823.100 753.716 643.229
0 921.690 944.574 685.554
™ 1095.532 1003.908 866.715
0 1194.495 1192.392 908.021
T 1356.160 1244.331 1081.8878
0 1453.307 1429.981 1123.090
T 1598.531 1473.727 1287.753
0 1696.315 1656.393 1328.896
™ 1822.589 1690.298 1483.056
0 1921.337 1870.570 1524.342
T 2027.254 1891.164 1665.522
0 2126.213 2070.503 1707.878

complex in the solid is frozen. Moreover, the low frequency

1301

K=2B8"1Im Z/ReZ=Im F, (7

whereZ is the partition function an@=#/kgT is the inverse
temperature. This expression enables one to use the path in-

tegral expression for the partition function due to
Feynmanrt?

z=Tilexpt~ pH) 1= [ DI Texpt ~ S,
8
Q0)=Q(B), ®

where the path integral sums all the periodic paths of the

system connecting point3(0) andQ(B) S¢[Q(7)] is the Eu-
clidean action along the path,

B
Se[Q(T)]:L d7H(Q,dQ/d7) €)

andH is the classical Hamiltonian of the system.

We are now required to look for the stationary points of

bending vibrations of the linear complex will be incorporatedthe path integral8); in so doing, we find trajectories that
in the “bath” degrees of freedom. The heavy fluorine atom isminimize the Euclidean actio(®) and, thus, obey the clas-

allowed to oscillate only along the space-fixed aks.con-
necting the F to the center of mass of.H he only rotation

sical equations of motion in the inverted potential/ with
the set of periodic boundary conditiom$7+8)=6(7). The

that is treated is the nearly free rotation of the small rigid H nontrivial solutions to these equations have been character-
rotor about the axis of oscillation of the F atom. As a result,ized as instantons. In one dimension, such solutions were
three coordinates are required to describe the reaction syextensively studied by Lang&f,Callan and Colemarf and

tem.

The rate of multidimensional tunneling can be related to

the imaginary part of the free energyof the systent,

2.0 5
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*
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2 101
[
g
< 0.5
H ]
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i
[ i
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% %%"'4‘%“%":“:‘ 28
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It follows from Egs.(7) and(8), that the instanton action

S determines the incoherent tunneling rate as
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FIG. 3. Scaled two-dimensional wave functio#i$p,6) for the ground(+00) (a) and first vibrationally excited+10)(b) states of the 5t F~ complex in the
rotational state)=0. Section of the wave functioW(p,6) in the dividing line #=/2 are shown in insets.
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FIG. 4. Sections of two-dimensional potentialspatO for H,-F~ (dashed
line) and HD-F (a), HT-F (b), and DT-F (c) (solid lineg. Unsplit levels
for H,-F~ (dashed linesand vibrational ladders for the three isotopomers
(solid lineg are shown.

K(B)xexp — Sis)- (10 Debye temperature, which is commonly the cases spec-
tral function has no effect on the temperature behavior of the

The main feature of multidimensional instantons is that, unfate constant.
like the well-known one-dimensional variants, the shape of = The numerical procedure for calculating the transverse
the optimal trajectory changes with temperature. Expressioprefactor, which, for three-dimensional problems depends on
(10) allows the determination of a transition state for inco-four stability parameters of the instanton trajectdiy, well
herent tunneling as a point at the dividing line through whichdeveloped:**?Its inclusion into the expression for the rate
the instanton passes. Calculation of transition state geongonstant becomes crucial when the stability parameters of
etries at different temperatures thus becomes an importaifistanton approach zero, signaling tunneling path bifurca-
goal. Then we can compare these results to evolution of thtion. This phenomena is normally due to the existence of two
transition state with changing quantum number in the coherer more equivalent saddle points on the PESor the prob-

ent problem described above. lem in question, however, the topology of the PES suggests
The semiclassically exact expression Fo(8) addition-  no bifurcations of the instanton. Thus, all the information on
ally includes several factors. the evolution of the transition-state geometry can be ex-

tracted from the instanton solution itself, contributing to
K(b) according to Eq(10).

The instanton path satisfies the Euler—Lagrange equa-
s, which in spherical coordinatéR,6,¢) read

(1) A longitudinal prefactor, associated with the invariance
of the instanton with respect to time shift.

(2) Atransverse prefactor, stemming from Gaussian fluctuaf-
. . : - ion
tions around the instanton trajectory and determining the
width of the “tunneling channel * w1d?R(7)/d7?=0V(R, )/ JR, (118

Note, that the rate constant should also be dependent on  ,d?6(7)/d7?=dV(R, 8)/ 96+ ., Sin 6 cos H¢?,
the spectral density of the coupling coefficients describing (11b
the interaction between the reaction complex and béttis : - _
essential, however, that until the crossover temperature from dsin” 6(7)¢(n)]/dr=0, (119
Arrhenius activated to tunneling regimes is smaller than thevith the following boundary conditions
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FIG. 5. Calculated temperature dependence of instanton actior(9Eqg. FIG. 6. Cut through the wave functiol(p,6) of the H,-F~ complex in the
Dashed ling(for T<125 K) corresponds to the Arrhenius region. ground vibrational statéd0) (for J=0) and instanton trajectory fof=20 K.

tunneling trajectory, starting from the potential minimum and

R(7+B)=R(7); coinciding with the instanton trajectory with infinite period
) (zero temperatupeln this connection, one might expect that

0(7+B)=0(7); (119 irstanton with B—() should intersect the dividing line

o(7+ B)=o(7). 0=/2 in the vicinity of maximum of the ground state wave

function. This is actually the case, as seen from the contour
plot of the wave function in Fig. 6. It is noteworthy that
=0 (11  maxima of wave functions at the dividing lingé=/2 for
. S . . . , ighern levels as well as the instanton path for increasing
and the tunneling motion is two dimensional, being Comclne({]emperature shift towards the saddle point in tandem. This
to the (R, 0) plane. . . . behavior reflects the contribution of higher vibrational states
The results of numerical integration of Egdl) are

shown in Fig. 5. The instanton acticifig. 5 achieves a to the statistically averaged tunneling rate constant.
low-temperature plateau beloWw=70 K. The crossover tem-
peraturef, at which the probability of an overbarrier transi-
tion equals that for underbarrier tunneling, equals 125 K. At~ The complex HF~ is an illustrative example of a tun-
this temperature, the instanton appears near the saddle poingling system for which no reduction procedlienecessary
so that to elucidate the tunneling dynamics. In this work, we start by
— w2 (12) calculati.ng.the three dimensionab initio PES,_ we then_fit

Po= w2, our ab initio data to a reasonable and flexible functional
where o is the imaginary frequency at the saddle point.form. Then, we determine the vibrational—rotation-tunneling
Equation(12) reflects the fact that instanton period cannot bespectra and analyze the wave functions of different vibra-
smaller than the period of oscillation in the inverted potentialtionally excited levels. This anion complex is especially at-
near the saddle point. The temperature evolution of tunnelingractive because the potential wells are rather deep, so the
trajectories in the(R,0) plane is illustrated in Fig. 2. For vibrational progressions are long and the variation of the
B<PBy, the instanton “sits” at the saddle point with the action tunneling splitting within such progressions can be easily
S=pBV*, and the Arrhenius dependence of the rate constarfollowed. H,F~ is thus distinct from, for example, malonal-
k=exp(—BV*#) holds. With decreasing temperatugs>33,, dehyde or the hydroxyoxalate anidim which the wells are
the instanton gradually elongates and moves away from thgo shallow that the vibrational progressions have only one or
MEP. The lower the temperature, the shorter the dist&ce two levels below the barrier.
in the T-shaped transition state of complex to the equilibrium  In our study of coherenthas-phasetunneling, we found
position in the linear complex. Finally, we see that the tem-+that the H---F~ intermolecular vibration promotes tunnel-
perature behavior of the transition state geometry for incoing, and that the tunneling splitting grows by a factor of 150
herent transitions is very similar to that for coherent tunnel-within the progression of this mode. Moreover, excitation of
ing described above. the bending mode by two quanta causes the splittings to

According to the well-known Herring’s formuf&, the  grow by more than three orders of magnitude. This is due to
tunneling splittingA can be expressed in the form of the the topology of the PES for 4# ° 8 which can be clarified
integral of the probability fluxPAW* over the dividing line. by examining contributions from various tunneling paths.
As was shown by Schmitf the underbarrier wave function The optimal tunneling path can be thought of as involving a
of the ground state is determined by the action along theompromise between two factors, tlemgthof path and the

This trajectory becomes extreme, when

VI. CONCLUSION
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