Combining doubly charged cations and anions to form new species

Nick Gonzales and Jack Simons

Chemistry Department, University of Utah, Salt Lake City, Utah 84112

(Received 25 October 1993; accepted 29 December 1993)

In this study we predict, based on our *ab initio* electronic structure calculations, the existence and relative stabilities of several new species such as H_3SMgF_3 , H_2SMgF_2 , and HSMgF derived from combining the geometrically metastable and electronically stable parent doubly charged ions H_4S^{+2} and MgF_4^{-2} . Although this study focuses on compounds obtained from these particular double ions, we suggest that analogous observations will be obtained when other double ions are used. Stable structures of the HSMgF, and H_2SMgF_2 molecules, as well as a local energy minimum and two different second-order saddle point geometries for the H_3SMgF_3 molecule were found. The lowest-energy stable structure is that found for H_3SMgF_3 , which is best described as a dative adduct of H_2S , MgF_2 , and HF, and which lies ~570 kcal/mol below the separated-ion starting materials and ~140 kcal/mol below the $(H_4S^{+2})(MgF_4^{-2})$ contact ion pair.

I. INTRODUCTION

Our earlier work¹ on multiprotonated doubly charged cations MH_n^{+2} and work of our group and others² on doubly charged anions involving MF_m^{-2} stoichiometry has lead us to examine compounds that use these types of ions as "building blocks." In particular, we consider in this paper "salts" such as H_4S^{+2} MgF₄⁻² that might be formed by combining a pair³ of double ions of opposite charge for which energy considerations retain their +2/-2 charge separation.

Although our attention in this paper is limited to $H_4S^{+2}+MgF_4^{-2}$ prototype systems, one can imagine (and we intend to examine) numerous other such ion pairs. We made these choices both because earlier work^{1,2(e)} on H_4S^{+2} and MgF_4^{-2} was available to guide us and because the covalent and ionic radii of the atoms involved suggesting that steric or "packing" effects would not hinder the bonding arrangements we wanted to study for these particular atoms.

In several of the species examined in this study, the extended valence of the Mg and S atoms, as well as the large electronegativity difference between the Mg and S atoms and the ligands bound to them, gives rise to a high degree of internal charge separation. For example, in H_3SMgF_3 , the H atoms each possess charges near +2/3 and the F atoms each have charges near -2/3. As noted earlier,¹ it is the resonance delocalization of the +2 and -2 charges over more than two ligands that provides much of these species' geometrical and electronic stability to electron detachment.

A. Double ions contain much energy

One aspect of the large internal charge separation contained in our systems makes their study especially interesting to us. This is the very large "pent up" Coulombic energy that earlier findings^{1,2} lead us to believe may be released if the materials are heated (so that activation barriers to intramolecular decomposition are overcome) or photolyzed (so dissociative excited electronic states are accessed).

To illustrate the energy content of one such ion, we review what was found in Ref. 1 with respect to the H_4S^{+2} ion depicted in Fig. 1. The energy of the ${}^{1}A_{1}$ ground-state elec-

tronic energy of this ion is shown in Fig. 2 as a function of one of the S-H bond lengths R(SH), with the other three bond lengths and all internal angles optimized to produce the lowest possible energy for each R(SH). Analogous findings pertain to dianions such as F_4Mg^{-2} shown in Fig. 3.

The essential features contained in Fig. 2, and which generalize^{1,2} to findings on other dications and dianions, are:

1. Local minima on the potential energy surfaces do indeed exist even for isolated doubly charged ions.

2. These local minima have energies very much in excess of the global minima corresponding to two separated singly charged ions (e.g., $H^++H_3S^+$ in the H_4S^{+2} case).

3. Substantial barriers exist to fragmentation of doubly charged ions. These barriers are especially "wide" because of the Coulomb nature of the potential at long range, which causes the tunneling lifetimes to be especially long.

4. Delocalization of the double charge over more than two atomic centers contributes to the stabilization of these species.

B. Energy barriers make these double ions geometrically metastable

The energy content of doubly charged ions as well as the barriers that must be overcome to effect fragmentation can be quite large. To illustrate, we show, in Table I, the computed dissociation energies (negative numbers implying exothermic reaction) and barriers to dissociation for a group of doubly charged ions studied earlier.^{1,2} The exothermicities range from 29 to 115 kcal/mol and the barriers, where known, range from 5 to 56 kcal/mol.

C. These dianions do not have low electron detachment energies

The electronic stability of several dianions with respect to loss of a single electron (e.g., $F_4Mg^{-2} \rightarrow F_4Mg^{-}+e^{-}$) has been examined in earlier work^{2(e)} and found to be substantial (see Table II). For example, for F_4Mg^{-2} the vertical electron detachment energy (DE) is 2.98 eV, and for TeF₈⁻² it is pre-

FIG. 1. Tetrahedral equilibrium geometry of the H_4S^{+2} dication.

FIG. 2. The SCF/6-31++G^{**} ground-state electronic energy (including nuclear repulsion) of H_4S^{2+} as a function of *one* S–H bond length with the remaining internal coordinates optimized to produce a minimum energy path.

FIG. 3. Tetrahedral equilibrium geometry of the F_4Mg^{-2} dianion.

		e presidente de la composition	. ·	
*	1	e 1	. •14	

TABLE I. Calculated dissociation energies (ΔE) and dissociation barriers (E^{\dagger}) (kcal/mol) for doubly charged ions.

Species	ΔE .	E [†]
$H_4O^{2+}\rightarrow H_3O^++H^+$	-61 ^a	38
$H_3F^{2+} \rightarrow H_2F^+ + H^+$	-111 ^a	12
$H_4S^{2+}\rightarrow H_3S^++H^+$	-29ª	56
$H_3Cl^{2+} \rightarrow H_2Cl^+ + H^+$	-67 ^a	34
$H_2Ar^{2+} \rightarrow HAr^+ + H^+$	-115 ^a	5
$F_4Be^{2-} \rightarrow F_3Be^{-} + F^{-}$	-82 ^b	14
$F_4Mg^2 \rightarrow F_3Mg^+F^-$	-31°	24
$F_8Te^2 \rightarrow F_7Te^- + F^-$	-43 ^d	?
$Cl_8Te^{2-} \rightarrow Cl_7Te^{-} + Cl^{-}$	-69 ^d	?
$F_8Se^2 \rightarrow F_7Se^+F^-$	-75 ^d	?
Reference 1.	^c Reference 2(e).	
^b Reference 2(a).	^d Reference 2(b).	· · · · · · ·

TABLE II. Vertical electron detachment energies (DE) (eV) at Koopmans' theorem and correlated levels of theory.

Species	Koopmans' DE	Correlated DE		
F ₄ Be ²⁻	3.5ª	1.9		
F ₄ Mg ²	4.4 ^b	3.0		
F ₆ Se ²⁻	5.4°	3.8		
F ₈ Te ²⁻	6.5°	5.0		
F ₈ Se ²⁻	5.5°	. ?		
Cl ₈ Te ²⁻	3.9°	?		
F ₇ Te ²⁻	11.9°	?		
F ₇ Se ²⁻	11.2°	?		
Cl ₇ Te ²⁻	8.0°	?		

^aReference 2(a).

^bReference 2(e). ^cReference 2(b).

Reference 2(b)

dicted to be approximately 5 eV. These results imply that such dianions may exist in close proximity to cations or other species with rather substantial oxidizing strength.

D. Dications have large oxidation power

The electron attachment energies of several dications have been determined and several are summarized in Table III. It should be noted that the adiabatic electron attachment energies (ΔE_{ad}), which correspond to addition of an electron followed by loss of one H atom (since this is energetically favored and occurs spontaneously):

$$H_n M^{2+} + e^- \rightarrow H + H_{(n-1)} M^+$$

are considerably larger than the vertical energies (ΔE_v) corresponding to the simple addition of an electron at the (frozen) geometry of the dication:

$$H_n M^{2+} + e^- \rightarrow H_n M^+$$
.

However, the vertical energies provide a measure of the dications' ability to "pull" an electron away from a neighboring species; subsequent to acquiring an electron the nascent mono-cation will decompose releasing an amount of energy equal to $\Delta E_{ad} - \Delta E_v$.

TABLE III. Vertical^a (ΔE_v) and adiabatic^b (ΔE_{ad}) electron attachment energies (eV) for dications.

	Reaction	$\Delta E^{c}(eV)$
ΔE_v	$H_4O^{2+} + e \rightarrow H_4O^+$	13.2
$\Delta E_{\rm ad}$	$H_4O^{2+}+e \rightarrow H_3O^++H$	16.0
ΔE_v	$H_4S^{2+} + e \rightarrow H_4S^+$	14.0
$\Delta E_{\rm ad}$	$H_4S^{2+}+e \rightarrow H_3S^++H$	14.6
ΔE_v	$H_3F^{2+}+e \rightarrow H_3F^+$	15.4
ΔE_{ad}	$H_3F^{2+}+e \rightarrow H_2F^++H$	18.3
ΔE_v	$H_3Cl^{2+}+e \rightarrow H_3Cl^+$	13.3
$\Delta E_{\rm ad}$	$H_3Cl^{2+}+e \rightarrow H_2Cl^++H$	16.3
ΔE_v	$H_2Ar^{2+} + e \rightarrow H_2Ar^+$	15.1
ΔE_{ad}	$H_2Ar^{2+} + e \rightarrow HAr^{+} + H$	18.5

^aThe vertical ΔE_v gives ΔE (ZPE-corrected) for the process $H_n M^{k+} + e \rightarrow H_n M^{(k-1)+}$ at the geometry of $H_n M^{k+}$.

The adiabatic ΔE_{ad} gives ΔE (ZPE-corrected) for the process $H_n M^{k+} + e \rightarrow H + H_{(n-1)} M^{(k-1)+}$, in which $H_{(n-1)} M^{(k-1)+}$ is produced at its equilibrium geometry. "Reference 1.

Downloaded 23 May 2003 to 155.101.19.15. Redistribution subject to AIP license or convright, see http://ojps.aip.org/jcpo/jcpcr.jsp J. Chem. Phys., Vol. 100, No. 8, 15 April 1994

Species	Point group	Energy (a.u.)	Relative energy (kcal/ mol)	Distances (Å) and angles (deg)	Vib. freq. (cm ⁻¹) ZPE(kcal/ mol)	E _(LUMO) (a.u.)	Atomic charges
H ₄ S ⁺²	T _d	399.120 943	0	r=1.3784	$T_2 1001$ E 1209 $T_2 2479$ $A_1 2484$ /21.9	-0.3804	S=0.70 H=0.33 H=0.33 H=0.33 H=0.33
{H ₃ S····H _a } ⁺² Transition state	C _{3v}	399.023 887	56	r _{SH} _a =2.8376 r _{SH} =1.3575 HSH _a =118.2 HSH=100.0	$\begin{array}{c} A_1 \ 743i \\ E \ 389 \\ A_1 \ 1029 \\ E \ 1199 \\ A_1 \ 2638 \\ E \ 2647 \\ /17.4 \end{array}$	-0.6104	S=0.32 $H_a=0.91$ H=0.26 H=0.26 H=0.26
H ₃ S ⁺	C_{3v}	-399.158 895	-29	r=1.3465 HSH=95.9	A ₁ 1075 E 1233	-0.1395	S=0.44 H=0.19
+ H ⁺	-				A ₁ 2736 E 2746 /16.8		H=0.19 H=0.19

TABLE IV. Total and relative energies,^a geometries, and vibrational frequencies for species relating to H_4S^{+2} using a 6-311++G^{**} basis set.

^aAll electronic energies in this and other tables, unless specified otherwise, are of MP4SDTO quality.

The fact that there seem to be no barriers to dissociation of the H_nM^+ species means that we must be wary of processes that reduce the H_nM^{2+} species because the nascent H_nM^+ will no longer be geometrically stable. For example, in the $(F_4Mg^{-2})(H_4S^{+2})$ salt discussed later in this paper, we need to know the energy of the charge transfer $(F_4Mg^-)(H_4S^+)$ state, because such a transition would lead to fragmentation of the H_4S^+ moiety and of the $F_4Mg^$ ion.^{2(e)} This charge transfer energy could be estimated in terms of the vertical electron detachment energy (DE) of F_4Mg^{-2} (3.0 eV), the ΔE_v of H_4S^{+2} (14 eV), and the change in Coulombic attraction accompanying the

$$(F_4Mg^{-2})(H_4S^{+2}) \rightarrow (F_4Mg^{-1})(H_4S^{+1})$$

process. The latter energy is approximately $(4-1)e^2/R$, where R is the interionic distance in the salt.⁴ Unfortunately, this means of estimating the transition energy depends upon

TABLE V. Total and relative energies, geometries, and vibrational frequencies for species relating to MgF_4^{-2} using a 6-311++G^{**} basis set.

Species	Point group	Energy (a.u.)	Relative energy (kcal)	Distances (Å) and angles (deg)	Vib. freq. (cm ⁻¹) /ZPE (kcal)	E _(HOMO) (a.u.)	Atomic charges
MgF ₄ ⁻²	T _d	-598.612 088	0	r=1.9483	$E 137 T_2 223 A_1 382 T_2 492 /4.0$	-0.1644	$Mg \approx 1.11 F = -0.78 F = -0.78$
${F_3Mg\cdots F_a}^{-2}$ Transition state	C ₃₀	-598.573 046	24	$r_{MgF_a} = 3.817$ $r_{MgF} = 1.8789$ $FMgF_a = 101.5$ FMgF = 116.0	$A_{1} 89i \\ E 83 \\ E 192 \\ A_{1} 240 \\ A_{1} 454 \\ E 604 \\ /3.5$	-0.1019	$Mg=1.11 F_a = -0.98 F=-0.72 F=-0.72 F=-0.72 F=-0.72$
F ₃ Mg ⁻	D_{3h}	-498.976 324	31	r=1.8252	E' 182 A'' 249	-0.3518	Mg=1.01 F=-0.67
+ ::		. + ·	-	<u>-</u> 1	A' 468 E' 655 /3.4		F = -0.67 F = -0.67
F ⁻		-99.684 425			,5.1		

MP4 Point energy			Vib freq (cm^{-1})			E (HOMO)	Atomic
Species	group	(a.u.)	/ZPE (kcal/mol)		(kcal/mol)	charges	
$MgF_4^{-2} + H_4S^{+2}$ $(MgF_4^{-2})(H_4S^{+2})$	C.	-997.715 031 -998 422 181 ^a		•		135 264	Tables IV and V
H ₃ SMgF ₃	C_{3v}	-898.280 3336	E 178i		A1 519	313	S=0.38
(H not inverted)	50		$A_2 140$		E 635		Mg=0.96
(F inverted)			E 172		$A_1 1090$	2 C	H≖0.16
(staggered)			A ₁ 177		E 1237		F=-0.61
			E 229		A ₁ 2751		
			A ₁ 256		E 2775		
				/20.4			
H ₃ SMgF ₃	C_{3v}	-898.321 7267	E 174i		A ₁ 527	322	S=0.15
(both inverted)			E 192		E 632		Mg=0.94
			A ₁ 228		A ₁ 1154		H=0.19
			A ₁ 297		E 1195		F = -0.55
			E 498		E 2110		
			A ₁ 502		A ₁ 2272		
	~	000 050 1115	47	/20.4	054	007	, g , b og
H ₃ SMgF ₃	C_1	-898.353 1117	47	239	854	287	S = -0.08
(true minimum)			106	345	9/9		Mg=1.04
			120	300	1209		H=0.10
			202	442 527	2070		H-0.09
-1-		1	202	799	2015	-	H = 0.14 E = -0.20
1		1	211	/21 5	2933		F = -0.58
				721.5			F = -0.57
HF		-100.286 2321		4200	,		× 9.07
				/6.0			
H ₂ SMgF ₂	С.	-798.044 7997	A″ 30		A" 443	301	S=0.07
2 0 2	5		A" 100		A' 534		Mg=0.92
+	1	+	A' 144		A" 814		H=0.07
			A' 151		A' 1192		H=0.07
		,	A' 255		A' 2803		F = -0.57
2HF		-200.572 4642	A' 365		A" 2819		F = -0.57
				/13.8	* ,	-	
HSMgF	C_s	697.719 2727	A' 120		A' 562	237	S = -0.26
			A" 126		A' 763		Mg=0.78
+		+	A' 380		A' 2775		H=0.00
2UE		-300 858 6063		/6.8			F = -0.53
500		-300.030 0903					

TABLE VI. Total energies and vibrational frequencies for species relating to the $H_4S^{+2}+MgF_4^{-2}$ reaction using a 6-311++G^{**} basis set.

^aThis calculation was done at the MP4SDQ level because the MP4SDTQ calculation was not feasible.

FIG. 4. A second-order saddle point of H_3SMgF_3 where the fluorines are inverted, the hydrogens are not, and the ligands are staggered. This structure has $C_{3\nu}$ symmetry and is 46 kcal/mol above the minimum shown in Fig. 6.

FIG. 5. Another second-order saddle point geometry (C_{3v}) of H₃SMgF₃ which is 20 kcal/mol above the minimum shown in Fig. 6.

FIG. 6. Equilibrium structure of H₃SMgF₃. R_{S-Mg}=3.99 Å.

knowing the F⁻ ionic radius, which limits its accuracy. Hence, we simply calculated the HOMO-LUMO energy gap for the $(F_4Mg^{-2})(H_4S^{+2})$ dimer with tetrahedral internal ion geometries to simulate the presumed structures in the solid, and obtained 264 kcal/mol.

E. Metastability and high-energy content present challenges

Clearly, much energy is stored in these ions and, for some of the species, the barriers are large enough to render the ions stable over long times. The shortest lived are likely to be the multiprotonated species where the H nuclei can tunnel through or be energized over the barriers; the multifluorinated anions are likely to be much more geometrically stable. For the prototypical cation—anion pair that is the focal point of the present study, H_4S^{+2} and F_4Mg^{-2} , the Coulomb explosion exothermicities and barriers are

$$H_4S^{+2} \rightarrow H_3S^+ + H^+; \quad \Delta E = -29 \text{ kcal/mol};$$

$$E^{\dagger} = 56 \text{ kcal/mol}$$

and

 $F_4Mg^{-2} \rightarrow F_3Mg^- + F^-; \quad \Delta E = -31 \text{ kcal/mol};$

 $E^{\dagger} = 24$ kcal/mol.

These barriers are large enough to render both species very stable.

II. COMPUTATIONAL DETAILS

Rather straightforward *ab initio* theoretical methods were employed to carry out most of the calculations whose results are reported here. All geometries were first optimized using analytical self-consistent field (SCF) gradients with polarized triply split-valence basis sets.⁵ Further refined geometries were obtained using second-order Møller–Plesset perturbation theory.

The fundamental vibrational frequencies, normal coordinates, and zero-point energies (ZPE) were calculated by standard matrix methods. Finally, correlated total energies at the critical geometries (i.e., local minima and barriers) were evaluated using full fourth-order frozen-core approximation Møller–Plesset perturbation theory. The GAUSSIAN92 program suite⁶ was used to perform all of the calculations whose results are discussed here.

III. FINDINGS

A. The H_4S^{+2} and MgF_4^{-2} ions

In Table IV we summarize the geometry and energetic data found for H_4S^{+2} , along with the corresponding local harmonic vibrational frequencies. Table V contains analogous data for MgF_4^{-2} . Also shown are the highest occupied (for MgF_4^{-2}) and lowest unoccupied (for H_4S^{+2}) molecular orbital energies and the Mulliken charge densities on each atomic center. The latter clearly display sharp changes when passing through the barrier regions, and show the high degree of internal charge separation and delocalization.

B. The (H₄S⁺²)(MgF₄⁻²) salt and H₃SMgF₃ structures

In Table VI we provide structural and energetic data for the separated ions $MgF_4^{-2}+H_4S^{+2}$, the contact ion pair $(MgF_4^{-2})(H_4S^{+2})$, and several H_3SMgF_3 structures formed by HF elimination. The geometries of three H_3SMgF_3 species are shown in Figs. 4, 5, and 6.

The first H_3SMgF_3 structure we found is shown in Fig. 4, which was obtained when we constrained the geometry optimization algorithm to maintain a C_3 symmetry axis. This structure has the H–S bonds pointing away from the fluorine atoms. We began this optimization with both portions of the molecule directed outward (i.e., in the usual way expected by hybridization) but the energy minimizing process converged to a structure which turns out to be a second-order saddle point on the potential energy surface, and the imaginary frequencies (178 cm⁻¹) correspond to a degenerate distortion of the molecule. This isomer is 46 kcal/mol higher in energy than the minimum energy structure discussed below.

FIG. 7. Energy profile for the rearrangement of the $(F_4Mg^{-2})(H_4S^{+2})$ system.

J. Chem. Phys., Vol. 100, No. 8, 15 April 1994. Downloaded 23 May 2003 to 155.101.19.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

FIG. 8. C_s equilibrium structure of H₂SMgF₂.

Another constrained optimization of H₃SMgF₃ started with both sets of ligands inverted towards one other and produced the structure shown in Fig. 5. Here the ligands are eclipsed, probably due to the strong Coulombic attractions between the H and F centers. This structure is also a secondorder saddle point on the potential energy surface, and again the imaginary frequencies (174 cm^{-1}) correspond to a degenerate distortion of the molecule. This isomer lies 20 kcal/mol higher in energy than the minimum energy structure.

The lowest-energy local minimum structure we found for H₃SMgF₃ is shown in Fig. 6 and can be viewed as involving dative interactions among three substructures. This isomer is **not** symmetric. In fact, we carried out a C_s constrained minimization and found an imaginary frequency corresponding to the in-plane antisymmetric stretch of the H₃S portion of the molecule. Distortion along this imaginary frequency mode gave the structure shown in Fig. 6. Calculations on H₂S, MgF₂, and HF revealed that this lowest-energy isomer of H₃SMgF₃ involves three dative interactions among H_2S , HF, and MgF_2 rather than conventional chemical bonds.

The resulting complex has one low-frequency vibration (at 47 cm⁻¹). The bond lengths and angles in the H₂S portion are deformed by 0.02 Å and one degree relative to isolated H_2S ; the HF distance is stretched by 0.06 Å relative to HF, and the MgF₂ portion is slightly more deformed, relative to FMgF: 0.04 Å and 30 deg. The Mulliken populations of this structure, as shown in Table VI, quantitatively match those of the three isolated molecules: H₂S, HF, MgF₂, and the molecular orbital LCAO coefficients show evidence for an intact HF bond.

As summarized in Fig. 7, the Coulombic stabilization energy of the contact ion pair $(MgF_4^{-2})(H_4S^{+2})$ is quite large, approximately 430 kcal/mol. Elimination of a single HF molecule to form the first covalently bonded species (H₃SMgF₃) is favored by approximately 140 kcal/mol, although there probably is a significant barrier to elimination analogous to the one shown in Fig. 2. We have not yet identified the transition state for this elimination, but we know the structure of Fig. 6 is a local minimum.

C. Elimination of another HF to form H₂SMgF₂

Also shown in Table VI are data pertinent to the subsequent elimination of another HF molecule to form H₂SMgF₂. This elimination reaction is energetically disfavored by only 14 kcal/mol, and produces the species shown in Fig. 8 whose structure contains no exotic bond lengths or angles. The F-Mg-F portion of this molecule is nearly linear, reflecting the H₂S moiety's perturbation on the MgF₂ framework. This

FIG. 9. Equilibrium structure of HSMgF.

H₂SMgF₂ structure can be thought of as involving a dative bond between H₂S and a linear MgF₂ molecule with a slight geometric distortion of each entity.

D. Further elimination of HF

Elimination of another HF species from H₂SMgF₂ to form HSMgF and HF is endothermic by 25 kcal/mol. The HSMgF structure is shown in Fig. 9 with no unusual bond angles or lengths. The endothermicity of this reaction and that of the preceding reaction lead us to predict that the H₃SMgF₃ triple dative complex is the lowest-energy structure on this potential energy surface.

IV. SUMMARY

Combining the geometrically metastable and electronically stable doubly charged ions $\rm H_4S^{+2}$ and $\rm MgF_4^{-2}$ to form a contact ion pair and subsequent elimination of an HF molecule are both exothermic (by a combined 570 kcal/mol). This leads to the H₃SMgF₃ structure shown in Fig. 6, which we postulate is an adduct involving H₂S, HF, and MgF₂ fragments and is bound by 30 kcal/mol with respect to these three small molecules [found by using our calculated HF and H₃SMgF₃ energies as well as the energies obtained for MgF₂ $(-399.147\ 0676\ a.u.)$ and $H_2S\ (-398.872\ 2912\ a.u.)]$. Subsequent loss of one or two HF molecules is endothermic by 14 and 25 kcal/mol, respectively, indicating that H₃SMgF₃+HF is the lowest-energy isomer identified so far on the H_4SMgF_4 potential energy surface.

ACKNOWLEDGMENT

This work was supported by the U.S. National Science Foundation, Grant No. CHE91-16286.

¹A. I. Boldyrev and J. Simons, J. Chem. Phys. 97, 4272 (1992).

²(a) H. G. Weikert, L. S. Cederbaum, F. Tarantelli, and A. I. Boldyrev, Z. Phys. D 18, 299 (1991); (b) A. I. Boldyrev and J. Simons, J. Chem. Phys. 97, 2826 (1992); (c) M. K. Scheller and L. S. Cederbaum, J. Phys. B 25, 2257 (1992); (d) J. Chem. Phys. 99, 441 (1993); (e) H. G. Weikert and L. S. Cederbaum, ibid. 99, 8892 (1993); (f) P. Taylor, Mol. Phys. 49, 1297 (1983). This work details the earliest theoretical study of these cation species.

³These species are viewed as prototypes for families of salts in which (i) the cation involves a multiply protonated species whose central atom is more electronegative than H and contains more than one lone pair of electrons (e.g., S, O, Se, F, Cl, etc.) and (ii) the anion's central atom is less electronegative than the ligands attached to it and contains two or more empty orbitals to act as Lewis acid sites for negatively charged ligands (e.g., Mg, Ca, B, Al, Ga, etc.). Which particular ion pairs are of most interest to examine will depend on the ionic radii of the positive and

negative ions; only when these radii are proper will efficient packing into favorable crystal structures be possible.

- ⁴ The sizes of the positive $MH_n^{2^+}$ and negative $M'X_{n'}^{2^-}$ ion moieties are also important here; if M and M' are too different in size, the M-M' bond will be weak, and if X is too large, steric crowding of the M-M' bond will occur.
- ⁵(a) R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. **72**, 650 (1980); (b) M. J. Frisch, J. A. Pople, and J. S. Binkley, *ibid.* **80**,

3265 (1984); (c) T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. v. R. Schleyer, J. Comput. Chem. 4, 294 (1983); (d) A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980).

⁶ M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. DeFrees, J. Baker, J. J. P. Stewart, and J. A. Pople, GAUSSIAN92, Revision C (Gaussian, Pittsburgh, PA, 1990).

J. Chem. Phys., Vol. 100, No. 8, 15 April 1994

Downloaded 23 May 2003 to 155.101.19.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp