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This article is not intended to provide a cutting edge, state-of-the-art review of ab initio quantum chemistry. Nor does it 
offer a shopping list of estimates for the accuracies of its various approaches. Unfortunately, quantum chemistry is not mature 
or reliable enough to make such an evaluation generally possible. Rather, this article introduces the essential concepts of 
quantum chemistry and the computationalfeatures that differ among commonly used methods. It is intended as a guide 
for those who are not conversant with the jargon of ab initio quantum chemistry but who are interested in making use of 
these tools. I n  sections I-IV, readers are provided overviews of (i) the objectives and terminology of the field, (ii) the reasons 
underlying the often disappointing accuracy of present methods, (iii) and the meaning of orbitals, configurations, and electron 
correlation. The content of sections V and VI  is intended to serve as reference material in which the computational tools 
of ab initio quantum chemistry are overviewed. In these sections, the Hartree-Fock (HF), configuration interaction (CI), 
multiconfigurational self-consistent field (MCSCF), Maller-Plesset perturbation theory (MPPT), coupled-cluster (CC), 
and density functional methods such as X, are introduced. The strengths and weaknesses of these methods as well as the 
computational steps involved in their implementation are briefly discussed. 

1. What Does ab Initio Quantum Chemistry Try To Do? 
The trends in chemical and physical properties of the elements 

described beautifully in the periodic table and the ability of early 
spectroscopists to fit atomic line spectra by simple mathematical 
formulas and to interpret atomic electronic states in terms of 
empirical quantum numbers provide compelling evidence that some 
relatively simple framework must exist for understanding the 
electronic structures of all atoms. The great predictive power of 
the concept of atomic valence further suggests that molecular 
electronic structure should be understandable in terms of those 
of the constituent atoms. This point of view lies a t  the heart of 
modern chemistry. 

Much of a b  initio quantum chemistry attempts to make more 
quantitative these aspects of chemists’ views of the periodic table 
and of atomic valence and structure. By starting from ”first 
principles” and treating atomic and molecular states as solutions 
of the Schriidinger equation, quantum chemistry seeks to determine 
what underlies the empirical quantum numbers, screening, 
quantum defects, the aufbau principle, and the concept of valence 
used by spectroscopists and chemists, in some cases, even prior 
to the advent of quantum mechanics. 

The discipline of computational ab initio quantum chemistry 
is aimed at determining the electronic energies and wave functions 
of atoms, molecules, radicals, ions, solids, and all other chemical 
species. The phrase ab initio implies that one attempts to solve 
the Schriidinger equation from first principles, treating the 
molecule as a collection of positive nuclei and negative electrons 
moving under the influence of Coulombic potentials and not using 
any prior knowledge about this species’ chemical behavior. 

To make practical use of such a point of view requires that 
approximations be introduced; the full SchrGdinger equation has 
never been solved exactly for any but simple model problems. 
These approximations take the form of physical concepts (e.g., 
orbitals, configurations, quantum numbers, term symbols, energy 
surfaces, selection rules, etc.) that provide useful means of or- 
ganizing and interpreting experimental data and computational 
methods’ (e.g., HF, CI, MCSCF, CC, MPFT, and X,) that allow 

( I )  Excellent overviews of many of these methods are included in: 
Schaefer, H. F., I I I  Ed. Modern Theoreticul Chemisrry; Plenum Press: New 
York, 1977: Vols. 3 and 4. Lawley, K. P., Ed. Advances in Chemical Physics; 
Wiley-lnterscience: New York, 1987; Vols. LXVIl and LXIX. Within this 
article, these two key references will be denoted MTC, Vols. 3 and 4, and 
ACP, Vols. 67 and 69, respectively. 
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quantitative predictions to be made. 
The full Schriidinger equation for a molecule H+ = E+ involves 

a Hamiltonian H containing the kinetic energies {T,, j = 1, 2, 3, 
..., N, T,, a = 1,2 3, ..., M) of each of the N electrons and M nuclei 
(of charges Z,e, a = 1, 2, 3, ..., M) as well as the mutual Cou- 
lombic interactions among all of these particles {e2/r i . ,  i ,  j = 1, 

2, 3, ..., N ,  a = 1,2,3, ..., M). As stated above, such a Schriidinger 
equation has never been solved exactly for more than two-particle 
systems. 

The essential approximation made in a b  initio quantum 
chemistry is called the Born-Oppenheimer approximation,2 in 
which the motions of the (heavy) nuclei are assumed to take place 
on much longer time scales than the Bohr orbit time scales of the 
electrons. To implement this approximation: 

1. One first solves the so-called electronic Schriidinger equation 
in which the nuclei are heldfixed (at a geometry denoted R). That 
is, the nuclear translational, vibrational, and rotational kinetic 
energy (T , )  factors are ignored in formulating this equation. 

2. One then uses the energies Ek(R) and wave functions +&;R) 
of this equation as a basis to express the full wave function + = 
C k X k W  +k(r;R). 

3. The (xk(R)] are determined by insisting that this + wave 
function obey the full N-electron, M-nuclei Schrodinger equation. 
This results in a set of “coupled channel” equations for the {xk(R)J. 
If terms in the equations that involve coupling between pairs of 
electronic states are ignored, the so-called Born-Oppenheimer 
picture is obtained. The “nonadiabatic” or “non-Born- 
Oppenheimer” terms ignored can be treated3 (perturbatively or 
otherwise) as corrections to the Born-Oppenheimer picture of 
electronic-vibrational-rotational eigenstates. 
4. In the Born-Oppenheimer picture, the equations for the 

{xk(R)J functions are the vibration-rotation Schriidinger equations 
in which the potential energy is the electronic energy Ek(R) for 
the state under study. 

2, 3, ..., N ;  z,zbe2/R,b,  a, b = 1, 2, 3, ..., M -Zae2/r,,, j = 1, 

(2) This approximation was introduced by Born and Oppenheimer in: Ann. 
Phys. 1927,84,457. It was then used within early quantum chemistry in the 
following references: Kolos, W.; Wolniewicz, L. J .  Chem. fhys.  1968,49,404. 
Pack, R. T.; Hirschfelder, J. 0. J .  Chem. Phys. 1968, 49, 4009. [bid. 1970, 
52, 528. 

(3)  Early treatments of molecules in which non-Born-Oppenheimer terms 
were treated were made in: Wolniewicz, L.; Kola, W. Reu. Mod. fhys.  1963, 
35, 413; J .  Chem. Phys. 1964, 41, 3663, 3674; 1965, 43, 2429. 

0 1991 American Chemical Society 
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In  summary, computational a b  initio quantum chemistry at- 
tempts to solve the electronic Schriidinger equation for the Q ( R )  
energy surfaces and wave functions qk(r;R) on a “grid” of values 
of the “clamped” nuclear positions. Because the Schradinger 
equation produces wave functions, it has a great deal of predictive 
power. Wave functions contain all information needed4 to compute 
dipole moments, polarizability, and transition properties such as 
electric dipole transition strengths among states. They also permit 
evaluation of system responses with respect to external pertur- 
bations such as geometrical  distortion^,^ which provides infor- 
mation on vibrational frequencies and reaction paths. 

11. Why Is It So Difficult To Calculate Electronic Energies 
and Wave Functions with Reasonable Accuracy? 

As a scientific tool, ab initio quantum chemistry is not yet very 
accurate when compared to modern laser spectroscopic mea- 
surements, for example. Moreover, it is difficult to estimate the 
accuracies with which various methods will predict bond energies 
and lengths, excitation energies, and the like. Chemists who rely 
on results of quantum chemistry calculations must better un- 
derstand what underlies the concepts and methods of this field. 
Only by so doing will they be able to judge for themselves the 
value of quantum chemistry data to their own research. 

It is, of course, natural to ask why it is so difficult to achieve 
reasonable accuracy (Le., ca. I kcal/mol in computed bond en- 
ergies or activation energies) with quantum chemistry calculations. 
After all, many chemists can ”guessn bond energies more accu- 
rately than even state-of-the-art ab initio computer codes can 
calculate them. The reasons include the following: 

A. Many-body problems with R1 potentials are notoriously 
difficult. It is well-known that the Coulomb potential falls off 
so slowly with distance that mathematical difficulties can arise. 
The 4uR2 dependence of the volume element, combined with the 
R’ dependence of the potential, produces ill-defined interaction 
integrals unless attractive and repulsive interactions are properly 
combined. The classical or quantum treatment of ionic melts,6 
many-body gravitational dynamics,’ and Madelung sumsE for ionic 
crystals are all plagued by such difficulties. 

B. The electrons require quantal treatment, and they are 
indistinguishable. The electron’s small mass produces local de 
Broglie wavelengths that are long compared to atomic “sizes”, 
thus necessitating quantum treatment. Their indistinguishability 
requires that permutational symmetry be imposed on solutions 
of the Schrijdinger equation. 

C.  Solving the Schrodinger equation provides information on 
more than the ground state. A theory that can provide wave 
functions and hence many properties of all electronic states should 
be expected to present serious computational challenges. 

D. All mean-field models of electronic structue require large 
correctionr. Essentially all ab initio quantum chemistry approaches 
introduce a “mean-field” potential V,, that embodies the average 

Ofb. PIk llOl8B le& lW 8 5  1862- 
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(4) A treatment of molecular properties in terms of wave functions and 
energies and their responses to externally applied fields is given in: Jsrgensen, 
P.; Simons, J. Second Quantization-Based Methods in Quantum Chemistry; 
Academic Press: New York, 1981. Geometrical Deriuatives of Energy 
Suflaces and Molecular Properties; Jsrgensen, P., Simons, J., Eds.; D. Reidel: 
Dordrecht, Holland, 1986. Also see the chapter by: Amos, R. Adu. Chem. 
Phys. 1987. 67, 99. 

( 5 )  Much of the early work is described in: Pulay, P .  Modern Theoretical 
Chemistry; Schaefer, H. F., 111, Ed. Plenum Press: New York, 1977; Vol. 
4, p 153. One of the earliest applications to molecular structure is given in: 
Thomscn, K.; Swanstrsm, P. Mol. Phys. 1973, 26, 735. More recent con- 
tributions are summarized in: Geometrical Deriuatives of Energy Surfaces 
and Molecular Properties: Jsrgensen, P.. Simons, J., Eds.; D. Reidel: 
Dordrecht, Holland, 1986. Pulay, P. Adu. Chem. Phys. 1987, 69, 241. 
Helgaker, T.; Jsrgensen, P. Adu. Quantum Chem. 1988, 19, 183. Strategies 
for ‘walking” on potential energy surfaces are overviewed by: Schlegel, H.  
B. Ado. Chem. Phys. 1987, 67, 249. 

(6) Levy, H. A.; Danford, M. D. I n  Molten Salt Chemistry; Blander, M., 
Ed.: Interscience: New York, 1964. Bredig, M. A. In Molten Salts: Ma- 
mantov, G. M.,  Ed.; Marcel Dekker: New York, 1969. 

(7) See, for example: Synge, J. L.; Griffith, 8. A. Principles ofMechanics; 
McGraw-Hill: New York, 1949. 

(8) fkrry, R. S.; Rice, S. A.; Ross, J. Physical Chemistry; Wiley: New 
York, I980 Section 1 I .9. 

AEinrV 1.126 0.022 0.058 0.058 0.022 1.234 

Here pN-’(r’) represents the probability density for finding the 
N - 1 electrons at  r’, and e2/lrl  - r l  is the mutual Coulomb 
repulsion between electron density a t  r ,  and r’. 

The magnitude and “shape” of such a mean-field potential is 
shown’O in Figure 1 for the two 1s electrons of a beryllium atom. 
The Be nucleus is at the origin, and one electron is held fixed 0.13 
A from the nucleus, the maximum of the Is orbital’s radial 
probability density. The Coulomb potential experienced by the 
second electron is then a function of the second electron’s position 
along the x axis (connecting the Be nucleus and the first electron), 
and its distance perpendicular to the x axis. For simplicity, in 
the graph shown in Figure 1, this second electron is arbitrarily 
constrained to lie on the x axis. Along this direction, the Coulomb 
potential is singular, and hence the overall interactions are very 
large. 

On the ordinate, there are two quantities plotted: (i) the 
mean-field potential between the second electron and the other 
Is electron computed, via the self-consistent field (SCF) process 
described later, as the interaction of the second electron with a 
spherical Ils12 charge density centered on the Be nucleus, and (ii) 
the fluctuation potential (F) of this average (mean-field) inter- 
action. 

As a function of the interelectron distance, the fluctuation 
potential decays to zero more rapidly than does the mean-field 
potential. However, the magnitude of F is quite large and remains 
so over an appreciable range of interelectron distances. The 
corrections to the mean-field picture are therefore quite large when 
measured in kcal/mol. For example, the differences AE between 
the true (state-of-the-art quantum chemical calculation as dis- 
cussed later) energies of interaction among the four electrons in 
the Be atom and the mean-field estimates of these interactions 

(9) Sinanoglu, 0. Proc. Nor. Acad. Sei. U.S.A. 1961, 47, 1217. 
(IO) Sinanoglu, 0. J. Chem. Phys. 1962, 36, 706. 
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to the ab initio concept of spin-orbitals for any additive Vm,-(r). 
In fact, there is no single mean-field potential; different scientists 
have put forth different suggestions for Vmf over the years. Each 
such suggestion gives rise to spin-orbitals and configurations that 
are specific to the particular Vmp However, if the difference 
between any particular mean-field model and the full electronic 
Hamiltonian is fully treated, corrections to all mean-field results 
should converge to the same set of exact states of the full H. 

In practice, one is never able to treat all corrections to any 
mean-field model. Thus, it is important to seek particular 
mean-field potentials for which the corrections are as small and 
straightforward to treat as possible. 

In the most commonly employed mean-field modelsI2 of elec- 
tronic structure theory, the configuration specified for study (e.& 
the ls22s22p4 description of the oxygen atom) plays a central role 
in defining the mean-field potential. For example, the mean-field 
Coulomb potential felt by a 2p, orbital’s electron at a point r in 
the ls22s22p,2py configuration description of the carbon atom is 

Vmr(r) = 2 S l l ~ ( r ’ ) ( ~ e ~ / l r  - r l  dr’+ 

2]12~(r’)1~e~/lr - r l  dr’+ ]12p,,(r’)I2e2/lr - r l  dr’ 

Here the density pN- l ( r ’ )  is the sum of the charge densities of the 
orbitals occupied by the five other electrons 211s(r’)I2 + 212s(r’)I2 

The above mean-field potential is used to find the 2p, orbital 
of the carbon atom, which is then used to define the mean-field 
potential experienced by, for example, an electron in the 2s orbital: 

+ 12py(r?12. 

are given in Figure 2 in electronvolts ( 1  eV = 23.06 kcal/mol). 
The mean-field interaction energy between the two 2s orbitals of 
ls22s2 Be is 

112s(r)1212s(r’)12e2/Ir - r l  dr  dr’= 5.95 eV 

The corrections to the mean-field model (e.g., 1.234 eV compared 
to 5.95 eV for the two 2s electrons of Be) are therefore quite 
substantial. 

E. Summary. The above evidence shows why an ab initio 
solution of the Schrodinger equation is a very demanding task if  
high accuracy is desired. However, chemical intuition based 
“guessing” cannot be trusted when faced with novel bonding 
situations, strained or unstable species, or many excited or ionized 
states; it is in these circumstances that the ab initio approach has 
most to offer, even if its ultimate accuracy is, to date, severely 
limited by the strength of the fluctuation potential (even for the 
“best” mean-field models that have yet been created). 

Ill. What Are the Essential Concepts of ab Initio Quantum 
Chemistry? 

The mean-field potential and the need to improve it to achieve 
a reasonably accurate solutions to the true electronic Schrodinger 
equation introduce three constructs that characterize essentially 
all ab initio quantum chemical methods: orbitals, configurations, 
and electron correlation. 

A .  Orbitals and ConJgurations: What Are They (Really)? 
1. How the mean-field model leads to orbitals and configurations: 
The mean-field potentials that have proven most useful are all 
one-electron additive: Vmr(r)  = x j V m f ( r j ) .  Since the electronic 
kinetic energy T = x j T j  operator is also one-electron additive, 
the mean-field Hamiltonian H“ = T + Vmf is of this form. The 
additivity of H“ implies that the mean-field energies (Eok)  are 
additive and the wave functions (+Ok] can be formed in terms of 
products of functions (&} of the coordinates of the individual 
electrons. 

Thus, it is the ansatz that Vmr is separable that leads to the 
concept of orbitals, which are the one-electron functions These 
orbitals are found by solving the one-electron Schrijdinger 
equations: ( T I  + Vmdrl))4j(rl) = e , i ( r l ) ;  the eigenvalues [ e j }  are 
called orbital energies. 

Given the complete set of solutions to this one-electron equation, 
a complete set” of N-electron mean-field wave functions can be 
written down. Each +Ok is constructed by forming a product of 
N orbitals chosen from the set of (g], allowing each orbital in the 
list to be a function of the coordinates of one of the N electrons 

The corresponding mean field energy is evaluated as the sum over 
those orbitals that appear in +Ok:EOk = xj-l,Nekp 

Because of the indistinguishability of the N electrons, the an- 
tisymmetric component of any such orbital product must be 
formed to obtain the proper mean-field wave function. To do so, 
one applies the so-called antisymmetrizer operator A = ‘&(-I )pP, 
where the permutation operator P runs over all N! permutations 
of the N electrons. Application of A to a product function does 
not alter the occupancy of the functions in +Ok; it simply 
scrambles the order that the electrons occupy the Idkj]. 

Because each of the electrons also possesses intrinsic spin, the 
one-electron functions (4j]  used in this construction are taken to 
be eigenfunctions of ( T I  + Vmr(rl)) multiplied by either CY or 8. 
This set of functions is called the set of mean-field spin-orbitals. 

By choosing to place N electrons into specific spin-orbitals, one 
has specified a configuration. By making other choices of which 
N 4j to occupy, one describes other configurations. Just as the 
one-electron mean-field Schrijdinger equation has a complete set 
of spin-orbital solutions and c j } ,  the N-electron mean-field 
Schrodinger equation has a complete set of N-electron configu- 
ration state functions (CSFs) q 0 k  and energies Eok. 

2. The selfconsistent mean-field (SCF) potential: The one- 
elcctron additivity of the mean-field Hamiltonian H“ gives rise 

(e.g.9 +Ok = I4kl!rl)4k2(r2)4k3(r3) *.. d’kN-l(rN-l)4kdrN)l* as above). 

( I  I )  Lawdin. P. 0. Adu. Chem. Phys. 1959. 2, 207. 

Vmf(r) = 2]ll~(r’)1~e~/lr - r l  dr’+ S12~(r ’ )1~e~/ l r  - r l  dr’ 

+ l12pY(r?l2e2/lr - r l  dr’+ 112p,(r’)12e2/lr - r l  dr’ 

Notice that the orbitals occupied in the configuration under 
study appear in the mean-field potential. However, it is Vmr that, 
through the one-electron Schrijdinger equation, determines the 
orbitals. For these reasons, the solution of these equations must 
be carried out in a so-called seljkonsistent field (SCF) manner. 
One begins with an approximate description of the orbtials in +Ok. 
These orbitals then define Vmf, and the equations (TI  + Vm,- 
(rl))4j(rl) = c,$j(rl) are solved for “new” spin-orbitals. These 
orbitals are then be used to define an improved Vmr, which gives 
another set of solutions to (TI + Vmf(r,))4j(rl) = c,4j(rl). This 
iterative process is continued until the orbitals used to define Vmf 
are identical with those that result as solutions of (TI  + Vm,- 
(rl))4j(rl) = cj4j(rl.). When this condition is reached, one has 
achieved “self-consistency”. 

B. What I s  Electron Correlation? By expressing the mean-field 
interaction of an electron at  r with the N - 1 other electrons in 
terms of a probability density pncl(r’) that is independent of the 
fact that another electron resides at r,  the mean-field models ignore 
spatial correlations among the ele$ons. In reality, the conditional 
probability density for finding one of the N - 1 electrons at  r’, 
given that one electron is a t  r ,  depends on r; the electrons “avoid” 
one another because of their like charge. The absence of spatial 
correlation is a direct consequence of the spin-orbital product 
nature of the mean-field wave functions (+Okl. 

To improve upon the mean-field picture of electronic structure, 
one must move beyond the single-configuration approximation. 
It is essential to do so to achieve higher accuracy, but it is also 
important to do so to achieve a conceptually correct view of 
chemical electronic structure. However, it is very disconcerting 
to most of us to be told the the familiar ls22s22p2 description of 
the carbon atom is inadequate and that instead one must think 
of the 3P ground state of this atom as a “mixture” of ls22s22p2, 
ls22s23p2, ls22s23d2, and 2s23s22p2 (and any other configurations 
whose angular momenta can be coupled to produce L = 1 and 
s = 1 ) .  

(12) Hartree, D. R .  Proc. Comb. Philos. SOC. 1928, 24, 89. 1 1 1 ,  426. 
Hartree, D. R.; Hartree, W.; Swirles, B. Philos. Trans. Roy. SOC. London 
1939, ,4238. Fwk, V. 2. Phys. 1930,6/, 126. Slater, J .  C. Reu. Mod. Phys. 
1930, 35, 210. 
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Although the picture of configurations in which N electrons 
occupy N spin-orbitals may be very familiar and useful for sys- 
tematizing electronic states of atoms and molecules, these con- 
structs are approximations to the true states of the system. They 
were introduced when the mean-field approximation was made, 
and neither orbitals nor configurations can be claimed to describe 
the proper eigenstates ($k,Ek]. It would be inconsistent to insist 
that the carbon atom be thought of as ls22s22p2 while insisting 
that the ab initio quantum chemistry description of this atom yield 
electronic excitation energies accurate to f l  kcal/mol. 

C. Summary. The S C F  mean-field potential takes care of 
“most” of the interactions among the N electrons. However, for 
all mean-field potentials proposed to date, the residual or fluc- 
tuation potential is large enough to require significant corrections 
to the mean-field picture. This, in turn, necessitates the use of 
more sophisticated and computationally taxing techniques (e&, 
high-order perturbation theory or large variational expansion 
spaces) to reach the desired chemical accuracy. 

For electronic structures of atoms and molecules, the SCF model 
requires quite substantial corrections to bring its predictions into 
line with experimental fact. Electrons in atoms and molecules 
undergo dynamical motions in which their Coulomb repulsions 
cause them to ’avoid” one another at every instant of time, not 
only in the average-repulsion manner of mean-field models. The 
inclusion of instantaneous spatial correlations among electrons 
is necessary to achieve a more accurate description of atomic and 
molecular electronic structure. No single spin-orbital product 
wave function is capable of treating electron correlation to any 
extent; its product nature renders it incapable of doing so. 

It is now time to examine how one moves beyond the single- 
configuration approximation and how the resulting more com- 
plicated wave function can be interpreted in terms of dynamical 
interactions among the N electrons. 

IV.  How To Introduce Electron Correlation via Configuration 
Mixing 

A .  The Multiconfiguration Wave Function. In  most of the 
commonly used ab initio quantum chemical methods,’ one forms 
a set of configurations by placing N electrons into spin-orbitals 
of the atom or molecule under study in a manner that produces 
the spatial, spin, and angular momentum symmetry of the elec- 
tronic state of interest. This set of functions is then used to achieve 
a more accurate and dynamically correct description of the 
electronic structure of that state. 

In particular, the correct wave function $ is written as a linear 
combination of the mean-field wave functions { @ k ] :  $ = ckCk$Ok. 
For example, to describe the ground IS state of the Be atom, the 
ls22s2 configuration is augmented by including other configurations 
such as 1 s23s2, 1 s22p2, 1 s23p2, 1 s22s3s, 3s22s2, 2p22s2, etc., all of 
which have overall IS spin and angular momentum symmetry. 
The various methods of electronic structure theory differ primarily 
in how they determine the IC,) expansion coefficients and how 
they extract the energy E corresponding to this $. 

B. Physical Meaning of Mixing in “Excited” Configurations. 
When performing ab initio calculations on the ground ’S state 
of the Be atom, the following four antisymmetrized spin-orbital 
products are found to have the largest Ck amplitudes: 

$ = c, 11 S22SZI  - C,[  11 s22p;1 + 11 s22pJ + 11 s22p,2(] 
The fact that the latter three antisymmetrized products possess 
the same amplitude C,  is a result of the requirement that a state 
of ‘S symmetry is desired. It can be shownI3 that this function 
is equivalcnt to 
$ = i/6C,llS2{[(2S - a2px)a(2s + a2p,)P - 

(2s - a2px)P(2s + a2p,)a] + 
[(2s - a2py)a(2s + a2py)P - (2s - a2py)P(2s + a2py)a] + 

[(2s - a2pz)a(2s + a2p,)P - (2s - a2p2)P(2s + a2p2)a]) 
where a = ( 3 C 2 / C I ) 1 / 2 .  

Simons 

(13) Simons, J. Energetic Principles of Chemical Reactions; Jones and 
Bartlett: Boston, 1983; p 129. 

n 
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Figure 3. Polarized orbital pairs involving 2s and 2p, orbitals. 
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Figure 4. Left and right polarized orbital pairs involving r and A* 

orbitals. 

Here two electrons occupy the Is orbital (with opposite, a and 
P spins) while the other pair resides in 2s-2p polarized orbitals 
in a manner that instantaneously correlates their motions. These 
polarized orbital pairs (2s f ~ 2 p , ~ , ~ ~ , )  are formed by combining 
the 2s orbital with the 2pxs,orr orbital in a ratio determined by 

This ratio can be shownI4 to be proportional to the magnitude 
of the coupling ( 1 s22s21d 1 s22p2) between the two configurations 
involved and inversely proportional to the energy difference 
[ ( ls22s2~H~ls22s2)  - ( l s 2 2 p z ~ ~ l s 2 2 p z ) ]  between these configu- 
rations. In general, configurations that have similar Hamiltonian 
expectation values and that are coupled strongly give rise to 
strongly mixed (i.e., with large IC2/C,l ratios) polarized orbital 
pairs. 

A set of polarized orbital pairs is described pictorially in Figure 
3. It still remains to ascribe sound physical meaning to these 
polarized orbital pairs and, hence, to explain how mixing the ls22s2 
and ls22p2 configurations achieves a better description of the 
ground state of Be. 

In each of the three equivalent terms in the above wave function, 
one of the valence electrons moves in a 2s + a2p orbital polarized 
in one direction while the other valence electron moves in the 2s 
- a2p orbital polarized in the opposite direction. For example, 
the first term [(2s - a2pX)a(2s + a2p,)P - (2s - a2pX)/3(2s + 
a2p,)a] describes one electron occupying a 2s - a2p, polarized 
orbital while the other electron occupies the 2s + a2p, orbital. 

In  this picture, the electrons, reduce their mutual Coulomb 
repulsion by occupying different regions of space; in the S C F  
picture ls22s2, both electrons reside in the same 2s region of space. 

c2/ CI. 

(14) The so-called Slater-Condon rules express the matrix elements of any 
one-electron (F) plus two-electron (G) additive operator between pairs of 
antisymmetrized spin-orbital products that have been arranged (by permuting 
spin-orbital ordering) to be in so-called maximal coincidence. Once in this 
order, the matrix elements between two such Slater determinants (labeled 1) 
and 1 ’ ) )  are summarized as follows: (i) If I ) and 1 ’ )  are identical, then 

(IF+ GI) Ei(+iVlOi) + Z [ ( @ i @ j I A @ i + j )  - ( @ i + j I g I @ # i ) l  
i>J 

where the sums over i and j run over all spin-orbitals in I ). (ii) If I ) and 1’) 
differ by a single spin-orbital mismatch (g # +’J, then 

(IF + GI) = (+pp[fl@’p) + F [ ( + p + j l g l @ ’ p @ j )  - ( @ p @ j l g l @ , 4 ’ p ) l  

where the sum over j runs over all spin-orbitals in I ) except @ . (iii) If I ) 
and 1’) differ by two spin-orbitals (4 # +’p and @q # qYq), t ien 

(IF + GI) (+p@qlgl+’p@’q) - (+p@qlA+’q@’p)  

(note that the F contribution vanishes in this case). (iv) if 1 ) and 1’) differ 
by three or more spin orbitals, then 

(IF+ GI) = 0 

Virtually all practicing quantum chemists have these rules committed to 
memory. 
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correlation effects are referred to as “dynamical electron 
correlation”; they are extremely important to include if one expects 
to achieve chemically meaningful accuracy. 

F. Transition to Treatment of Methodology. In the next two 
sections, various ab initio quantum chemistry methods for de- 
termining the (C,] expansion coefficients and for computing the 
energy E are detailed. All of these methods use as a starting point 
a set of mean-field configuration state functions. In particular, 
combinations of antisymmetrized spin-orbital products that are 
eigenfunctions of those operators that commute with the N-electron 
Hamiltonian H a r e  used to so expand J / .  

For polyatomic molecules, these symmetry operators include 
point-group symmetry operators (which act on all N electrons) 
and the spin angular momentum operators (S2  and S,) of all of 
the electrons taken as a whole (in the absence of spin-orbit 
coupling). 

For linear molecules, the N-electron operators L,, S2,  and S, 
commute with H .  For atoms, the corresponding operators are 
L2, L,, S2,  and S,  (again, in the absence of spin-orbit coupling). 

To construct N-electron functions that are eigenfunctions of 
the spatial symmetry or orbital angular momentum operators as 
well as the spin angular momentum operators, one has to “couple” 
the symmetry or angular momentum properties of the individual 
spin-orbitals used to construct the N-electrons functions. This 
coupling involves forming direct product symmetries in the case 
of polyatomic molecules that belong to finite point groups; it 
involves vector coupling orbital and spin angular momenta in the 
case of atoms; and it involves vector coupling spin angular mo- 
menta and axis coupling orbital angular momenta when treating 
linear molecules. 

V. The Single-Configuration Picture and the Hartree-Fock 
Approximation 

Given a set of N-electron symmetry adapted configuration state 
functions ( @ j )  in terms of which J /  is to be expanded as I) = 
&CJaJ, attention can be turned to determining the (C,) and E .  
Before doing so, it is important to discuss in more detail the task 
of finding the “best” spin-orbitals (d j ]  for cases in which a self- 
consistent field (SCF) mean-field potential is used. This is im- 
portant because such mean fields are employed in the vast majority 
of ab initio calculations, including those that subsequently move 
on to treat electron correlation. 

A.  The Single-Determinant Wave Function. I. The canonical 
SCF equations: The simplest trial function employed in a b  initio 
quantum chemistry is the single Slater determinant function in 
which N spin-orbitals are occupied by N electrons and only one 
configuration is included: 

In this particular example, the electrons undergo angular cor- 
relation to “avoid” one another. 

Let us consider another example. In describing the n2 electron 
pair of an olefin, ab initio calculations indicate it is important to 
mix in ”doubly excited” configurations of the form ( A ’ ) ~ .  The 
physical importance of such configurations can again be made 
clear by using the identity introduced above: 
CI I...$“$. ..I - C21...d’a~’@...I = 
C,/2[1 ...(4 - ad’)a(4  + a$’)@ ...I - I...(d - a@)P($+ a@)a ...I] 

where a = (C‘2/C‘l)1/2. 
I n  this example, the two nonorthogonal “polarized orbital pairs” 

involve mixing the A and A* orbitals to produce two left-right 
polarized orbitals as depicted in Figure 4. Here one says that 
the d electron pair undergoes left-right correlation when the ( A * ) ~  

configuration is introduced. In the alkaline-earth-metal atom case, 
the polarized orbital pairs give rise to (ns  f anp) angular cor- 
relation. Use of an ( n  + l)s2 configuration for the alkaline- 
earth-metal calculation would contribute radial correlation in- 
volving (ns f a(n + 1)s) orbital pairs. 

C. Are Polarized Orbital Pairs Hybrid Orbitals? It should 
be stressed that these polarized orbital pairs are nor the same as 
hybrid orbitals. The latter are used to describe directed bonding, 
and each hybrid is occupied, in  the mean-field picture, by two 
electrons. In  contrast, polarized orbital pairs are sets of two 
orbitals, each being a “mixture” of two mean-field orbitals with 
amplitude a = (C2/C,)’/2. A single electron residues in each of 
these orbitals, thereby allowing the electrons to be spatially 
correlated and to “avoid” one another. In addition, polarized 
orbital pairs are not generally orthogonal to one another; hybrid 
orbital sets are. 
D. Relationship to the Generalized Valence Bond Picture. In 

these examples, the analysis allows one to interpret the combination 
of pairs of configurations that differ from one another by a “double 
excitation” from one orbital (4) to another (4’) as equivalent to 
a singlet coupling of two polarized orbitals (4 - a@) and (4 + 
a+’). This picture is closely related to the generalized valence 
bond (GVB) model that Goddard and his co-workers have de- 
veloped.lS 

In the simplest embodiment of the GVB model, each electron 
pair in the atom or molecule is correlated by mixing in a con- 
figuration in which that pair is “doubly excited” to a correlating 
orbital. The direct product of all such pair corre!ations generates 
the simplest GVB-type wave function. In the GVB approach, these 
electron correlations can be specified either in terms of double 
excitations involving CSFs formed from orthonormal spin orbitals 
or in terms of explicitly nonorthogonal GVB orbitals as shown 
above. The latter is more convenient for imagining how electrons 
undergo correlated motions, but the former is how GVB calcu- 
lations are carried out on a computer. 

In  most ab initio quantum chemical methods, the correlation 
calculation is actually carried out by forming a linear combination 
of the mean-field configuration state functions and determining 
the IC,] amplitudes by some procedure. The identities discussed 
in some detail above are then introduced merely to permit one 
to interpret the presence of configurations that are “doubly excited“ 
relative to the dominant mean-field configuration in terms of 
polarized orbital pairs. 

E .  Summary. The dynamical interactions among electrons 
give rise to instantaneous spatial correlations that must be handled 
to arrive at an accurate picture of atomic and molecular structure. 
The single-configuration picture provided by the mean-field model 
is a useful starting point, but it is incapable of describing electron 
correlations. Therefore, improvements are often needed. 

The use of doubly excited configurations is a mechanism by 
which 4 can place electron pairs, which in the mean-field picture 
occupy the same orbital, into different regions of space (Le., each 
one into a different member of the polarized orbital pair) thereby 
lowering thcir mutual Coulombic repulsions. Such electron 

( 1 5 )  See, for example: Goddard, W. A.; Harding, L. B. Annu. Reu. Phys. 
Chem. 1978, 29, 363. 

For such a function, variational optimization of the spin-orbitals 
to make the expectation value (J/IqJ/) stationary produces16 the 
canonical Hartree-Fock equations: 

F4i = tidi 

where the so-called Fock operator F is given by 

F4i = hdi + E [ J j  - Kjldi 
/(occupied) 

The Coulomb ( J j )  and exchange ( K j )  operators are defined by 
the relations 

the symbol h denotes the electronic kinetic energy and electron- 
nuclear Coulomb attraction operators. The dT implies integration 
over the spin variables associated with the t#Jj (and, for the exchange 

( 1  6 )  Classic papers in which the SCF equations for closed- and open-shell 
systems are treated: Roothaan, C. C. J. Reu. Mod. Phys. 1951, 23,69; 1960, 
32, 179. 
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operator, +i) ,  as a result of which the exchange integral vanishes 
unless the spin function of 4, is the same as that of di; the Coulomb 
integral is nonvanishing no matter what the spin functions of 4, 
and 4,. These are the spin-orbital level equations of the S C F  
mean-field model. 

2.  The equations have orbital solutions for occupied and 
unoccupied orbitals: The Hartree-Fock equations F+, = el+, 
possess solutions for the spin-orbitals in $ (the occupied spin- 
orbitals) as well as for orbitals not occupied in IC/ (the virtual or 
unoccupied spin-orbitals). The F operator is hermitian, so it 
possesses a complete set of orthonormal eigenfunctions; only those 
that are in IC/ appear in the Coulomb and exchange potentials of 
the Fock operator. 

3. The spin-impurity problem: As formulated above, the 
Hartree-Fock (HF) equations yield orbitals that do not guarantee 
that J.  has proper spin symmetry. To illustrate, consider the 
equations for an open-shell system such as the lithium atom. If 
Isa, Is@, and ~ S C Y  spin-orbitals are chosen to appear in $, the Fock 
operator will be 

The Journal of Physical Chemistry. Vol. 95, No. 3, 1991 

F = h + Jlsa + J l s ,  + J2sa - [Kls, + KIS, + K 2 W 1  

Acting on an a spin-orbital 
integrations, one obtains 

with F and carrying out the spin 

F4ka = h4ka + (25,s + JZs14kn - ( K l s  + K2s)4ka 

I n  contrast, when acting on a p spin-orbital, one obtains 

F$k@ = h$’k@ + (2JIs + J l s ) + k o  - ( K l s ) + k p  

Spin-orbitals of a and p type do not experience the same 
exchange potential in this model because $ contains two CY spin- 
orbitals and only one /3 spin-orbital. A consequence is that the 
optimal 1 SCY and 1 sp spin-orbitals, which are themselves solutions 
of F+, = do not have identical orbital energies (i.e., c l s a  # 
el@) and are not spatially identical. This resultant spin polarization 
of the orbitals gives rise to spin impurities in $. The determinant 
(Isals’~2scu( is not a pure doublet spin eigenfunction although it 
is an S, eigenfunction with Ms = 
and S = 3 / 2  components. If the Isa and Is’p spin-orbitals were 
spatially identical, then J l s a l s ’ p 2 s ~ ~ ~  would be a pure spin ei- 
genfunction with S = 

The above single-determinant wave function is referred to as 
being of the unrestricted Hartree-Fock (UHF) type because no 
restrictions are placed on the spatial nature of the orbitals in $. 
I n  general, U H F  wave functions are not of pure spin symmetry 
for any open-shell system; this is a significant drawback of methods 
based on a UHF mean-field starting point. Such a UHF treatment 
forms the basis of the widely used and highly successful GAUSSIAN 
70 through GAUSSIAN-9x  series of electronic structure computer 
codes” that derive from Pople and co-workers. 

B. LCAO-MO Expansion of the Spin-Orbitals. The H F  
equations must be solved iteratively because the J, and K ,  operators 
in F depend on the orbitals +,, for which solutions are sought. 
Typical iterativc schemes begin with a guess for those +, that 
appear in $, which then allows F to be formed. Solutions to F+, 
= t,& are then found, and those I$, that possess the space and spin 
symmetry of the occupied orbitals of J.  and have the proper en- 
ergies and nodal character are used to generate a new F operator 
(Le., new J ,  and K, operators). This iterative Hartree-Fock 
selfconsistent field (SCF) process is continued until the +, and 
t, do not vary significantly from one iteration to the next, at which 
time one says that the process has converged. 

In  practice, solution of Fd, = t,+, as an integrodifferential 
equation can be carried out only for atomsIs and linear molec~les’~ 

it contains both S = 

Simons 

(17) See, for example: Frisch, M. J.;  Binkley, J .  S.; Schlegel, H .  B.; 
Raghavachari. K.; Melius, C. F.; Martin, R. L.; Stewart, J .  J .  P.; Bobrowicz, 
F. W.; Rohling, C .  M.; Kahn, L. R.;  Defrees, D. J.; Seeger, R.; Whitehead, 
R. A.; Fox, D. J.; Fleuder. E. M.; Pople, J .  A .  GAUSSIAN 86; Carnegie-Mellon 
Quantum Chemistry Publishing Unit: Pittsburgh, PA, 1984. 

(18) Froese-Fischer. C.  Comput. Phys. Commun. 1970, I ,  152. 
(19) McCullough, E. A. J .  Chem. Phys. 1975.62, 3991. Christiansen, P. 

A. ;  McCullough, E. A. J .  Chem. Phys. 1977, 67, 1877. 

for which the angular parts of the di can be exactly separated from 
the radial because of the axial- or full-rotation group symmetry 
(e.g., 4; = Y,3m RJr) for an atom and +i = exp(im4)Rn,l,m(r,6) 
for a linear molecule). 

In  the procedures most commonly applied to nonlinear mole- 
cules, the +i are expanded in a basis of functions X ,  according 
to the linear combinations of atomic orbitals to form molecular 
orbitals (LCAO-MO) procedure: 

4; = cc,,;x, 

xFP.”C”.; = ~;xs,,ucu,i 

P 

This reduces F+; = to a matrix eigenvalue-type equation: 

Y Y 

where S,,+ = (x , lx , )  is the overlap matrix among the atomic 
orbitals (AOs) and 

Fp,Y = (x,lhlxU) + x[Y6,K(X,X6lglXUXk‘) - Y6,?(x,x6klxKxV)l 
6.x 

is the matrix representation of the Fock operator in the A 0  basis. 
Here and elsewhere, the symbol g is used to represent the elec- 
tron-electron Coulomb potential e2/lr - r l .  

The charge- and exchange-density matrix elements in the A 0  
basis are 

Yb,, = cb,icsJ 
;(occupied) 

Y6.F = E C&x,i 
~(occ.. and same spin) 

where the sum in -y6,”” runs over those occupied spin-orbitals whose 
m, value is equal to that for which the Fock matrix is being formed 
(for a closed-shell species, y6.T = ’ / 2 ~ 6 , ~ ) .  

It should be noted that by moving to a matrix problem, one 
does not remove the need for an iterative solution; the F,-,matrix 
elements depend on the C,, LCAO-MO coefficients, which are, 
in turn, solutions of the so-called Roothaan matrix HartreeFock 
equations ~, ,F , ,YCY,I  = t,,S,,YCY,i. One should also note that, just 
as F+; = ci +jipsesses a complete set of eigenfunctions, the matrix 
F,,,, whose dimension M is equal to the number of atomic basis 
orbitals used in the LCAO-MO expansion, has M eigenvalues ti 
and M eigenvectors whose elements are the Cu,i. Thus, there are 
occupied and virtual molecular orbitals (MOs) each of which is 
described in the LCAO-MO form with C,,i coefficients obtained 
via solution of ~ y F ~ ~ y C u , i  = ti~,,S,,YCv,i. 

C. Atomic Orbital Basis Sets. I. STOs and GTOs: The basis 
orbitals commonly used in the LCAO-MO process fall into two 
classes: 

I .  Slater-type orbitals xn,l,m(r,0,4) = Nn, ,~m,~Y,~m(e ,4 )~ ’e -~ ‘  
characterized by quantum numbers n, I ,  and m and exponents 
(which characterize the “size” of the basis function) {. The symbol 
N,,/,m,c denotes the normalization constant. 

2. Cartesian Gaussian-type orbitals xo,6s(r,6,1$) = N6,b,,,8y’% 
exp(-ar2), characterized by quantum numbers a, b, and c, which 
detail the angular shape and direction of the orbital and exponents 
a which govern the radial “size” of the basis function. 

For both types of orbitals, the coordinates r ,  6, and 4 refer to 
the position of the electron relative to a set of axes attached to 
the center on which the basis orbital is located. Although Sla- 
ter-type orbitals (STOs) have the proper “cuspn behavior near 
nuclei, they are used primarily for atomic and linear molecule 
calculations because the multicenter integrals that arise in poly- 
atomic-molecule calculations can not efficiently be performed when 
STOs are employed. In  contrast, such integrals can routinely be 
done when Gaussian-type orbitals (GTOs) are used. This fun-  
damental advantage of GTOs has lead to the dominance of these 
functions in molecular quantum chemistry. 

To overcome the primary weakness of GTO functions (Le., their 
radial derivatives vanish at the nucleus, whereas the derivatives 
of STOs are nonzero), it is common to combine two, three, or more 
GTOs, with combination coefficients that are fixed and not treated 
as LCAO-MO parameters, into new functions called contracted 
GTOs or CGTOs. Typically, a series of light, medium, and loose 
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GTOs are multiplied by contraction coefficients and summed to 
produce a CGTO that appears to possess the proper “cusp” at the 
nuclear center. 

2. Basis set libraries: Much effort has been devoted to de- 
veloping sets of STO or GTO basis orbitals for main-group ele- 
ments and the lighter transition metals. This ongoing effort is 
aimed at providing standard basis set libraries that ( 1 )  yield 
predictable chemical accuracy in the resultant energies, (2) are 
cost effective to use in practical calculations, and (3)  are relatively 
transferrable so that a given atom’s basis is flexible enough to be 
used for that atom in various bonding environments. 

a.  The fundamental core and valence basis: In constructing 
an atomic orbital basis, one must choose from among several 
classes of functions. First, the size and nature of the primary core 
and valence basis must be specified. Within this category, the 
following choices are common: 

1 .  A minimal basis in which the number of STO or CGTO 
orbitals is equal to the number of core and valence atomic orbitals 
in the atom. 

2 .  A double-{ (DZ) basis in which twice as many STOs or 
CGTOs are used as there are core and valence atomic orbitals. 
The use of more basis functions is motivated by a desire to provide 
additional variational flexibility so the LCAO-MO process can 
generate molecular qbi ta ls  of variable diffuseness as the local 
electronegativity of the atom varies. 

3. A triple-{ (TZ) basis in which 3 times as many STOs or 
CGTOs are used as the number of core and valence atomic or- 
bitals. 

4. Dunning has developedZo CGTO bases that range from 
approximately DZ to substantially beyond T Z  quality. These 
bases involve contractions of primitive GTO bases that Huzinaga 
had earlier optimized.2’ These Dunning bases are commonly 
denoted as follows for first-row atoms: (IOs,6p/5s,4p), which 
means that 10 s-type primitive GTOs have been contracted to 
produce 5 separate s-type CGTOs and that 6 primitive p-type 
GTO’s were contracted into 4 separate p-type CGTOs in each 
of the x, y .  and z directions. 

5 .  Even-tempered basis setsZ2 consist of GTOs in which the 
orbital exponents Nk belonging to series of orbitals consist of 
geometrical progressions: ak = upk, where a and characterize 
the particular set of GTOs. 

6. STO-3G basesZ3 were employed some years ago but are less 
popular recently. These bases are constructed by least-squares 
fitting GTOs to STOs that have been optimized for various 
electronic states of the atom. When three GTOs are employed 
to fit each STO, a STO-3G basis is formed. 

7 .  4-3 1 G, 5-3 1 G, and 6-3 1 G bases24 employ a single CGTO 
of contraction length 4, 5, or 6 to describe the core orbital. The 
valence space is described at the DZ level with the first CGTO 
constructed from three primitive GTOs and the second CGTO 
built from a single primitive GTO. 

The values of the orbital exponents ( r s  or a’s) and the GTO- 
to-CGTO contraction coefficients needed to implement a particular 
basis of the kind described above have been tabulated in several 
journal articlesZS and in computer data bases. 

b. Polarization functions: In  addition to core and valence 
functions, one usually adds a set of so-called polarization functiom 
to the basis. They are functions of one higher angular momentum 
than appears in the atom’s valence orbital space (e&, d functions 

(20) Dunning, T. H .  J .  Chem. Phys. 1970,53,2823. Dunning, T. H.; Hay, 
P. J .  I n  Methods of Electronic Structure Theory; H. F. Schaefer, 111, Ed.; 
Plenum Press: New York. 1977. . . . ... . ~ .~~~ 

(21) Huzinaga, S. J .  &em. Phys. 1965, 42, 1293. 
(22) Schmidt, M .  W.; Ruedenberg, K. J .  Chem. Phys. 1979, 17, 3961. 
(23) Hehre, W. J.; Stewart, R. F.; Pople, J .  A. J .  Chem. Phys. 1969, 51, 

2657. . 
(24) Ditchfield, R.; Hehre, W. J.;  Pople, J .  A. J .  Chem. Phys. 1971, 54, 

724. Hchrc, W. J.; Ditchfield, R.; Pople, J. A. J .  Chem. Phys. 1972. 56, 2257. 
Hariharan. P. C.: Pople, J .  A. Theor. Chim. Acta. (Berlin) 1973, 28, 213. 
Krishnan, R.; Binkley, J .  S.; Seegcr, R.:  Pople, J .  A. J .  Chem. Phys. 1980, 
72,  650. 

(25) In  particular, in the data base contained in: Poirer, R.; Kari, R.; 
Csizmadia, I .  G. Handbook of Gaussian Basis Sets: A .  Compendium for  
Ab initio Molecular Orbital Calculations: Elsevier Science: New York, 1985. 
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Figure 5. Role of d-polarization functions in the 7 bond between C and 
0. 

for C, N ,  and 0 and p functions for H). These polarization 
functions have exponents ({or a) that cause their radial sizes to 
be similar to the sizes of the valence orbitals (Le., the polarization 
p orbitals of the H atom are similar in size to the 1 s orbital). Thus, 
they are not orbitals that describe the atom’s valence orbital with 
one higher I value; such higher I valence orbitals would be radially 
more diffuse and would require STOs or GTOs with smaller 
exponents. 

The primary purpose of polarization functions is to give ad- 
ditional angular flexibility to the LCAO-MO process in forming 
the vale:ice molecular orbitals. This is illustrated in Figure 5 ,  
where polarization d, orbitals are seen to contribute to formation 
of the bonding ?r orbital of a carbonyl group by allowing polar- 
ization of the carbon atom’s pr orbital toward the right and of 
the oxygen atom’s pr orbital toward the left. Polarization functions 
are essential in strained ring compounds because they provide the 
angular flexibility needed to direct the electron density into regions 
between bonded atoms. 

Functions with higher I values and with “sizes” like those of 
lower I valence orbitals are also used to introduce additional 
angular correlation by permitting polarized orbital pairs involving 
higher angular correlations to be formed. Optimal polarization 
functions for first- and second-row atoms have been tabulated.26 

c. Diffuse functions: When dealing with anions or Rydberg 
states, one must augment the basis set by adding so-called diffuse 
basis orbitals. The valence and polarization functions described 
above do not provide enough radial flexibility to adequately de- 
scribe either of these cases. Energy-optimized diffuse functions 
appropriate to anions of most lighter main-group elements have 
been tabulated in the literature and in data basesZs 

Once one has specified an atomic orbital basis for each atom 
in the molecule, the LCAO-MO procedure can be used to de- 
termine the C,,i coefficients that describe the occupied and virtual 
orbitals. It is important to keep in mind that the basis orbitals 
are not themselves the S C F  orbitals of the isolated atoms; even 
the proper atomic orbitals are combinations (with atomic values 
for the C,,i coefficients) of the basis functions. The LCAO- 
MO-SCF process itself determines the magnitudes and signs of 
the Cv,i; alternations in the signs of these coefficients allow nodes 
to form. 

For example, in a minimal-basis treatment of the carbon atom, 
the 2s atomic orbital is formed by combining the two CGTOs with 
opposite sign to achieve the radial node; the more diffuse s-type 
basis function will have a larger C,,, coefficient in the 2s atomic 
orbital. The Is atomic orbital is formed by combining the same 
two CGTOs but with the same sign (and hence no radial node) 
and with the less diffuse basis function having a larger Cv,i 
coefficient. 

D. Physical Meaning of Orbital Energies. The HF-SCF 
equations F4i = imply that t i  can be written as 

ci = (4ilq4i) = (4ilhl4i) + C C4ilJj - Kj14i) = 
j(0ccupied) 

Cdilhldi) + C [ J i j  - Kijl 
j(0ccupiuJ) 

Thus ei is the average value of the kinetic energy plus Coulombic 
attraction to the nuclei for an electron in di plus the sum over all 
of the spin-orbitals occuped in + of Coulomb minus exchange 
interactions between 4i and these occupied spin-orbitals. 

(26) Roos, B.; Siegbahn, P. Theor. Chim. Acto (Berlin) 1970, 17, 199. 
Frisch, M.  J . ;  Pople, J.  A.; Binkley, J .  S. J .  Chem. Phys. 1984, 80, 3265. 
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If $i is an occupied spin-orbital, the term [Ji,i - KiJ] disappears 
and the latter sum represents the Coulomb minus exchange in- 
teraction of $i with all of the N - 1 other occupied spin-orbitals. 
If 4i is a virtual spin-orbital, this cancellation does not occur, and 
one obtains the Coulomb minus exchange interaction of $i with 
all N of the occupied spin-orbitals. 

Hence the orbital energies of occupied orbitals pertain to in- 
teractions appropriate to a total of N electrons, while the orbital 
energies of virtual orbitals pertain to a system with N + 1 elec- 
trons. It is this fact that makes SCF virtual orbitals not usually 
very good for use in subsequent correlation calculations or for use 
in interpreting electronic excitation processes. To correlate a pair 
of electrons that occupy a valence orbital requires double exci- 
tations into a virtual orbital of similar size; the SCF virtual orbitals 
are too diffuse. 

1 ,  Koopmans' theorem: Let us consider a mdoel of the vertical 
(i.e., at fixed molecular geometry) detachment or attachment of 
an electron to an N-electron molecule: 

I .  In this model, both the parent molecule and the species 
generated by adding or removing an electron are treated at  the 
single-determinant level. 

2 .  The Hartree-Fock orbitals of the parent molecule are used 
to describe both the parent and the species generated by electron 
addition or removal. It is said that such a model neglects orbital 
relaxation (Le., the reoptimization of the spin-orbitals to allow 
them to become appropriate to the daughter species). 

Within this simplified model, the energy difference between 
the daughter and the parent species can be written as follows ( $ k  
represents the particular spin-orbital that is added or removed): 
1, For electron detachment: 

ck 
EN-' - EN = - 

2.  For electron attachment: 

- t k  
E N  - EN+' = 

So, within the limitations of the single-determinant, frozen- 
orbital model set forth, the ionization potentials (IPS) and electron 
affinities (EAs) are given as the negative of the occupied and 
virtual spin-orbital energies, respectively. This statement is re- 
ferred to as Koopmans' theorem;z7 it is used extensively in quantum 
chemical calculations as a means of estimating IPS and EAs and 
often yields results that are qualitative correct (Le., f0.5 eV). 

2. Orbital energies and the total energy: The total S C F  
electronic energy can be written as 

E = E ($ilhl+i) + [ J i j  - Kjj ]  
i(occupicd) i>j(occupicd) 

For this same system, the sum of the orbital energies of the 
occupied spin-orbitals is given by 

C t i  = E (dilhl$i) + E [ J i j  - Kijl 
i ( a r u p i c d )  i(0ccupied) ij(occupicd) 

These two expressions differ in a very important way; the sum 
of occupied orbital energies double counts the Coulomb minus 
exchange interaction energies. Thus, within the Hartree-Fock 
approximation, the sum of the occupied orbital energies is not equal 
to the total energy. This means that as one attempts to develop 
a qualitative picture of the energies of configurations along a 
reaction path, one must be careful not to equate the sum of orbital 
energies with the total configurational energy; the former is higher 
than the latter by an amount equal to the sum of the Coulomb 
minus exchange interactions. 

E .  Solving the Roothaan SCF Equations. Before moving on 
to discuss methods that go beyond the uncorrelated, single-con- 
figuration, mean-field method, it is important to examine some 
of the computational effort that goes into carrying out an S C F  
calculation. Such a calculation may represent the final product 
in  certain cases; in  others, it is the starting point for further 
treatment of electron correlation. I n  any event, it is important 
to see what is involved. 

Simons 

(27) Koopmans, T. Physica 1933, I ,  104. 

The matrix SCF equations C~,,,,C,,, = ei~,S,,,vCv,, are solved 
for the occupied and virtual orbitals' energies t, and C,,i values 
even though only the occupied orbitals' C,,l coefficients enter into 
the Fock operator: 

Fp.u = (xplhlxv) -k x [ [ Y 6 , t ( X p X b k l X u X x )  - r6,?(x,x6klx~xu)l 
6 . X  

Once atomic basis sets have been chosen for each atom, the 
one- and two-electron integrals appearing in F, must be evaluated. 
Doing so is a time-consuming process, but there are numerous 
highly efficient computer codes2* that allow such integrals to be 
computed for s, p, d, and f and even g, h, and i basis functions. 
After executing one of these integral packages for a basis with 
a total of P functions, one has available (usually on the computer's 
hard disk) of the order of P 2 / 2  one-electron ((x,lhlxv) and 
( ~ J x , , ) )  and P"/8 two-electron ( ( X ~ X ~ ( ~ ( X , X ~ ) )  integrals. When 
treating extremely large atomic orbital basis sets (e.g., 200 or more 
basis functions), modern computer programsz9 calculate the re- 
quisite integrals but never store them on the disk. Instead, their 
contributions to F,," are accumulated uon the fly", after which 
the integrals are discarded. 

To begin the S C F  process, one must input to the computer 
routine that computes F,,, initial guesses for the C,,l values 
corresponding to the occupied orbitals. Tbese initial guesses are 
typically made as follows: 

I ,  If one has available C,,l values for the system from a cal- 
culation performed at a nearby geometry, one can use these C,,, 
values. 

2. If one has C,, values appropriate to fragments of the system 
(e.g., for C and 0 atoms if the CO molecule is under study or 
for CH2 and 0 if HzCO is being studied), one can use these. 

3. If one has no other information available, one can carry out 
one iteration of the SCF process in which the two-electron con- 
tributions to F,,, are ignored (Le., take FC(,+ = (Xplh!X,,!) and use 
the resultant solutions to ~,,Fp,pC,,l = tlE,,Sp,,Cv,I as initial guesses 
for the Cu,8. 

Once initial guesses are made for the C,,, of the occupied or- 
bitals, the full F!,, matrix is formed and new c, and C,,l values are 
obtained by solving x,,F,,,C,,, = e l ~ , , S ~ , , C U , , .  These new orbitals 
are then used to form a new Fp,, matrix from which new el and 
C,,, are obtained. This iterative process is carried on until the e, 
and C,,l do not vary (within specified tolerances) from iteration 
to iteration, a t  which time the S C F  process has reached self- 
consistency. 

VI. Methods for Treating Electron Correlation 
A. Overview of Various Approaches. There are numerous 

procedures currently in use for determining the 'best" wave 
function of the form 

\k = cc/+, 
I 

where +I is a spin- and space-symmetry-adapted CSF consisting 
of determinants 141141z$a...$/Nl. Excellent overviews of many of 
these methods are included in ref I .  

In all such wave functions, there are two different kinds of 
parameters that need to be determined-coefficients C, and the 
LCAO-MO coefficients describing the r#~,~.  The most commonly 
employed methods used to determine these parameters include 
the following: 

I .  The multiconfigurational self-consistent field (MCSCF) 
method,jO in which the expectation value (\kIq9)/(919) is 

(28) Some of the integral packages and the technique used to evaluate 
the integrals are described in: Csizmadia, I .  G.; Harrison, M. C.; Moscowitz, 
J .  W.; Sutcliffe, B. T. Theor. Chim. Acra 1966, 6, 191. Clementi, E.; Davis, 
D. R. J .  Compul. Phys. 1966, I ,  223. Rothenkrg, S.; Kollman, P.; Schwartz, 
M. E.; Hays, E. F.; Allen, L. C. la?. J .  Quantum Chem. 1970, S3,71S. Hehre, 
W .  J.; Lathan, W. A.; Ditchfield, R.; Newton, M. D.; Pople, J .  A. Prog. No.  
236, Quantum Chem. Prog. Exchange, Bloomington, IN. Dupuis, M.; Rys, 
J.; King, H.  F. J .  Chem. Phys. 1976,65, I 1  I .  McMurchie, L. E.; Davidson, 
E. R. J .  Compur. Phys. 1978, 26, 218. 

(29) Almkf,  J.;  Faegri, K.; Korsell, K .  J .  Compur. Chem. 1982, 3, 385. 
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treated variationally and simultaneously made stationary with 
respect to variations in the C, and Cv,i coefficients. 

The energy functional is a quadratic function of the CI coef- 
ficients, and so one can express the stationary conditions for these 
variables in the secular form: 

x H , J C J  = EC, 

However, E is a quartic function of the Cy,jls because HI? involves 
two-electron integrals ( 4i4jjw$k41) that depend quartically on 
these coefficients. 

It is well-known that minimization of a function ( E )  of several 
nonlinear parameters (the C,,i) is a difficult task that can suffer 
from poor convergence and may locate local rather than global 
minima. In an MCSCF wave function containing many CSFs, 
the energy is only weakly dependent on the orbitals that appear 
in CSFs with small C, values; in contrast, E is strongly dependent 
on those orbitals that appear in the CSFs with larger C, values. 
One is therefore faced with minimizing a function of many var- 
iables that depends strongly on several of the variables and weakly 
on many others. 

For these reasons, in the MCSCF method the number of CSFs 
is usually kept to a small to moderate number (e.g., a few to several 
hundred) chosen to describe essential correlations (Le., configu- 
ration crossings, proper dissociation) and important dynamical 
correlations (those electron-pair correlations of angular, radial, 
left-right, etc., nature that arise when low-lying "virtual" orbitals 
are present). 

2. The configuration interaction (Cr) method,31 in which the 
LCAO-MO coefficients are determined first via a single-config- 
uration SCF calculation or an MCSCF calculation using a small 
number of CSFs. The C, coefficients are subsequently determined 
by making the expectation value (\kly*)/( stationary. In 
this process, the optimizations of the orbitals and of the CSF 
amplitudes are done in separate steps. 

In  the C1 method, one usually attempts to realize a high-level 
treatment of electron correlation. The CI wave function is most 
commonly constructed from CSFs aJ that include the following: 

I .  All of the CSFs in the SCF or MCSCF wave function used 
to generate the molecular orbitals +i. These CSFs are referred 
to as the reference CSFs. 

2. CSFs generated by carrying out single, double, triple, etc., 
level "excitations" (Le., orbital replacements) relative to reference 
CSFs. CI wave functions limited to include contributions through 
various levels of excitation are denoted S (singly excited), D 
(doubly), SD (singly and doubly), SDT (singly, doubly, and triply), 
and so on. 

The orbitals from which electrons are removed can be restricted 
to focus attention on correlations among certain orbitals. For 
example, if excitations out of core electrons are excluded, one 
computes a total energy that contains no core correlation energy. 
The number of CSFs included in the CI calculation can be far 
in excess of the number considered in typical MCSCF calculations. 
CI wave functions including 5000-50000 CSFs are routine, and 
functions with one to several million CSFs are within the realm 
of p r a ~ t i c a l i t y . ~ ~  

The need for such large CSF expansions should not come as 
a surprise considering (i) that each electron pair requires at least 

(30) The articles by Werner, H.-J.; Shepard, R.  in ACP Vol. 69 (see ref 
I )  provide up to date reviews of the status of this approach. The article by 
Wahl, A .  C.; Das, G.  in MTC Vol. 3 covers the "earlier" history on this topic. 
Bobrowicz, F .  W.; Goddard, W. A. 111 provide, in MTC Vol. 3, an overview 
of  the G V B  approach, which can be viewed as a specific kind of MCSCF 
calculation. In addition to the references mentioned earlier in ACP and MTC, 
the following papers describe several of the advances that have been made in 
the MCSCF method, especially with respect to enhancing its rate and range 
of convergence: Dalgaard, E.; Jsrgensen, P. J .  Chem. Phys. 1978.69, 3833. 
Jensen, H .  J. A.; Jsrgensen, P.; Agren, H. J .  Chem. Phys. 1987, 87, 457. 
Lengsfield, B. H., 1 1 1 ;  Liu. B. J .  Chem. Phys. 1981, 75, 478. 

(31) Boys, S. F. Proc. Roy. SOC. London 1950, A201, 125. Also, the 
articles by: Shavitt, I.; Ross, B. 0.; Siegbahn, P. E. M. in MTC, Vol. 3 give 
excellent overviews of the CI method. 

(32) See, for example: Olsen, J.; Roos, B.; Jsrgensen, P.; Jensen, H .  J .  
A .  J .  Chem. Phys. 1988,89,2185. Olsen. J.; Jsrgensen, P.; Simons, J. Chem. 
Phys. Lett. 1990, 169, 463. 
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two CSFs to form polarized orbital pairs and (ii) that there are 
of the order of N ( N  - 1)/2 = X electron pairs in an atom or 
molecule containing N electrons, hence (iii) the number of terms 
in the CI wave function scales as 2x. For a molecule containing 
10 electrons, there would be 255 = 3.6 X 10l6 terms in the CI  
expansion. This may be an over estimate of the number of CSFs 
needed, but it demonstrates how rapidly the number of CSFs can 
grow with the number of electrons. 

The H / , j  matrices are, in practice, evaluated in terms of one- 
and two-electron integrals over the molecular orbitals. For large 
C1 calculations, the full matrix is not formed and stored in 
the computer's memory or on disk; rather, "direct CI" methods33 
identify and compute nonzero H,,j and immediately add up 
contributions to the sum x jH, jCJ .  Iterative methods,33 in which 
approximate values for the CJ coefficients are refined through 
sequential application of C j H / , j  to the preceding estimate of the 
CJ vector, are employed to solve these large eigenvalue problems. 

3. The Mmller-Plesset perturbation (MPPT) method34 uses 
the single-configuration S C F  process (usually the UHF imple- 
mentation) to determine a set of orbitals {c#J,}. Then, using an 
unperturbed Hamiltonian equal to the sum of Fock operators for 
each of the N electrons fl = x , = I , N F ( i ) ,  perturbation theory is 
used to determine the C, amplitudes for the CSFs. The MPPT 
procedure35 is a special case of many-body perturbation theory 
(MBBT) in which the UHF Fock operator is used to define ?P. 

The amplitude for the reference CSF is taken as unity and the 
other CSFs' amplitudes are determined by Rayleigh-Schrodinger 
perturbation using H - H" as the perturbation. 

In the MPPT/MBPT method, once the reference CSF is chosen 
and the SCF orbitals belonging to this CSF are determined, the 
wave function \k and energy E are determined in an order-by-order 
manner. The perturbation equations determine what CSFs to 
include through any particular order. This is one of the primary 
strengths of this technique; it does not require one to make further 
(potentially arbitrary) choices, in contrast to the MCSCF and 
C1 treatments where one needs to choose which CSFs to include 
or exclude. 

For example, the first-order wave function correction \kl is 
\kl = 

- X [ ( i j lglm,n)  - ( i j lgln,m)l[ tm - e, + En - t,l-lI@lJmJ"' 

where the SCF orbital energies are denoted t k  and represents 
a CSF that is doubly excited (4, and 4 are replaced by 4m and 
$,,) relative to 9. Only doubly excited CSFs contribute to the 
Jrst-order wave function. 

E =  

i<j,m<n 

The energy E is given through second order as  

ESCF - I(iJlglm,n) - (i j lgln,m)12/[tm - e, + en - 91 

Both \k and E are expressed in terms of two-electron integrals 
( i j l dm,n)  coupling the virtual spin-orbitals to the spin-orbitals 
from which electrons were excited as well as the orbital energy 
differences [e, - e, + e! - e,] accompanying such excitations. 
Clearly, major contributions to the correlation energy are made 
by double excitations into virtual orbitals c#J,~,, with large 
(iJlglm,n) integrals and small orbital energy gaps [tm - e, + e,, 

r<j.m<n 

- tjl' 

(33) See, for example: Nesbet, R. K. J .  Chem. Phys. 1965, 43, 311. 
Davidson, E. R. J .  Comput. Phys. 1975, /7 ,87 .  For more modern applications 
of these 'large-matrix" methods as related to the development of the "direct 
CI" technique, see: Roos, B. 0.; Siegbahn, P. E. M. In Modern Theoretical 
Chemistry, Vol. 3, Schaefer, H .  F., 111, Ed.; Plenum Press: New York, 1977; 
Chapter 7.  Roos, B. Chem. Phys. Lett. 1972, 15. 153. For a good review, 
see: Saunders, V. R.; Van Lenthe, J. H .  Mol. Phys. 1983, 48, 923. 

(34) The essential features of the MPPT/MBPT approach are described 
in the following articles: Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, 
J .  S. Int. J .  Quantum CAem. 1978, 14, 545. Bartlett, R. J.; Silver, D. M. J .  
Chem. Phys. 1975, 62, 3258. Krishnan, R.; Pople, J .  A .  Int.  J .  Quanfum 
Chem. 1978, 14, 91. 

(35) Kelly, H. P. Phys. Reo. 1963, 131, 684. Msller, C.; Plesset, M. S. 
Phys. Reo. 1934, 46, 618. 
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In higher order corrections, contributions from CSFs that are 
singly, triply, etc., excited relative to 9 appear, and additional 
contributions from the doubly excited CSFs also enter. It is 
relatively common to carry MPPT/MBPT calculations through 
to third or fourth order in  the energy. The GAUSSIAN-8X series 
of programs," which have been used in thousands of important 
chemical studies, calculate E in  this manner. 

4. The coupled-cluster (CC) method36 expresses the wave 
function in a somewhat different manner: 

9 = exp(T)cP 

where 9 is a single CSF (usually the UHF determinant) that is 
used in the S C F  process to generate a set of spin-orbitals. The 
operator T generates, when acting on 9, single, double, etc., 
excitations (in which one, two, etc., of the occupied spin-orbitals 
in 9 have been replaced by virtual spin-orbitals). 

Tis expressed in terms of operators that effect such spin-orbital 
removals and additions as follows: 

T = xt lmm+i  + t ,Jm~nm+n+ji + ... 
1.m 1j.m.n 

where the combination of operators m+i denotes creation of an 
electron in virtual spin-orbital $,,, and removal of an electron from 
occupied spin-orbital 4, to generate a single excitation. The 
operation nr+n+ji therefore represents a double excitation from 

The amplitudes tl"', t lJm,n, etc., which play the role of the C, 
coefficients in  CC theory, are determined through the set of 
equations generated by projecting the Schriidinger equation in 
the form 

exp(-T)H exp(7')cP = E@ 

against CSFs that are single, double, etc., excitations relative to 
9: 

4,4, to 4 m 4 r  

( 9 , V  + [H.T] + j / , [[H,T],T] + Y f " T l ? T ] , T l  + 
1/24[[[[H3r]5r]3r]3~l*) = 0 

Simons 

and so on for higher order excited CSFs. It can be shown3' that 
the expansion of the exponential operators truncates exactly at 
the fourth power. 

As a result, the exact CC equations are quartic equations for 
the r im,  tijmJ', etc., amplitudes. Although it is a rather formidable 
task, all of the matrix elements appearing in the CC equations 
have been expressed in terms of one- and two-electron integrals 
over the spin-orbitals including those in 9 itself and the "virtual" 
orbitals not in 9. 

These quartic equations are solved in an iterative manner and 
are susceptible to convergence difficulties similar to those that 
arise in MCSCF calculations. In any such iterative process, it 
is important to start with an approximation reasonably close to 
the final rcsult. In CC theory, this is often achieved by neglecting 
all of the terms that are nonlinear in the f amplitudes (because 
the t ' s  are assumed to be less than unity in magnitude) and 
ignoring factors that couple different doubly excited CSFs (Le., 
the sum over i',j',m',n'). This gives t amplitudes that are equal 
to the amplitudes of the first-order MPPT/MBPT wave function: 

(36) The early work in chemistry on this method is described in: Cizek, 
J.  J .  Chem. Phys. 1966, 45,4256. Paldus, J.; Cizek, J.; Shavitt, I .  Phys. Reu. 
1972, AS, 50. Bartlett. R. J.; Purvis, G. D. Int. J .  Quantum Chem. 1978, 14, 
561. Purvis, G. D.; Bartlett, R. J.  J .  Chem. Phys. 1982, 76, 1910. 

(37) This is demonstrated in: Jsrgensen, P.; Simons, J.  Second Quanti- 
zation Based Methods in Quantum Chemistry, Academic Press: New York, 
1981; Chapter 4. 

where the prime on (iJldm,n)' indicates the combination of 
integrals (iJlglm,n) - (i,jMn,m). As Bartlett and Pople have 
both d e m o n ~ t r a t e d , ~ ~  there is a close relationship between the 
MPPT/MBPT and CC methods when the CC equations are solved 
iteratively starting with such an MPPT/MBPT-like initial guess 
for these double-excitation amplitudes. 

5. The density functional or X ,  methods39 provide alternatives 
to the conventional approaches. The family of approaches that 
often are referred to as X,-type methods is realizing a renewed 
importance and popularity in quantum chemistry; a density 
functional module is rumored likely to appear in  the next version 
of GAUSSIAN 9x. Therefore, a brief overview is in order. 

The C1, MCSCF, MPPT/MBPT, and CC methods move be- 
yond the single-configuration picture in a rather straightforward 
manner; they add to the expansion of the wave function more 
configurations whose amplitudes they each determine in their own 
way. This can lead to a very large number of CSFs in the cor- 
related wave function, and, as a result, a large need for computer 
resources. 

The density functional approaches are different. Here one solves 
a set of orbital-level equations 

in which the orbitals {$i) "feel" potentials due to the nuclear centers 
(labeled A and having charges ZA), due to Coulombic interaction 
with the total electron density p(r'), and due to a so-called cor- 
relation-exchange potential, which will be denoted Uxm(r'). The 
particular electronic state for which the calculation is being 
performed is specified by forming a corresponding density p(r ' ) .  

This potential Uxa(r') must remove the "self-interaction" of the 
electron in &(r) that is incorrectly included in .fp(r')e2/lr - r'l 
dr' &(r). The self-interaction is included in this integral because 
p ( r ' )  represents the total electron density at r', including that due 
to the electron in di.  To compensate for this incorrect evaluation 
of the electron-electron interactions, Uxm must include terms that 
remove the self-interactions. 

The fundamental theory that underlies the density functional 
methods dates to work of Hohenberg and K ~ h n , ~ ~  who showed 
that the ground-state energy Eo of an N-electron system can be 
expressed as a functional (not necessarily a function) of the 
electron density p(r) of that system. A great deal of work has 
subsequently been devoted to (i) finding a functional relationship 
for Eo[p] in terms of p(r) and (ii) finding computational schemes 
to compute p(r) and then Eo in an efficient manner. 

Researchers studying the idealized "uniform electron gas" found 
that the exchange and correlation energy (per electron) for this 
system could be written exactly as a function of the electron density 
p of the system: Eelchange = W(p). This motivated workers to 
suggest that this exact result could be used to define, for each point 
in r space, a correlation-exchange potential W(r) = W(p(r)) and 
that W(r) could be used to generate the exchange energy by 
integrating over all points r: 

Eexchangc = Jp(r) W(p(r)) dr 

These studies of the uniform electron gas influenced early work 
by Slater and co-~orkers ,~ '  who focused on single-configuration 

(38) Bartlett, R.  J . ;  Purvis, G. D. Int. J .  Quantum Chem. 1978, 14, 561. 
Pople, J.  A.: Krishnan, R.; Schlegel, H .  B.; Binkley, J.  S. Int. J .  Quantum 
Chem. 1978, 14, 545. 

(39) For excellent ovecrviews of the history and more recent developments 
in this area, see, for exarhple: Jones, R. 0. Adu. Chem. Phys. 1987,67,413. 
Dunlap, B. I .  Ado. Chem. Phys. 1987, 69. 287. Dahl, J. P., Avery, J.. Eds. 
Local Density Approximations in Quantum Chemistry and Solid State 
Physics; Plenum: New York, 1984. Parr, R. G.  Annu. Reo. Phys. Chem. 
1983,34,631. Salahub, D. R.; Lampson, S .  H.; Messmer, R.  P. Chem. Phys. 
Lett. 1982,85, 430. Ziegler, T.; Rauk, A.; Baerends, E. J .  Theor. Chim. Acta 
(Berlin) 1977. 43,261. Becke, A. J .  Chem. Phys. 1983, 76,6037. Case, D. 
A. Annu. Reu. Phys. Chem. 1982, 33. I5 1 .  

(40) Hohenberg, P.; Kohn. W. Phys. Reu. 1964, 136, B864. 
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descriptions where the electron density is straightforwardly 
evaluated in terms of the orbitals I@,]: 

p ( r )  = &,b$,(r)I2 

Here nJ = 0, I ,  or 2 is the occupation number of the orbital 4, 
in the state being studied. Combining the single-configuration 
ansatz with the approximation that the exchange contributions 
to Eo[p] be represented by the "uniform electron gas" (ueg) value 

Wue&) = -%P(r)(3P(r)/8*)'/3 

Slater arrived at an orbital-level equation for the {dJ] that define 
P :  

[ -h2/2mev2 - x z A e 2 / l r  - R,) + 
A 

. fp(r ' )e2/ lr  - r'l dr' + Uueg(r)]4i = cf4, 

where 

Uueg(r) = - 9 / ( 3 ~ ( r ) / 8 * ) ' / ~  

However, Slater found the uniform electron gas estimate of the 
exchange function overestimated the magnitude of the exchange 
energy when compared to results of ab initio calculations. He 
therefore introduced an empirical scaling of the expression for 
Uucg(r) and proposed that 

UX,?(r)  = - 9 a / 2 (  3p(r) / 8 ~ ) ' / ~  

be used in its place. Slater named the scaling parameter CY, which 
is the origin of the name of the X,, procedure (the X denoting 
exchange). 

Although Slater's work emphasized a single-configuration 
picture of electronic structure where the evaluation of p(r)  as a 
sum &n $Ar)12 is straightforward, the fundamental theory behind 

Eo[p]  functional and an exact density p ( r )  are used. 
Within the X, modification of the local uniform gas density 

functional (sometimes called the local density approximation 
(LDA)) Ux,(r) = - 9 a / 2 ( 3 p ( r ) / 8 ~ ) ' / ~ ,  it has empirically been 
found that using a value of CY near 2 / 3  pmduces orbital and total 
energies that most closely reproduce high-quality ab initio and 
experimental values. Moreover, Kohn and Sham42 have shown 
that the value CY = 2 /3  can be derived from a variational theory 
as the optimal value. 

Most of the early applications of density functional methods 
solved equations of the form 

[ -h2/2mev2 - x z A e 2 / l r  - R ~ I +  

density / unctional methods applies to exact energies if an exact 

A 

j p ( r ' ) e 2 / l r  - r'l dr'+ Ux,,(r)]4,  = v#Jf 

in terms of functions expressed as "scattered waves" defined locally 
in spherical regions of space surrounding each atom in the molecule 
or solid. In this so-called muffin t in view, the volume of space 
available to electrons in the molecule is divided into atom-centered 
spheres, regions lying outside such atom-centered spheres yet inside 
a so-called "outer sphere" surrounding the molecule, and a region 
lying beyond the outer sphere. In the atom-centered regions and 
within the outer sphere, the orbital-level equations are easily solved 
(the angular and radial parts separate because the potential is 
assumed to be spherically averaged and thus angle independent). 
These scattered-wave solutions are then matched at the boundaries 
among the atom-centered spheres and the outer sphere. 

The muffin-tin potential approach was shown to suffer when 
applied to molecules of low symmetry. Therefore, it became more 
common to not introduce the local muffin-tin potentials but simply 

The Journal of Physical Chemistry, Vol. 95, NO. 3, 1991 1027 

to solve the density functional orbital equations using atomic basis 
sets such as those utilized in conventional ab initio quantum 
chemistry. The individual orbitals + j ( r )  can easily be expanded 
in terms of the atomic orbital basis as in the LCAO-MO ex- 
pansion; it is also straightforward to express p ( r )  = E,n.l#j(r)12 
or even the multiconfigurational analogue p ( r )  = Eiiy&*b) dj(r), 
in  like fashion. However, to express the U,,%(r) = -9/2(3p(r) /  
8 ~ ) ' / ~  in terms of an atomic orbital basis requires considerably 
more effort; several approaches to this problem exist and are in 
common use. 

In the simplest version of density functional theory, the total 
energy E is computed as 

(41) Slater, J .  C. Quantum Theory of Molecules and Solids; McGraw- 
Hill: New York, 1974; Vol. 4. Johnson, K .  H. Ado. Quanfum Chem. 1973, 
7. 143. 

(42) Kohn, W.; Sham, L. J.  Phys. Reo. 1965, 813. 4274. 

E = x n j c j  
j 

where ti are the orbital energies obtained from the X,-like 
equations. Although the sum-of-orbital-energies does not correctly 
represent the total energy in the C1, MCSCF, MPPT/MBPT, 
or CC approaches, it can be shown that it is reasonably correct 
for these methods. A more accurate alternative is to compute E 
as 

E = Cnj(4jjl - h2/2meV21$j) - . f p ( r ) Z A e 2 / l r  - RAl dr + 
j 

l / z . f p ( r )  p(r')e2/lr - r'( dr dr' - . fy4p(r ) (3p(r ) /8*) ' i3  dr 

Once the orbitals are found by solving the above equations, the 
kinetic energy integrals, the electron-nuclear attraction integral, 
and the Coulomb integral can be evaluated by using conventional 
ab initio basis set tools. As stated above, the exchange correlation 
integral is more difficult to treat because [ p ( r ) ] ' l 3  appears; p ( r )  
is easily expanded in a basis, but [ ~ ( r ) ] ' / ~  requires a separate 
expansion. 

Various density functional approaches are under active de- 
velopment and thus appear in the literature in many forms; ref 
39 describes many of the historically important developments as 
well as several of the more recent advances. Because the com- 
putational effort involved in these approaches scales much less 
strongly with basis set size than for conventional (SCF, MCSCF, 
CI, etc.) methods, density functional methods offer great promise 
and are likely to contribute much to quantum chemistry in the 
next decade. 

B. Computational Requirements, Strengths, and Weaknesses 
of Various Methods. I .  Computational steps: Essentially all 
of the above techniques require the evaluation of one- and two- 
electron integrals over the N atomic orbital basis functions: 
( x a u x b )  and ( X a X b l g l X c x d ) .  As mentioned earlier, there are of 
the order of N 4 / 8  such integrals that must be computed (and 
perhaps stored on disk); their computation and storage are a major 
consideration in performing conventional ab initio calculations. 

The density functional approaches, because they involve basis 
expansions of orbitals $i = ~ v C i , u x u  and of the density p, which 
is a quadratic function of the orbitals ( p  = xini14i12), require 
computational effort scaling only as p. This is one of the most 
important advantages of these schemes. Moreover, wave functions 
that must be characterized by two or more dominant electronic 
configurations (e.g., as in Woodward-Hoffmann-forbidden re- 
actions) are treated within density functional approaches by 
specifying a density that properly embodies the multiconfigura- 
tional nature of the state. No cumbersome large CSF expansion 
and associated large secular eigenvalue problem arise. This is 
another advantage of density functional methods. 

The conventional quantum chemistry methods provide their 
working equations and energy expressions in terms of one- and 
two-electron integrals over the final molecular orbitals: (&M4,) 
and (f&$,Id&41). The MO-based integrals can only be evaluated 
by transforming the AO-based integrals43 as follows: 
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It is possible to perform the full transformation of the two- 
electron integral list in a time that scales as 4 p .  Clearly, the 

scaling of the integral transformation process makes it an even 
more time-consuming step than the (N4) atomic integral evaluation 
and a sevcre bottleneck to applying ab initio methods to larger 
systems. 

Once the requisite one- and two-electron integrals are available 
in the molecular orbital basis, the multiconfigurational wave 
function and energy calculation can begin. Each of these methods 
has its own approach to describing the configurations {QJ) included 
in the calculation and how the ICJ] amplitudes and the total energy 
E is to be determined. 

The number of configurations (NC)  varies greatly among the 
methods and is an important factor to keep in mind when planning 
to carry out an ab initio calculation. Under certain circumstances 
(e.g., when studying Woodward-Hoffmann-forbidden reactions 
where an avoided crossing of two configurations produces an 
activation barrier), it may be essential to use more than one 
electronic configurations. Sometimes, one configuration (e.g., the 
SCF model) is adequate to capture the qualitative essence of the 
electronic structure. In  all cases, many configurations will be 
needed if highly accurate treatment of electron-electron corre- 
lations are desired. 

The value of N c  determines how much computer time and 
memory is needed to solve the Ncdimensional xjH/ , jCj  = EC, 
secular problem in the CI and MCSCF methods. Solution of these 
matrix eigenvalue equations requires computer time that scales 
as NC2 (if few eigenvalues are computed) to N 2  (if  most eigen- 
values are obtained). 

So-called complete-actiue-space (CAS) methods form all CSFs 
that can be created by distributing N valence electrons among 
P valence orbitals. For example, the eight non-core electrons of 
H 2 0  might be distributed, in a manner that gives M s  = 0, among 
six valence orbitals (e.g., two lone-pair orbitals, two OH a-bonding 
orbitals, and two OH a*-antibonding orbitals). The number of 
configurations thereby created is 225. If the same 8 electrons were 
distributed among 10 valence orbitals 44 100 configurations results; 
for 20 and 30 valence orbitals, 23 474 025 and 751 034 025 con- 
figurations arise, respectively. Clearly, practical considerations 
dictate that CAS-based approaches be limited to situations in 
which a few electrons are to be correlated by using a few valence 
orbitals. The primary advantage of CAS configurations is dis- 
cussed in section VI.B.3. 

2.  Variational methods provide upper bounds to energies: 
Methods that are based on making the energy functional 
( \ k l H l \ k ) / (  stationary yield upper bounds to the lowest 
energy state having the symmetry of the CSFs in \k. The CI and 
MCSCF methods are of this type. They also provide approximate 
excited-state energies and wave functions in the form of other 
solutions of the secular equation44 x jH, , jC j  = EC,. 

Excited-state energies obtained in this manner “bracket” the 
true energies of the given symmetry; that is, between any two 
approximate energies obtained in the variational calculation, there 
exists at least one true eigenvalue. This characteristic is commonly 
referred to45 as the “bracketing theorem”. These are strong at- 
tributes of the variational methods, as is the long and rich history 
of developments of analytical and computational tools for effi- 
ciently implementing such methods. 

Simons 

3. Variational methods are not size-extensive: However, all 
variational techniques suffer from at  least one serious drawback; 
they are not necessarily size-extensive.M The energy computed 
by using these tools can not be trusted to scale with the size of 
the system. For example, a calculation performed on two CH3 
species at large separation may not yield an energy equal to twice 
the energy obtained by performing the same kind of calculation 
on a single CH, species. Lack of size-extensivity precludes these 
methods from use in extended systems (e.g., solids) where errors 
due to improper size scaling of the energy produce nonsensical 
results. 

By carefully adjusting the variational wave function used, it 
is possible to circumvent size-extensivity problems for selected 
species. For example, CI calculation on Bez using all ‘Eg CSFs 
formed by placing the four valence electrons into the 2ag, 20,, 
3ag, 3au, 1 A,, and la, orbitals can yield an energy equal to twice 
that of the Be atom described by CSFs in which the two valence 
electrons of the Be atom are placed into the 2s and 2p orbitals 
in all ways consistent with a ’ S  symmetry. Such CAS-space 
MCSCF or CI  calculation^^^ are size extensive; this is one of the 
primary benefits of CAS CSFs. 

Unfortunately, it is impractical to extend such an approach to 
larger systems. The Be example shows that if the “monomer” 
(Be atom) requires K-fold excited CSFs relative to its dominant 
CSF (Be requires doubly excited CSFs), a size-extensive varia- 
tional calculation on the “dimer“ (Be2) requires 2K-fold excited 
CSFs. A size-extensive variational calculation on a species con- 
taining M monomers therefore requires M X K-fold excited CSFs; 
for Be6 12-fold excited CSFs are needed. 

4 .  Most perturbation and CC methods are size-extensive but 
do not prouide upper bounds and they assume that one CSF 
dominates: In contrast to variational methods, perturbation theory 
and coupled-cluster methods achieve their energies by projecting 
the Schrodinger equation against a reference function (+I to 
obtain48 a transition formula (Q(Hl \k ) ,  rather than from an 
expectation value (qlflq). It can be shown that this difference 
allows nonvariational techniques to yield size-extensive energies. 

This can be seen by considering the second-order MPPT energy 
of two noninteracting Be atoms. The reference CSF is Q = 
11 sa22sa21 s22sb21; as discussed earlier, only doubly excited CSFs 
contribute to the correlation energy through second order. These 
”excitations” can involve atom a, atom b, or both atoms. However, 
CSFs that involve excitations on both atoms (e.g., 
11 s,22sa2p, 1 s22sb2pbl) give rise to one- and two-electron integrals 
over orbitals on both atoms; these integrals (e&, (2s&,M2sb2pb)) 
vanish if the atoms are far apart, so contributions due to such CSFs 
vanish. Hence, only CSFs that are excited on one or the other 
atom contribute to the energy. This, in turn results in a sec- 
ond-order energy that is additive as required by any size-extensive 
method. 

In general, a method will be size-extensive f i ts  energy formula 
is additive and the equations that determine the C, amplitudes 
are themselves separable. The MPPT/MBPT and CC methods 
possess these characteristics. 

However, size-extensive methods have two serious weakness. 
Their energies do not provide upper bounds to the true energies 
of the system (because their energy functional is not of the ex- 
pectation-value form for which the upper bound property has been 
proven). Moreover, they express the correct wave function in terms 
of corrections to a (presumed dominant) reference function that 
is usually taken to be a single CSF (although efforts are being 
made to extend the MPPT/MBPT and CC methods to allow for 
multiconfigurational reference functions). For situations such as 
Woodward-Hoffmann-forbidden reactions in which two CSFs 
‘‘cross” along a reaction path, the single-dominant-CSF assumption 
breaks down, and these methods have difficulty. 

( 4 3 )  Nesbet, R. K. Reu. Mod. Phys. 1963, 35, 552 .  It would seem that 
the process of evaluating all N‘ of the (@,&jlglf$&,), each of which requires 
N4 additions and multiplications, would require computer time proportional 
to N8. However, i t  is possible to perform the full transformation of the 
two-electron integral list in  a time that scales as M by first performing a 
transformation of the (x.xblAxrxd) to an intermediate array ( ~ , , x ~ l g l x , @ ~ )  
= ~ : d C . , , / ( ~ , , ~ b ( g l ~ ~ ~ d ) ,  which requires M multiplications and additions. The 
list ( x . x ~ ~ A x ~ & ~ )  is then transformed to a second-level transformed array 
(x.xhlgId~&,! ~:,C,,t(x.xp~glxc&/). which requires another M operations. 
This sequential transformation is repeated four times until the final (@,@,I- 

(44) See the discussions of the CI and MCSCF methods in MTC and ACP 
in ref I .  

(45) Hyllerdas, E. A.; Undheim, B. 2. Phys. 1930, 65, 759. MacDonald, 
J .  K .  L. Phys. Reu. 1933, 43, 830. 

array is in hand. 
(46) Pople, J .  A. In Energy, Sfrucrure, and Reacfiuify; Smith, D. W., 

McRae, W. B., Eds.; Wiley: New York, 1973; p 51. 
(47) Rws. B. 0.; Taylor, P. R.; Siegbahn, P. E. M. Chem. Phys. 1980.48, 

157. Also, see the article by B. 0. R w s  in ACP for an overview of this 
approach.’ 

(48) Kelly, H. P. Phys. Reu. 1963, 131, 684. 
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VII. Summary 
At this time, it may not possible to say which method is pre- 

ferred for applications for which all are practical. Nor is it passible 
to assess, in a way that is applicable to most chemical species, 
the accuracies with which various methods predict bond lengths 
and energies or other properties. However, there are reasons to 
recommend some methods over others in specific cases. For 
example, certain applications require a size-extensive energy (e.g., 
extended systems that consist of a large or macroscopic number 
of units or studies of weak intermolecular interactions), so 
MBPT/MPPT or CC or CAS-based MCSCF are preferred. 
Moreover, certain chemical reactions (e.g., Woodward-Hoff- 
mann-forbidden reactions) and certain bond-breaking events re- 
quire two or more "essential" electronic configurations. For them, 
single-configuration-based methods such as conventional CC and 
MBTP/MPPT should not be used; MCSCF or CI  calculations 
would be better. Very large molecules, in which thousands of 
atomic orbital basis functions are required, may be impossible to 
treat by methods whose effort scales as N4 or higher; density 
functional methods would be better to use then. 

For all calculations, the choice of atomic orbital basis set must 
be made carefully, keeping in mind the N4 scaling of the one- and 
two-electron integral evaluation step and the scaling of the 
two-electron integral transformation step. Of course, basis 
functions that describe the essence of the states to be studied are 
essential (e.g., Rydberg or anion states require diffuse functions, 
and strained rings require polarization functions). 

As larger atomic basis sets are employed, the size of the CSF 
list used to treat dynamic correlation increases rapidly. For 
example, most of the above methods use singly and doubly excited 
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CSFs for this purpose. For large basis sets, the number of such 
CSFs, Nc, scales as the number of electrons squared n: times the 
number of basis functions squared IV. Since the effort needed 
to solve the CI secular problem varies as Ncz or NC), a dependence 
as strong as N4 to M can result. To handle such large CSF spaces, 
all of the multiconfigurational techniques mentioned in this paper 
have been developed to the extent that calculations involving of 
the order of 100-5000 CSFs are routinely performed and calcu- 
lations using 10000, 100000, and even several million CSFs are 
practical. A benchmark C1 calculation involving one billion 
deter~ninants~~ demonstrates the computational tractability of such 
large CSF expansion methods. 

Other methods, most of which ?an be viewed as derivatives of 
the techniques introduced above, have been and are still being 
developed. This ongoing process has been, in large part, stimulated 
by the explosive growth in computer power and change in com- 
puter architecture that has been realized in recent years. All 
indications are that this growth pattern will continue, so ab initio 
quantum chemistry will likely have an even larger impact on future 
chemistry research and education (through new insights and 
concepts). 
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The reactions of excited Cs atoms with various gases have been studied in a quadrupole mass spectrometer ion source. The 
excited atoms are formed in a thermionic converter (TIC) plasma and are sampled into the ion source as a molecular beam. 
Direct field ionization of the excited states from the plasma at field strengths up to 600 V/cm in the ion source gives ions 
Cs+, Cs2+, and Hz+. The intensity of the doubly ionized Cs is often larger than that of singly ionized Cs, and it is believed 
to be formed from Cs2*. The doubly excited Cs is found to transfer its excitation energy to gas molecules M in the ion source, 
as Cs2* + M - Cs* (or Cs) + M*. The excited molecules are field ionized to M+ or dissociate to smaller ions. Charge-exchange 
reactions are excluded, especially due to the low electron affinity of Cs. The variation of the positive current of M+ is studied 
as a function of gas pressure between IOd and IO4 mbar. During inlet of some gases, e.g. CO,, almost all mass peaks vary 
linearly with pressure, which is interpreted as excitation transfer from the Rydberg states of CO, to other atoms and molecules. 
The initial excitation-transfer cross sections are estimated to be 4000-10000 A*, corresponding approximately to n = IO 
for Cs2*. 

1. Introduction or associative i o n i ~ a t i o n ~ , ~  
Reactions of Rydberg atoms have been studied by a number 

of research groups. Such processes may have the form of charge 
t r a n ~ f e r l - ~  

A* + B - AB+ + e- 

A* + BC - ABC+ + e- 
A* + X - A+ + X- 

A *  + B - A+ + B + e -  
For some processes very large cross sections of the order of IO3-l@ 
A2 have been reported.2J Since processes with such large cross 
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