Lifetimes of electronically metastable double-Rydberg anions: FH;
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The method of analytic continuation of real stabilization graphs was applied to calculate
positions and widths of electronic resonances of the FH;~ double-Rydberg anion at the
experimental geometry of the parent FH," cation. In correlated calculations on FH;, a full
configuration interaction calculation was performed on the two outermost electrons; the
remaining electrons occupied orbitals taken from the SCF-level treatment of the FH," core.
All spatial symmetries and both singlet and triplet spin multiplicities were considered. Many
Feshbach and core-excited shape resonances were found with lifetimes in the range (1 to 80)
X 10~ * 5. Different methods of fitting the coefficients of the characteristic polynomial used in

the stabilization calculations were considered. Techniques to suppress incomplete basis set
artifacts in the stabilization calculations were examined.

I. INTRODUCTION

The FH; anion is a potential member of the double-
Rydberg (DR) anion family. Such species consist of an un-
derlying closed-shell cation core around which a pair of
highly correlated electrons move in diffuse orbitals. The first
example of a molecular DR anion was observed in the
Bowen group in 1987."2 A low intensity, yet clearly identi-
fied, peak in the photoelectron spectrum of NH, was inter-
preted as arising from a novel tetrahedral structure resem-
bling the NH,;" cation with two diffuse electrons “orbiting”
the cation core. Conjecture about the existence of a DR an-
ion family® has been stimulated by experimental evidence
from the Herzberg group who suggested the existence of sta-
ble Rydberg states of highly symmetric, neutral, polyatomic
molecules.*®

A few ab initio studies have been completed on the
ground states of highly symmetric isomers of NH; *"'" and
H,0 ~ .**!12 Both species were found to be locally geomet-
rically stable (i.e., to be local minima on the respective po-
tential energy hypersurfaces), to be electronically stable
(i.e., to have lower electronic energy than the corresponding
neutral Rydberg species at this geometry ), but to be thermo-
dynamically unstable and prone to fragmentation of the nu-
clear framework. For both species, the anion’s extra electron
is bound by ~0.5 €V, which is reasonable in view of the
electron affinity of the isoelectronic sodium atom, 0.55 eV."?

Another step in the theoretical investigations of DR an-
ions, undertaken in the present paper, aims at the resonant
(electronically metastable) states. Here, we consider elec-
tronic resonances of the FH;~ anion, which we have recently
shown to be geometrically unstable in its ground state'' [as
is the neutral FH, inits [24, (4a,)]'*"' ground state]. Both
Feshbach resonances (i.e., metastable states lying below all
neutral-molecule states to which decay can occur via one-
electron ejection and hence, for which decay occurs via a
two-electron process) and core-excited shape resonances
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(i.e., states which can decay via one-electron processes to a
lower lying neutral-molecule state; in these cases, the ejected
electron is temporarily bound by a centrifugal barrier) are
examined.

In our resonance calculations, we use the method of ana-
lytic continuation of stabilization graphs'> which is reviewed
briefly in Sec. II. Extensive calculations for all spatial sym-
metries and for both singlet and triplet multiplicities were
performed and are discussed in Sec. III. The results are sum-
marized in Sec. IV.

Ii. METHODS
A. The stabilization technique

We use the analytic continuation of real stabilization
graphs method to calculate resonance positions and life-
times.'>"® In this approach,?® one finds eigenvalues of the
molecular electronic Hamiltonian matrix within some speci-
fied energy range of interest. The calculations are repeated as
the exponents of the Rydberg-like basis functions are varied
by a uniform “scaling parameter” . Stabilization graphs are
plots of the roots {E, } of the secular equation

det[H(a) — ES(a)] =0 (D)

as functions of the scaling parameter a. Both the Hamilto-
nian matrix H and the overlap matrix S depend on the scal-
ing parameter because they depend on the basis set em-
ployed.

Given a stabilization graph in which two or more roots
of the secular problem undergo avoided crossings, the real
energies {E, } are analytically continued as functions of the
scaling parameter and a search is undertaken for stationary
points (i.e., complex values of @) at which

dE
i =0. 2
( da )a=a; ( )

These points are assumed to give, because coordinate-rota-
tion theory?' defines the meaning of the complex energies at
such stable points, a metastable state’s resonance position E,
and resonance lifetime 7,
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E.(a)=E -2 )
27

For typical one-open-channel resonances, for which an
avoided crossing involves two curves only (one closed chan-
nel describing the resonance component and the open chan-
nel describing one state of an ejected electron and the neutral
target molecule), the secular Eq. (1) may be simplified to
the following quadratic form:

E? + P(a)E + Py(a) =0, (4)
where

Py(a) = E(a)E,(a), (5)

Pi(a) = — E\(a) — E)(a), (6)

and E, and E, are the known roots of Eq. (1)."”

It has been found in previous calculations**?* that poly-
nomial approximations of P, and P, lead to satisfactory nu-
merical results:

M
P (a) = choz"‘1 (7
=1

M
S cpak L (8)

k=1

-}_)o(a) =

The coefficients ¢, and c; can be determined either by choos-
ing 2M roots from the stabilization graph and solving 2M
simultaneous equations®* or by a least-squares method?® in
which

N

¥’ = z [ﬁk(ai)

i=1

—P(a)]; k=01 (9)

is minimized. Here 2NV is the number of the CI roots of the
stabilization graphs, P, (a,) is the polynomial approxima-
tion evaluated at a;, and P, («;) is either E,(a;) E,(a;) or
— E\(a;) — E,(a;), where the E, (a;) are the actual CI
energies at the real a; values. An advantage of the later ap-
proach is that one can use many points from the stabilization
graph without having to work with higher-order polynomi-
als. In fact, it has been shown'®?>?* that use of high order
polynomials is generally not advantageous. In particular, de-
termination of the resonance lifetimes is hindered when
higher-order polynomials are employed.'¥?>23
A potential drawback of employing y? of Eq. (9) is that
the resulting coefficients ¢, and c; are not necessarily opti-
mal for the functional

N —
¥'= Y [Eia,) — E\(a)]?
i=1

+ [Eole;) — Ey(a)]? (10)

where the approximations to the CI roots E, and E, are given
by

— P, +VP} — 4P,

EI,Z = )

(11
The functional (10) is especially relevant because it focuses
directly on the energy solutions to the secular matrix. Mini-
mization of this functional is not a standard, nonlinear least-
squares problem since Eq. (10) contains fwo different pieces,
which depend on the same nonlinear parameters ¢, and c;.
The optimal parameters are determined in an iterative pro-

cedure using the optimal coefficients for the y* of Eq. (9) as
the first guess. The equations for this iterative procedure are
given in the Appendix. The relative performance of the two
alternatives to fitting are compared later in this paper.

After the real coefficients ¢, and c; have been found,
using real energies and real a values, we analytically contin-
ue the P, and P, polynomials into the complex plane. Then,
using the stability equation, Eq. (2), with the solutions E,
approximated as in Eq. (11) but now the complex a values,
the following equation for the optimal complex «a; is ob-

tained:"!

_ Po( dP,) 4P dPo dP ( ﬂy —0.
da "da da da
Equation (12), which we solve using the Newton—Raphson
method, has more than one solution. Substituting different
solutions into Eq. (11) then, gives different resonance posi-
tions and lifetimes. Using low order fitting polynomials les-
sens the ambiguity in the resonance parameters resulting
from the multiple solutions of Eq. (12) because the number
of physically acceptable solutions rapidly decreases with
polynomial order.

(12)

B. Electronic structure calculations
1. Atomic basis sets

All of our calculations were performed at the experi-
mental geometry of the fluoronium ion FH;" extracted from
the gas phase infrared spectrum.?* The HF distance is 0.967
A and the HFH angle is 113.2°.

The atomic orbital basis set used resulted from combin-
ing the “core” Dunning (12s6p/6slp) — [2s1p/3s1p] Gaus-
sian basis set?® with five sets of diffuse s,p, and d Gaussian
functions centered on fluorine. Detailed information about
the basis set is presented in Table I. The ability of these dif-
fuse basis functions to reproduce Rydberg states was tested
by using this basis to examine the H, Li, and Na atoms which
have a large number of Rydberg excited states of well deter-
mined energy. It was found that the hydrogen energy levels
for n = 2,3, and 4 were reproduced with errors less than
0.5%, 4.0%, and 11%, respectively. For Li and Na, we have
reproduced, within 0.1 eV, the experimentally observed
spacings of the lowest three %S and P states and the lowest
two 2D states.

2. Basis scaling

To avoid unwanted changes of the underlying cation
core orbitals and energy, scaling of the orbital exponents in
the stabilization calculations was restricted to the more dif-
fuse functions as identified in Table I. It is well established
that incompleteness of the one- and many-electron basis set
deteriorates the performance of the coordinate-rotation and
stabilization methods.?® In the case of the stabilization
method, the resonance parts of the graphs are frequently not
horizontal (i.e., @ independent) because the energy of the
target molecule is affected by the exponent scaling. Tech-
niques for reducing such artifactual a dependence of the res-
onance energies are described later.
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TABLE I. The Gaussian basis set used in the present calculations.

Center Symmetry Exponent Contraction coefficients Scaled?
F s 745 30.0 9.500 00E-5 — 2.200 00E-5 No
111 70.0 7.380 00E-4 — 1.720 00E-4
2543.00 3.858 00E-3 — 8.910 00E-4
721.000 1.5926E-2 — 3.748E-3
235.900 5.428 90E-2 — 1.2862E-2
85.6 1.495 13E-1 — 3.8061E-2
33.55 3.082 52E-1 — 8.6239E-2
13.93 3.948 53E-1 — 1.558 65E-1
5.915 2.110 31E-1 — 1,109 14E-1
1.843 1.715 10E-2 2.987 61E-1
0.7124 — 2.015E3 5.850 13E-1
0.2637 8.690E-4 2.711 59E-1
P 80.390 6.3470E-3 No
18.630 4.4204E-2
5.694 1.685 14E-1
1.953 3.61563E-1
0.6702 4421 78E-1
0.2166 2.434 35E-1
s,p,d 0.900E-0 1.0 Yes
s,p.d 0.201E-0 1.0 Yes
s,p.d 4.489E-2 1.0 Yes
sp,d 1.002E-2 1.0 Yes
s,p.d 2.239E-3 1.0 Yes
H 5 82.64E-0 2.006 E-3 No
12.41E-0 1.534 3E-2
2.824E0 7.557 9E-2
7.977E-1 2.568 75SE-1
2.581E-1 4.973 68E-1
8.989E-2 2.961 33E-1
s 2.581E-1 1.0 Yes
s 8.989E-2 1.0 Yes
1.0 1.0 No
3. Cation energy 5. Anion states

In our calculations, all spatial symmetries and both
singlet and triplet multiplicities of FH,  have been consid-
ered. To focus on the outer Rydberg pair of electrons, a self-
consistent field (SCF) calculation was first performed on
the fluoronium cation. This determined the reference energy
of the cation species. Except as noted otherwise, all neutral
and anion state energies are quoted relative to this cation
energy in atomic units: 1 hartree = 27.21 eV.

4. Neutral FH, energies

Energies of the ground and excited states of neutral FH,
were calculated at a level in which ten electrons occupy the
cation’s frozen la,, 2a,, 3a,, 1b, and 15, SCF orbitals and
one “active” electron is allowed to occupy an orbital whose
energy is optimized. This, of course, results in a Koopman’s
theorem description of the 11th electron, a description that
is consistent with the approximation used to describe the
anion states (see below). We could, of course, have carried
out more sophisticated calculations on the neutral states (in
fact, we did to test the accuracy of the Koopmans-level ener-
gies). However, because our model for treating the many
anion states of interest is based on treating only the outer-
most electron pair accurately, it was important to treat the
neutral-molecule states in an analogous manner to be consis-
tent.

For the subsequent CI calculations on the anion, the
orbitals that are occupied at the SCF level in the cation 1a,,
2a,, 3a,, 1b,, and 1b, were frozen (i.e., their LCAO-MO
coefficients were held constant) and ten electrons were used
to occupy these orbitals in all configuration state functions.
Next, full-CI calculations were performed for the two re-
maining electrons of the anion in the space of all other orbi-
tals. The validity of this approach has been tested for the
isoelectronic sodium anion and we have examined, for the
FH, ground state, the role of correlating other than the
outermost electrons. The electron affinity of Na, measured
in photoelectron spectroscopy experiments, is 0.548 eV,'*
whereas our calculation yields 0.547 eV. Calculations for
metastable states of H~, Li~, and Na~ using the bases and
tools described here served as further tests of the accuracy of
our approach. For H™, Li~, and Na~, discrepancies
between experimental and our ab initio calculated resonance
positions, measured relative to the neutral target levels, do
not exceed a few hundredths of eV. Because FH," contains
the same number of electrons and occupied orbitalsas Na ¥,
it is unlikely that our treatment of the FH,+ core will lead to
much larger errors than in Na ™, although the somewhat
larger polarizability of FH," could give rise to errors that are
two or three times those experienced for Na*.

All of the ab initio calculations were performed using
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FIG. 1. Dependence of the 4a, orbital energy (dashed line) on the scaling
parameter a. Larger a values represent tighter orbitals. The SCF cation
energies (solid line) have been shifted by a constant ( — 100.049 385 341
hartree) to match ¢, at a = 0.70 so the two graphs can appear in the same
figure.

our in-house Utah MESS KIT (molecular electronic structure
kit) software modules?” which we adapted to permit stabili-
zation calculations and which we supplemented with an ana-
lytic continuation module.
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FIG. 2. The two lowest anion CI roots of >*B, symmetry (scattering states)
with and without the cation energy removed and labeled by the solid line
and star symbols, respectively. The star symbols’ energies have been ob-
tained by shifting the computed anion energies by a constant
( — 100.255 278 147 hartree) equal to the cation energy at a = 0.70.
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FIG. 3. Stabilization graphs for the CES *B, (2b,na,)resonance obtained
with and without the cation energy removed and labeled by the solid line
and star symbols, respectively. The star symbols’ positions have been ob-
tained by shifting the computed anion energies by a constant
( — 100.257 644 375) hartree) equal to the cation energy at @ = 0.85.

6. Removing artifactual a dependence

Initial stabilization calculations were performed for a
values spaced by 0.05. Once the avoided crossings regions
were located, we applied a finer grid (a values spaced by
0.01). Despite scaling the exponents of only the diffuse func-
tions, the cation SCF energy still revealed a non-negligible
dependence on a (see Fig. 1). Moreover, the energies of the
neutral species, even if calculated with respect to the cation
energy (i.e., with the artifactual a dependence of the cation
removed), also displayed significant @ dependence [e.g., the
24,(4a,) neutral state’s energy is also presented in Fig. 1].
Therefore, it was necessary to introduce the following basis-
set consistent technique to calculate resonance energies.

To overcome the unphysical a-dependence problems,
we calculated all of the anion energies with respect to the a-
dependent SCF cation energy since the bulk of the unphysi-
cal a dependence resides in the cation core’s energy. In Fig.
2, the effectiveness of this technique is demonstrated for the
two lowest, nonresonant anion roots of B, symmetry. A
comparison of the stabilization graphs for a core-excited
shape (CES) resonance of B, symmetry (having a domi-
nant 2b,na, configuration) obtained with and without the
cation energy removed is given in Fig. 3. It should be men-
tioned that when specifying electron configurations using
notation such as 2b,na,, we attempt to indicate that one of
the Rydberg-type electrons is usually on the 2b, orbital
whereas the second is distributed among the a, orbitals hav-
ing energy higher than €,, .

One might wonder why the neutral’s energy is not sub-
tracted from the anion energy to achieve a more a-indepen-
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TABLE H. Energies E, (hartrees) and lifetimes 7 (10~'* s) for the
'4,(6a? ) Feshbach resonance calculated with the M th order fitting polyno-
mials P, and P, obtained using Eqs. (9) and (10). The a range was 1.03-
1.09 and the points were spaced 0.01 apart. The abbreviation p.u.s. stands
for “physically unacceptable solution.”

M Eq. (9) Eq. (10)

E, T E, T
2 p.u.s. —0.07918 35
3 —0.079 17 35 —0.07917 34
4 —0.079 15 19 —0.079 17 32
5 p.us. —-0.079 17 33

dent stabilization graph. Such an approach is certainly ap-
propriate if only one electronic state of the neutral target is
involved in resonant scattering. For example, the resonance
state depicted in Fig. 3 has a dominant component connect-
ed to the neutral 2B, (2b,) state. In contrast, the >B, CES
resonant wave function with energy — 0.9025 hartree (see
Table I1I) is dominated by 2b,na, and Sa,nb, electron con-
figurations. In this case, it is difficult to decide whether the
2B, (2b,) or %4, (5a,) energy of the target should be sub-
tracted from the anion energy. It is because of such potential
ambiguity and because the cation core energy contains most
of the unphysical a dependence that we choose to reference
all energies to the a-scaled cation energy.

The performance of the analytic continuation method
with the P, and P, polynomials optimized for the two weight
functions defined in Egs. (9) and (10) is compared in Table
II for the '4, (6a3 ) Feshbach resonance (see the stabiliza-
tion graph in Fig. 4). It is observed that the resonance posi-
tions and lifetimes obtained in the later approach are much

n
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| T FHZ y A‘|
P
o
o 4
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R
>,
Q7
) ]
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L )
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[(e)] B
Q { S B S O S S S S B N N B I N N N 0 B L R RN Lt S A0 L BB
CIJO.65 0.85 1.05 1.25

scaling factor

FIG. 4. Stabilization plot for the longest lived Feshbach '4, (647 ) reso-
nance. The energy of the nearby neutral state is depicted by a dashed line.

less dependent on the order M of the fitting polynomials.
Moreover, for some M ’s the approach based on Eq. (9) does
not yield any physically acceptable resonance parameters.®
For this reason, all of the results discussed from here on were
obtained using the fitting procedure characterized by Eq.
(10).

Ill. RESULTS

In Table III we characterize the low lying singlet and
triplet resonances that we found for FH; states of 4, 4,, B,,
and B, symmetries, and in Figs. 4-8 we present selected per-
tinent stabilization graphs. The resonance positions are giv-
en (in hartree units) relative to the parent cation’s energy,
and the dominant electronic configurations are shown to
specify the electronic states of the FH, target that could be
involved in resonant electron scattering.

Analogous calculations for metastable states of
H-,Li~, and Na~ served as a measure of the accuracy of the
above approach. For these systems, discrepancies between
experimental and our ab initio calculated resonance posi-
tions, measured relative to the neutral target levels, do not
exceed a few hundredths of eV. Also, our resonance lifetimes
are quantitatively correct for these atomic anions. For in-
stance, for the most frequently studied 'S (2s*) metastable
state of H~ our resonance parameters are — 0.629 eV and
12X 10~ '* s for resonance position and lifetime, respective-
ly, whereas the benchmark results are — 0.647 eV and
14x 10" .22

We have found several singlet and triplet Feshbach and
CES resonances which decay to geometrically stable excited
states of the neutral target. No shape resonances (i.e., reson-
ances of the shape variety with the ground state of the neu-
tral as the parent) emerged from our calculations.

The longest lived Feshbach resonance is of '4; (6a7)
symmetry (Fig. 4) and its lifetime is 34 X 10'* s. Among the
five Feshbach resonances that we found, three have been
classified as two-open-channel species, (see Figs. 5 and 6 and
Table II1). The 4, (5a,na,) resonance (Fig. 5) can decay
via ejection of an electron either to the ground 24, (4q,)
state of the neutral, or to the first excited 2B, (2b,) state. The
former and the latter channels are reflected in Fig. 5 in the
steeply and less steeply rising branches of the stabilization
graph, respectively. The slopes of these branches reflect the
different kinetic energies of the ejected electron. In Fig. 6,
two other two-open-channel resonances of *B, (2b,na,)
symmetry are displayed. For such two-open-channel cases,
the total decay rate depends on the coupling of the resonant
wave function with both open channels. Hence, the one-
open-channel method formulated in Sec. II, when used to
estimate the decay rate to each open channel independently,
allows for only a qualitative estimate of the resonance pa-
rameters. Such results are presented in Table III.

The CES resonances reported in Table III frequently
appear in clusters of two or three states (see Figs. 7 and 8).
These clusters correspond to states of the same spatial and
spin symmetry and are different solutions of the Schrodinger
equation for the same neutral target states and with the same
centrifugal barrier. For such resonances lying above the neu-
tral 2B, (2b,) state, the resonant wave function frequently
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TABLE I11. Metastable state symmetries, types,” energies, and lifetimes for double Rydberg H,F ~ .

Symmetry Type Configuration® Energy® Lifetime®
‘4, CES 2b,nb, —0.123 69 3
‘4, CES 2b,nb, —0.11933 7
'4, F 6a’ —0.07917 34
34, CES 2b,nb, —0.12513 14
’4, CES 2b,nb, —0.123 26 32
34, F 5a,na,

(4a,ka, channel) — 0.098 86 1

(2b,kb, channel) — 0.098 81 5
‘A, CES 2b,nb, —0.094 71 14
‘4, CES 2bynb, —0.091 57 80
'4, CES 5a,na, —0.089 46 26
34, CES 2b,nb, — 0.094 26 18
34, CES 2b,nb, —0.09159 19
34, CES 5a,na, —0.089 59 24
'B, F 2b,na, —0.100 69 4
B, CES 2b,na, —0.12339 17
*B, F 2b,na,

(2b,ka, channel) —0.101 45 8

(4a kb, channel) —0.102 55 1
3B, F 2b,na,

(2b,ka, channel) —0.097 82 10

(4a,kb, channel) - 0.097 96 6
B, CES 2b,na, + 5a,nb, — 0.090 25 17
B, CES 2b,na, —0.125 80 11
*B, CES 2b,na, ~0.12297 2
’B, CES 2b,na, + 5a,nb, —0.092 41 14
*B, CES 2b,na, + Sa,nb, —0.090 92 46
*B, CES 2b,na, + Sa,nb, —0.089 10 7

* The notation nd (1 = a,, a,, b,or b,) is used to indicate that one Rydberg-type electron is distributed among
many A-symmetry orbitals.

®The energies are given relative to the parent cation species (in hartrees) in all cases.

<The lifetimes are given in units of 10~ '* s. A lifetime of 10 ~'* s corresponds to an energy width of 0.066 eV in
the resonance.

9 Feshbach (F) and core-excited shape (CES).
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FIG. 5. Stabilization graph for the two-open-channel Feshbach *4, FIG. 6. Stabilization graphs for two two-open-channel Feshbach 3B,
(5a,na,) resonance. The energy of the nearby neutral state is depicted by a (2b,na,) resonances. The energy of the nearby neutral state is depicted by a
dashed line. dashed line.
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FIG. 7. Three-term cluster of CES 'A4, resonances. The two lower reson-
ances are dominated by 2b, nb, electron configurations. The highest one has
Sa,na, character. The middle one is the longest lived CES resonance. The
energies of nearby neutral states 2b, and 5a, are depicted by dashed lines.

displays “multiconfiguration” character because the next
neutral level, [?4, (54,)], is only 0.04 eV higher in energy,
and therefore, contributes heavily to the resonant wave func-
tion (see Fig. 8). The longest lived CES resonance is the '4,
(2b,nb,) state (Fig. 7) with a lifetime of 80X 10~ s.

On the basis of the range of lifetimes found here, it is
expected that electronically metastable states of FH; can
display vibrational and may even show some rotational
structure. Since the ground states of the FH;™ anion and FH,
neutral are geometrically unstable near the cation equilibri-
um geometry, the observation of the CES and Feshbach re-
sonances studied here could probably not be realized using
standard photoelectron or photodetachment techniques.
However, experiments in which ground-state FH," is used
to produce, via double charge exchange, metastable states of
FH; may be a fruitful avenue of approach. Alternatively, an
approach using electron attachment to excited Rydberg
states of neutral FH,, which were predicted to be geometri-
cally stable,'""'* may be successful.

IV. CONCLUSIONS

We used the method of analytic continuation of stabili-
zation graphs to investigate electronic resonances in the dou-
ble-Rydberg structure of FH; . Many Feshbach and core-
excited shape resonances have been found with lifetimes in
the range (1 to 80) X 10'* s. Among the Feshbach-type spe-
cies a few two-open-channel resonances have been observed.
Proper treatment of the latter resonances requires further
formal development of the analytic continuation method.

Selected numerical aspects of the method as applied to
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FIG. 8. Three-term cluster of CES *B, 2b,na, + 5a,nb, resonances. The
energies of nearby neutral states 25, and 5a, are depicted by dashed lines.

one-open-channel cases have been carefully studied. A new
approach aimed at suppressing incomplete basis-set artifacts
has been proposed. Different ways of fitting the coefficients
of the characteristic polynomials used in the analytic con-
tinuation process have been tried, and the subsequent stabil-
ity of the resonance parameters have been examined.

From the experimental perspective, studies of these an-
ionic metastable states present significant challenges. Our
results suggest that double charge exchange methods or ex-
perimental control over excited states of neutral FH, may be
necessary before studies of these anionic resonances will be
possible. It is our desire to nurture interest in these systems
within the experimental community.
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APPENDIX

Optimization of the nonlinear parameters ¢, and c}, for
the weight function of Eq. (10) is performed in an iterative
manner starting from the coefficients optimized for the
weight function of Eq. (9). The current coefficients are col-
lected into vector ¢** and equations for the corrections Ac,,'s
are obtained through minimization of the y* function of Eq.
(10) with respect to the Ac, s, with E, and E, replaced by
their Taylor expansions around ¢ truncated after the lin-
ear terms. The resulting equations have the form
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M
z Gulc, =B, 1=1,..2M, (A1)
k=1
where
G=G,+6G, (A2)
and
B=B, +B,. (A3)

Using the index m to label the two branches 1 or 2 of the
avoided crossing, the G,, and B,, elements are given by

G, =ATA,,
B, =A’b,,.

(A4)
(A3S)

The (ith and k th) element of the A, matrix is given by

JE,,
Api = (A6)
9, )
and the ith element of vector b,, is defined as
by =E,(a;) —E, (@,c™). (A7)

The next iterations’s approximation to the fitting parameters
are then given by

M=+ Ay, k=1,...2M. (A8)
The procedure given by Eqs. (A1)-(A8) is repeated until
the y? of Eq. (10) reaches a minimum as indicated when the
norm of Ac becomes smaller than some threshold at a point
where the G matrix is positive definite.
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