Walking on potential energy surfaces
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An algorithm for locating stationary points corresponding to local minima and transition
states on potential energy surfaces is developed and analyzed. This method, which represents a
substantial extension of an earlier algorithm, utilizes local gradient and Hessian (i.e., first and
second energy derivative) information to generate a series of “steps” that are followed to the
desired stationary point. By designing the step sequence to move energetically downhill in all
coordinates, local minima can be found. By stepping uphill along one local eigenmode of the
Hessian while minimizing the energy along all other modes, one locates transition states. A key
element of this development is a more efficient parametrization of the step vector in terms of
quantities that permit the direction (i.e., uphill or downhill) and length of the step to be
carefully controlled. This, in turn, allows “walks™ that trace streambeds connecting local
minima to transition states and to neighboring local minima more closely than has been found
using the earlier methods. Such streambed walks provide information that can be used in

subsequent reaction-path dynamics simulations.

I. INTRODUCTION

Locating stationary points on energy surfaces, given
knowledge of the local gradients and curvatures, represents
a challenging and important problem in computational
chemistry.! Such points correspond to geometries at which

all gradients (first derivatives with respect to coordinates)

vanish. They include minima, where all eigenvalues of the
second derivative or Hessian matrix are positive, and transi-
tion states, where the Hessian has one negative eigenvalue.
There are, of course, stationary points at which more than
one Hessian matrix eigenvalue is negative; they correspond
to “mountain tops” and are usually not of as much impor-
tance in chemistry. An algorithm that efficiently locates the
desired stationary points and allows one to trace out the
“streambeds” that connect minima through transition states
with other minima would be of great utility.

In earlier publications,? this research group” and others
have described the development and implementation of two
such algorithms. Based on substantial experience gained
over the ensuing years, we are now in a position to describe
substantial improvements in these tools.

In this paper, we develop a new procedure for locating
minima and transition states and for walking in the
streambeds connecting them. At each step, the method uses
the local slope or gradient (F) vector and curvature or Hes-
sian matrix (H) to compute a step vector (x) which is added
to the current atomic coordinates (r,) to obtain new coordi-
nates (r) at which new F and H matrices are computed so
the process can be continued. Convergence to a desired sta-
tionary point is reached when the norm of F is less than some
specified tolerance, the number of negative eigenvalues of H
is correct (i.e., zero for a minimum and one for a transition
state), and the energy change from step to step E — E; is
within some tolerance.

We include in this class of problems walks that lead to
fragmentation. For such events, a true transition state will
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not be reached because the potential energy surface only as-
ymptotically approaches a point at which the forces vanish.
Moreover, upon fragmentation, additional zero eigenvalues
appear in the Hessian matrix® corresponding to the new
translations and rotations that exist in the fragments, but
were internal modes in the original molecule.

Il. DEVELOPMENT OF THE METHOD
A. The local quadratic approximation

We begin by writing a local quadratic approximation to
the potential energy surface in terms of the 3N Cartesian
components of the gradient, Hessian, and step matrices

E=E, + xF + 1/2xHx. (n

By assumption, we know the energy surface only locally.
Therefore, it is important to constrain our steps x to lie with-
in a radius L for which the quadratic representation in Eq.
(1) is valid. The determination of this “trust radius” L in
terms of the ability of Eq. (1) to predict energy changes
experienced for steps x within L is dealt with later in Sec. IV.

B. Partitioning into internal and external degrees of
freedom

If the energy surface E(x) pertains to a molecule in the
gas phase for which translational and rotational motions
have no restoring forces, five or six coordinates can be re-
moved to yield F, H, and x in the 3N — 5 or 3¥ — 6 internal
coordinates. In practice, our ab initio electronic structure
codes yield F and H in terms of 3NV Cartesian coordinates.
We then partition these matrices into external and internal
spaces by first constructing five or six orthonormal vectors
that span the translational and (infinitesimal) rotational>‘4’
spaces together with 3V — 5 or 3N — 6 other orthonormal
vectors that span the internal space. Projection of F and H
onto these spaces then provides internal gradient and Hes-
sian matrices. The components of F and H lying within the
translational and rotational spaces can be ignored when
dealing with an isolated species for which E(x) is a function
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only of the internal coordinates. However, when treating a
species imbedded in a solvent or other medium, translational
and reorientational displacements may indeed be important
to include. As described here, the walking algorithm can be
applied separately to the internal and external degrees of
freedom. For an isolated species, the external displacements
can be removed and ignored and attention can be focused on
the internal displacements only. If, in addition, there are
degrees of freedom along which the force is zero by symme-
try, it is possible to include these directions in the external
displacement space. Doing so then permits symmetry-pre-
serving walks to be realized. The remainder of the presenta-
tion is made in terms of the internal variables, whatever they
may be.

C. Analysis in the Hessian eigenmode basis

Given F and H, the local quadratic energy expression
can be rewritten in terms of the eigenmodes of H:

Hv, =hyv,, i=12,.,3N—5 or 3N—6, (2)
where it takes on the form

Here the Einstein summation convention is used, 4, is the ith
eigenvalue of the Hessian (h,<A,<A;...), and x; and F, are
the components of x and F along the ith eigenmode of H:

x; = (x|v;) (4a)

and

F, = <F|vi)' (4b)

D. Parametrization of the step vector

A primary element of the algorithm developed here is
the introduction of steps {x,} characterized as follows:

x; =aF,(A—h)"" (5)

When used in the above quadratic energy expression, this
step gives the following first-order, second-order, and total
energy changes

E—E,=aF*A—h,)" '+ 1/2a°h,F* (A — h;) 2
(6a)
=aF*A—h)"HA—h,(1—a/2)}. (6b)

In the step expression given above, « is to be viewed as a
positive overall step scale factor (a < 1.0) chosen to guaran-
tee that a “well-behaved” streambed walk can be realized as
detailed below. The parameter A is introduced to permit the
step along the ith mode to either be opposite in sign from the
corresponding gradient (if 4 < A;) or directed along the gra-
dient (if A > h,).

Moving along or opposed to F; characterizes steps
whose first-order energy changes F x; are increasing or de-
creasing, respectively. The sign of the second-order energy
change 1/2 h; x? is determined entirely by the sign of the
Hessian eigenvalue 4,. In our method, we choose 4 to pro-
duce steps that either have negative first-order and total en-
ergy changes along all modes, or along all but one mode
along which the first-order and total energies increase. The
former produce walks to minima; the latter walks to transi-
tion states.

E. Problems with “stitching”’—short steps are better
than long steps

In our earlier work,? emphasis was placed primarily on
the total energy change along each mode. This point of view
can lead to step lengths that “overshoot” the location of
minima, or are too long in the sense that they give displace-
ments beyond the region where the local quadratic approxi-
mation is accurate.

To clarify these points, consider the contribution to the
local quadratic energy surface along a particular mode

AE; = Fix; + 1/2x7h;. )]
If h; is positive, displacements x; occur on an upward curved
parabola; if A; is negative, x; is on a downward curved pa-
rabola. In either case, a specified desirable energy change
(AE positive in the 4; < 0 case and AE negative in the ; >0
case) can be realized either by:

(i) taking a small step along which the linear energy
change is of the desired sign, while the quadratic term is
small and of opposite sign (n.b., the sign of the quadratic
term is always opposite to what one wants; if 4; > 0, the qua-
dratic term is positive and one is trying to minimize the ener-
gy; if h; <0, the quadratic term is negative, and one is trying
to maximize the energy); or by

(ii) taking a larger step in the same direction [i.e., with
x; having the same sign as used above in (i) ] along which the
linear energy change is much larger yet still of the desired
sign, while the quadratic contribution is large and of oppo-
site sign.

We prefer to take the smaller steps characterized in (i)
above. The longer steps of (ii) suffer two drawbacks:

(a) Being longer, they are more likely to move the co-
ordinates outside the region where the local quadratic ap-
proximation used to generate the step is valid.

(b) They generate steps which “stitch”; i.e., steps that
move back and forth across the streambed along which the
walk proceeds. In contrast, the steps of (i) are found to un-
dergo little stitching.

F. The form of the step elements

In our earlier work on this subject,” the form for the step
elements shown in Eq. (5) was shown to arise from making
the local quadratic energy functional of Eq. (1) stationary
subject to the constraint (imposed by Lagrange multiplier
A /2) that the step be of a specified length. Here, we do not
impose this constraint; instead, we take steps parametrized
as in Eq. (5) and ask how A and a can be determined to
generate an optimal streambed walk, with A chosen primar-
ily to guide the direction of the step and & used to control the
total length of the step.

IIl. WALKS TO MINIMA AND TO TRANSITION STATES
A. Minimization walks

As displayed in Eq. (6), steps for which both A < A; and
A <h;(1 —a/2) yield negative linear (F,x;) and negative
total energy changes along the ith mode. This is, of course, a
property that a walk to a minimum should possess. If the
lowest Hessian eigenvalue 4, is positive (this is characteris-
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tic of regions near local minima), A <h,{1 — a/2) is the
more restrictive constraint; a4 that obeys this will also obey
A <h;(1 —a/2) for all other modes because the A, are ar-
ranged in increasing order. If, on the other hand, 4, is nega-
tive (this is characteristic of regions near transition states),
A < h, is the more restrictive constraint. Again, if 4 obeys
this condition, it will automatically also obey 4 < A; and
A<h;(1 —a/s2) for the other modes, independent of
whether the other 4, are positive or negative.

Thus, for positive 4,, one wants A <A,(1 — a/2) and
for negative A4, one needs A < A,. Although these statements
limit A4, they do not determine the optimal value of 4. To do
so, we examine the dependence of the quadratic energy func-
tional on A for values of A that obey the above conditions.
Differentiation of the quadratic energy functional to seek a
value of A for which it is stationary yields

dE/dA = —aF*(A—h){A—-h,(1 —a)}
and
d?E/dA*=2aF*(A — k)" A —h,(1 —3a/2)}.

The choice @ = 1 causes A = 0 to be a stationary point corre-
sponding to a minimum (d *E /dA ? is positive) if A, is posi-
tive. This means that a Newton—Raphson step®® (i.e., the
stepwith A = 0and a = 1) isoptimal as long as 4, > 0and as
long as this unscaled step is within L.

If the Newton—-Raphson step is too long (i.e., if it ex-
ceeds L), any choice of 4, > A > 0 will also generate too long
a step [x, =F,(A—h;)""] because (1 —h,)~" will be
larger than for A = 0. Therefore, a value of A <0 must be
chosen.IntherangeA < Ofork, > 0,dE /dAisnegative;d 2E /
dA *is positive for — k,/2 <A <0. Therefore, the most nega-
tive change in £ will be realized for A as large as possible.
Choosing A too close to zero generates an unscaled step
length that is very large, as a result of which & must be cho-
sen to reduce the step length, which then reduces the magni-
tude of (E — E,). In this case, the best choice of A is the
value that yields the maximum acceptable step length L.
Therefore, we simply pick A4 (1<0) by solving
F%(A — h))~?= L?, after which a scaling is unnecessary.
This gives A = h, — |F,/L | and generates a step that is ap-
proximately L in length (the step formed using this A value is
actually scaled to be exactly of length L).

On the other hand, if 4, is negative, the Newton-Raph-
son step A = O1is unacceptable because it violates the energy-
lowering condition A < A, determined earlier. In the range
A <h,, dE /dA is negative and d °E /dA ? is negative. There-
fore, the most negative change in E will again be realized for
A as large as possible (i.e., as close to 4, as possible). Once
again, we pick A by solving FZ (A — h,) ~? = L ?, after which
a scaling is unnecessary.

In summary, to perform energy minimization walks, we
choose 4 and «a as follows:

(i) If 4, > 0, we take the Newton—Raphson step (1 = 0)
if its length is within L, and we set a equal to 1.0.

(it) If A, > O, but the Newton—Raphson step length ex-
ceeds L, we determine A (4 < 0) by requiring F2 (1 — h,) ™2

= L ?tobe obeyed. This yields L = h, — |F,/L |. Again, we
take a = 1.0.
(iii) If A, <0, we determine A(A <h,) by requiring

F2(A—h;)"?*=L?tobeobeyed (A =h, — |F,/L|)anda
is once again set to 1.0.

In both (ii) and (iii), the step is formed with the speci-
fied value of A, which yields a total step length near L and
then rescaled to be exactly of length L.

B. Transition-state walks
1. Walks up the lowest eigenmode

Moving “uphill” along the lowest Hessian eigenmode
while remaining at minima along the other eigenmodes gen-
erates a “streambed walk” along this lowest mode. As ex-
plained earlier, steps for which A < h, and 4 < h,(1 — a/2)
produce linear and total energy lowering along all modes
other than the first. To generate linear and total energy in-
creases along the A, mode requires that A>h, and
A>h (1 —a/2).

If i, and A, are both positive (which is characteristic of
geometries near local minima), these constraints reduce to
hy <A <hy(1 —a/s2). If h,/2 is less than h,, the choice
a =1 (which corresponds to an unscaled step) cannot be
used because no value of A obeys 4, <A < k,/2. The largest
value of & (i.e., the least scaling of the step) that gives rise to

a nonzero range for choosing A is a@ = 2(h, — h,)/h,. This
particular a gives h,(1 — a/2) = h,, asaresult of which A is
bounded to &, <A < A&,. The choice A = A, generates a step
lying entirely along the 4, eigenmode; this step has no ability
to incorporate movement along the other modes and is
therefore unacceptable. To maintain a distinct range within
which A can be chosen, we choose to take an even smaller
step and select @ = (h, — h,)/h, as the scaling parameter.
This then restricts A totherange i, <A < (h, + h,)/2, with-
in which we choose the midpoint A = (&, + (A, + h,)/2)/
2. Using these values of a and A, the step x; = aF;
(A — h;)~'is evaluated. If the length of this x is less than L,
it is taken,; if the step length exceeds L, x; is further scaled
back to yield a total step length equal to L.

If, in contrast to the above situation, h,/2 exceeds 4,, the
choice a = 1.0 is acceptable, in which case we choose A as
the midpoint of the two bounds 4 = (h, + h,/2)/2. Again,
if the step x, obtained using this A value and a = 1.0 exceeds
L, it is further scaled back to L.

If A, is negative, the appropriate constraints 4,(1 — a/
2) <A <hy(1 — a/2) canbe met with a@ = 1. In this case, we
again choose A as the midpoint of this range
[A = (h; + h,)/4] and we further scale back the x, if the
total step length obtained with this A,a combination exceeds
L.

In summary, to walk uphill along the streambed belong-
ing to the lowest Hessian eigenvalue, we:

(i) takea = 1.0and A = (4, + h,/2)/2,if h, is positive
and 4,/2 exceeds Ah;

(ii) take @ = (h, — h)/h, and A = (h, + (h; + h,)/
2)/2, if h, is positive, but 4,/2 does not exceed A,;

(iii) takea = 1.0and A = (h, + h,)/4,if h, is negative.

In all three cases, the step elements x; = aF, (4 — h,) ™!
are further scaled back if their total length exceeds L. As
emphasized in Sec. I1 E, a step obtained by scaling back a
step that has linear and total energy changes of the desired
sign will also have linear and total energy changes of the
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proper sign (because the quadratic energy change is always
of the “wrong” sign and cutting x; back reduces the magni-
tude of 1/2 h; x} more than that of Fx;).

2. Walks up other elgenmodes

a. The extra difficulties for modes other than the lowest.
To walk uphill along a streambed that connects with one of
the other Hessian eigenmodes requires additional care.
Choosing A toobey A > h,and A > h,(1 — a/2) will certain-
ly generate a step that, within the local quadratic approxima-
tion, has positive linear and total energy changes along the 4,
mode. However, this choice will also cause the step to in-
crease in energy along the 4, mode. Such behavior is not
characteristic of the desired streambed walk; the energy is
supposed to be minimized for all modes except the one (4,)
along which uphill movement occurs.

Even if one had a technique for walking uphill along the
h, mode while minimizing the energy for all other modes,
another fact must be kept in mind. The Hessian eigenvalue
(h, here) along whose eigenmode uphill movement is taking
place will become smaller as the walk progresses (it will, of
course, become negative if a transition state is approached)
until it eventually becomes the lowest eigenvalue. Once this
happens, the walking algorithm detailed above in Sec.
I B 1 can be used without modification.

As the eigenvalue of the mode being followed moves
downward through the other eigenvalues, one must be care-
ful to follow the correct direction. We use an eigenvector
tracking method in which the scalar product of the Hessian
eigenvector (v, ) corresponding to the “uphill” mode is
computed from step to step. The quantity (v, (step
n)|v, (step n + 1)) should be approximately 1.0 at each
step. This allows the desired eigenvector v, (step n + 1) to
be properly identified even as its eigenvalue drops, in succes-
sion, past all other eigenvalues. This strategy must be used
until the desired uphill direction (i.e., v, ) lies along the low-

est Hessian eigenmode, after which the conventional uphill .

walking strategy can be followed. With these qualifications
in mind, let us explore how one can walk up streambeds that
connect to higher eigenmodes until the mode being followed
uphill becomes the lowest.

b. Two strategies. We have found two procedures that
seem to overcome the above difficulties. In the first, we sim-
ply take an initial step along the eigenmode (4, here) that we
plan to follow with no components along modes with smaller
Hessian eigenvalues. This procedure is followed until the
eigenvalue belonging to the mode being followed uphill be-
comes the lowest eigenvalue. To effect such a procedure, we
simply set to zero the F; values corresponding to all modes
lying below the one being followed; this then yields zero step
components x; = aF; (A — h;) ~! along these modes.

In our second approach, which is considerably more
systematic, we express the step component along the mode
(A, here, h, in general) to be followed as

X =By
In terms of step components {x,,xz,...,xk — 13 VisesX3n_g OT
X3y _ 5}, the local quadratic energy functional becomes

E=E,+ Fx; + 1/2hix17" + (F By + 172(hy, Bz)ﬁ,

where the sum over i runs over 1,2,....k — 1Lk + 1,.., 3N — 6
or 3N — 5. When viewed as a function of the step compo-
nents {x,,%5,..;Xx _ 1> Vir-sXsn _ 6 OF X3y _ s }, this local qua-
dratic energy surface appears to have a Hessian eigenvalue of
B*h,, where the original surface had 4,, and to have a gradi-
ent SF,, where the original surface had F,.

By choosing £ such that 224, lies below 4,, one can
then employ the transition-state walking strategy appropri-
ate to the lowest eigenmode direction. In each such step,
however, it is essential to keep in mind that one is generating
step components {X;,X5,....Xx _ 15 Vs-X3n_6 OF Xan_ 51
the y, component must then be multiplied by 5 to obtain x,.
Once the {x,,%;5,....%x _ 15 XgseesX3y_ OF X3y_s) are in
hand, transformation to Cartesian or to internal coordinate
displacements can be performed.

When implementing the above coordinate-scaling
method for walking up higher eigenmodes, it is important to
understand that the maximum step length L appropriate for
the walk in the {X,,X,,...,X4 _ |, YisresX3n_ ¢ OT X35 _ 5} SPace
is not necessarily the same as that for the {x,,x,,....x; _,,
XpsesX3n_ ¢ OF X3n_ s} space. This can be understood by
considering the length of the {x,,X5,...;X; _ 1 VxseresXan_ 6 OF
X3 _ s } vector and of the resulting coordinate step vector. If
{X13X00esX g _ 13 PireX3n_ 6 OF X35 _ 5} is constructed to be
of length L', then {x,,%5,...X; _ 1 XxrersX3n_6 OF Xan_ s}
will be of length L, where

(L= (L") + (B = ).

Because the step {x;,X5,....Xx _ 15 ViresXsn_6 OF X3y _ s} iS
constructed to have a significant or even dominant y, com-
ponent, y2 will often be close to (L ')? in which case (L)?
will approach 82 (L ')*. Therefore, to achieve a coordinate-
Step {X 1, X0, Xk _ 1» XgyeeX3y _ g O X35 _ 5} Within L, one
should restrict the scaled step {x,,%5,....Xx _ 1» Yior-rXsn_
Or X35 _ 5} to lie within L’ = 8 'L > L. In practice, we do
not so expand the maximum step length simply to achieve a
more “conservative” walk (as a result, our steps in
{X 15X 0 Xk _1» XgreX3n 6 OF X35 _ s} Space are usually
short).

This completes our description of the stepping algo-
rithm. The procedure generates a step that may be taken to
generate the next position about which a new local quadratic
approximation to the energy surface will be formed. How-
ever, there are circumstances under which the step put forth
for consideration must not be taken, but, rather, replaced by
an alternative (shorter) step. It is this aspect of the algo-
rithm to which we now turn attention.

IV. STEP LENGTH CONTROL
A. The maximum step size L

In the algorithm outlined in Sec. II1, each step is con-
structed to have a total length less than or equal to a preas-
signed maximum length L. The choice of L is very much a
matter of taste and of “common sense.” We prefer to gener-
ate walks that smoothly trace out the locus of points charac-
terizing their streambeds; therefore, we usually choose rath-
er conservative L values (e.g., L less than a few tenths of an
A). Clearly, L must be less than the dynamic range over
which the true potential energy surface changes its features
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by amounts that are deemed important. For chemical bonds,
changes of a few tenths of an A usually correspond to appre-
ciable energy changes.

Choosing L small requires many steps in the streambed
walk, thereby increasing the computational expense.
Choices of L that are large are less harmful than they might
seem at first glance because of the step-size reduction strate-
gy detailed below. In a nutshell, any step that is large enough
that the true energy realized at the displaced geometry is in
sharp disagreement with the local quadratic prediction of
the energy undergoes further step-size reduction. Of course,
this reduction process entails computational expense, so one
would like to use an L value that would not often necessitate
such action. In essence, L should be chosen with a good deal
of common sense.

B. Step-size reduction

The procedure for generating step sequences described
in Sec. III may produce a step that moves beyond the region
where the local quadratic approximation to the true poten-
tial energy surface is valid. In such a case, the step must be
further reduced until it lies within this range. Since we do not
a priori know the true energy surface except at the point
around which the local quadratic expansion is carried out
{where the energy is E,;), we must allow the step generated
by the algorithm detailed in Sec. III to be taken (on a trial
basis) so that the true (E;) energy at r =r, + X can be
evaluated. If the quadratic prediction

E— Ey=Fx; + 1/2h;x;

accurately reproduces the true energy difference E, — E,,
then one says that the step {x,} lies within the trust radius.
On the other hand, if F,x; 4+ 1/2A,x? does not agree well
with E, — E,, then the step {x;} lies outside the trust radius
and must be further scaled back.

It remains to state what it means for the two energies to
agree well. In our implementation, we insist that the predict-
ed energy difference E — E, = F.x; + 1/2h,x? and the ener-
gy difference E, — E,, observed once the step is taken (on a
trial basis):

(1) be of the same sign—we do not want the predicted
energy to direct the walk uphill only to find that the step
actually moves downhill (this is indicative of a step for
which the quadratic energy change, which is always undesir-
able in sign, has overcome the favorable linear term);

(ii) be equal within some range in the sense that
min(|E — E|, |Ey — Eg|)/max(|E — Ey|, |E; — Eg|) be
equal to unity within a specified tolerance.

In this most straightforward implementation of the
trust radius concept, if agreement between E, — E; and
E — E, is not met, each of the step elements x; is multiplied
by a fraction; we usually cut the steps in half. The new step,
which has the same direction as the original trial step becaue
the elements were scaled in the same proportion, is then sub-
jected to the same trial. This process is continued until the
local quadratic approximation to the true surface is valid (in
the sense described above) at which time the step is taken. It
should be noted that generating such a series of step reduc-
tions does not require the evaluation of new gradient and

Hessian matrices; the most time consuming element is the
evaluation of E; at each of the “trial steps.”

Once a step to a new geometry is realized and new F and
H matrices are computed, the stepping algorithm begins
again. Each successive step is restricted by this algorithm to:

(i) have a total length less than some specified maxi-
mum step size L;

(ii) have its length further reduced to guarantee that the
quadratic energy change accurately represents the true (ob-
served) energy change for that step.

V. EXAMPLE APPLICATION

To illustrate the application of this walking algorithm,
we consider the three-dimensional potential energy surface
characteristic of the Be + H, system; this same case was
treated in Ref. 2(b) where further details concerning the
atomic orbital basis set are given. In the present calculations,
the lowest energy orbital (i.e., the Be 1s orbital) is doubly
occupied in all electronic configurations. The remaining
four electrons are distributed among the nine other molecu-
lar orbitals in forming the 372 configurations of '4 ' symme-
try in the C; point group. In that earlier work, C,, symmetry
was imposed and finite-difference methods were used to ob-
tain the Hessian matrix from the gradient because, at that
time, we did not have computer codes to analytically evalu-
ate the Hessian. The imposition of C,, symmetry precluded
consideration of the Be + H,=>BeH + H reaction; in the
present work, such symmetry constraints are not imposed
and full three-dimensional walks are carried out using analy-
tical first and second derivative data.

The particular walks studied include a walk along the

lowest energy '4, reaction path from Be(15°2s%) + H,(02)
to the transition state detailed in row 11 of Table 1. Along
this walk, which is not constrained to C,, symmetry but still
follows this symmetry, the nature of the lowest 4 ' (or '4, in
C,, symmetry) state wave function changes from a domi-
nant 1s°25°07 = 1a}2a}3a} configuration to a strongly
mixed state containing both 1a4}24}3a} and 150?02,
= la}2a} 1b3 configurations. The vibrational frequencies
at the transition state are found to be 3085, 795, and 3770i
cm ™', with the imaginary frequency corresponding to the
reaction path. The high-frequency mode is antisymmetric
with respect to the plane bisecting the HBeH angle, and the
795 cm ™! mode is symmetric.

The second walk, detailed in Table II, begins near the
linear HBeH geometry (at the linear minimum, the 1/2 H,
distance is found to be 2.6107 bohr, the energy is

— 15.779 555 95 hartrees, and the vibrational frequencies
are 757, 757, 1879, and 2123 cm™') and progresses to the
transition state described above. We can not begin this or
any walk exactly at the minimum-energy geometry because
all forces vanish there; we therefore bend the molecule
slightly as indicated in the first row of Table II to begin the
walk. Along this walk (at the geometry given in row 7 of
Table I1), an electronic state of ' B, symmetry falls below the
'A, state that we are following. Also along this walk, at the
step given in the ninth row, a step rejection takes place, the
trust radius is decreased from 0.50 to 0.25 bohr, and the step
given in the tenth row is taken. As described below, our algo-
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TABLE I. Insertion walk from Be + H, to the '4, transition state. Distances and energies in atomic units

(0.529 A and 27.21 eV).

Gradient Step

1/2H, Be-H, Total energy norm norm
1 0.7000 3.5000 — 15.717 625 87 0.058 707 86 0.500 000 00
2 0.6944 2.8877 — 15.677 427 28 0.108 611 00 0.500 000 00
3 0.6818 22757 — 15.596 165 94 0.241 322 84 0.500 000 00
4 0.6933 1.6637 — 15.390 621 45 0.671 502 28 0.390 487 76
5 0.8733 2.0263 —15.53711330 0.238 912 86 0.367 020 10
6 1.0286 2.3864 — 15.588 458 17 0.093 126 34 0.313 180 32
7 1.1873 2.6539 — 15.601 082 50 0.033 278 40 0.196 372 21
8 1.2947 2.8064 — 15.602 948 94 0.009 456 38 0.076 197 37
9 1.3383 2.8613 — 15.603 069 94 0.001 297 83 0.009 909 98
10 1.3442 2.8679 — 15.603 070 97 0.000 024 12 0.000 125 50
11 1.3442 2.8679 — 15.603 070 97 0.000 000 01 0.000 000 01

rithm continues to follow the '4, state, ignoring the surface
crossing, all the way to the transition state.

For both of these walks, an L value of 0.5 bohr was used
and quadratic convergence is realized in the neighborhood
of the transition state (see the final few rows of Tables I and
1I).

In realizing the walk described in Table I, which passed
through the intersection with the 'B, surface and followed
the 'A, surface, care had to be used in tracking the proper
electronic wave function. In particular, to follow the '4, sur-
face dominated by the 1a%2423a? and 143247 153 configura-
tions, we choose from among the roots of the configuration
interaction problem arising in optimizing the multiconfigur-
ation self-consistent field (MCSCF) wave function, the ei-
genvector that is dominated by these configurations. The
eigenvalue corresponding to this eigenvector may or may
not describe the lowest energy state. Such a walk, by the
nature of the electronic wave function used, which deter-
mines the forces and curvatures, passes smoothly through
the intersection with the 'B, surface.

On the other hand, if we allow the electronic structure

TABLE II Walk from linear BeH, to the '4, transition state.

codeto converge to the lowest state of '4 ' symmetry (includ-
ing thiose dominated by any of the 1a} 243 3a3, 14324} 153, or
1a%2a? 3a,1b, configurations), a different walk is generated.
This walk proceeds from linear HBeH toward the transition
state obtained in the earlier walk; along this path, the 'B,
surface intersects and falls below the '4, surface at which
time the algorithm can direct the walk to move onto the
lower energy 'B, surface.

As the ' B, surface is entered, strong gradients may exist
along all directions because the geometry at which the “hop”
occurred from the '4, to the !B, surface is by no means near
astreambed of the ' B, surface. In particular, a large negative
curvature along the asymmetric stretch vibration causes the
molecule to distort from (nearly) C,, to C, symmetry. Once
the walk moves to the 'B, surface, we choose to instruct the
algorithm to move to a minimum on this surface, in which
case it generates the BeH -+ H fragments.

This rather simple system illustrates much of the com-
plexity that can arise in potential energy surface walking.
Multiple electronic surfaces and multiconfiguration contri-
butions to each surface cause the electronic structure aspect

Gradient Step

1/2H, Be-H, Total energy norm norm
1 2.5400 0.1000 — 15.778 694 17 0.014 704 76 0.337 837 67
2 2.6340 0.4804 —15.775 181 72 0.023 671 32 0.500 000 00
3 2.5141 1.0565 ~— 15.759 972 08 0.046 907 49 0.500 000 00
4 2.2862 1.5245 — 15.737 967 74 0.063 682 88 0.500 000 00
5 2.0083 1.9032 — 15.709 102 36 0.079 318 19 0.500 000 00
6 1.7123 2.2380 — 15.670 529 03 0.098 490 08 0.500 000 00
7 1.4245 2.5938 — 15.620 103 42 0.105 806 79 0.500 000 00
8 1.6437 2.1133 — 15.672 149 87 0.092 988 32 0.500 000 00
9 1.3464 2.4447 — 15.620 780 97 0.108 151 11 0.499 999 99
10 1.3464 2.4447 — 15.620 780 97 0.108 151 11 0.249 999 99
11 1.2164 2.6522 — 15.601 278 15 0.017 753 36 0.164 702 22
12 1.2963 2.7990 — 15.602 903 89 0.005 211 66 0.075 074 40
13 1.3369 2.8583 — 15.603 068 00 0.000 967 32 0.012 743 43
14 1.3441 2.8677 — 15.603 070 97 0.000 029 97 0.000 302 65
15 1.3442 2.8679 — 15.603 070 97 0.000 000 02 0.000 000 15
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of the problem to be complex. Finding several local minima
and the transition states connecting them is also challenging.
The algorithm presented here seems to robustly address all
of these issues.

VL. SUMMARY

In this paper, we have presented an algorithm that per-
mits the systematic location and characterization (via the
nature of the Hessian eigenvalues) of local minima and tran-
sition states on potential energy surfaces. This method has
the following characteristic features:

(i) it uses local gradient and Hessian information;

(ii) it generates steps that produce the desired behavior
(i.e., uphill or downhill) in both the linear and total quadrat-
ic energy changes along each Hessian eigenmode;

(iii) it permits rotations and translations to be removed
from consideration (e.g., for isolated species), or it allows
translational and orientational motions to be treated inde-
pendently of internal motions (e.g., for species imbedded in
a surrounding medium);

(iv) through use of a maximum step size and a step-
reduction strategy, it controls the step length to keep each
step within a region where the local quadratic energy ap-
proximation is valid;

(v) it controls the step direction in a manner that is
guaranteed to move either downhill in all Hessian eigen-
mode directions (when searching for minima) or uphill
along one eigenmode and downbhill along all others (when
searching for transition states);

(vi) it permits streambeds along any eigenmode of the
Hessian to be explored by introducing a coordinate scaling
device.

The particular implementation of this walking algo-
rithm is implemented and routinely used in the highly modu-
lar Utah MESSKIT (molecular electronic structure kit)
electronic structure codes. Application of this walking algo-
rithm to a three-dimensional problem (the Be + H, system)
is illustrated. This particular problem involves motion on a

'A, surface whose electronic wave function contains two (or
more) strongly mixed configurations; the relative mixing of
these configurations varies strongly throughout the
Be + H,=>HBeH reaction. This problem also involves a
second electronic surface, which is of 'B, symmetry in the
C,, point group, but of '4 ' symmetry in the C, point group.
Walks that begin as Be + H, or as HBeH on the '4, surface
and “hop” to the 'B, surface can also be treated using our
algorithm. These walks lead to formation of BeH + H prod-
ucts.
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