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The 2):;, 2nu, and 22; vertical ionization energies of nitrogen are obtained by using our theory of molecular
electron affinities and jonization potentials, which permits the direct calculation of the ion—molecule energy dif-
ferences. The contributions of charge redistribution and correlation energy change to the calculated jonization poten-
tials are evaluated. The computational efficiency of the method is illustrated and comparisons are made with recent

experimental results,

1. Introduction

In a previous publication [1], we developed a com-
putationally tractable theory of molecular electron
affinities and ionization potentials in which the ion—
molecule energy difference is obtained directly rather
than as a result of carrying out two separate variational
calculations. Such a direct-calculation theory permits
us to effect a formal cancellation of those terms
which contribute equally, through third order in
perturbation theory, to the ion and molecule energies.
The relationship of our equations-of-motion (EOM)
technique to Rayleigh—Schrddinger (RS) perturba-
tion theory and Green’s function theory has been
discussed by us in ref. [1] and elsewhere [2]. A most
important point for understanding the results pre-
sented here is to recall from ref. [1] that the adjust-
ment of the parent’s Hartree—Fock molecular orbitals
as well as the change in correlation energy which ac-
companies ionization are incorporated into our theory
in a manner which allows the ion—molecule energy
difference to be obtained accurately through third
order in the electron interactions r.),.'l . As described
in ref. [3], we have successfully applied our EOM
approach to the low-lying 2Z* and 211 jonization
potentials of hydrogen fluoride. The results of our
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calculations in these cases were within 0.15 eV of the
experimental photoionization measurements of Chupka
et al. [4].

A principal purpose of the present paper is to pre-
sent and analyze the results of applying our EOM
method to the X 1Z¥ » 22% X 12* - 22* and
Xzt 2H verhcﬁ 1omz§t10n energies of the ni-
trogen molecule The experimental data on this mole-
cule, which was obtained by photoionization [S] and
photoelectron [6] spectroscopy, provides us with an
excellent source of information with which to com-
pare our theoretical predictions.

In section 2 the computational methods used to
obtain the ionization energies are described briefly.
Section 3 contains the results of our calculations as
well as a discussion of their probable accuracy and
our closing comments.

2. Description of the method

In our EOM theory of electron affinities and ioniza-
tion potentials, the excitation operator £, which
generates the, in principle exact, eigenstate |u*) of the
positive ion when operating on the true neutral-mole-
cule ground state |g),

Q,l= luh), 1)
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is approximated in terms of the second-quantized
Hartree—Fock orbital creation {C}"} and annihilation
{G} operators as follows¥:

2, = X+ 2, ¥ GiC e,
m<n,ux
R &

a<pgm

The operator C}"(C}) creates (destroys) an electron
in the Hartree—Fock spin-orbital ;. Greek indices
a, 8, v label “occupied” Hartree—Fock spin-orbitals,
m, n, p, q label “unoccupied” spin-orbitals, and ¢, j,
k, [ 1abel either set. The X (u), ¥, (1), and Yumﬁ(ru)
are expansion coefficients which are determined by
making use of the EOM theory of ref. [1] whose
pertinent aspects are briefly reviewed below. An
analogous expansion for the operator Q; which gen-
erates negative-ion eigenstates when operating on
|g) is also given in ref. [1].

By assuming that |g) and |u*) exactly obey the
following Schrddinger equations

Hig)=Elg), (3a)
and
Hiu") = Ej1u®, (3b)

one immediately obtains the basic equations of mo-
tion

(#,9,]18) =(E] - £)Q,lg), (3¢)
which we have used to derive the following working
matrix pseudo-eigenvalue problem involving the elec-

tron affinities or ionization potentials and the coef-
ficients X;(\), or X;(u):

Zj) H,(AE,) X,\) = A, X,(N), (4a)
or
?})f@, (AE ) X(1) = AE, X,(1), (4b)

* For a good description of the properties of such Fermion
creation and annihilation operators, see ref. [7].
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where AE, isE, —Eand AE, =E - E* These re-
sults can be denved by using the apprommatlon to
Q,, given in eq. (2) or its electron-affinity analog and
the RS approximation to |g)

e {mnjafB>
8o =N, ”2[|0>+ 3o gy
RS 0 Hichady ea+eﬁ o o
+ ~+
A cﬁcam)] (5)

in eq. (3c). The coefficients Y, and Y, have
been eliminated by partitioning the resultlng equations.
In eq. (5), N, is a normalization constant, €; is the
Hartree—Fock energy of spin-orbital ¢;, and the
{mn|ap) are antisymmetrized two-electron integrals
over the spin-orbitals ¢,, , ¢,,, ¢, and bg- The Hartree—
Fock wavefunction of the neutral parent is represented
by 10). The elements of the matrix H;(AE) are given
in eq. (37) of ref. [1] as
8. gt
H(AE) =4, + 93 tend il
a<gm ET™ +AE
* e
mam ' nam

v 2

_ (1-37)
m<n,a *Em”+ AE

where AE is either AE, or AE,. The quantities ap-
pearing in this equation are defined in egs. (31d)—(35)
of ref. [1]. The physical significance of the terms in
the above expression for H;(AE), which is discussed
more completely in ref. [1 f can be summarized for
the case of ionization from Py as follows (analogous
conclusions can be made for ionization from other
orbitals):

(i) The B =N terms in the first sum in eq. (1-37)
contribute to the ion—neutral Hartree—Fock energy
difference; therefore, these terms contain the effects
of charge redistribution on the calculated ionization
energies.

(ii) The second sum approximates the negative of
the correlation energy of an electron in ¢, , which is
vacant in the positive ion, interacting with all other
electrons.

(iii) The B # N terms in the first sum give the ap-
proximate change in correlation energy of the parent’s
N electrons caused by the removal of an electron
from ¢p.
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To make use of eq. (4a) or eq. (4b), one must first
carry out a Hartree—Fock calculation on the parent
molecule of interest, after which the ne{.css.xry" two-
electron integrals must be transformed to the Hartree—
Fock basis. In its present form, the theory is restricted,
because¥ of the use of eq. (5) for |g), to closed-shell
parent molecules. This does not prohibit us from com-
puting the electron affinity of, for example, the OH
radical, however, because we can obtain the desired
energy difference by calculating the ionization poten-
tial of the closed-shell species OH~. Only those ener-
gy differences for which neither the ion nor the mole-
cule are closed shell are presently outside the capabili-
ty of our method. We are currently devoting consider-
able effort toward developing an extension of our
EOM approach for use on such open-shell systems.

Once the Hartree—Fock orbital energies and two-
electron integrals have been computed, the quantities
A:}" Er::"?’ E:::I i ‘B:',uom Bj,nam »and BI amp ‘B,r amg? can
be formed. This step is carried out only once; it is
not part of the iterative procedure used to solve eq.
(4a) or eq. (4b) which is described below. The fact
thatH(AE) is block diagonalized by molecular sym-
metry allows us to compute only a limited set of the
above-mentioned quantities, which leads to a very im-
portant savings in computation time. As an initial
approximation to the desired ionization potential
AE or electron affinity AE, , one can choose the

i
Koopmans’ theorem [8] value

AE~e, ©)

for ionization from (or into) orbital ¢;. In this ap-
proximation, we assume that the state of the ion be-
ing studied is related, through zeroth order, to the
parent’s Hartree—Fock wavefunction by the addition
or removal of an electron from a single spin-orbital.
For the so-called shake up statesTT of a positive ion,

# The molecular symmetry permits us to significantly reduce
the complexity of our calculations. This simplification re-
duces the number of two-electron integrals wich must be
transformed to the Hartree—Fock basis.

# If the parent molecule were open-shell, both single- and
triple-excitations would also have to be included in |£).

1 Purvis and Ohrn [9] have carried out second-order ioniza-
tion potential calculations on N3 using propagator methods,
which are very closely related to our EOM approach. In con-
trast to the present study, these workers investigated all of
the ionization energies of N3, including the shake up proc-

esses, although they included only second-order terms in AE,,.
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in which ionization is accompanied by excitation of
the ion, the initial estimate for AE, should be taken
to be of the form €, + €; — €,, where the meaning
of the subscripts was discussed earlier. Such states
are not treated in our studies of the nitrogen mole-
cule and will not be discussed further here. The fact
that the Koopmans’ theorem initial guess may be
quite far (= 1 eV) from the correct AE leads one to
inquire about the possibility of the iterative procedure
converging to some ion—molecule energy difference
other than the energy which is appropriate to the
state of interest. Because the pseudo-eigenvalue prob-
lem expressed in eq. (4a) or eq. (4b) is symmetry-
diagonalized, this problem will arise only if there
exists a state whose symmetry is the same as that of
the state of interest and whose ionization energy is
close to the initial Koopmans® theorem estimate. In
this uncommon situation, a more detailed analysis
of the dependence of the solution to eq. (4a) or eq.
(4b) upon the initial estimate for AE is required; in
all of our calculations to date, such difficulties have
not arisen.

Given the quantities appearing in eq. (1-37) and
an initial approximation to AE, the matrix elements
Hj;(AE) belonging to the proper symmetry block
can be formed in a straightforward manner#, as
shown in eq. (1-37). The particular eigenvalue of
H(AE) which lies closest to the previous approxima-
tion to AE can then be used as the next approxima-
tion in forming a new H (AE) matrix. This iterative
solution of the working equations [eq. (4a) or (4b)]
of our theory, in combination with Aiken’s method
[10] for improving the rate of convergence, has been
successfully employed to generate the results pre-
sented below for the low-lying ionization energies
of the nitrogen molecule as well as analogous ion—
molecule energy differences for other interesting
species, e.g., HF, OH~, and BeH~. Let us now turn
to an analysis of our results on the low-lying ioniza-
tion potentials of N,.

## In forming the product B; nam Bj nom. only the second-
and third-order terms are kept. A fourth-order contribu-
tion, which arises from the product of the second-order
components of Bj nam and Bj pom, must not be included
in the calculation.
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Table 1
24-function Hartree—Fock wavefunction for N;. R = 2.0680 au, £= —-108.8644 au, €105 = =15.7511, )4, = -15.7475, €205 =

—1.5614, €35, = —0.7994, ey, = —0.6530, €30g = —-0.6460

o atomic orbitals log loy 204 20y 3oy m atomic orbitals Iny
Nls (5.9989) 05262 0.5274 -0.2184 -0.1799 —0.0446 N2p (1.4960) 0.4599
N2s (1.4147) 0.0009 -0.0030 0.0024 0.3606 0.3084  N2p'(3.2390) 0.1900
N2p (1.4960) -0.0012 —0.0041 0.1345 -0.1496  -0.4050  N3d (2.4370) 0.0124
N1s' (8.5276) 0.1863 0.1867 0.0181 0.0078 -0.0075

N2s' (2.2523) -0.0001 -0.0011 0.5143 0.5056 0.1234

N2p' (3.2390) 0.0034 0.0034 0.1473 —-0.1064 -0.2372

3. Results and discussion

Our calculations on the !z} - 2%, 15* — Znu.
. R s . F g
and "Z ) — “Z  ionization energies of N, were car-
ried out within a twenty-two-function Slater type
basis using a modification of Harris’ DIATOM pro-
gram to generate the necessary Hartree—Fock orbital
energies and two-electron integrals. Table 1 contains

information describing the basis set and the (restricted)

Hartree—Fock orbital energies and molecular orbital
expansion coefficients, for occupied orbitals.

For this basis, the iterative solution of eq. (4b)
for vertical (R = 2.0680 au) ionization to the “Z*
state of N; converged to an approximate ionization
energy of 15.69 eV, which is compared to the Koop-
mans’ theorem prediction of 17.58 eV and the ex-
perimental result [5,6] of 15.60 eV. Six minutes and
fifty seconds of Univac 1108 computer time was re-
quired to calculate the Hartree—Fock orbital energies
and the two-electron integrals in the Hartree—Fock
basis; an additional fifty seconds was needed to com-
pute the above ionization energy. The 22: ionization
potential generated by our method is 18.63 eV, which
compares favorably with the experimental measure-

ment [6] of 18.78 eV and is a significant improve-
ment over the Koopmans’ theorem prediction of
21.75 eV. Fifty seconds of time was required for this
calculation, and for the computation of the 2T, ioni-
zation energy of N;. Our method predicts 17.03 eV
for the 2l'Iu vertical ionization potential which is in
good agreement with the experimental result of
16.98 eV, In this case, the Koopmans’ theorem ioni-
zation energy is 17.76 eV for our basis set. In table 2
we present our predicted ionization potentials along
with those of Purvis and Ohrn [9] and the experimen-
tal results of ref. [6]. Although the basis set used in
our work is not identical to that employed by Purvis
and Ohrn, we feel that the differences between our
ionization energies and the results of ref. [9] can be
attributed primarily to the third order contributions
to H(AE) which appear in our theory but which do
not occur in the propagator method used in ref. [9].
By forming H(AE) using only the §=N terms in
the first sum in eq. (1-37), which generates our ap-
proximation to the ion—molecule Hartree—Fock ener-
gy difference, eq. (4b) yields 16.05 eV for the 2pt
ionization energy, 15.74 eV for the 2II, state, and
20.03 eV for the 22: ionization potential. These

Table 2
Summary of ionization potentials of nitrogen (in eV)
Ion state Koopmans’ theorem AEyp a) EOM D) Propagator (9] Experiment [6]
2Ly 17.58 16.05 15.69 1491 15.60
My, 17.76 15.74 17.03 17.23 16.98
35 21.75 20.03 18.63 1188 18.78

a) Our approximate ion—molecule Hartree—~Fock energy difference, which is computed by including only the =/ terms in the

first sum of eq. (1-37).
b) The present third-order EOM results.
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predictions are in very good agreement with the
Hartree—Fock energy differences obtained by Cade
etal, [11] at R =2.0132 au. The differences between
these approximate Hartree—Fock results and our
predictions obtained using the full H( represent
the contribution of electron correlation energy to
the ionization potentials. A comparison of the Koop-
mans’ theorem jonization potentials with the approxi-
mate Hartree—Fock predictions and the EOM results,
which are summarized in table 2, leads to the con-
clusion that charge redistribution effects are the most
important corrections to Koopmans’ theorem for
these specific ionization potentials. However, correla-
tion energy effects must be included if one is interested
in reaching an accuracy of better than + 1.0eV. To
be of help to experimentalists who are studying ioni-
zation processes, any theoretical predictions should
certainly be accurate to within 0.3 eV and, hopefully,
to = 0.15 eV. Thus, correlation energy must be proper-
ly treated to obtain theoretical results which are of
significance.

Based upon our experience in these calculations
on N, and with similar calculation on HF and other
molecular systems, we believe that a further increase
in the size of our basis set would not alter the above
ionization energies by more than = 0.05 eV. Further-
more, we feel that, for calculations in which a suf-
ficiently large atomic orbital basis has been employed,
the limitations which are inherent to the approxima-
tions used in our approach give rise to a probable
precision of £ 0.15 eV. As can be seen from table 2,
our calculated ionization potentials agree with the
experimental measurements of ref. [6] to within the
estimated limits of our theory. The results of our
calculations on HF which have been reported else-
where [3], also indicate that our method is capable
of yielding ion—molecule energy differences to within
0.15 eV. Although such uncertainties are much larger
than the limits of reproducibility which are common
to photoionization and photoelectron measurements
(£ 0.01 eV), the difficulties associated with inter-
preting experimental threshold dataT makes the ex-

t For an excellent discussion of the techniques used to decon-
volute experimental photoionization data, see ref. [12].

300

CHEMICAL PHYSICS LETTERS

15 May 1974

traction of a vertical ion—molecule electronic energy
difference from such data a procedure whose preci-
sion limits are often of the order of £ 0.1 eV. Thus,
the results of our calculations on molecules and ions
of chemical importance should be of much use and
interest to experimentalists who are studying photo-
ionization, photodetachment, and photoelectron
spectroscopy.
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