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Fuli configuration-interaction calculations have beto carried out using mott than one-billion determinants. Such large eigen-
value calculations.are possible because of advances in the direct CI technology and in the iterative technique used to solve the

eigenvalue equations. The CPU time per direct CI iteration varies approJlimately linearly with the dimension of the matrix erom
one million to mOtt than one billion. One direct CI iteration is found to takt about 1.2-1.4 min per million determinants on an

IBM 3090/VF.

1. Introduction

In ab initio computational chemistry [l ], the so-
lution of the time-independent Schr6dinger equa-
lian for electronic states of atoms and molecules is
expressed in terms of a double basis-set expansion.
The one-particie molecular orbitais (MOs) are ex-
panded in terms of a basis of atomie arbita/s (AOs)
and the n-particie wave functions are expressed in
terms of a determinant basis constructed as antisym-
metric products of molecular orbitais.

In principle, the exact sa/wian to the Schr6dinger
equation tan be obtained if the basis of AOs is com-
piele and if aUdeterminants that tan be constructed
by occupying the MOs in aU possible manners are
considered. Soch calculations are, of course, impos-
sible. However, the variational principle provides a
framework in which one tan approach such exact so-
lutions in a systematic manner.

In actual calculations, one first choses a set of N
one-electron functions that tan represent the one- and

two-particIe densities in an efficient m~nner. The
variationally optimal solution in this one-electron
basis is determined by solving the n-particie config-
uration-interaction (CI) matrix eigenva/ue equatian
in the space of all determinants that tan be formed
within this basis. The resultant solutions are termed
full eonfiguration-interaction (FCI) solutions within
the finite AO basis. The only error in a FCI calcu-
lation originates erom the use of a finite one-electron
basis. The sile of the FCI eigenvalue problem is ap-
proximately (N!/(n/2)! (N-n/2)!)2. Although the
number of determinants tan be somewhat redueed
using spatial symmetry, the faetorial growth with the
number of orbitais N and the number of electrons n
prohibits the use of FCI calculations for systems with
many orbltals and eleetrons. In most praetical ap-
plieations, approximations are introduced by im-
posing ehemically or physieally motivated eon-
straints and funetion-spaee truncations on the
treatment of the n-particie basis.

Ab initio electronie-structure calculations are
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therefore scen to sufler erom errors due to truncation
in the one-particie space and in the n-particie space.
It is important to evaluate the independent contri-
butions marle by these twa sources of erraT because
we need to know how much eflort should be focused
on improving the one- and n-particie function-space
approximations. The purpose of FCI calculations is
to remove al! erraT erom the treatment of the n-par-
ticie space. In this way the accuracy of various one-
particie AO bases caDbe assessed.

Essentially all models that have been developed to
date utilize the same finite AO basis expansions. They
differ primarily in how they treat the n-electron de-
terminant aspect of the expansion. For this reason,
it is especially relevant to make available benchmark
data which (i) utilize AO bases that are represent-
ative ofthe present stale ofthe aft (which certainly
changes as years pass) and (ii) which eliminate ap-
proximation of the n-electron space by including al!
determinants in the calculation. Such benchmark
data are obtained by carrying out FCI calculations
within a given atomie basis. These data constitute
essential information for the calibration of approx-
imate computational methods.

It is prohibitive to realize such benchmark results
on large numbers of species. However, it is impor-
tant that such calculations be penormed on as maDY
representative atoms and molecules as possible and
that the scale of these benchmark calculations be
pushed to larger and larger sile aSthe best available
computational power continues to grow so these
benchmarks ran relate to larger classes of molecules.
An order-of-magnitude advance in such benchmarks
will be demonstrated in this paper.

The importance of and potential for FCI bench-
marks were emphasized in 1981 by Saxe et al. [2]
who solved the first one-million-dimension FCI ei-
genvalue equation. In 1984 Knowles and Handy [3]
developed a new approach to solving the FCI prob-
lem that allowed Bauschlicher et al. [4] to carry out
a new-generation sequence of benchmark calcula-
tions having matrix dimensions up to 28 miHion [5].
These FCI benchmark calculations resulted in a much
maTethorough understanding ofthe correlation con-
tributions to energies and properties. Although
somewhat larger atomie basis set were considered in
these studies, it remained difficult to use realistic
present-day bases in such FCI studies. Benchmark
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calculations have also been carried out by Bausch-
licher at al. [4] on molecular properties other than
the energy. Because even larger basis sets are re-
quired for deseribing such molecular properties, the
relevance of these FCI results is restricted to even
smaller atoms and molecules when viewed as bench-
marks for properties. Harrison and Zarrabian [6]
have reported timings for a 77-miHion-dimension
FCI calculation, although no energies, convergence
information, or other data was given. Recently,
Knowles and Handy [7] have reported controlled
approximations to FCI calculations with 210-mil-
lian determinants using an algorithm of Knowles [8]
where the sparsity of the solution vector is exploited
to redlice memory and desk requirements and to
speed up the timing ofthe linear transformation. AI-
though the calculations prp~znted by Knowles and
Handy [7] are significantly smaller than the largest
presented herc, future developments in FCI calcu-
lations have to take directions similar to the ones
proposed by Knowles [8]. The algorithmic advances
presented herc may help in improving the conver-
genre characteristics of algorithms where the spar-
sity of the solution vector is used explicitly. In the
reported calculations of Knowles and Handy [7],
energies have been converged to 10-4 au. .

In this paper we use a newly developed formalism
of Olsen et al. [9] to carry out FCI benchmark cal-
culations on one-billion-dimensional eigenvalue
problems. In so doing we make available, for a large
family of atoms and smali molecules, the capability
of correlating maTe electrons and treating consider-
ably maTe realistic atomie basis sets. These atomie
basis sets are, in maDYcases, also Iargeenough to de-
scribe molecular properties other than the energy.
aur benchmark results include total energies for the
Ne and Mg atom.

FCI eigenvalue equations are solved using itera-
tive techniques. For this purpose, we have used a
technique developed by Olsen [10] which is an in-
verse-iteration-based generalization ofthe Oavidson
algorithm [11 ]. The technique is slabIe, rapidly con-
vergent, and bas a significantly lower disk-space re-
quirement than the conventional technique it re-
places. In the linear-transformation step, which is the
central component of aH iterative eigenvalue rou-
tines, the Hamiltonian matrix H is multiplied by a
trial vector C. In OUTmethod, this step is carried out
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using the new approach of Olsen et al. [9] which ex-
ploits the non-banded sparseness of H and compute~
anty non-zero quantities. I

The one-billion~determinant calculation was car-
ried out using Doohpoint-group symmetry taking ad-
vantages ofthe simplification which occurs for a sin-
gle stale with M/=O. A similar sile calculation may
be carried out on a system with lawet point-group
symmetry with the same memory requirements if the
FCI space is treated as a restricted active subspace
(RAS) composed of several sub-blocks [9]. Each
su~block caDthen be treated in a similar way as the
symmetry blocks of the present implementation (see
ref. [9]). The larger number of symmetry unique
coefficients puls additional requirements to disk
space ifthe sparsity ofthe solutionovector is not used
explicitly.

In section 2 we describe the algorithm we have used
to find the eigensolutions of the FCI eigenvalue
equation. We discuss in section 2.1 the inverse~it-
eration generalisation of the Oavidson algorithm. In
section 2.2, we discuss the linear transformation in-
volving a multiplication of the Hami1tonian matrix
on a trial vector, and in section 2.3 we discuss the
problems pertinent to large-scale ealculations. In sec-
tion 3, we report the results of FCI calculations on
the Ne and Mg atoms. Section 4 contains OUteon-
cluding remarks.

2. Theory

In section 2.1 we summarize the iterative tech-
nique of Olsen [II] which we have used to find the
Iowesteigensolutions ofthe FCI eigenvalue equation

HC=EC. (I)

The basic features of the linear transformation de-
seribed by Olsen et al. [9]

tT=HC (2)

are summarized in section 2.2, and in section 2.3,
the specjal problems related to large scale imple-
mentation are considered.

\
'~0.°0
~ o

2.1. The inverse-iteration generalized Davidson
technique

FollowingOlsen [10] Iet us begin by assuming that
C(O)is the current iteration's approximation to the
eigenvector, and let us define its energy as

E(O)= (C(O)THC(O» . (3)

We next divide H joto a zeroth-order term H(O)and
a correction term H( 1)

H=H(O)+H(I) ,

and write the FCI eigenvalue equation as

(4)

(H(O)+H(I»(C(O)+C(I»

= (E(O)+E(I»(C(O)+C(I» , (5)

whereC(I) andE(I) arecorrection termsto C(O) and

ECO),respectively.
Requiring C(I) to be orthogonal to C(O) and ne-

gleeting terms in eq. (5) which are quadratic in the
correction term s, one obtains:

C (I) = - (HCO)-E(O»-I

x[(H-E(O»CCO)-E(I)C(O)j , (6)

where

C(O)T(H(O)-E(O» -.I(H-E(O»CCO)
E(I)-

- CCO)T(HCO)-ECO» -IC(O) .
(7) ,

The first term on the right-hand side of eq. (6) gives,
after the C(O)component is projected out, the cor-
rection vector of the conventional Oavidson algo-
rithm [ I I ]. In the algorithm implied by eq. (6), such
explicit projection is unnecessary because C( I) is au-
tomatically orthogonal to C(O).The correction vec-
tor in eq. (6) caDaltematively be derived as an ap-
proximate Newton-Raphson iteration [10].

To understand the need for improving the con-
vergence properties of the Oavidson algorithm, con-
sider the limit in which the matrix H(O) approaches
the fuli H1natrix. The first term on the right side of
eq. (6) then gives C( I) =- C(O); that is, the correc-
lian vector is directed along the previous iteration's
C(O)vector. This clearly limits this algorithm's abit-
ily to introduce independent character joto the trial
vector. In eontrast, in this same limit, eq. (6) yields
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(HIO)-EIO» -ICIO)
CII)- CIO)+ ( 8 )

- - CIO)T(HIO)-EIO» -ICIO)'

Because ibis CO) is rigorously orthogonal to Clij), it
retains the potential to introduce new character joto
the trial vector in each iteration. Ea.. (6) gives the
step of an inverse-iteration process In which the Clij)
component is projected out [12). Because the step
is automatically orthogonal to Clij), improved con-
vergencejs obtained with the preconditioning algo-
rithm given in eq. (6). A more detailed analysis of
the convergence charactenstics of the algonthm will
be reported in ref. [1O). In practice, we use a pre-
conditioning in terms of a matrix HIO) consisting of
a block of the Hamiltonian matnx formed within a
determinant space defined by the p lowest diagonal
elements of H. Outside ibis block, we use the diag-
onal elements oCH to define HIO). The dimension p
is set equal to 400 in the applications presented in
ibis paper.

In tbe conventional algorithm, the sequence of
vectors {vd generated as correction CI I) vectors are
used, together with Clij), to define a "reduced-space"
and the projection of H anto ibis space is computed
to find an optimal solution vector. To implement
such an approach in large-matnx applications such
as those considered here places stringent demands
on disk storage because severallong vectors (i.e. the
{vd) need to be stored. In the algorithm used here,
the above reduced-space is not used. Instead, each
time a correction vector C<I) is formed, it is added
to Clij) and the result is used as the next Clij) (after
renormalization). This process bas disk require-
tnents that are substantially less than the conven-
tional algonthm. The algorithm is converged when
the norm of the residual is smalier than a prescnbed
threshold; the accuracy of the total energy is then
proportional to the square of ibis residual.

2.2. Treatment oJthe linear transJormations

The effect oj the HamUtonian operator acting on a
determinant. In ibis section we follow closely the
derivation of Olsen et al. [9) and refer to that ref-
erence for further details.

Each ofthe determinants {J}used to define the HIJ
elements of H consists of a produet of a so-called al-
pha-string and a beta-stnng [13)
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Ia (J,,)p(Jp» =a(J,,)p(Jp) Ivac) . (9)

An alpha-stnng a(J,,) (beta-stnngp(/p», is an or-
dered produet of n", (np), operators that create oc-
cupancy of molecular spin-orbitals with alpha (beta)
spin [II). The addressing scheme for the stnngs is
desen bed in detail in ref. [9).

Within the stnng basis, a tnal vector C caD be
wntten as

1O)= I C(I", Ip)Ia (/,,)P(lp» .
lalfJ

(1O)

Note that the trial vector C here is wntten in matnx
form. The result of acting with the non-relativistic
Hamiltonian H on 1O) is represented in the stnng
basis by the set ofnumbers u(/", Ip):

u(l". Ip) = I <p(Jp)a(J"J IHla(l,,)p(/p»
JaJfJ

x C(J", Jp) .
Insertion of H joto eq. (11) gives [9)

(11)

u(J", Ip) =UI (J", Ip) +U2(J", Ip) + U3(/" , Ip) ,
(12)

where

ul(/",Ip)= I I <P(Jp)IEf/IP(/p»
JfJ kI

x(hkl-! ~ (kjlj/) )C(/" , Jp)

+~ I I <P(Jp)IECEtJIP(lp»
JfJ ijkl

x (ijlk/)C(J". Ip) ,

U2(J",lP)= I I <a(J,,)IE~la(J,,»
Ja ki

( 13a)

X(hkl- l ~ (kjlj/) )C(J" , Ip)

+~ I I <a(J,,)IEijE~la(/,,»
Ja ijkl

x (ijjk/)C(J", Ip) ,

U3(J",lP)= I I <P(Jp)IECIP(Jp»
JaJfJ ijkl

(13b)

X <a(J,,) IE~/la(/,,» (ij1k/)C(J",Jp).

( 13c)
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-1,uand Ekl is a generator of the linear group which de-
fines the string excitation operators

Ekl=E'f/+Efl' (14)

For states which have Ms= O, the coefficient ma-
trix obeys [9]

C(la, Ip) = ( -I )SC(lp, la) , (15)

which implies that

CT2(1a,Ip) = (-I )SCTI(Ip, la)

CT3(1a,Ip) = (-I )SCT3(1P,la) .

( 16a)

( 16b)

Eq. (16a) eliminates the calculation of CT2and eq.
( 16b) imposes the restriction la ~ Ip on the evalua-
ilon of CT3'As a resuIt, the computer operation count
is reduced by a factor oftwo compared to the Msi'O
case.

A vectorizable algorithm for setting up the 0'(vec-
tor in eq. (l3a) uses the fact that the HamiItonian
matrix elements are independent of la and is de-
scribed in detali in ref. [9]. The second part of the
a vector, 0'2of eq. (13b), caD be constructed by an
algorithmwhichis similarto the one fora l' Thethird
part of the a vector, 0'3of eq. (l3c), is less trivial to
vectorize. A gather operation and a seatter operation
caDbe introduced to avoid use of indirect addressing
in the time-consuming part ofthe algorithm. The re-
suIt is outlined below:

Loop over kI
set up L(I), R(I), and sgn(l) defined by
la[L(I) J> =E'f/la[R(I) J> sgn(l)
C' (I, Jp)=C(L(I), Jp] sgn(l); vectorized
gathering loop over Ip
loop over excitations E~ erom IP(lp) >

IP(Jp»=sgn (ij)E~IP(lp»
F(Jp) =F(Jp) + sgn(ij) (ijl kI)

end of loop over E~
V(I) =LJ, F(Jp) C' (I, Jp); vectorized over I
CT3[R(I),Ip] =CT3[R(I), Ip] + V(I); vectorized
seattering
end of loop over Ip

end of loop over kI. ( 11)

The construction of V( l) erom F and C' is usually
the most operation-intensive part of the construc-
ilon of 0'3'A comparison with the computer opera-

',~~

1,g O,g -1,g 1,u O,U

1,g

O,g

-1,g

1,u ~O,U

-1,u

Fig. I. The structure of the C(/a, I,) and Q(/a, I,) matrices for
a Ira stale. The columns and rows label the symmetries of the
alpha- and beta-strings. The symmetry labeis are gerade (g) and
ungerade (u) and M, is restricted to I, O, - I. The emptyblocks
are determined by symmetry for a M,=O stale. If the stale, in
addition, has M,=O, only the squared triangles are symmetry
unique.

ilon count of previous FCI schemes is given in ref.
[9 ].

The derivation caD be modified also to incorpo-
rate spatial symmetries. In our program, we have im-
plemented Doohpoint-group symmetry. The strings
with a given MI value are stored together. The strings
with MI i' Oare ordered and scaled so that CTyreflec-
ilon of string I with MI=MI gives string I with
MI= -Mi. This will be used below to identify the
symmetry-unique coefficients for a MI=O stale. The
CI coefficient matrix C(la, Ip), and the sigma vector
CT(la,Ip) have non-vanishing elements for blocks
where the sum ofthe MI values for the alpha and beta
strings are zero. In fig. I we have shown, for the sim-
ple case of a gerade stale with MI equal to zero and
where the MI values of the strings are restricted to
+ I, Oand - I, the blocks that are ditTerent erom zero.
This block structure will be explored helowo More
details about the implementation of Doohsymmetry
caD be found in ref. [14].

,,'
2.3. Large-scale calculalians

Memary and disk requiremenls. In large-scale im-
plementations of Duralgorithm, it is not possible to
have all non-vanishing blocks of the coefficient ma-
trix C and the sigma vector a in main memory.
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Without degredation in performance, the calculation
caDbe organized so that only one symmetry block of
the sigma vector is needed at aDYtime. The contri-
butions to a sigma vector block &;omthe various
blocks of the C matrix are completed, and written to
disk before the next sigma block is processed.

The algorithm caDbe further modified to require
also only one symmetry block of the coefficient ma-
trix C in memory at aDYtime. This requiies tbat the
coefficient matrix is processed block-by-block for
each sigma block (so save input/output for as maDY
sigma blocks as caD be in main memory). The net
result is that less main memory is required but at the
expense ofincreased input/output (I/O). The max-
imum amount of necessary main memory is given in
terms of the maximum dimension of one symmetry
block of the coefficient matrix and the space for the
corresponding block of the sigma vector, plus the
memóry required to stare the gathered-coefficient
matrix C'. In OUTcalculations the C' matrix is never
larger than half the sile of a symmetry block of the
coefficient matrix.

The storage requirements caDbe diminished even
further for gerade states with M,=O and/oT Ms=O
by keeping only the symmetry-unique coefficients on
disk. For Ms= O states, the fact that the coefficient
matrix satisfies the symmetry relation in eq. (15)
reduces the computer operation count by a factor of
twa as described in eq. (16). The symmetry relation
mayaIso be used to stare the symmetry blocks of the
C and u arrays that are at or below the diagonal (see
fig. l). This reduces the requirement for input/out-
pul by nearly a factor of twa.

For M,=O states, each block ofthe coefficient ma-
trix bas the additional symmetry .

C(la, Ip) =AC(lp, la) , (18)

whereA is one for a I + stale and minus one for a
I- stale. This symmetry relation mayaIso be used
to reduce the operation count by twa. For a gerade
stale with Ms=O and M,=O, all symmetry blocks of
the C and u arrays caDbe determined Eromthe lower
triangles of the symmetry blocks below the diagonal.
For example, for the simple case considered in fig.
I, Ms=O symmetry eliminates, for the gerade-ger-
ade block, the need to stare the (1, g; - l, g) sym-
metry block and the upper half of the (O, g; O, g)
symmetry blockoThe M,= Osymmetry further elim-
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inates the need for storing the upper half of the ( - 1,
g; l, g) blocko

The main memory requirement for a gerade Ms=O,
M,=O stale is therefore a matrix of half the maxi-
mum dimension of one symmetry block for the coef-
ficient matrix and a similar matrix for the u matrix.
As the coefficient matrix is read in Eromdisk, it is
expanded to form a fuli square matrix to improve
vectorization and to reduce paging. In addition,
memory is required for the coefficient matrix C' (see
eq. (17». In fig. 2 we have sketched how the central
part (U3) of the linear transformation is imple-
mented in OUTcomputer program. The lataj require-
ment ofmain memory is ~matrices ofthe maximum
dimension of one symmetry block of the coefficient
matrix, plus storage for the C' matrix plus a minor
amount originating Eromstoring string information,
etc. To iIIustrate the space requirements, we report
the salient features of OUTone-billion-determinant
calculation described later. The largest symmetry
block contains 100280196 elements and the largest
C' matrix contains 19647468 elements. Together
with string information, etc., ibis adds up to atotal
memory of 197679895 double-precision words. Since
the arrays, in general, are referenced sequentially, a
large part of ibis memory only needs to be page-ad-
dressable extended storage. Aliofthe calculations re-
ported here were done with 64 Mbyte of directly ad-
dressable central storage. The symmetry-unique parts
of the coefficient and sigma matrices are stored

o

/1'~"I=v

H

Fig. 2. A diagrammatic iIIustration ofthe construction ofthe 173

part ofthe Jinear transformation in eq. (12) for a gerade Ms=O

and Mr= Ostale. The coefficients C aft read in by symmetl'y bJocks
and expanded to square form. They are then gathered together
with part ofthe eJements ofthe Hamiltonian matrix to form the

matnx C' which then arf multiplied on the sparse vector F. The

resulting vector VeJements aft scattered into one symmetry block
ofthe a vector.
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blockwise on disk. The total length of a symmetry
matrix for the one-billion-dimensional calculation
was 303845939.

In the implementation of the inverse-iteration
generalized Davidson technique, the C matrix, the u
matrix, and the block-diagonal Hamiltonian matrix
H(O) wece read from disk, in symmetry blocks re-
quiring at no stage moce than l symmetry blocks in
memory. The construction of the correction vector
C(l) required, in latal, 10 reads or writes ofthe sym-
metry-unique part of one of these vectors. In total,
we thus have four vectors on disk of which one is a
scratch file. One file tan be eliminated by recalcu-
lating H(O) in each iteration.

3. Results

In labie I we report pertinent data for FCI cal-
culations on Ne and Mg. These data include the
number of active orbitais and electrons and the num-
ber of determinants in each calculation. The data algO
include the iteration limes for one direct CI and the
memory requirements of each calculation. More de-
tails are given below for the individual calculations.

The new generation of benchmark calculations of
Bauschlicher et al. [4] was initiated with FCI cal-
culations of the ground-state total energy of the Ne
atom [15]. The 1s orbital was frozen to a canonical
Hartree-Fock orbital in these calculations and the
largest calculation used a contracted [5s3p2d] basis
with Dunning's [5s3p] contraetion [16] of the Hu-
zinaga (9s5p) primitive basis set [17] and with ex-
ponents of 4.5 and 1.3 for the twa primitive d fune-

Table I
Pertinentdata for the reportedFCIcalculations

tions. The largest calculation [15] was carried out in
D2h point-group symmetry and gave atotal of
9805897 determinants. It took 22.8 min per direet
CI iteration on the NAS CRAY2 and gave a total en-
ergy - 128.768877 au. We carried out the same cal-
culation in Doohspatial symmetry giving 5502533
determinants. Our calculation took 6.0 min per it-
eration on the IBM 3090/VF at the Utah Supercom-
poler Institute; thus, aur calculation runs moce than
three limes faster than the one reported by Bauseh-
licher et al., and less than 16Mbyte of central storage
was necessary.

.As an example of the faetorial growth in the num-
ber of determinants as the basis is extended, Bauseh-
licher et al. reported [15] that the addition of a sin-
gle f-type basis function to their basis gives
approximately 20-mi1lion configuration stale func-
tions in D2hsymmetry. We carried out this particular
calculation using an f function with exponent 2.5 in
Dooh symmetry (see labie I). This produced
41201651 determinants and took 46.5 min per di-
reet CI iteration to yield atotal energy of
-128.794567 au.

To obtain a moce accurate total energy, it was rea-
sonable to extend the basis of Bauschlicher et al. with
an f function. However to describe excited states and
polarizabilities, it is moce important to add further
difTusenessto the basis than to add the ffunction. To
pursue this end, we used Dunning's [4s2p] contrac-
lian [16] ofthe Huzinaga (9s5p ) primitive set [17]
and added twa difTuses functions with exponents of ,

0.11 and 0.03, twa difTuse p functions with expo-
nents of 0.11 and 0.03, and three d functions with
exponents of 2.15, 0.7, and 0.2. This basis is large

Atom Ne Ne Mg

lO
4s3p2dlf
1016018176

303845939
2538603520
1450
64
1600

active electrons

active orbitaIs

determinants in D..h

combinations in D..h

determinants in D2h

iteration time (min)

storage (Mbyte)

ext. storage (Mbyte)

8
4s3p2dlf
41201651
12533335
93896448
47
64
O

8
5s4p3d
86776694
27359~50
161650624
107
64
100

469
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Table2
Distribution ofCr coefficients in the 86776694-determinant calculation on Ne

enough to give a reasonable description ofthe ground
stale, the lowest excited states of IS, 3S, Ip and 3p
symmetry, and ofthe polarizability. The number of
determinants in Dooh symmetry for ibis basis is
86776~94 (see table I). Each direct CI iteration took
106.5 min. and the total energy was -128.725161
au. These calculations thus demonstrate the feasi-
bility of carrying out benchmark studies using basis
sets that provide realistic descriptions of a multitude
of physical properties; the results of OUTproperty cal-
culations will be reported elsewhere [18).

In tables 2 and 3 same characteristics are given for
the 86776694 determinant wave function. The wave
function was converged to a residual norm 10-4. The
distribution ofthe symmetry-unique coefficients with
norms in intervals erom 1-10-1 to 10-7-10-8 are
given in labIe 2. It is scen that the 9021 symmetry-
unique coefficients that are larger than 10-4 spaD
99.990807% of the wave function wbiJe the 74361
symmetry-unique coefficients larger than lO-s spaD
99.999977% of the wave function. The number of
symmetry-unique coefficients with values above a
given threshold thus increases slowlywhen the mag-
nitude ofthe threshold becomes smalIer. The distri-
bulion of the coefficients in table 2 strongly suggests
that future developments in FCI calculations should
use the sparsity of the solution vector as suggested by
Knowles and Handy [7,8). In labIe 3 we report the
weights for the various excitation levels erom the
Hartree-Fock determinant. As expected the doubly
excitations give the major contributions. It is worth
noticing that the contributions erom the singles, tri-
pIes and quadruples alI are of the same magnitude.

To extend significantly the stale of the aft in FCI
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Table3
The weight of the excitation levels from the Hartree-Fock stale
in the 86776694-determinant calculation on Ne

Excitation level Weights

o
1
2
3
4
5
6
7
8

0.9644945073

0.0009804929

0.0336865893
0.0003662339
0.0004517826

0.0000185090

0.0000017447

0.0000001393
0.OOOOOOOO11

benchmark calculations, we performed a FCI study
on the X IS ground stale of the Mg atom. We used
a contracted [5s3p2dlf) atomie orbital basis. This
basis consists of McLean and Chandler's [19) con-
tracted [53) sp basis to which we added twa uncon-
tracted d functions with exponents of 3.5 and 0.16
and an uncontracted f function with an exponent of
4.5. The exponents of the tighter d function and the
f function were chosen so these orbitaIs would have
radial extents close to those of the 2s and 2p SCF
orbitaIs of Mg. The mate diffuse d functlon's ex-
ponent was chosen to this orbital would have a radial
extent close to that of the SCF 3s orbital. The Is or-
bital was frozen with the expansion coefficients III.
The frozen 1sorbital differs sIightly erom a canon-

II Ordering the sorbitaIs with decreasing maxima1 exponent, the
Is orbita! has the coefficients (0.593091, 0.545060,
-0.193317,0.017461,0.027162).

Range Numberof Weights Accumulated weights

symmeunique coefficients

10-1 to 1 1 0.96449451 0.96449451

10-2 to 10-1 88 0.26294204 X 10-1 0.99078871
10-3 to 10-2 535 0.85476007 X 10-2 0.99933631
10-4 to 10-3 8397 0.57235998 Xl 0-3 0.99990867
iO-' to 10-4 65340 0.87070165 X 10-4 0.99999574

10-6 to lO-s 344550 OA0254oo7X lO-s 0.99999977

10-7 to 10-6 1561430 0.22545632 X 10-6 0.99999999

10-1 to 10-7 3991606 0.67115194XI0-1 1 . OOOOOOOO
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Tab1e 4

Convergence characteristics of the 1016018176-determinant cal-
culation for the X IS stateofMg (the SCF energy is -199.585214
au)

kal Hartree-Fock Is orbita!.
The number of determinants in Doohsymmetry is

1016018176, and each direct CI iteration required
1450 min of CPU time on the Utah IBM 3090 (see
labIe I). We have carried out three such direct CI
iterations, and we report in labIe 4 the convergence
characteristics of these iterations. The accuracy of
the total energy is proportional to the square of the
residual norm multiplied with an error constant that
we, for CI calculations on states of this type, always
have found to be smaller than 0.1. The error con-
stants which are obtained in the corresponding sin-
gle-double calculation (total energy - 199.72140I
au) indicate an accuracy of 0.0002 au in the total
energy of iteration 3. Two or three additional iter-
ations are needed to converge the energy to 10-6 au.
Although each CI iteration needed 1450 min ofCPU
time, approximately one week of "wall time" elapsed
per iteration because of paging among the page-ad-
dressable extended storage and the central storage. If
we bad bad access to more than 64 Mbyte of central
storage, we would have been able to exploit maTeef-
ficiently the CPU; there simply was not enough cen-
tral storage to allow us to do so when the blocks of
the C matrix that needed to be handled contained
100-million double-precision words. In the smaller
86.8-million-dimension FCI calculation, where we
also bad 64 Mbyte of directly addressable main
memory available, the corresponding block of the C
matrix was of dimension 11.4 million, and heRcethe
"wall" and CPU limes were nearly identical. Never-
theless, even within the 64 Mbyte allocated to OUT
calculation, we have been able to demonstrate that
eigenvalue problems involving large randomly sparse
matrices of dimension one bi/lion are feasible using
OUTalgorithms.

It is interesting to Dole that OUTCPU limes, for a

rew million to over one-billion determinants, are ap-
proximately proportional to the number of deter-
minants. The number of operations increases faster
than the number of determinants [9], but this in-
crease is almost entirely offset by the increased vec-
tor lengths.

4. Discussion

We have shown that FCI eigenvalue calculations
caDbe carried out using more than one-bi/lionde-
terminants. Such large matrix eigenvalue calcula-
tions are now possible because ofthe advances in the
direct CI technology described here, which exploit
the non-banded sparseness of the matrix, as well as
improvements in the algorithm used to converge
these iterative calculations. We make use of Dooh
symmetry wbite previous FCI benchmark calcula-
tions were able to use at most D2hsymmetry; this al-
lows us to consider approximately half the number
of determinants as in past work.

We find that the CPU time per direct CI iteration
varies approximately linearly with the dimension of
the matrix for dimensions erom one million to maTe
than one billion. The time required for one direct CI
iteration is found to be approximately 1.2to 1.4 min
per million determinants. Previous FCI .benchmark
calculations [15] report needing approxirnately 2.3
min per million determinants on a Cray 2 computer,
which bas a cycle time of one third the IBM 3090s. /

The memory requirement in the current imple-
mentation is a number of double-precision records
about equal to one fifth of the number of determi-
nants. The disk requirement is a number of double-
precision words about equal to the number of de-
terminants. FCI calculations with one-billion deter-
minants tan thus oRly be carried out on supercom-
puters with large memory, whereas calculations in
the range of 100-million determinants tan be carried
out straightforwardly on most minisupercomputers.

Prior to this work, the largest FCI benchmark cal-
culations 9tlculating and storing the complete vec-
tors treated 8 electrons distributed among 23 orbit-
aIs, yielding 28-million determinants. We have been
able to handle 10 electrons in 30 orbitaIs with more
than 1016-million determinants, and have thus ush-
ered in a new era in FCI benchmarks where "exact"
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Iteration number Tota1 energy (au) Residual norm

I -199.612811 1.5419
2 -199.724369 0.2278
3 -199.726121 0.0681
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energies tan be obtained for mOleelectrons and mOle
realistic atomie-orbital bases. As a result, a mOle
thorough and detailed understanding ofthe electron-
correlation problem is at band.

",
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