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Full configuration-interaction calculations have been carried out using more than one-billion determinants. Such large eigen-
value calculations.are possible because of advances in the direct CI technology and in the iterative technique used to solve the
eigenvalue equations. The CPU time per direct CI iteration varies approximately linearly with the dimension of the matrix from
one million to more than one billion. One direct CI iteration is found to take about 1.2-1.4 min per million determinants on an

IBM 3090/VF.

1. Introduction

In ab initio computational chemistry [1], the so-
lution of the time-independent Schriédinger equa-
tion for electronic states of atoms and molecules is
expressed in terms of a double basis-set expansion.
The one-particle molecular orbitals (MOs) are ex-
panded in terms of a basis of atomic orbitals (AOs)
and the n-particle wave functions are expressed in
terms of a determinant basis constructed as antisym-
metric products of molecular orbitals.

In principle, the exact solution to the Schrédinger
equation can be obtained if the basis of AOs is com-
plete and if all determinants that can be constructed
by occupying the MOs in all possible manners are
considered. Such calculations are, of course, impos-
sible. However, the variational principle provides a
framework in which one can approach such exact so-
lutions in a systematic manner.

In actual calculations, one first choses a set of N
one-electron functions that can represent the one- and

two-particle densities in an efficient manner. The
variationally optimal solution in this one-electron
basis is determined by solving the n-particle config-
uration-interaction (CI) matrix eigenvalue equation
in the space of a/l determinants that can be formed
within this basis. The resultant solutions are termed
full configuration-interaction (FCI) solutions within
the finite AO basis. The only error in a FCI calcu-
lation originates from the use of a finite one-electron
basis. The size of the FCI eigenvalue problem is ap-
proximately (N/(n/2)! (N—n/2)!)% Although the
number of determinants can be somewhat reduced
using spatial symmetry, the factorial growth with the
number of orbitals N and the number of electrons r
prohibits the use of FCI calculations for systems with
many orbNals and electrons. In most practical ap-
plications, approximations are introduced by im-
posing chemically or physically motivated con-
straints and function-space truncations on the
treatment of the n-particle basis.

Ab initio electronic-structure calculations are

0009-2614/90/$ 03.50 © Elsevier Science Publishers B.V. (North-Holland ) 463



Volume 169, number 6

therefore seen to suffer from errors due to truncation
in the one-particle space and in the n-particle space.
It is important to evaluate the independent contri-
butions made by these two sources of error because
we need to know how much effort should be focused
on improving the one- and n-particle hmction—Space
approximations. The purpose of FCI calculations is
to remove all error from the treatment of the n-par-
ticle space. In this way the accuracy of various one-
particle AO bases can be assessed.

Essentially all models that have been developed to
date utilize the same finite AO basis expansions. They
differ primarily in how they treat the n-electron de-
terminant aspect of the expansion. For this reason,
it is especially relevant to make available benchmark
data which (i) utilize AO bases that are represent-
ative of the present state of the art (which certainly
changes as years pass) and (ii) which eliminate ap-
proximation of the n-electron space by including all
determinants in the calculation. Such benchmark
data are obtained by carrying out FCI calculations
within a given atomic basis. These data constitute
essential information for the calibration of approx-
imate computational methods.

It is prohibitive to realize such benchmark results
on large numbers of species. However, it is impor-
tant that such calculations be performed on as many
representative atoms and molecules as possible and
that the scale of these benchmark calculations be
pushed to larger and larger size as the best available
computational power continues to grow so these
benchmarks can relate to larger classes of molecules.
An order-of-magnitude advance in such benchmarks
will be demonstrated in this paper.

The importance of and potential for FCI bench-
marks were emphasized in 1981 by Saxe et al. [2]
who solved the first one-million-dimension FCI ei-
genvalue equation. In 1984 Knowles and Handy [3]
developed a new approach to solving the FCI prob-
lem that allowed Bauschlicher et al. [4] to carry out
a new-generation sequence of benchmark calcula-
tions having matrix dimensions up to 28 million [5].
These FCI benchmark calculations resulted in a much
more thorough understanding of the correlation con-
tributions to energies and properties. Although
somewhat larger atomic basis set were considered in
these studies, it remained difficult to use realistic
present-day bases in such FCI studies. Benchmark
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calculations have also been carried out by Bausch-
licher at al. [4] on molecular properties other than
the energy. Because even larger basis sets are re-
quired for describing such molecular properties, the
relevance of these FCI results is restricted to even
smaller atoms and molecules when viewed as bench-
marks for properties. Harrison and Zarrabian [6]
have reported timings for a 77-million-dimension
FCI calculation, although no energies, convergence
information, or other data was given. Recently,
Knowles and Handy [7] have reported controlled
approximations to FCI calculations with 210-mil-
lion determinants using an algorithm of Knowles [8]
where the sparsity of the solution vector is exploited
to reduce memory and desk requirements and to
speed up the timing of the linear transformation. Al-
though the calculations pre<znted by Knowles and
Handy [7] are significantly smaller than the largest
presented here, future developments in FCI calcu-
lations have 10 take directions similar to the ones
proposed by Knowles [ 8]. The algorithmic advances
presented here may help in improving the conver-
gence characteristics of algorithms where the spar-
sity of the solution vector is used explicitly. In the
reported calculations of Knowles and Handy [7],
energies have been converged to 10~ au.

In this paper we use a newly developed formalism
of Olsen et al. [9] 1o carry out FCI benchmark cal-
culations on one-billion-dimensional eigenvalue
problems. In so doing we make available, for a large
family of atoms and small molecules, the capability
of correlating more electrons and treating consider-
ably more realistic atomic basis sets. These atomic
basis sets are, in many cases, also large enough to de-
scribe molecular properties other than the energy.
Our benchmark results include total energies for the
Ne and Mg atom.

FCI eigenvalue equations are solved using itera-
tive techniques. For this purpose, we have used a
technique developed by Olsen [10] which is an in-
verse-iteration-based generalization of the Davidson
algorithm [11]. The technique is stable, rapidly con-
vergent, and has a significantly lower disk-space re-
quirement than the conventional technique it re-
places. In the linear-transformation step, which is the
central component of all iterative eigenvalue rou-
tines, the Hamiltonian matrix H is multiplied by a
trial vector C. In our method, this step is carried out



Volume 169, number 6

using the new approach of Olsen et al. [9] which ex-
ploits the non-banded sparseness of H and computes
only non-zero quantities.

The one-billion-determinant calculation was car-
ried out using D, point-group symmetry taking ad-
vantages of the simplification which occurs for a sin-
gle state with M,=0. A similar size calculation may
be carried out on a system with lower point-group
symmetry with the same memory requirements if the
FCI space is treated as a restricted active subspace
(RAS) composed of several sub-blocks [2]. Each
sub-block can then be treated in a similar way as the
symmetry blocks of the present implementation (see
ref. [9]). The larger number of symmetry unique
coefficients puts additional requirements to disk
space if the sparsity of the solution vector is not used
explicitly.

In section 2 we describe the algorithm we have used
to find the eigensolutions of the FCI eigenvalue
equation. We discuss in section 2.1 the inverse-it-
eration generalisation of the Davidson algorithm. In
section 2.2, we discuss the linear transformation in-
volving a multiplication of the Hamiltonian matrix
on a trial vector, and in section 2.3 we discuss the
problems pertinent to large-scale calculations. In sec-
tion 3, we report the results of FCI calculations on
the Ne and Mg atoms. Section 4 contains our con-
cluding remarks.

2. Theory

In section 2.1 we summarize the iterative tech-
nique of Olsen [11] which we have used to find the
lowest eigensolutions of the FCI eigenvalue equation

HC=EC. (1)

The basic features of the linear transformation de-
scribed by Olsen et al. [9]

6=HC (2)

are summarized in section 2.2, and in section 2.3,
the special problems related to large scale imple-
mentation are considered.
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2.1. The inverse-iteration generalized Davidson
technique

Following Olsen [10] let us begin by assuming that
C'? js the current iteration’s approximation to the
eigenvector, and let us define its energy as

Ew}:(C{O}THCw)) 3 (3)

We next divide H into a zeroth-order term H(°’ and
a correction term H"

H=HQ+HM (4)

and write the FCI eigenvalue equation as

(H(O]+H{l})(c(0)+c{n)
z{E{O].'.E(i))(C‘lﬁ‘;!}_{..C'(lJ), (5)

where C"? and E" are correction terms to C® and
E® respectively.

Requiring C‘!’ to be orthogonal to C‘® and ne-
glecting terms in eq. (5) which are quadratic in the
correction terms, one obtains:

CV=_—(H®—E©®)-!
X[(H_E(D})Cwl_g{!lctm] : (6)
where

CtD)T(H(B}__E(Ol) -1 (H_E{OJ )C(OJ
C(O}T(H(O}"E{O)) —IC([‘.‘)

EM—
(7)

The first term on the right-hand side of eq. (6) gives,
after the C'® component is projected out, the cor-
rection vector of the conventional Davidson algo-
rithm [11]. In the algorithm implied by eq. (6), such
explicit projection is unnecessary because C'? is au-
tomatically orthogonal to C‘®. The correction vec-
tor in eq. (6) can alternatively be derived as an ap-
proximate Newton-Raphson iteration [10].

To understand the need for improving the con-
vergence properties of the Davidson algorithm, con-
sider the limit in which the matrix H‘?’ approaches
the full H atrix. The first term on the right side of
eq. (6) then gives C"?=—C%; that is, the correc-
tion vector is directed along the previous iteration’s
C® vector. This clearly limits this algorithm’s abil-
ity to introduce independent character into the trial
vector. In contrast, in this same limit, eq. (6) yields
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(HO_E©)=1C©®
COT(HO _E©)-1C©)*

Because this C*'? is rigorously orthogonal to C, it
retains the potential to introduce new character into
the trial vector in each iteration. Egy (6) gives the
step of an inverse-iteration process in which the C(@
component is projected out [12]. Because the step
is automatically orthogonal to C'®, improved con-
vergence is obtained with the preconditioning algo-
rithm given in eq. (6). A more detailed analysis of
the convergence characteristics of the algorithm will
be reported in ref. [10]. In practice, we use a pre-
conditioning in terms of a matrix H‘® consisting of
a block of the Hamiltonian matrix formed within a
determinant space defined by the p lowest diagonal
elements of H. Outside this block, we use the diag-
onal elements of H to define H'?. The dimension p
is set equal to 400 in the applications presented in
this paper.

In the conventional algorithm, the sequence of
vectors {r;} generated as correction C‘"? vectors are
used, together with C'?, 1o define a “‘reduced-space”
and the projection of H onto this space is computed
10 find an optimal solution vector. To implement
such an approach in large-matrix applications such
as those considered here places stringent demands
on disk storage because several long vectors (i.e. the
{r}) need to be stored. In the algorithm used here,
the above reduced-space is not used. Instead, each
time a correction vector C'") is formed, it is added
1o C‘© and the result is used as the next C‘°? (after
renormalization). This process has disk require-
ments that are substantially less than the conven-
tional algorithm. The algorithm is converged when
the norm of the residual is smaller than a prescribed
threshold; the accuracy of the total energy is then
proportional to the square of this residual.

(8)

C) e 00V

2.2. Treatment of the linear transformations

The effect of the Hamiltonian operator acting on a
determinant. In this section we follow closely the
derivation of Olsen et al. [9] and refer to that ref-
erence for further details.

Each of the determinants {/} used to define the H,,
elements of H consists of a product of a so-called al-
pha-string and a beta-string [13]
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la(la)B(Ig) > =a(ly) B(Ig) | vac) . (9)

An alpha-string a(/,) (beta-string #(14)), is an or-
dered product of n,, (ng), operators that create oc-
cupancy of molecular spin-orbitals with alpha (beta)
spin [11]. The addressing scheme for the strings is
described in detail in ref. [9].

Within the string basis, a trial vector C can be
written as

10)=f2! Cla, Ip) la(1a) B(1g) > . (10)
alp

Note that the trial vector C here is written in matrix
form. The result of acting with the non-relativistic

Hamiltonian H on |0) is represented in the string
basis by the set of numbers a(/,, I5):

G(A’a,fg)nJZJ (BUUpla(Jay | Hla(la) B(15) )
atg

X C(Jy, Jp) . (11)
Insertion of H into eq. (11) gives [9]

0o, 1) =0,(Ia, Ig) +02(1a, Ig) +03(1a, Ip) ,
(12)

where

0, (I, !ﬂ)= JZ % (;B(JpHEfr]ﬁUﬂD
i

X(kk.r - f z (kjljf))C(fa, J5)

+1 JZ %(ﬁ(Js)lEﬂEﬂ;lﬁ(Ls))

B U
X (ij1kl)C(1as Ip) (13a)
02(Ia, Ig) = ,Z % CalJo) |EGla(la))

x(mf—% 5 (kjfﬂ))C(Jm 1)
+1Y T (el IESES ()
Ja ikl

X(UMHC‘(Jmfﬁ)- (l3b)

03(la, Ip)= 3 J(ﬁ(lﬂ)lEmﬁUﬁ))

JaJp ijk
X< a(Ja) |EGla(la)) (HIK)C(Ja, Jp) -
(13c)
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and E,, is a generator of the linear group which de-
fines the string excitation operators

Ey=EH+Ef. (14)

For states which have M,=0, the coefficient ma-
trix obeys [9]

Clla, 1) =(=1)°Cp, L) , (15)
which implies that

0(Ia, Ip) = (= 1)%0, (I3, L) (16a)
03(la; Ig) = (=1)%03(Ip, L) (16b)

Eq. (16a) eliminates the calculation of o, and eq.
(16b) imposes the restriction /.= /5 on the evalua-
tion of @,. As a result, the computer operation count
is reduced by a factor of two compared to the M,#0
case.

A vectorizable algorithm for setting up the o, vec-
tor in eq. (13a) uses the fact that the Hamiltonian
matrix elements are independent of I, and is de-
scribed in detail in ref. [9]. The second part of the
o vector, a; of eq. (13b), can be constructed by an
algorithm which is similar to the one for a,. The third
part of the & vector, o; of eq. (13c), is less trivial to
vectorize. A gather operation and a scatter operation
can be introduced to avoid use of indirect addressing
in the time-consuming part of the algorithm. The re-
sult is outlined below:

Loop over k!
set up L(I), R(I), and sgn(/) defined by
la[L(I)])=E%|a[R(I)]) sgn(])
C' (1, J3) =C[L(I), Jg) sgn([); vectorized
gathering loop over Iy
loop over excitations Ef from | B(Is) )
1B(Js)> =sgn (if) EZ| B(I5)>
F(Jg)=F(Jp) +sgn(ij) (§1kl)
end of loop over Ef
V(I)=Z,, F(Jp)C (1, Jp); vectorized over |
03[ R(I), Iz] =03[R(I), Is]+ V(I); vectorized
scattering
end of loop over I
end of loop over kl. (17)

The construction of ¥(I) from F and C' is usually
the most operation-intensive part of the construc-
tion of @;. A comparison with the computer opera-
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Fig. 1. The structure of the C([,, I3) and a(/,, I;) matrices for
a'Z, state. The columns and rows label the symmetries of the
alpha- and beta-strings. The symmetry labels are gerade (g) and
ungerade (u) and M, is restricted to 1, 0, — 1. The empty blocks
are determined by symmetry for a M,=0 state. If the state, in
addition, has M,=0, only the squared triangles are symmetry
unique.

tion count of previous FCI schemes is given in ref.
[9].

The derivation can be modified also to incorpo-
rate spatial symmetries. In our program, we have im-
plemented D..; point-group symmetry. The strings
with a given M, value are stored together. The strings
with M} #0 are ordered and scaled so that g, reflec-
tion of string / with M,;=M; gives string [/ with
M,=— M. This will be used below to identify the
symmetry-unique coefficients for a M;=0 state. The
CI coefficient matrix C(l,, I5), and the sigma vector
a(l,, 1) have non-vanishing elements for blocks
where the sum of the M, values for the alpha and beta
strings are zero. In fig. 1 we have shown, for the sim-
ple case of a gerade state with M, equal to zero and
where the M, values of the strings are restricted to
+1,0and — 1, the blocks that are different from zero.
This block structure will be explored below. More
details about the implementation of D, symmetry
can be found in ref. [14].

Y
2.3. Large-scale calculations

Memory and disk requirements. In large-scale im-
plementations of our algorithm, it is not possible to
have all non-vanishing blocks of the coefficient ma-
trix C and the sigma vector ¢ in main memory.
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Without degredation in performance, the calculation
can be organized so that only one symmetry block of
the sigma vector is needed at any time. The contri-
butions to a sigma vector block fgom the various
blocks of the C matrix are completed, and written to
disk before the next sigma block is processed.

The algorithm can be further modified to require
also only one symmetry block of the coefficient ma-
trix C in memory at any time. This requires that the
coefficient matrix is processed block-by-block for
each sigma block (so save input/output for as many
sigma blocks as can be in main memory). The net
result is that less main memory is required but at the
expense of increased input/output (I/0). The max-
imum amount of necessary main memory is given in
terms of the maximum dimension of one symmetry
block of the coefficient matrix and the space for the
corresponding block of the sigma vector, plus the
memory required to store the gathered-coefficient
matrix C'. In our calculations the C’ matrix is never
larger than half the size of a symmetry block of the
coefficient matrix.

The storage requirements can be diminished even
further for gerade states with M;=0 and/or M,=0
by keeping only the symmetry-unique coefficients on
disk. For M,=0 states, the fact that the coefficient
matrix satisfies the symmetry relation in eq. (15)
reduces the computer operation count by a factor of
two as described in eq. (16). The symmetry relation
may also be used to store the symmetry blocks of the
C and o arrays that are at or below the diagonal (see
fig. 1). This reduces the requirement for input/out-
put by nearly a factor of two.

For M,=0 states, each block of the coefficient ma-
trix has the additional symmetry

Clly, I3)=AC(I4, 1) , (18)

where A is one for a £+ state and minus one for a
Z- state. This symmetry relation may also be used
to reduce the operation count by two. For a gerade
state with M;=0 and M,=0, all symmetry blocks of
the C and & arrays can be determined from the lower
triangles of the symmetry blocks below the diagonal.
For example, for the simple case considered in fig.
1, M;=0 symmetry eliminates, for the gerade-ger-
ade block, the need to store the (1, g; —1, g) sym-
metry block and the upper half of the (0, g; 0, g)
symmetry block. The M;=0 symmetry further elim-
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inates the need for storing the upper half of the (-1,
g; 1, g) block.

The main memory requirement for a gerade M,=0,
M,;=0 state is therefore a matrix of half the maxi-
mum dimension of one symmetry block for the coef-
ficient matrix and a similar matrix for the & matrix.
As the coefficient matrix is read in from disk, it is
expanded to form a full square matrix to improve
vectorization and to reduce paging. In addition,
memory is required for the coefficient matrix C' (see
eq. (17)). In fig. 2 we have sketched how the central
part (o3;) of the linear transformation is imple-
mented in our computer program. The total require-
ment of main memory is 3 matrices of the maximum
dimension of one symmetry block of the coefficient
matrix, plus storage for the C’' matrix plus a minor
amount originating from storing string information,
etc. To illustrate the space requirements, we report
the salient features of our one-billion-determinant
calculation described later. The largest symmetry
block contains 100280196 elements and the largest
C' matrix contains 19647468 elements. Together
with string information, etc., this adds up to a total
memory of 197679895 double-precision words. Since
the arrays, in general, are referenced sequentially, a
large part of this memory only needs to be page-ad-
dressable extended storage. All of the calculations re-
ported here were done with 64 Mbyte of directly ad-
dressable central storage. The symmetry-unique parts
of the coefficient and sigma matrices are stored

N—II- I
Fig. 2. A diagrammatic illustration of the construction of the o
part of the linear transformation in eq. (12) for a gerade M=0
and M;=0 state. The coefficients Care read in by symmetry blocks
and expanded to square form. They are then gathered together
with part of the elements of the Hamiltonian matrix to form the
matrix C' which then are multiplied on the sparse vector F. The

resulting vector ¥ elements are scattered into one symmetry block
of the a vector.




Volume 169, number 6

blockwise on disk. The total length of a symmetry
matrix for the one-billion-dimensional calculation
was 303845939.

In the implementation of the inverse-iteration
generalized Davidson technique, the C matrix, the &
matrix, and the block-diagonal Hamiltonian matrix
H'® were read from disk, in symmetry blocks re-
quiring at no stage more than 2 symmetry blocks in
memory. The construction of the correction vector
C'Y required, in total, 10 reads or writes of the sym-
metry-unique part of one of these vectors. In total,
we thus have four vectors on disk of which one is a
scratch file. One file can be eliminated by recalcu-
lating H® in each iteration.

3. Results

In table 1 we report pertinent data for FCI cal-
culations on Ne and Mg. These data include the
number of active orbitals and electrons and the num-
ber of determinants in each calculation. The data also
include the iteration times for one direct CI and the
memory requirements of each calculation. More de-
tails are given below for the individual calculations.

The new generation of benchmark calculations of
Bauschlicher et al. [4] was initiated with FCI cal-
culations of the ground-state total energy of the Ne
atom [15]. The Is orbital was frozen to a canonical
Hartree-Fock orbital in these calculations and the
largest calculation used a contracted [5s3p2d] basis
with Dunning’s [5s3p] contraction [16] of the Hu-
zinaga (9s5p) primitive basis set [17] and with ex-
ponents of 4.5 and 1.3 for the two primitive d func-
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tions. The largest calculation [15] was carried out in
D,, point-group symmetry and gave a total of
9805897 determinants. It took 22.8 min per direct
ClI iteration on the NAS CRAY?2 and gave a total en-
ergy —128.768877 au. We carried out the same cal-
culation in D, spatial symmetry giving 5502533
determinants. Qur calculation took 6.0 min per it-
eration on the IBM 3090/ VF at the Utah Supercom-
puter Institute; thus, our calculation runs more than
three times faster than the one reported by Bausch-
licher et al., and less than 16 Mbyte of central storage
was necessary.

As an example of the factorial growth in the num-
ber of determinants as the basis is extended, Bausch-
licher et al. reported [15] that the addition of a sin-
gle f-type basis function to their basis gives
approximately 20-million configuration state func-
tions in D5, symmetry. We carried out this particular
calculation using an f function with exponent 2.5 in
D, symmetry (see table 1). This produced
41201651 determinants and took 46.5 min per di-
rect CI iteration to yield a total energy of
—128.794567 au.

To obtain a more accurate total energy, it was rea-
sonable to extend the basis of Bauschlicher et al. with
an f function. However to describe excited states and
polarizabilities, it is more important to add further
diffuseness to the basis than to add the f function. To
pursue this end, we used Dunning’s [4s2p] contrac-
tion [16] of the Huzinaga (9s5p) primitive set [17]
and added two diffuse s functions with exponents of
0.11 and 0.03, two diffuse p functions with expo-
nents of 0.11 and 0.03, and three d functions with
exponents of 2.15, 0.7, and 0.2. This basis is large

Table 1

Pertinent data for the reported FCI calculations
Atom Ne Ne Mg
active electrons 8 8 10
active orbitals 4s3p2d1f 5s4p3d 4s3p2di1f
determinants in D, 41201651 86776694 1016018176
combinations in D, 12533335 27359350 303845939
determinants in Dy, 93896448 161650624 2538603520
iteration time (min) 47 107 1450
storage (Mbyte) 64 64 64
ext. storage (Mbyte) 0 100 1600
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Table 2
Distribution of CI coefficients in the 86776694-determinant calculation on Ne
Range Number of Weights Accumulated weights
symmetr-unique coefficients
10-'101 1 0.96449451 0.96449451
10-%10 10! 88 0.26294204x 10" 0.99078871
10-%10 102 535 0.85476007% 10-2 0.99933631
10-*1010-? 8397 0.57235998x 103 0.99990867
10-%*1010-* 65340 0.87070165x 10~* 0.99999574
10-%1010-% 344550 0.40254007x 103 0.99999977
10-710 10~ 1561430 0.22545632x 10~ 0.99999999
10-%1010-7 3991606 0.67115194x10-* 1.00000000

enough to give a reasonable description of the ground
state, the lowest excited states of 'S, 3S, 'P and *P
symmetry, and of the polarizability. The number of
determinants in D, symmetry for this basis is
86776694 (see table 1). Each direct CI iteration took
106.5 min. and the total energy was —128.725161
au. These calculations thus demonstrate the feasi-
bility of carrying out benchmark studies using basis
sets that provide realistic descriptions of a multitude
of physical properties; the results of our property cal-
culations will be reported elsewhere [18].

In tables 2 and 3 some characteristics are given for
the 86776694 determinant wave function. The wave
function was converged to a residual norm 10~%. The
distribution of the symmetry-unique coefficients with
norms in intervals from 1-10~" to 10~7-10-% are
given in table 2. It is seen that the 9021 symmetry-
unique coefficients that are larger than 10~* span
99.990807% of the wave function while the 74361
symmetry-unique coefficients larger than 10~* span
99.999977% of the wave function. The number of
symmetry-unique coefficients with values above a
given threshold thus increases slowly when the mag-
nitude of the threshold becomes smaller. The distri-
bution of the coefficients in table 2 strongly suggests
that future developments in FCI calculations should
use the sparsity of the solution vector as suggested by
Knowles and Handy [7,8]. In table 3 we report the
weights for the various excitation levels from the
Hartree-Fock determinant. As expected the doubly
excitations give the major contributions. It is worth
noticing that the contributions from the singles, tri-
ples and quadruples all are of the same magnitude.

To extend significantly the state of the art in FCI
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Table 3
The weight of the excitation levels from the Hartree-Fock state
in the 86776694-determinant calculation on Ne

Excitation level Weights

0.9644945073
0.000980492%
0.0336865893
0.0003662339
0.0004517826
0.00001850%0
0.0000017447
0.0000001393
0.0000000011

00 ~] O Lh b L b = O

benchmark calculations, we performed a FCI study
on the X 'S ground state of the Mg atom. We used
a contracted [5s3p2d1f] atomic orbital basis. This
basis consists of McLean and Chandler’s [19] con-
tracted [53] sp basis to which we added two uncon-
tracted d functions with exponents of 3.5 and 0.16
and an uncontracted f function with an exponent of
4.5, The exponents of the tighter d function and the
f function were chosen so these orbitals would have
radial extents close to those of the 2s and 2p SCF
orbitals of Mg. The more diffuse d function’s ex-
ponent was chosen to this orbital would have a radial
extent close to that of the SCF 3s orbital. The 1s or-
bital was frozen with the expansion coefficients *!,
The frozen 1s orbital differs slightly from a canon-

*!I' Ordering the s orbitals with decreasing maximal exponent, the
Is orbital has the coefficients (0.593091, 0.545060,
—0.193317,0.017461,0.027162).
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Table 4

Convergence characteristics of the 1016018176-determinant cal-
culation for the X 'S state of Mg (the SCF energy is —199.585214
au)

CHEMICAL PHYSICS LETTERS

Iteration number Total energy (au) Residual norm

1 —199.612811 1.5419
2 —199.724369 0.2278
3 -199.726121 0.0681

ical Hartree-Fock 1s orbital.

The number of determinants in D, symmetry is
1016018176, and each direct CI iteration required
1450 min of CPU time on the Utah IBM 3090 (see
table 1). We have carried out three such direct CI
iterations, and we report in table 4 the convergence
characteristics of these iterations. The accuracy of
the total energy is proportional to the square of the
residual norm multiplied with an error constant that
we, for CI calculations on states of this type, always
have found to be smaller than 0.1. The error con-
stants which are obtained in the corresponding sin-
gle-double calculation (total energy —199.721401
au) indicate an accuracy of 0.0002 au in the total
energy of iteration 3. Two or three additional iter-
ations are needed to converge the energy to 109 au.
Although each Cl iteration needed 1450 min of CPU
time, approximately one week of “wall time” elapsed
per iteration because of paging among the page-ad-
dressable extended storage and the central storage. If
we had had access to more than 64 Mbyte of central
storage, we would have been able to exploit more ef-
ficiently the CPU; there simply was not enough cen-
tral storage to allow us to do so when the blocks of
the C matrix that needed to be handled contained
100-million double-precision words. In the smaller
86.8-million-dimension FCI calculation, where we
also had 64 Mbyte of directly addressable main
memory available, the corresponding block of the C
matrix was of dimension 11.4 million, and hence the
“wall” and CPU times were nearly identical. Never-
theless, even within the 64 Mbyte allocated to our
calculation, we have been able to demonstrate that
eigenvalue problems involving large randomly sparse
matrices of dimension one billion are feasible using
our algorithms.

It is interesting to note that our CPU times, for a
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few million to over one-billion determinants, are ap-
proximately proportional to the number of deter-
minants. The number of operations increases faster
than the number of determinants [9], but this in-
crease is almost entirely offset by the increased vec-
tor lengths.

4. Discussion

We have shown that FCI eigenvalue calculations
can be carried out using more than one-billion de-
terminants. Such large matrix eigenvalue calcula-
tions are now possible because of the advances in the
direct CI technology described here, which exploit
the non-banded sparseness of the matrix, as well as
improvements in the algorithm used to converge
these iterative calculations. We make use of Dy, -
symmetry while previous FCI benchmark calcula-
tions were able to use at most D, symmetry; this al-
lows us to consider approximately half the number
of determinants as in past work.

We find that the CPU time per direct CI iteration
varies approximately linearly with the dimension of
the matrix for dimensions from one million to more
than one billion. The time required for one direct CI
iteration is found to be approximately 1.2 to 1.4 min
per million determinants. Previous FCI benchmark
calculations [15] report needing approximately 2.3
min per million determinants on a Cray 2 computer,
which has a cycle time of one third the IBM 3090s.

The memory requirement in the current imple-
mentation is a number of double-precision records
about equal to one fifth of the number of determi-
nants. The disk requirement is a number of double-
precision words about equal to the number of de-
terminants. FCI calculations with one-billion deter-
minants can thus only be carried out on supercom-
puters with large memory, whereas calculations in
the range of 100-million determinants can be carried
out straightforwardly on most minisupercomputers.

Prior to this work, the largest FCI benchmark cal-
culations ¢glculating and storing the complete vec-
tors treated 8 electrons distributed among 23 orbit-
als, yielding 28-million determinants. We have been
able to handle 10 electrons in 30 orbitals with more
than 1016-million determinants, and have thus ush-
ered in a new era in FCI benchmarks where “exact”
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energies can be obtained for more electrons and more
realistic atomic-orbital bases. As a result, a more
thorough and detailed understanding of the electron-
correlation problem is at hand.
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