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In this paper, the equations-of-motion method, which has been successfully applied to the prediction of
electronic excitation energies, is used to derive a physically clear and computationally tractable theory of
molecular electron affinities. The contributions to the calculated electron affinities made by the ion-neutral
correlation energy difference and by the Hartree-Fock energy change can be computed separately in this
theory. In addition, the change in the correlation energy of the parent molecule’s electrons. which is
caused by adding an “‘extra™ electron. can be quantitatively assessed. The physical content of this theory is
discussed in considerable detail, and a connection is made with the many-body Green Function theory.
The technique is shown to have important advantages over the variational wavefunction approach, the
most attractive feature being the small size of the matrices occurring in computational applications.

I. INTRODUCTION

The electron affinity of an atom is the decrease in
electronic energy which is attained by adding an
electron to the atom. For a molecule, there are two
electron affinities: thermodynamic and vertical. The
thermodynamic electron affinity of a diatomic molecule
is defined as the difference between the electronic
energy of the molecule AB at its equilibrium bond
length R., and the electronic energy of the negative
ion AB~ at its equilibrium bond length R,~:

(E.A-)thermo=E(Re)_E_(Re_)' (1)

The vertical electron affinity of AB is the energy
difference at R,:

(E-A-)vertical=E(Re)—E_(Re), (2)

and the expression E(R,)—E-(R;,) is known as
the vertical ionization potential of AB~. Analogous
definitions can be made for polyatomic species by
including in the definition enough bond lengths and
angles to specify the nuclear configuration of the
molecule.

Knowledge of electron affinities is an important
ingredient of quantitative investigations in many
areas of science and technology. Electron affinities
are helpful for understanding the energetics of ion-
molecule reactions of the upper atmosphere, and they
are useful in determining the interstellar concentrations
of certain molecules and ions. Born-Haber cycle
lattice energies can be calculated when electron
affinities are known. Inductive effects in the chemical
bonding of organic compounds, and electron-donating
properties of ligands in coordination compounds are
related to electron affinity. The energy changes occur-
ring in oxidation-reduction reactions and in charge-
transfer reactions are influenced by the electron
affinities of the species involved. In addition, electron
affinities play important roles in radiation damage
and light detection technology, as well as in determining
the electronegativities of atoms and molecules.

Although important experimental progress has been
made in recent years, the determination of accurate
(£0.10 eV, or less) molecular electron afhnities
remains a rather formidable task. The photodetach-
ment method, which was pioneered by Branscomb!
and later by Berry,? and the surface ionization tech-
nique, which was developed by Mayer® and refined
by Page,* have yielded much of the currently available
experimental data? on molecular electron affinities.
Electron impact fragmentation? molecular photo-
dissociation,? equilibrium sublimation® radiative elec-
tron attachment,’ lattice energy measurements,® charge-
transfer reactions,® and photosensitized ionization? are
other experimental methods which have also con-
tributed significantly to our knowledge in this area.
This wide array of independent techniques has led
to reliable and accurate values for atomic electron
affinities, but has often given inconsistent and confusing
results for molecular electron affinities. For example,
experimental electron affinities for NO, are scattered
between 1.6 and 4.0 eV with one measurement claiming
E.A. (NO;)>3.613 eV and another asserting E.A.
(NO:)<3.063 eV.5

Several review articles on negative ions'?%7 make
it clear that theoretical research aimed either at
helping the experimentalist to resolve some of this
confusion, or at predicting the electron affinities of
interesting molecules which have resisted experi-
mental investigation is scarce, especially when com-
pared to the theoretical development of molecular
electronic spectroscopy. Clementi and co-workers,}?
Pekeris*® Sinanoglu and Oksiiz,*® Glockler,#® and
Weiss® have done excellent work on atomic electron
affinities. Mulliken,® Cade,* Eyring,* Dalgarno,
Taylor and Harris,* Wahl,’® and Schaefer'® have
made some progress toward predicting molecular
electron affinities. While these studies represent
significant achievement, they give information on
only eight molecules (all diatomic). Fortunately,
recent advances in molecular quantum chemistry
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have opened the door to greatly increased theoretical
contributions to this important area of research.

In this paper, we put forth a theory for calculating
molecular electron affinities, which we believe to be
both physically reasonable and computationally tract-
able. The starting point for the derivation of our
method is the equations-of-motion (EOM) idea
which McKoy"™ and others®* have cleverly applied
to the calculation of electronic excitation energies
and oscillator strengths of atoms and molecules.

In the following section, we briefly discuss some
previous calculations of molecular electron affinities.
Sections III and IV contain a review of the EOM
theory, as applied to electronic excitation energy
calculations, and as extended to permit the treatment
of electron affinities. In Section V, we present the
derivation of our final working equations, and in
Sections VI and VII, we discuss the physical content
of these equations and their relation to the equations
of many-body Green’s function theory. Finally,
Section VIII contains an outline of our computational
scheme,

II. EVALUATION OF PREVIOUS MOLECULAR
ELECTRON AFFINITY CALCULATIONS

The majority of previous theoretical research on
molecular electron affinities consists of variational
wavefunction calculations at either the Hartree-Fock
or configuration interaction (CI) level of accuracy.
In such investigations, two separate variational
calculations are performed, one on the neutral parent
molecule to obtain E(R) and another on the negative
ion to give E~(R). The thermodynamic and vertical
electron affinities are then computed from Egs. (1)
and (2).

As an illustration of the accuracy of this method,
we examine the excellent work of Cade! on the vertical
electron affinities of OH and SH. Cade used three
approaches to calculate these electron affinities, From
the ion-neutral Hartree-Fock energy differences, he
obtained —0.10 and 1.21 eV for the electron affinities
of OH and SH, respectively, whereas Koopmans’
theorem® gave 2,90 and 2.42 eV. By adding estimates*
of the negative ion-neutral molecule correlation energy
differences to the Hartree-Fock energies, Cade arrived
at his final results of 1.91 and 2.25 eV, which compare
favorably with the experimental values® of 1.83 and
23 eV.

It is clear from these calculations that neither the:

Koopmans’ theorem estimate, nor the ion-neutral
Hartree-Fock energy difference give satisfactory
values for the electron affinities. The fact that
Koopmans’ theorem fails implies that the charge
density of the negative ion cannot be adequately
described by simply adding an electron to the lowest
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unoccupied spin orbital of the neutral parent. Ap-
parently, the addition of that electron causes a sig-
nificant amount of charge redistribution which is
reflected in the expanded valence spin orbitals of the
ion. The inaccuracy of the Hartree-Fock energy
differences suggests that consideration must also be
given to the difference in correlation energy between
the negative ion and its neutral parent. Indeed, Cade’s
inclusion of approximate correlation energy improved
the accuracy of his results to within 49,

Another example of the effects of electron correlation
is provided by theoretical work on HF, Since £~(R)
for the ion HF~ decreases monotonically®** with
increasing R, E~(R,”) becomes the energy of the
separated species (H and F-). Thus, the electron
affinity of HF is the difference between the dissociation
energy of HF and the electron affinity of F. From
Cade and Huo’s* Hartree-Fock dissociation energy,
and Clementi’s® SCF atomic electron affinity, one
obtains —3.02 eV for the electron affinity of HF.
However, using the correlated first-order wavefunction
results of Bondybey, Pearson, and Schaefer'® together
with Clementi’s correlated electron affinity for fluorine,
one calculates —2.51 eV, which is within 59, of the
“experimental” result of —2.65 eV obtained by
subtracting the photodetachment fluorine electron affin-
ity*® from the measured HF dissociation energy.#®

Correlated wavefunctions were also used in the
important CI calculations of Dalgarno and McDowell
and of Taylor and Harris" on H,~. From their works,
the thermodynamic and vertical electron affinities of
H; can be computed, but there seems to be no direct
experimental measurements with which to compare
these results.

In reporting their experimental value on the halogens,
Chupka et al.'® reference Wahl’s CI treatment of the
F; and Cl, electron affinities. Their experimental
value for F, falls well within the error limits that
Wahl estimated for his calculations, and the experi-
mental and theoretical results for Cl, are nearly
identical.

Molecular electron affinities have been estimated in
other ways. Mulliken'® suggested that for homonuclear
diatomic molecules X, the electron afhnity E.A.(X,)
is related to the atomic electron affinity E.A.(X) and
the molecular dissociation energy D,(X:) by the
approximate formula,

EA.(X:)~E.A.(X)—1D.(X>). (3)

Values so estimated often come fairly close to the
experimental results.® Eyring, Hirshfelder, and Taylor!
used early valence bond methods to approximate the
electron affinity of H, with some success. Finally,
several interesting semiempirical studies of organic
molecules and their negative ions have been carried
out by Hush and Pople,¥ Matsen,*® Hall # Parr and
Pariser,® and Hoyland and Goodman.®
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Since the most successful of these previous studies
have been those which have properly treated both
charge redistribution and changes in electron correla-
tion energy, it is reasonable to conclude that any
successful theoretical method of predicting molecular
electron affinities must correctly incorporate both of
these physical effects.

III. THE EQUATIONS-OF-MOTION THEORY

In the equations-of-motion method,?* one attempts
to find excitation operators Ox* which relate the
wavefunctions | A) of the excited electronic states of
the molecule to the ground-state wavefunction® | g):

[M)=0x*] g). 4)

Using the fact that both | A) and | g) are eigenfunctions
of the (Born—Oppenheimer) Hamiltonian H,

H|g)=E,|¢g), (5)
H|N\=Ex|g), (6)

one can easily derive the equations of motion:
[H, Ox*]| g)=AE\Ox* | g), (7)

where the excitation energy AE, is Ey—E,. Thus, to
apply this method one seeks a set of operators {Ox*}
whose commutators with a given electronic Hamiltonian
operate on | g) to give constant multiples of Ox* | g).
Once this is accomplished, the resulting operators are
the excitation operators, and the constants multiples
are the excitation energies {AE,}.

Since it has not proved possible to solve Eq. (7)
exactly for any molecule containing more than one
electron, reasonable approximate solutions are used in
practice. In his pioneering research efforts, McKoy" 2
has developed and implemented a useful theory of
electronic excitation energies and oscillator strengths®
in which the operators Ozt and the ground-state
wavefunctions | g) are calculated self-consistently.,

Instead of using Eq. (7), McKoy begins with an
equivalent expression derived by Rowe®:

(g| [80y, H, 0x*] | g)=AEx(g | [60x, Ox*] ] g). (8)

Here, 60\ is an arbitrary operator, and the double
commutator is defined as

(4, #, B]=3[4,[H, B]]+3[[4, H], B]. (9)

McKoy then assumes that the correlated ground-state
wavefunction |g) can be approximated by the CI
expansion,

| =N+ X
a<f m<n

where |0) is a Hartree-Fock single-determinant?
wavefunction, and where N, is the normalization

Ka m"Cm+Cn+CﬂCa)| 0)7 (10)
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constant,
No=14 3 |Ku™ [ (11)
a<f,m<n

The indices «, 8, ¥, and 8(m, n, p, ¢) are used to label
Hartree-Fock spin orbitals which are occupied (un-
occupied) in | 0). The double particle-hole operators
Cnt Cyt Cg C,, which are products of fermion crea-
tion and annihilation operators, operate on | 0) to
give doubly excited configurations |%3), in which spin
orbitals ¢, and ¢s are replaced by spin orbitals ¢m
and ¢, .The expansion coefficients K,g™* can be found
either by carrying out a variational calculation or, as
McKoy suggests,” by solving the equation

0x]¢)=0,

provided O,* is known.

In order to obtain approximations to the excitation
operators O)*, McKoy expands them in the truncated
space of single and double excitations,” that is, as
linear combinations of single and double particle-hole
and hole—particle operators only:

Ort= 2 [gny(N)CatCy—lmy(\)Cy*Ca]
m,y

+ Z [gmv.nﬁ(k)cm+cn+cac-y

m<n,y<

Iy ms(N)CyCetCrCr],  (13)

where the expansion coefficients {g, #} are to be
determined. By substituting Eq. (13) into Eq. (8)
and successively choosing 80y as C,*C,, C,tC,,
C,tC i CsCay and CtCgtC,C,, McKoy obtains a
matrix eigenvalue equation for {g, #} and AE,. This
equation, known as the Higher Random Phase Approxi-
mation (HRPA) equation, is not computationally
tractable because of the large dimensions of the
matrices involved. To alleviate this difficulty, McKoy
rewrites the HRPA equation by formally solving for
the double particle-hole coefficients gny..s(A) and
Fmyns(N) in terms of AE) and the single particle-hole
coefficients. This partitioning leads to a renormalized
matrix equation for gm,(A) and Am,(\) which is no
longer an eigenvalue equation since AE), now appears
both in the modified HRPA equation and as an eigen-
value.® However, by expanding the matrix elements
of this new pseudoeigenvalue problem through second
order in the electronic interactions, McKoy is able
to express all the elements in terms of the Hartree-Fock
orbital energies {e,, ¢,}, the expansion coefficients
K.gm in Eq. (10), and certain two-electron integrals

@l k)= [ ¢*(1)¢*(2)re [ (1):(2)
~¢i(1)¢x(2)1dr. (14)

Thus, to calculate Oyt and AE, by solving the
renormalized HRPA pseudoeigenvalue equation one
needs to know the K,z On the other hand, the
solution of Eq. (12) for K,z depends on knowledge

(12)
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of Oy*. Hence, the excitation energies cannot be
calculated directly in a one-step process; however,
McKoy suggests the following iterative procedure to
compute self-consistent values of K., O\*, and
AE\: (a) Approximate K,g™ by Rayleigh-Schrédinger
perturbation theory,

o= (mn | af)eate—en—ea]L. (15)

(b) Use an approximate AE, and the calculated K g
to form the renormalized HRPA matrix elements.
(c) Solve the HRPA eigenvalue problem to obtain
the single particle-hole components of the excitation
operators O\t and new excitation energies AE,. (d) Use
the Oyt in Eq. (12) to calculate a new set of Kagm.
(e) Return to step 2, and continue to iterate until
the resulting AE,, {g, &}, and K, converge.

In using this procedure to calculate the excitation
energies and oscillator strengths of CoHy, CO, and No,
McKoy found® that the process® converged rapidly
to yield accurate results. Significantly, the values for
AE, from the first iteration (with K,s™ given by
Rayleigh-Schrédinger perturbation theory) were within
a few percent of the converged results.

Iv. EXTENSION OF THE EQUATIONS-OF-
MOTION THEORY

The energy differences AEy=E\—E, in Eq. (7) are
associated with the vertical excitation energies of a
molecule because McKoy’s excitation operators Ox*
[Eq. (13)] preserve the total number of electrons.
However, in addition to these electron-conserving
operators, there exist other operators, &\t and E,*,
which satisfy Eq. (7), and which add and subtract
an electron from the neutral molecule, respectively.
Thus, for the ground state |g¥) of an N-electron
molecule, Eq. (7) can be rewritten for these new
operators as

CH, ]| g¥)= (EXNH—EN )t | V), (16a)

or as
[H, 5] | &)= (ENT—EN)E>* | g¥), (16b)

where E\¥*! is the electronic energy of the Ath state
of the negative ion, and £, is the energy of the pth
state of the positive ion. The energy differences here
have new interpretations. The quantities EN"1—E/N
are vertical ionization potentials, and the differences
EZNH—E/XN are, except for sign, vertical electron
affinities [cf. Eq. (2)1.

In this paper, we make use of the generalized excita-
tion operators ¢t to develop a technique, analogous
to McKoy’s powerful HRPA method, by which
molecular electron affinities can be calculated. OQur goal
is to obtain the quantity (E.A. )vertica1= — (E,N 11— EN)
from an approximate solution of Eq. (16a); hence,
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to begin we need adequate approximations for | g¥)
and Ot

A. Approximation for | gV)

Following McKoy’s reasonable assumption, we
approximate the ground state | g¥) by the CI wave-
function of Eq. (10), which consists of a Hartree~Fock
single determinant plus double excitations into virtual
Hartree-Fock orbitals,

The expansion coefficients K, will be taken from
Rayleigh-Schrodinger perturbation theory® and are
given by Eq. (15). Our choice of this form for K,gm™
is prompted by McKoy’s success® with it, and by our
desire to avoid the major computational effort involved
in the self-consistent determination of @t and | g¥).

The spin orbitals {¢;} used in constructing | g"V)
are taken to be restricted canonical Hartree—Fock spin
orbitals of the neutral molecule, and all single, triple,
and higher excitations into virtual orbitals are neglected
in | g¥). These Hartree-Fock orbitals are appropriate
basis functions for use in our electron affinity theory
for the following reasons: (a) CI wavefunctions, as
given in Eq. (10), are well-studied and are considered
to be reasonably accurate.! (b) Hartree-Fock virtual
orbitals of the neutral molecule are plausible first
approximations to the orbitals of its negative ion since
they describe the motion of an electron in the average
field of all the parent’s N electrons. For this reason,
the Hartree-Fock orbitals fit our purposes better than
the V7! orbitals of Kelly,® Huzinaga,® and Silverstone
and Yin,* which are more appropriate for describing
excited states of the neutral molecule. (c) Use of the
parent’s Hartree-Fock orbitals aids in identifying
the contribution of charge redistribution to calculated
electron affinities.®

B. Approximation for Q,*

To describe the change in | g¥) which accompanies
the addition of an electron to the neutral molecule,
we propose the generalized excitation operator Qx*:
Q)\+= Z Xz()‘)c1++ Z Ifnazm(A)C‘rﬁ-C'azC‘m+

m<n,a

+ Z Yamﬁ()‘)ca+cmcﬁ+y

a<f,m

(17)

where the index ¢ runs over all occupied and un-
occupied Hartree-Fock spin orbitals.

The significance of each term in Eq. (17) can be
made clear by considering the approximate negative
ion wavefunctions generated by applying &t to | g¥).
To illustrate, we restrict our attention to the specific
function Q,*|0), which is the ground-state wave-
function of the negative ion in which we temporarily
neglect the double excitations in | g¥).

In the first summation in Eq. (17) appears the
creation operator Cf,;. Its action on | 0) produces the
Slater determinant C§,, | 0)=|"*) formed by adding
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the spin orbital ¢x41 to | 0). This is the first approxi-
mation to the ground state of the negative ion. The
functions {C,*|0), p>N-+1} are Slater determinants
{I?)} which can be viewed as single excitations of
|¥+1) where the spin orbital ¢x41 is replaced by ¢,:

|7)=CptCra [N). (18)

The remaining terms in the first summation {C,*|0)}
are zero in our illustration. In general, however, the
functions {C,* | g¥)} are not zero, and their presence
is essential to the self-consistent determination of 2\*
and | gV). Were these terms not included, the equation

o | g¥)=0, (19)

which can be used to calculate | g¥) iteratively, would
imply that all the K, are zero.

Continuing with our example, we examine the
second summation in Eq. (17). The functions
{Co*CoCxr™ | 0)} are also single excitations of [¥*1) in
which ¢, replaces ¢q:

[ )= CatCa [V41). (20)

These singly-excited contributions to Q,* | 0), together
with those of Eq. (18), transform the lowest N1
Hartree-Fock spin orbitals of the parent molecule
into approximate Hartree-Fock spin orbitals of the
negative ion. In our theory, this yields the component
of the electron affinity which arises from charge
redistribution., The other terms of the second sum-
mation are double excitations. The determinants
{CotCaCm? | 0), m>N-+1} have spin orbitals ¢
and ¢, in the place of ¢n41 and ¢a, respectively:

[27) = CatCoContCrrya [V41). (21)

Such configurations produce the component of the
electron affinity which is due to the correlation energy
difference between the negative ion and the neutral
molecule,

The terms of the third summation {C,+*CnCst|0)}
all vanish in this example. However, like the {C.*},
the {C,*C,.Cst} must be included, both to avoid the
conclusion that the K,g™" vanish and to preserve the
possibility that @a* and | g¥) can be determined self-
consistently.

V. DERIVATION OF OUR WORKING EQUATIONS

To transform Eq. (16a) into a more computationally
manageable form, we multiply it on the left by
{g" | 6Qs, where 6Qy is an arbitrary operator:

&V | S[H, 0] | gV)= (E\H—E,N) gV | st | g¥).
(22)

As the next step, we employ the conjugate of Eq. (19)
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to write zero as

0=(g" | [H, %o | ")

= (E\NVH—EN)(g" | dy*oan | gV). (23)
Adding Eq. (23) to Eq. (22), we have
& | {6, [H, &t} | 87)= (E\VM'—E,Y)
X gV | {8, m*) | V), (24)
where the anticommutator is
{F, G}=FG + GF. (25)

Successively choosing 6@\ as C;, CnCotCs, and
CsCntC,, we obtain from Eq. (24) a set of equations
for the X;(A), YVian(A), and Vamsg(A) of Eq. (17).
In matrix form, these equations become

AX(\)+BY (M) =AENX (), (26)

BTX(A)4+DY (M) =AEWNSY(M). (27)

Here AEY is (EZNY'—E/), and the coefficients
X:(\) and Vuem(A), ¥Yamg(N) apepar in column vector
form as X(A) and Y()A), respectively. Elements of the
other matrices in Egs. (26) and (27) are given by

Ai={" | {C;,[H,Ci*]} | g¥), (28a)
Bimem=(g" | {Ci, [H, Ci*CaCr*1} | g¥), (28b)
Bi.ams=(¢" | {Cs, [H, C+CuCst]} | g¥), (28c)

Diam,asp= (8" | {CnCa¥Ca, [H, Ci*CsCt1} | £Y),

and

(28d)

Dyam,spy=(g" | {CnCa*Cu, [H, Cs*C,Cy* 1} | g7),
(28e)
Dispynam=Duam,spv*s (28f)

Dipr.aap= (8" | (C2C*Cs, [H, C+CLCs*]} | 6¥),
(28g)
Snam,o8p=(g¥ | {CuCa*Ca, C*CoCy%} | g¥), (28h)
Snam,tpy= gV | {CuCa?Cn, Ci*C,Cy*} | gY), (28i)
Sspy.nam= Snam,tpy (28))

and

Sspv.aqs= (g | {C4C,*Cs, C*CCqt} | g¥).  (28k)

Using the fact that | g¥) contains double excitations
only, one can show that the coefficients of Y on the
right hand side of Eq. (26) and those of X on the
right of Eq. (27) all vanish and, therefore, need not
be considered further.

In all of these equations, the subscripts «, 8, v,
and &(m,n, p,q) run over occupied (unoccupied)
spin orbitals, whereas the subscripts %, j, &, and I
label either occupied or unoccupied spin orbitals.
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Because of the large dimensions of the D and $
matrices, straightforward solutions of Egs. (26) and
(27) are generally impractical. However, we can
consolidate these large matrices by formally solving
Eq. (27) for Y and substituting the result into Eq. (26)
to obtain the pseudoeigenvalue equation,

[A—B(D—AENS)"B+JX(M\)=AEX. (29)
Using the second quantized form of the electronic
Hamiltonian,®
H= Z G R|HCHC;H1/4 X (35 | RYCHCHCICr,

1,3.k,1

(30)

and the Rayleigh-Schrédinger-CI expansion of | g¥)
[Eq. (10)], we order the terms in Eq. (29) with
respect to the electronic interaction r;;7!, neglecting
all contributions higher than third order, Since B
contains no zeroth-order terms, (D—AE¥S)~! needs
to be evaluated only through first order in this ap-
proximation. Only the smaller A matrix is evaluated
through third order. With this approximation, the
matrix elements in Eqs. (28a) to (28k) simplify to

Snam,qﬂP=6nq6a35mp; (313')
Sﬁm.aq3=86a5pq376: (31b)
Stpynam=0, (31c)
Ay=0iei+ X (ik | jI)Fu, (31d)
PR
Bt’.amﬂ:" - (’m I aﬁ>_% Z (zm | 17‘1>Kaﬂﬁ;
P,
+ 2 [(iv | pa)Kg™— (iv | pBYKz"7], (3le)
7.0
Binam= (ia | mn)+3 Z (ia | 8y )Kgzm
+ Z [(ip | w)K a7 r—(ip | ym)Kz"?], (31f)
Dnam.ﬁp‘y= 0’ (31g)
Dnam,qﬁp=6nq6aﬁ6mpEmm", (31h)
and
Dspy,age= _654611«613E51p: (31i)
where
Fu= 3 [KagPKop?'+ Kog*?K o5'7]
a<B.p
Z [Kalquakm.*.Klaqukapq]’ (32)
p<g,a
Kaﬂpq: Kapl"l— Kapqp’ (333.)
K3579= K op?"— Kga??, (33b)
Kaapq;_[( Pe— K 0597 — K 3o P9+ K 3,27, (33¢c)

E mn= 6m+€u_€a— (am [ am)— (om I Cln>+ <'m'" l mn),

(34)
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and

EyP=e—es—ey—(8p [ 8p)— (vp [vp)+ (v [ ov). (35)

In Egs. (32)-(33c), the K,g* are nonzero only if
p<q and a<B.

Using the above results, we rewrite Eq. (29) in a
computationally tractable form which is valid through
third order and which represents our final working
equations:

HAEN)X(N) =AENNX(M), (36)

where the matrix elements of H;;(AEx\Y) are compactly
written, in terms of Hartree-Fock information only, as

Bi.amﬁBj.nt*
Hi(AEN)=A;; —amprj.amB
ABN =4t T T AR

Bi,ﬂaN—}-lBj.naN-l—l*
N+i<n,a EaN+In_ AEXN

Bi rmmB '.nam*
_ > —namgmen (37)

N41<m<n,a Eo™—AENWN

V1. PHYSICAL CONTENT OF THE
WORKING EQUATIONS

Since the lowest root of Eq. (36),
AEN=ENH—EN=— (E.A)vertical, (38)

can be identified with a vertical electron affinity, it is
important to describe clearly the physical meaning of
each term appearing in the H(AE)Y) matrix. To do
this, we obtain an approximation AE,¥ to the lowest
root of Eq. (36) by writing®

| By+1,amp |?

AEXN = Ay nat
‘ N a§m Eyg™ten

E I BN+1.naN+1 P _ , BN+1,nam ,2

EaN+1m

—enp1
(39)

By neglecting the expansion coefficients K,g™ implicit
in Eq. (39), we obtain an even rougher approximation,
but one which makes the physical content of Eq. (36)
particular clear:

N+HI<n,a —EeNH  Ni<m<n,a Eoa™

[(N+1m | aB)?

AB V=~
o et a<§,m E. g™ tenp1
[(N+1a | N41n)?
N+icna BN —evnn
1 2
[(N41a | mn)| . (0)
Nticmen,a Ea™—enq1

The second sum in Eq. (40) gives an approximation
to the ion-—neutral Hartree-Fock energy difference;
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therefore, this term contains the effects of charge
redistribution on the calculated electron affinities.
The third sum approximates the correlation energy of
an electron in ¢y.1 interacting with all other electrons,
while the first sum gives the approximate change in
correlation energy of the parent’s N electrons caused
by the “extra” electron. Analogous conclusions can be
reached concerning each of the sums in Eq. (37).
Thus, by separately deleting from Eqs. (36) and (37)
each of the above three sums, we can assess the effects
of charge redistribution and changes in correlation
energy on the molecular electron affinity.

VII. RELATION TO MANY-BODY GREEN’S
FUNCTION THEORY

If one sets the K.s™ coefficients equal to zero and
replaces Eq™ and E,™ by en—ea—ég and enten—eq
respectively, Eq. (36) becomes equivalent to the
second-order Dyson equation of Reinhardt and Doll.#
From the results of their excellent atomic calculations
with the Dyson equation, these authors concluded
that highly accurate ionization potentials cannot be
obtained from second-order Green’s function theory
and that higher-order contributions must be included.
It is our feeling that these conclusions apply equally
to the calculation of electron affinities. Our theory
provides a numerically practical and physically
reasonable method of going beyond second order with
a minimum of additional work. Third-order results
from Eq. (36) require only that additional two-electron
integrals be transformed to the Hartree-Fock basis.
Both methods calculate the ion—neutral energy differ-
ences directly, and in both theories only matrices of
relatively small dimensions occur,

VIII. COMPUTATIONAL PROCEDURE

We now outline our step-by-step process for cal-
culating vertical and thermodynamic electron afhnities
for a given molecule.

Step (1). We choose a particular molecular geometry.
For a diatomic molecule, we specify the internuclear
separation. For a polyatomic molecule, we pick enough
bond lengths and angles to define precisely its shape.

Step (2). We obtain the Hartree-Fock orbital
energies ¢; and the necessary two-electron integrals
(17 | k).

Step (3). We employ Eq. (135) to obtain approxima-
tions to the CI expansion coefficients K,s™ from
Rayleigh-Schrédinger perturbation theory.

Step (4). As a first approximation to AE,N, we use
the AE¥ of Eq. (39) which incorporates some of the
effects of charge redistribution and correlation energy
change. Based on the ionization potential results
which Reinhardt and Doll# have obtained using their
analog of Eq. (40), we expect that Eq. (39) will give

4905

a reasonably accurate starting point for the iterative
determination of AE,Y.

Step (5). Knowing the orbital energies, two-electron
integrals, and CI expansion coefficients, we form the
matrix elements of A and B from Egs. (31)-(35).

Step (6). We use the approximate energy difference
AEQX to construct the H(AE,¥) matrix in the form
given in Eq. (37).

Step (7). We solve the pseudoeigenvalue equation
(Eq. (36)) for AE/N by using either of following
numerical methods:

(a). The more rigorous approach is a root-search
method which was used by Reinhardt and Doll in
their early ionization potential calculations.® We
use it to solve Eq. (36) by first calculating the
matrix [H(E)—EI]" for E=AE,”. By repeating
the calculation of this inverse matrix as the param-
eter E is varied, we locate the smallest E for which
this matrix fails to exist and set that value of E
equal to AE,N. In this procedure, [H(E)—EIT!
must be computed at many values of the parameter
E, Clearly, this method, though rigorous, is probably
unrealistically time consuming for all but the
smallest molecules, a fact which will limit the systems
for which the root-search technique is practical,
(b). When the root-search method proves im-
practical, we use an iterative procedure which is
substantially faster and considerably less expensive.
Starting with H (AE M), we solve Eq. (36) for a
new approximation to AE,", and use this approxima-
tion to construct a new H(AE,/) matrix. If this
procedure is stable, it will lead to successively
better approximations to AE,Y, until convergence
is reached. The sensitivity of the convergence to
the initial approximation for AE/ is presently
being determined.
In both of these techniques, only the lowest root of
Eq. (36) need be calculated. In the root-search method,
this limits the numerical search to the nelghborhood
of AE;¥, and in the iteration scheme, it permits one
to stop after computmg only the lowest eigenvalue
of the H(AE,/¥) matrix. This fact is an attractive
feature of our theory.

Step (8). With the result of Step (7a) or (b), we
obtain the vertical electron afhnity from the identity

(E.A)vertioal= —AEN. (41)

Step (9). To determine the effects of charge re-
distribution and correlation energy change, we return
to Step (7) and solve for AE,N using a truncated
H(AE/Y) matrix in which specific contributions are
neglected. Deleting the second sum of Eq. (73), we
calculate the electron affinity without the effects of
charge redistribution. We can then attribute the
difference between this value and the full electron
affinity to the influence of charge redistribution,
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Similarly, by omitting just the third sum from Eq. (37),
we can assess the change in correlation energy caused
by interactions of the extra electron with the other
N electrons. Finally, leaving out only the first sum
allows us to determine the extent to which the cor-
relation energy of the parent’s NV electrons is altered by
the presence of the extra electron.

Step (10). To obtain the thermodynamic electron
affinity from Eq. (36) is a major computational under-
taking. It involves the calculation of vertical energy
differences between the parent molecule and its
negative ion at many molecular geometries., Given
this set of energy differences and the energy curve
E(R) of the neutral molecule we can calculate the
energy curve E~(R~) of the negative ion and thereby
obtain the thermodynamic electron affinity from Eq.
(1). Good energies E(R) of many neutral molecules
are presently available®; for other molecules, we
calculate E(R) as the expectation value

(g" | H|g"), (42)

where | g¥) and H are given by Egs. (10) and (30),
respectively.

Step (11). We collect the set of vertical energy
differences obtained by repeating Steps (2)-(9) for
enough molecular geometries to include the equi-
librium internuclear distances of both the molecule and
the negative ion.

Step (12). The energy curve E~(R) is plotted by
adding the vertical energy difference at each R to
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