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Our recently developed and tested unitary multiconfigurationaI coupled-cluster electronic wavefunction method is extended to

permit, for the first time, the analytical evaluation of energy derivatives. The unitary nature of this method admits a variational

energy functional whose stationary nature plays a key role in sirnplifying our derivation. Explicit expressions are given for the

gradient (first energy derivative) for both the f~l1 unitary coupled cluster and its coupled e1ectron pair approxirnation ( CEPA).

.Recently, we [I] developed a the~ry of a unitary coupled-cluster (UCC) method and demonstrated its com-
putational applicability via illustrative calculations on the well-studied [2-6] BeH2and H2O species. The un-
itary nature of our method, and the resultant variational energy expression, distinguish our approach from those
of most others and allow us to straightforwardly obtain a compact analytical expression for the UCC energy
gradient.

The importance of analytic derivativesin investigating chemical phenomena on a Bom-Oppenheimer po-
tential-energy hypersurface is widely appreciated [7,8]. In this Letter, we demonstrate that a class of energy
functionals, of which our UCC energy is a member, can be readily differentiated using procedures similal' to
those used in evaluating configuration interaction (CI) [9,10] and multiconfiguration self-consistent field (MC
SCF) [10-14] energy derivatives. We provide explicit formulas for the UCC gradient in terms of integrals and
density matrices over moleculal' and atomie orbitais as well as orbital and configuration amplitude responses
which are obtained through coupled perturbed MC SCF methods [11-14]. Energy-derivative exprt:ssions for
an important approximation to the coupled-cluster wavefunction, the coupled electron pair appróximation
(CEPA) [15], are also included.

The variational condition that the unitary coupled-cluster energy (ref. [I], eq. (2.1I» is stationary with
respect to variations in the cluster amplitudes (óEcclótK=O) was shown in ref. [I] to lead to the following
expression for the UCC energy:

Ecc= «PMc lexp( -T) Hexp(T) I<PMc)=EMC+ L«PMc IHIK)tK'K
(I)

which is valid through second order in the t K amplitudes. Here the summation is over the configuration state
functions (CSFs) in the space which interacts with the MC SCF reference function I<PMc)through the Ham-
iltonian H, and t K is an amplitude of our UCC cluster operator T coupling I<PMc)to IK): t K= <KI TI<PMc>.
In eq. (I), EMc is the energy of the MC SCF reference state.

In the CEPA version [16] of our UCC method [1], the t Kare calculated directly as variational parameters;
in the UCC method, the t Kare obtained as <KI TI <PMc> after the variational parameters t", (which define
T= L",t",e",in terms of generators eijand single products of such gener~tors of the unitary group) are computed
bysolvingthe linearequationsofref. [I]. Boththe CEPAand UCCm~thodsgiveidenticalenergyexpressions.

The conventional one. and two-electron operators forming the Hamiltonian may be introduced to give

EcC =EMc + 'f.hijDij + 'f. (ijl kl)dijkl ,
ij ijkl

(2)

0009-2614/87/$ 03.50 @ Elsevier Science Publishers B.V.
~(North-Holland Physics Publishing Division)

451



.
\'

Volume 142. number 6 CHEMICAL PHYSICS LETTERS 2S December 1987

a form reminiscent of the CI or MC SCF energy expressions, although here the density matrices dijkland Dij
are of the transition density matrix form. Explicitly

Dij=LTKLCI(lleijIK) ,
K I

(3a)

,
and

dijkl=iLTKLC/( (Ileijk/IK) + (IIeijkIIK» ,
K I

(3b)

where CI is the CSF amplitude in the MC SCF reference function and eijand eijklare generators and generator
products of the unitary group. The geometry dependence of Ecc is contained in the t K,the CI and the integrals
hij and Wlk/).

Application of the chain rule for differentiation and using the fact that the energy has been made stationary
with respect to variations in the TKor t" cluster amplitudes (aECEPA/aTK=Oor aEcc/at" = O) aUowsone to write

dEcc dEMc "huQD "ha D +"h aDij" (
""

lk/) UQ d + "d (I )a +" (
""

lk/)
adijk'-

d
=-

d + I... ij ij + I... iJP iJP I... ij :> + I... l) ijk' I... iJPP<1jlV pa I... lJ :>'
a a ij iJP ij ua i;kl iJP ijkl ua

(4)

The variational nature of Ecc with respect to the TK(or t,,) amplitudes obviates the need to solve for the re-
sponse oj the CC amplitudes with respect to geometrical displacement. Only the orbital responses Uj and the
MC SCF configuration amplitude responses ac/aa need to be obtained [I 1,12]. The practical evaluation 9f
our unitary CC energy derivative (eq. (4» requires little more than the effort required for the MC SCF gra-
dient and Uj and ac,/aa evaluation. This is a very important practical feature of our result.

In eq. (4), the hHQ and Wlk/ )uQare partiallytransformed[10,13,14]one-and two-electronintegralsin which
the orbital responses l.jU'j;f/Jjhave been included as described in ref. [13], DiJPand diJPpqare density matrices
which have been back-transformed to theatomic orbital basis [9]. For unitary CEPA energies, for which the
TK themselves are the independent variational parameters, the transition density matrix derivatives aDi;laaand
ddikl/aaare expressed as in eq. (3) but with ac,/aa in place of CI, Since the TK in a UCC calculation are not
the independent variational parameters (the t" are), the derivative density matrices contain both this ac,/oa
factor plus a second term ofthe same form as in eq. (3) but with atK/aa=l.L(KI TIL)aCdaa in place ofrK.
With these specifications, eq. (4) gives or working resuit for the UCC and variational CEPA first energy
derivative.

We again stress that aU quantities in eq. (4) are available either from the MC SCF gradient calculation, the
UCC energy calculation, or by performing the coupled perturbed multiconfiguration Hartree-Fock (CP MC
HF) response calculation [10- 12] to compute the molecular orbital and CI response quantities (ac,/aa and
Uj). The usual form ofthe CP MC HF equations [10-13] (Le. as used in MC SCF second derivatives and
in CI first derivatives from an MC reference) may be used straightforwardly whenever the electronic energy
expression is invariant to unitary transformations within the core valence, and virtual molecular orbital sub-
sets. This is, in fact, the case in the CEPA implementation of our DCC method. .

The implementation of our UCC method as expressed in ref. [l] may, for practical reasons, utilize a (nu-
mericaUy) screened manifold of cluster operators. As a result, the UCC energy is, in general, not invariant to
arbitrary orbital rotations because this screening process will usuaUydestroy invariance within orbital subsets.
Therefore, a specific choice of the orbitals (e.g., some physicaUy motivated choice of canonical orbitaIs) must
be made and preserved at aUnuclear geometries in order to have a consistently defined wavefunction. As de-
scribed in our earlier paper, the specific choice of orbitaIs that we make diagonaliies the core Fock matrix
[Il,17], ,

occ

Fij =hij+l L Ak/[2WI ki) - (iklj/)],ki
(5)
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within both the core and virtual orbital spaees, and diagonalizes the Lagrangian matrix [11,18],

E;j=rh;ki'Ig+2 > (ikl/m)rjklm ,
k k'rm

(6)

in the valence orbital space.
The eondition that the moleeular orbitals at the (infinitesimally) displaeed geometries also diagonalize

Fij and Eijand henee that the eoupled-cluster operator manifold at the slightly displaeed geometry is consistent
with the manifold at the original geometry, gives rise to eonditions on the derivatives of the eore Fock matm
[11 l,

dFijlda=O, it-j

and on the derivatives of the sum of the off-diagonal Lagrangian matrix,

d(E;j+Ej;)/da=O, it-j. (8)

The difference of the off-diagonal Lagrangian matrix elements must also vanish (at alI powers of differentia-
tion), a condition already used in defining the CP MC HF equations [11 l.

Differentiating the core Foek matrix, as indieated in eq. (7), gives

(7)

- 0= rC~IY. (h~ + ri'pa[(Jllllpq)Q - l(ppl VO')Q] )+r(r 0;1 CAi'ft+i'tf»)[(ijlkl) - l(iklj/)]
pJl pa ki IJ ua

+ ~u~{ ~i'd(sjlk/) - Hsklj/)]+hsj)+ ~u~( ~i'kl[(islkl)- l(ikls/)] +h;$)

+ f,u~,( ~i',,[2WlsI) -Hislj/) - l(ilIjS)])
(9)

for all i>j, i,jeeore and i,jevirtual. In eq. (9), the Greek indices run over all atomie orbitals, k, I, r denote
moleeular orbitals occupied in some or all CSFs, and s runs over all moleeular orbitals. The terms in eq. (9)
are identical to those derived earlier by Osamura and eo-workers [II] in the eontext of derivatives of a CI
wavefunetion osing MC SCF orbitals. However, in the present case, the separation into energy redundant and
non-redundant variabIes does not oeeur. Thus, eq. (9) represents a generalization of the coupled perturbed
multieonfigurational Hartree-Fock (CP MC HF) equations ofOsamura and co-workers for the UZand oC1loa.

Similarly, the sum of the off-diagonal Lagrangian matm elements ean be differentiated to give

O=rU~;E$j+rU~'Y;j$,+Ez+r 0;1 n+(i+=tj),
,$ $' 1 ua

(10)

for all i>j, i,je valenee. In eq. (10), we use the same index convention deseribed in the preeeding paragraph.
Examination of eqs. (9) and (10) shows that the usual energy non-redundant CP MC HF equations must

be modified by adding nco",(""o",+ 1)/2 + nvalence(nV81ence+ 1)/2 + nvinU81(nVinU81+ 1)/2 equations to preserve the
canonical nature of the orbitais. Further examination of eqs. (9) and (10), with consideration of the orbital
rotation orthonormality condition, UZ+ Uj;+ SZ =O (where SZ is the usual derivative overlap matrix trans-
formed into the MO basis), shows that the number oforbital rotations (UZ) introdueed in excess ofthe energy
non-redundant ones exaetly equals the number of additional equations. Thus it is to be expeeted tbat the larger.
set of simultaneous equations has a unique well-defmed solution. Parenthetically we note that the quantities
used to eonstruet the eoeffieients in the additional equations and t~ modifications to existing CP MC HF
equations are already available within conventional computer codes for the construction ofthe usual CP MC HF
equations [11,12]. Tbe solutions to these modified equations are then the orbital (UZ), and configuration am-
plitude (oCrloa) changes whieh may then be used directly in computing the derivative energy, as in eq. (4).
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In summary, we have demonstrated in this Letter that the UCC molecular gradient, or its variational CEPA
counterpart, are indeed practical within the framework of our UCC method. The unitary method and its re-
suIting variational energy functional are the key ingredients to obtaining a computationaIly practical energy
gradient expression. ComputationaI implementation of this method is eminently viable due to both the
straightforward functional form oftIt~ energy gradient expression and to the availability ofkey quantities from
extant MC SCF analytical derivative codes.
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