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The conventional Fermi golden rule expression for the rate of transitions between vibration-rotation states of two electronic 
states is shown to reduce, under a single specified approximation, to an expression which contains only the initial-state 
vibration-rotation wave function, the upper and lower electronic energy surfaces, and the electronic transition moment integral. 
This (approximate) result affords a new picture of the photon absorption process, which is shown to be equivalent to a 
Landau-Zener surface hopping picture. Potential conceptual and computational advantages and disadvantages of this new 
picture are discussed. 

I. Introduction 
In an earlier publication,' we demonstrated how the conven- 

tional first-order perturbation theory based Fermi golden rule 
expression for the rate of transitions between initial and final 
Born-Oppenheimer statesZ (I$&" and &X,') 

induced by electric dipole (2.3 interaction with light of energy 
h w  can be rewritten (approximately) as follows: 

2T 
h 

W =  -(X:l(q501Z*flq5f)z8[hw - Ef + EO]w?) S-' (2) 

In eq 1 ~jf and 6: are the total (electronic plus vibfational acd 
rotational) energias of the final and initial states; E'(R) and @(R) 
are the Born-Oppenheimer potential energy surfaces of the final 
and initial electronic states. In eq 2, it is intended that h w  be 
set equal to a specific energy difference e,' - 6 .  10 to obtain the rate 
of transitions between these states. That is, eq 2 still contains 
all of the state-specific information of eq 1 because it is to be 
evaluated only for values of h w  which match specific transition 
energies. The only approximation made in deriving eq 2 from 
eq 1 involved neglecting the noncommutation of the vibration- 
al-rotational gnetic energy operator T and the potential energy 
functions Ef(R) and p ( R ) .  

More precisely, when the &function appearing in eq 1 is re- 
placed by its Fourier representation 

6[w - (€1 - €iO)/h] = -s exp[iwt - it(€:- t:)/h] dt (3) 

and the (Born-Oppenheimer) identities 

1 -  
2 r  -m 

t;r#JfX,f = ( T  + Ef)&X,f 

t:r#J&? = ( T  + E(')r#J&: 

t4a) 

(4b) 

and 

are used, eq 1 becomes 

w = ~S_~exp(iwt)(XPl(Oolexp(if(EO + T ) / ~ ) E +  x 

Writing3 
exP(-it(Ef + T)/h)l9f)lX,')(Xj'l(~dE'.l~o)IX:) dt ( 5 )  

- 1/2( :)'[lF',U - ...) exp( y) (6a) 

(1) J. Simons, J .  Phys. Chem., 86, 3615 (1982). 
(2) bo and & are the electronic wave functions, and X," and X,' are the 

vibration-rotation wave functions of the respective Born-Oppenheimer states. 
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exp[ + n] = 

exp( $ T )  exp( $Ef + j/2( $)'[E',TI + ...I (6b) 

and ignoring the fact that T does not commute4 with E" or E'allow 
us to write 

exp(it(E0 + T)/h)& exp(-it(E' + T ) / h )  = 
exp[it(EO - E')/h]& (7)  

which then allows us to rewrite eq 5 using eq 3, again, as 

w = $(X:l(dolE.'791)6[w - (Ef - Eo)/h]w,r, x 
h 

(XjfI (&IE*flr#Jo)l~?) (8) 

If we now restrict ourselves to evaluating eq 8 only at  values of 
h w  which match a particular energy difference tjf - t,O, the vi- 
bration-rotation quantum states w;) appearing in eq 8 can 
actually be summed over; only those states whose energy tjf 

matches t: + h w  will contribute to the sum. The advantage to 
summing over these states is that the completeness relation 

(9) 

can be used, as a result of which eq 8 then reduces to eq 2. 
Before moving on to address the accuracy of the approximations 

contained in eq 2, let us reflect upon the physical content and 
possible merits of eq 2 and 1. Equation 1 expresses the conven- 
tional picture5 of the electronic transition process: (a) The photon's 
energy h w  must match the state energy difference - t:. (b) 
Electronic selection ;des arise from the electronic transition 
moment integral ( $olE.fldq). If the geometry dependence of this 
moment is ignored (Condon approximation), the familiar5 
Franck-Condon factors I(X#t:)12 arise. On the other hand, the 
approximation, eq 2, gives a different picture' of the electronic 
transition event: (a) Only at  those molecular geometries where 
tjf - E' = t: - @ is obeyed will photon absorption occur. It is 
precisely at these geometries where the classical vibration-rotation 

(3) These equations are special cases of the operator identity exp(A) exp(B) 
= exp(A + E + ' / 2 [ A , B ]  + I/IIIA,[A,B]] + 1/,2[[A,B],B] + ...I given in R. 
M. Wilcox, J .  Math. Phys. (N.Y. ) ,  8, 962 (1967). 

(4) This can be viewed either as treating the T operator classically or as 
making a short-time expansion of the terms appearing in eq 6. The short-time 
interpretation arises by noticing that the commutators on the right-hand sides 
of eq 6 give rise to r 2 ,  r ) ,  etc., in the exponentials. Ignoring the t2 ,  r3 ,  etc., terms 
relative to the f term therefore amounts to making a short-time approximation. 
To our knowledge, the earliest developments along these lines were made by 
M. Lax, J .  Chem. Phys., 30, 1752 (1952). 

( 5 )  G. Herzberg, "Electronic Spectra and Electronic Structure of Poly- 
atomic Molecules", Van Nostrand Reinhold, New York, 1966, p 148. 
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to the gradient8 ?(Ef- E") of Ef - Eo and is dependent on the 
value of S. Clearly, the critical geometries I?, correspond to points 
with d = 0 in eq 11. 

As we demonstrated above, the picture developed in ref 1 gives 
rise to the concepts of "critical geometries" at which the electronic 
transition takes place. To further explore the original formalism, 
let us reexamine eq 1 with a focus on regions of geometry space 
near to the, presumably most important, critical geometry space 
S .  

Rate of Photon Absorption. The transition rate given in eq 
1 can be viewed as relating to transitions between Xi0 and X; 
caused by a pertufbation involvin_g the electronic dipole matrix 
element 1 (&1E.ijq5f) which is R dependent. Landau,% Zener:b 
and othersgc have shown how to evaluate transition probabilities 
relating to such processes semiclassically. We can make use of 
the Landau-Zener (LZ)-type developments by rzcognizing that 
the potential energy surfaces P ( R )  + h w  and Ef(R) can be vieyed 
as intersecting diabatic surfaces which, via their interaction pUM(R), 
give rise to two adiabatic surfaces 

E*(@ = )/z{(E" + E' + h w )  f [(Ef - @ - + 4 p 0 ? ] ~ / ~ )  
(12) 

differing by [ ( E f  - E' - h ~ ) ~  + 4pOfZ]'/' A in energy. In writing 
E' + h w  as a potential energy surface, we are identifying the total 
electronic-plus-photon energy as our unperturbed energy. Of 
course, the shape of E0 + h w  is identical with that of @; the 
former is simply Eo shifted by the constant energy h w .  

In regions of geometry space near where E' - @ - h w  = 0, 
E+ and E- approach to within 21hfl. According to the LZ theory, 
it is near such geometries that transitions are most likely to occur.9 
From our earlier discussion, we recognize these geometries as those 
corresponding to small d values in eq 11. Let us consider how 
the energy splitting A varies with geometry for small d .  We begin 
by expanding E' - E" - h w  about a point s' in S (corresponding 
to d = 0) 

a 
an Ef - E0 - hw = 0 + -(Ef(3 - E"(3)d + .,. ( 1 3 )  

In writing eq 1 3 ,  we used the fact that the components of the 
gradient of Ef - E" - h w  along directions lying within S vanish; 
only the gradient along A is nonzero. Noting that (a/an)(Ef - 
E') is the force difference (@ - F'),,(?) along A for the two surfaces 
at the point S, we have (for small d) 

A z [ ( p  - p)>& + 4 p 0 $ ] ] / ~  (14) 

The conventional L Z  approach amounts to ignoring the d de- 
pendence of pof and parametrizing the classical motion, causing 
a change in d as a linear function of time near d = 0 

(15) 

where u, is the velocity of the molecule's motion along A as it 
crosses the point d =,O at  ?. The probability of a transition from 
Eo@) + h w  to E f ( R )  is then given by the LZ-like theory asgb 

(16) 

+ h w  surface 
to the E'surface as the molecule passes through d = 0 at  S, we 
must now incorporate it into the overall electronic transition rate 
in order to achieve a comparison with eq 2. Recall that, in deriving 
eq 2 from eq 1, the concept of the critical geometry subspace S 
gave rise to considering only those molecular geometries where 

d ( t )  = u, (mt  - t o )  

P = 1 - exp[-2~p,fZ/(hv,l@ - PI,)] 

Given this probability of transition from the 

kinetic energy (e: - E" = kinetic energy) remains unchanged6 in 
geing from q5dr,O to dfX:. (b) At each such "critical geometry" 
(R,) ,  the rate of transition is proportional to th_e probability that 
the molecule experiences that geometry IX:(R,)(2 5ultiplied by 
the square of the electronic transition moment a t  R,. 

Clearly, eq 2 is an approximation to eq 1. However, on con- 
ceptual grounds and even in certain quantitative calculations, eq 
2 may be preferred. Application of eq 1 requires knowledge of 
the vibration-rotation wave functions-of both states, whereas eq 
2 needs the initial-statz functions X:(R) together with knowledge 
of those geometries R, where the classical kinetic energy con- 
servation condition is met. In the (quite common) case where 
r$o is the ground electronic state and X p  corresponds to soqe  
low-energy vibration-rotation level, knowledge of X: and @(R) 
in regions of geometry space where K:l2 is appreciable is quite 
likely to be available. It is even reasonable to expect that, either 
through ab iniGo quantum calculations or cruder semiempirical 
estimates, E f ( R )  could be known for geometries where IX:12 is 
significant. However, knowledge of the excited-state vibrational 
wave functions X; may often be difficult to achieve, especially 
if X; corresponds to a high-e_nergy vibration-rotation state which 
spans geometries where F ( R )  is highly anharmonic and/or mode 
coupled. Moreover, basis set or differential equation methods for 
generating X: do not give these functions only where X: is ap- 
preciable; they generate X: at  many geometries which are not 
needed for computing the Franck-Condon factors. 

The above summary of the developments made in ref 1 makes 
it clear that eq 2 may provide new insights into the electronic 
transition process and has potential utility as a computational tool. 
The purpose of the present paper is to further explore the im- 
plications of eq 2. In section I1 we reexamine the derivation of 
eq 2 with an eye toward making improvements which preserve 
its pedagogical value and computational utility. Section I11 
contains our concluding remarks. Our analysis is quite similar 
to that carried out by Bergsma et al.' in that we focus on con- 
nections between the classical picture afforded by eq 2 and a 
Landau-Zener-like reinterpretation. However, we feel that our 
treatment of the multidimensional nature of the energy surfaces 
and of their intersection subsurfaces is more explicit than 
Bergsma's. We therefore feel that our treatment offers additional 
clarity and potential for understanding. 

11. Further Reflections on the Partly Classical Model 

at  which the classical kinetic energy conservation condition 
The Critical Geometries. Let us consider the geometries I?, 

is met. For a molecule containing N atoms, both E' and E0 are 
functions of 3N - 6 (3N - 5 for a linear molecule) internal degrees 
of freedom. The geometry subspace S in which eq 10 is satisfied 
is of dimension 3N - 7 (3N - 6 ) .  Any geometrical arrangement 
of the molecule can be described by specifying a point (3 in S 
and a distance (d) along the vector A which is normal to the 
intersection subspace at  2 

Since E'- P is constant in the S subspace (equal to the transition 
energy h w ) ,  the direction of A can easily be obtained; ii is parallel 

(6) In this interpretation, we view the molecule as vibrating in the presence 
of the photon's time-varying electric field. As the molecule vibrates through 
these special geometries, the photon can be absorbed; a t  other geometries the 
photon cannot be absorbed because doing so would violate the conservation 
of vibration-rotation kinetic energy condition. The critical geometries are 
special in that they allow the molecule's vibration-rotation kinetic energy to 
remain unchanged. This means that all of the photon's energy goes into 
vibration-rotation potenrial energy. This potential energy is nothing but the 
Born-Oppenheimer electronic energy. Thus, at the critical geometries, we 
see that all of the photon's energy is absorbed into the electronic degrees of 
freedom which then, of course, give rise to a new potential energy surface (a 
for the molecule to subsequently vibrate on. 

(7) J. P. Bergsma, P. H. Berens, K. R. Wilson, D. R. Fredkin, and E. J. 
Heller, J.  Phys. Chem., 88, 612 (1984). 

(8) Recent developments in analytical evaluation of gradients of potential 
energy surfaces (see, for example, P. Jorgensen and J. Simons, J .  Chem. Phys., 
79, 334 (1983), and references therein) make it possible to systematically map 
out the S subspace and the ii vector at each point in S. 

(9) (a) L. Landau, Phys. Z .  Sowjetunion, 1, 88 (1932); (b) C. Zener, Proc. 
R. SOC. London, A 137, 696 (1932); (c) For an excellent overview and for a 
discussion of various workers' contributions to this area, see M. S. Child, 
"Molecular Collision Theory", Academic Press, London, 1974. 
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d = 0. The above Landau-Zener model only considers small 
deviations away from d = 0 so as to incorporate the effects of how 
fast (v,) and with how much recoil (IF - PI,,) the molecule passes 
through d = 0; u,, IF' - PI,, and pOfZ are all evaluated at  points 
s' which lie in S. 

To formulate the rate of transitions from E" + h w  to E', we 
multiply the rate at  which molecules pass through points S in the 
critical subspace S by the (LZ) probability of transition at  point 
S and we then integrate over the space S. The molecule moves 
in a ( 3 N -  6)-dimensional coordinate space; thus, it only passes 
through the (3N - 7)-dimensional subspace S. The rate ( r )  of 
molecules passing through S at  s' is equal to the total number of 
molecules (N) in the sample, multiplied by the probability of any 
one molecule being between (S, d = 0 )  and (s' + ds, d = 6) and 
multiplied by the rate of passage of that one molecule through 
(S, 0): 

r ( 3  = W%,d)12ds6(v,/6) (17) 

Here IX,"(s',d)12 is the square of the vibration-rotation wave 
function of the P + h w  energy surface, dS is the volume element 
for integration over S, and (u,/6) is the speed normal to S divided 
by the infinitesimal "thickness" 6 of the region S. Since S/v, is 
the time the molecule spends within the region of thickness 6, its 
reciprocal can be thought of as a frequency of passage. Following 
through on the above analysis, we obtain the spatially averaged 
rate (s-l) of photon-induced transitions per molecule given, via 
eq 16 and 17, by 

W = S N - l r ( q P  dS 

= sV,"12vn{l - exp[-2vof2/(hu,lP - Ffl,)lI dS  (18) 

where the integration is only over the subspace S. This is our final 
expressionlo for W, which we view as a generalization of eq 2. 

Connection between Eq 2 and 18. It is instructive to consider 
whether eq 18 and 2 can be shown to give identical rate expressions 
in some limiting case. It is well-knowngc that the L Z  expression 
for the probability of transition given in eq 16 is of "infinite order" 
in the perturbation strength pop In contrast, eq 2 was obtained' 
by using the first-order perturbation theory method. Therefore, 
let us examine the lowest order term in our LZ-based expression 
for W, which we obtain by expanding the exponential in P and 
keeping only the first nonzero term: 

W z IXj012u,2apofZ( hu,lF' - PI,,)-' dS 

2 a  
h (19) = - S IX,012pof21P - PIn-' dS 

Equations 19 and 2 are indeed very similar except that eq 2 
involves integration over the entire (3N - 6)-dimensional space 
but constrained by the &function 6(3f - t: - E' + P), whereas 
eq 19 contains the - factor. The energy-restricting 
&function of eq 2 can be recast as a &function in geometrical 
factors by expanding the energy difference about the point (s', d 
= 0 )  in S: 

€]f - €10 - E'(& + EO($) = 
t/f - c,O + P ( S , O )  - E'(s',O) + (F"(3, - P ( 3 , ) d  + ... (20)  

(the zeroth-order term in the expansion on the right-hand side 
of eq 20 vanishes) and using" 

(21) 6[(P - @),,A = IF" - PlL16(d)  

(10) Heller et al. (E. J .  Heller and R. C. Brown, J .  Chem. Phys., 79, 3336 
(1983)) showed that radiationless transition rates could also be formulated 
in terms of a Landau-Zener probability factor combined with a rate of passage 
through a subsurface of intersection between the two relevant surfaces. Also, 
as mentioned earlier, Bergsma et al. have obtained a similar result in their 
treatment of electronic absorption profiles. 

With these substitutions, eq 2 becomes 

which is identical with eq 19. Therefore, we conclude that the 
LZ-based theory expressed in eq 18 is a generalization of our eq 
2 .  Of course, eq 18 may be preferred in numerical calculations 
because it properly treats situations in which pof2[hv,lF - Pin]-' 
is large; the first-order perturbative result (eq 22) cannot be used 
when 27rpof2[IP - Pl,hv,]-l is large. 

In summary, we have shown that one can view the photon 
absorption process and calculate its rate in either of two ways: 
as a state-to-state transition induced by the 2.7 perturbation or 
as a "hopping" from one energy surface9 (Eo + h w )  to another 
(Ef). It is our feeling that this analysis sheds new light on the 
connections between these two seemingly quite different means 
of viewing the same physical process. It should also be noted in 
closing this section that computational implementation of the result 
of eq 2 or the identical eq 19 does not require information about 
the classical momentum vector. Only the intersection surface S, 
the magnitude of the force change normal to S, the electronic 
dipole integral, and the initial-state vibration wave function are 
needed. In the work of ref 10, classical trajectories are actually 
run on the initial-state surface @(I?) as a means of calculating 
the rate of passage through S, which is given in eq 17. In our 
picture as well as that given in ref 7, the need for running classical 
trajectories is obviated when eq 19 is used. 

111. Conclusions 
In this paper we have shown that the view of molecular elec- 

tronic transitions afforded by eq 2 is identical with the first-order 
Landau-Zener-based rate expression given in eq 19. Thus, the 
neglect of the noncommutation of the vibration-rotation kinetic 
energy operator and the potential energy functions @(R) and 
E'(R) (which is the only approximation made in deriving eq 2) 
leads to the same final rate expression as does the Landau-Zener 
approximation within_ a surface hopping picture (involving the 
E"(&) + hw and Ef(R) surfaces). We feel that this connection 
between eq 2 and the Landau-Zener picture gives us a better 
understanding of the limitations of our picture of photon absorption 
because of the extensive experience base which exists for the 
Landau-Zener method. 

The numerical work of Heller and Brown,Io who developed a 
similar picture for use on radiationless transition processes, shows 
that such semiclassical approximations can indeed reproduce some 
of the trends seen in the exact quantum results of eq 1. We have 
also carried out numerical investigations comparing eq 1 and 19 
for several two-dimensional model potentials (harmonic and an- 
harmonic) chosen to realistically simulate geometrical degrees 
of freedom in actual molecules. We find substantial differences 
between the exact results of eq 1 and the approximate results of 
eq 2 in cases where the quantal Franck-Condon factors are small 
because of destructive interference between the upper and lower 
state wave functions. The approximate eq 2 contains no direct 
wave function phase information; thus, it cannot accurately predict 
such rates. We also observed that eq 2 tends to overestimate all 
transition rates; again, this is due to the lack of phase information 
which could lead to cancellation in the exact eq 1. It is likely that 
the picture provided by eq 2 will be most useful in quantitative 
calculations when the total rate of transitions is considered to a 
collection of vibration-rotation states within a narrow energy range 
(e.g., in a polyatomic molecule in which there are many states 
within the bandwidth of the exciting light). The total rate of 
transitions to such a group of states should be less sensitive to phase 
information than the rate of transition to any single state. Thus, 
it is likely that our approximate eq 19 will be more useful relative 
to the exact eq 1 for larger molecules; this is, of course, a fortunate 

(1 1) L. I. Schiff, 'Quantum Mechanics", 3rd ed., McGraw-Hill, New 
York, 1955, p 57. 
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situation. Although it is our plan to further explore the utility 
of eq 2 within a polyatomic molecule framework, we feel that the 
observations relating eq 2 to the Landau-Zener picture as well 
as the physically clear picture or photon absorption afforded by 
eq 2 or 19 constitute the essential results of this paper. 

ESR of V(CO), (n  = 1 to 3) Molecules in Rare-Gas Matrices 
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Three vanadium carbonyls, two with high spin, were observed and partially identified from hyperfine interactions with 51V 
( I  = 7/2)  and I3C ( I  = 1/2). They were formed by the reaction of vanadium metal vapor with low concentrations of I2CO 
or I3CO in rare gases and condensed at 4 K. VCO is trapped in two conformations of almost equal stability, one linear and 
the other presumed to be slightly bent; both have S = 5 / 2 .  The bent form (6A') has an approximate configuration [ddd@suo.2(pa 
+ d ~ ) ~ . ~ ]  and a zero-field splitting parameter ID1 = 0.45 cm-I. The electronic parameters changed considerably in the linear 
form. V(C0)2 was observed only in a neon matrix and has a S = 3 /2  ground state with ID1 = 0.30 cm-I. It is probably 
slightly bent, but the ESR spectrum provided no definite evidence of nonlinearity. V(CO), was also observed only in neon 
as an axial molecule with a 2A1' or 2Al ground state depending upon whether it has planar Dgh (considered more probable) 
or pyramidal C3, symmetry. 

Introduction amarentlv have not been treated in detail. 
Transition-metal carbonyl molecules continue to be of great 

interest, partially because of their relevance to catalysis. The 
simplest molecules, those containing only one metal atom, have 
been studied spectroscopically, and electron spin resonance (ESR) 
has been applied successfully in some cases, specifically to V(CO)4, 
V(CO),,' V(CO)6,2-5 Mn(C0)s,6 Co(CO),, C O ( C O ) ~ , ~ * ~  CuCO, 
C U ( C O ) ~ , ~ J ~  and AgCO, Ag(C0)3.11,12 (Ionic carbonyls have 
also been observed via ESRI3,l4 but will not be explicitly discussed 
here.) Theoretical discussions of the geometries, ground states, 
and bonding in these types of molecules have been given by several 
authors beginning perhaps with KettleIs and then by DeKock,I6 
B ~ r d e t t , ~ ~ * ' *  Elian and Hoffmann,19 and Hanlan, Huber, and 
O z h z o  Although a number of ab initio calculations have been 
made on such carbonyls, the vanadium molecules considered here 

(1) J .  R. Morton and K. F. Preston, Organometallics, 3, 1386 (1984). 
(2) D. W. Pratt and R. J.  Myers, J .  Am. Chem. Soc., 89, 6470 (1967). 
(3) K. A. Rubinson, J. Am. Chem. Soc., 98, 5188 (1976). 
(4) M. P. Boyer, Y. LePage, J. R. Morton, K. F. Preston, and M. J. Vuolle, 

( 5 )  S. W. Bratt, A. Kassyk, R. N. Perutz, and M. C. R. Symons, J. Am. 

(6) J .  A. Howard, J. R. Morton, and K. F. Preston, Chem. Phys. Lett., 83, 

(7) L. A. Hanlan, H. Huber, E. P. Kiindig, B. R. McGarvey, and G. A. 

(8) S. A. Fairhurst, J. R. Morton, and K. F. Preston, J.  Magn. Reson., 55, 

(9) G. A. Ozin, Appl. Spectrosc., 30, 573 (1976). 
(10) P. H. Kasai and P. M. Jones, J .  Am.  Chem. Soc., 107,813 (1985). 
(11) D. McIntosh and G. A. Ozin, J .  Am. Chem. Soc., 98, 3167 (1976). 
(12) P. H. Kasai and P. M .  Jones, J.  Phys. Chem., 89, 1147 (1985). 
(13) T. Lionel, J. R. Morton, and K. F. Preston, J. Chem. Phys., 76,234 

(14) S. A. Fairhurst, J. R. Morton, and K. F. Preston, Chem. Phys. Lett., 

(15) S .  F. A. Kettle, J. Chem. SOC. A,  420 (1966); Inorg. Chem., 4, 1661 

(16) R. L. DeKock, Inorg. Chem., 10, 1205 (1971). 
(17) J. K. Burdett, J .  Chem. Soc., Faraday Trans. 2, 70, 1599 (1974). 
(18) J. K. Burdett, Inorg. Chem., 14, 375 (1975). 
(19) M. Elian and R. Hoffmann, Inorg. Chem., 14, 1058 (1975). 
(20) L. Hanlan, H. Huber, and G. A. Ozin, Inorg. Chem., 15,2592 (1976). 

Can. J .  Spectrosc., 26, 181 (1981). 

Chem. SOC., 104,490 (1982). 

226 (1981). 

Ozin, J .  Am. Chem. Soc., 97, 7054 (1975). 

453 (1983). 

(1982). 

104, 112 (1984). 

(1965). 
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a 1  

The baikground for the present investigation was provided by 
the matrix work of Hanlan, Huber, and OzinZ0 who observed the 
infrared spectra of V(CO), where n = 1 to 5 ,  in the solid rare 
gases. Most notably, those authours concluded, from experiment 
and theory, that (1) VCO is nonlinear, (2) V(C0)2 exists in linear, 
cis, and trans forms in all three matrices, argon, krypton, and 
xenon, (3)  V(CO)3 is probably of D3,, trigonal planar geometry. 
It should be emphasized that the supporting theory usually as- 
sumed low-spin ground states. 

Morton and Preston have prepared V(CO)4 and V(CO)s in 
krypton matrices by y irradiation of trapped V(CO)6.1 From ESR 
they assign V(CO)4 as high-spin 6Al in tetrahedral ( Td) symmetry 
and V(CO)5 as 2B2 with distorted trigonal bipyramid (C,) sym- 
metry. V(CO)6 is a well-known stable free radical which has been 
rather thoroughly researched by infrared,21 MCD,22 ultravi~let?~ 
electron, and X-ray d i f f r a ~ t i o n , ~ ~  and ESR. It is presumably a 
Jahn-Teller distorted octahedral (2T2g) molecule a t  low tem- 
peratures leading to a 2B2, ground state. 

Our ESR findings are only for V(CO),, where n = 1 to 3, and 
are not always in agreement with conclusions from optical work 
and semiempirical theory. The most explicit departure is in finding 
that VCO and V(C0)2 are high-spin molecules. 

Experimental Section 
The vanadium carbonyls synthesized in this work were made 

in situ by co-condensing neon (Airco, 99.996% pure), argon (Airco, 
99.999% pure), or krypton (Airco, 99.995% pure) doped to 0.1-5 
mol % with l2C0 (Airco, 99.3% pure) or I3CO (Merck, 99.8% 
pure) with vanadium metal [99% pure, 99.8% W ( Z  = 7/2)] onto 
a flat sapphire rod maintained at  4-6 K but capable of being 
annealed to higher temperatures. 
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