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A theory which permits the analytical calculation of atomic and molecular first-order density matrices
in a computationally tractable manner is developed. Contour integral techniques are used to derive an
equation relating the first-order density matrix <y to certain eigenvectors which arise in our earlier
theory of molecular ionization potentials and electron affinities. By analytically evaluating the resulting
contour integral, we obtain a closed expression giving y in terms of Hartree-Fock orbital energies and

two-electron integrals.

I. INTRODUCTION

Knowledge of the first-order density matrix’+2
¥ belonging to the wavefunction |g) is sufficient to
determine the expectation value (g f |g) of any
one-electron operator f

(g|flg)=TrlvD), 1)

where f is the representation of f in an arbitrary
basis. In most calculations ¥ and f are expressed
in the basis of the Hartree—Fock (HF) spin orbitals
@; of the atom or molecule:

fii={oil fleg, (2)
yii={:lv|ep. (3

In terms of the creation {C}} and annihilation {C;}
operators referring to the spin orbitals {(p,-}, Y
can also be written as®

vi;={g|CiC;le). (4)

If the wavefunction |g) were known, 7 could be
calculated from Eq. (4) and any expectation value
would follow naturally from Eq. (1).

The eigenfunctions 7; and eigenvalues A; of ¥
are known as natural spin orbitals (NSO’s) and oc~
cupation numbers (ON’s), respectively:

YNi=AMN;. (5)

These NSO’s have proven to be quite useful as a
basis for atomic and molecular configuration in-
teraction (CI) calculations, primarily because they
lead to the most rapidly convergent CI expansion. t

Considering the great deal of information which
is so compactly stored in the first-order density
matrix, it is very logical and important to seek
methods which permit the direct calculation*™® of
¥, without having to obtain the wavefunction |g).
The difficulty which consistently plagues such
methods is the N-representability problem* "%;
how can one know whether a density matrix which
is calculated by an approximate theory belongs to
a properly antisymmetric N-electronwavefunction?
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Because a practical solution of the N-represent-
ability problem is not presently available, we do
not attempt to deal further with this difficulty.
Rather, we present here a new theory which allows
the direct calculation of ¥ in a computationally
tractable fashion, but which ignores the conse-
quences of N representability.

In Sec. 1I, the connection between the first-order
density matrix and a complete set of positive-ion
states is established. Section III contains a deriva-
tion of a contour-integral expression for ¥, which
is analytically evaluated to third order in the elec-
tronic interactions 77} in Sec. IV. Our concluding
remarks are presented in Sec. V.

I. RELATION OF v TO POSITIVE-ION STATES

Representing the ground state of the N-electron
atom or molecule of interest by lg") and inserting
an orthornormal complete set {I\¥")} of (N -1)-
electron eigenstates in Eq. (4) gives

vii=22 gV CIIATHON ¢l gy (6)

In an earlier publication, ® we developed a theory
of molecular electron affinities and ionization po-
tentials in which the positive-ion eigenstates
[X¥1) are related to | g¥) by the operators =5:

E3lg™y = AV, ()
where
Er=20X,00C4 27 Y pamNCRCLC,
i m<n

o
+ 27 YomgMCsCrCq.  (8)
a<B

In Ref. (9), which is hereafter referred to as I,
and in the present paper, the wavefunction | %
will be taken from Rayleigh~Schrodinger perturba-
tion theory and all quantities will be calculated
through third order'® in the electronic interaction

-1
¥Yije

By inserting Egs. (7) and (8) into Eq. (6) and
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using the following property of Z}:
Ehl gN> =0, (9)

one can express ¥ in terms of the expansion coef-
ficients X;(A) appearing in Eq. (8) as

?’ij:Z Xi(x)X’}‘()\)- (10)

Notice that the index X runs over only the states

of the positive ion; the vectors X()) belonging to
negative-ion states, which also occur in our earlier
theory, are not included in Eq. (10). This result
constitutes the starting point of the theory pre-
sented herein.

According to the formal developments presented
in1, the X;(A) can be obtained as eigenvectors of
the pseudoeigenvalue problem

H(E)X() = E,X(\), (11)

where the matrix H(E) is defined in Eq. (37) of I
and the E, are equal to electron affinities and
ionization potentials of the molecule. The nor-
malization of the vectors X()) is dictated by the
condition that the functions |A""%) be normalized
to unity:

OV = (Y [{E, 2 g = 1. (12)

Substituting Eq. (8) into Eq. (12) and making use
of Eg. (27) of I, one obtains the normalization con-
dition for the X(1) which can be written as

1 =E XZ(X)XI:()‘) +E Xf()&){ Z; [Bt.namBl.nam/
k Ryl

m<n
(Ex - E’:n)z] + E [Bf, amBBl. amB/(E)L+ E’gﬁ)z]}
a<B

xX,(0). (13)

This result should be kept in mind, as it is used
later to derive the principal equation of this paper.
In order to obtain a convenient expression for the
sum appearing in Eq. (10}, it is necessary to for-
mally solve Eq. (11) for the vectors X() which
obey the above normalization condition. This task
is accomplished by contour integration techniques!!
in the following section.

IIl. DERIVATION OF THE CONTOUR INTEGRAL
FORMULA FOR vy

The pseudoeigenvalue problem given in Eq. (11)
can be formally solved in the manner described
below. If Eq. (37) of I is considered to define a
matrix H(z) for any value of the parameter z, then
the (normalized) eigenvectors {V,(z)} and eigen-
values {E,(2)} of H(z) are functions of z:

H(z)V,(2)=E (2)V,(2). (14)

If Eq. (14) were solved repeatedly as z is varied
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from —« to +%, at certain values of z (call these
Zy, 25, ++-) one of the above eigenvalues {E,(z)}
would be identically equal to z:

E(z) =2, x=1,2,3,--- . (15)

The roots {z,.} are the desired pseudoeigenvalues
{E,} of Eq. (11) and the corresponding normalized
vectors {V,,(z,)} are proportional to the X(1):

H(Zl)vah(zh) :vaa)\(zk), (16)
X, =NY2y . (z). (7

Of course the {V,,(z,)} are not mutually orthogonal
because they are eigenvectors of different H(z,)
matrices.

By making use of Eq. (14), the spectral resolu-
tion of the inverse matrix [z1 — H(z)]™? can be
written as follows:

[21 -H)] =2 & - B () 'V, (2)Vile).  (18)

2

Notice that the poles of [z1 - H(z)]! are equal to the
electron affinities (EA’s) and ionization potentials
(IP’s) appearing in Eq. (11). From the structure
of H(z) given in Eq. (37) of I, one can see that the
IP’s lie to the left (lower energy) of the EA’s on
the energy (2) axis. Therefore, the integral of
(2m)™[21 - H(2) ]! over the contour shown in Fig.
1 yields the following important equation®?:

@m)* [ [e1-H@)]"dz
=20 {1 - [dE ,,(2,)/dz]} 'NX(OX*(0),  (19)
A
where the index A runs only over the energy dif-

ferences corresponding to IP’s of the molecule,

To make the connection between Eq. (19) and the
expression for ¥ given in Eq. (10), one must
evaluate the proportionality constant N, and the
derivative dE,,(z,)/dz. 1t follows from Eqs. (13)

Im z

7 Re z

FIG. 1. The contour in the complex z plane over which
the integration in Eq. (19) is performed. The value of
¢ is chosen to separate the ionization potentials (E,<p)
from the electron affinities (E,> p).
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and (17) that N, is given by

N,=1 +Z> (Vtx)k {Z; [B:,namBl.nam/(E). - Eg")z]
kyl

m<n
a

D [Br:,WB,.mm+E';B>2]}<va,>,. (20)

By using the Hellmann~Feynman theorem®®
dE,/dz =V, (dH/dz)V 4, (21)

and the definition of H(z) given in Eq. (37) of I,
one can obtain the following identity:

dE,,(z,)/dz=1-N,, (22)

where N, is expressed in Eq. (20). These results
allow Eqs. (10) and (19) to be combined to give the
relation between ¥ and the contour integral of

21 =H() T

y=(2m)" |, 21 -H()["dz. (23)

In the following section, ‘a technique which allows
the numerical evaluation of ¥ according to Eq. (23)
is developed and the above contour integral is cal-
culated analytically through third order.

IV. ANALYTICAL CALCULATION OF v

For notational convenience, Eq. (37) of I is
written in shorthand as follows:

H(z) = A+B[z1+AT'B*, (24)

where the diagonal matrix A contains the energy
differences {E™" and {E™g} defined in Eqs. (34)
and (35) of I. The contribution to ¥ arising from
the integral over the arc shown in Fig. 1 can easily
be reduced to the simple expression shown below:

Y= (2m) lim [ 72’ ® iR exp(i0)([u + R exp(i) )1
Rew °F

- A-B{[p+Rexp(i®)1 + A} 'B*)*do
1. ' (25)

[N

In carrying out the above integration, the locus of
the arc is described by

z=pu+Rexp(if) n/2=6=3n/2. (26)

The value of p is arbitrary except that it must
separate the EA roots of Eq. (11) from the IP
roots. With the result of Eq. (25), the task of cal-
culating ¥ from Eq. (23) is reduced to the evalua-
tion of the integral along the line from p —i> to

W +2%°;

v @n? [T {(p+ip)l-A
-Bl(p+iy)1+AT'B*} gy, (27) -

Decomposing the matrix whose inverse appears
in Eq. (27) into real and imaginary parts, one ob-
tains

[(i +iy)1 — H(u +2y) ];;

=6, (u—€;)-A- ng 1B, ams(lt +E3g) BY, oms/
o

m

[y2+ (ﬂ + Ezﬁ)z]} - Z) {Bi.nam(“' - E,:")Bymam/
m<n

o

[ya + (u - E’Z")z]}”y [5 ij+ E(B {Bi.amBBJ.amB/
a«

m

[*+ (1 + E5p)*)} + 22 {By, nam B nam/
£
7 u-rmelt| L 20
where A} is the third-order component of A; i
which is defined in Eq. (31d) of I. To simplify the
treatment of the algebraic manipulations which

follow, the right side of Eq. (28) is more compactly
written as

[(e+iy)1 —H(u+iy) }i; =64;(n — €;) ~ Vi (5%
+ ly{é ijt Uij(yz)} 3 (29)

where V;;(3%) and U;;(y?) are defined by analogy
with Eq. (28) and are, as discussed in 1, correct
through third order in the electron interactions
7’21. Denoting the matrix whose elements are

8;;(1t — €;) by a, the real part of the inverse matrix
appearing in Eq. (27) is given by

Re[ZI - H(Z)]I}ne
={a-V+y*1+U[a-V[*1+U}Y (30)

the imaginary component is an odd function of y
which does not contribute to ¥*!*. Numerical in-
tegration techniques can be used to accomplish the
integration shown in Eq. (27). Reinhardt and Doll®
have successfully employed similar methods in
their second-order Green’s function calculations
of atomic first-order density matrices. Clearly,
the principal drawback of such an approach is the
expense involved in calculating the two inverse
matrices in Eq. (30) for each of the many values
of y needed to perform the numerical integration.
Because this problem may severely limit the range
of problems to which this numerical approach can
be applied, it is essential that an alternative the-
ory which avoids the above-mentioned difficulty

be developed. This is achieved through third order
by the formal analysis presented below.

By expanding both of the inverse matrices ap-
pearing in Eq. (30) and neglecting terms which
are higher than third order in r;}, one obtains the
following useful result:

Re[(p +iy)l —H(p+iy) 13

=0.;(1 - €)[y?+ (n - €T +{Vy, (1 - €)( ~€,)
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-5~ y?U(0 - €5+ p - €H[y%+ (- €]
X[y2+ (u - €]t (31)

Because the functions V(%) and U;;(»?) do not
have any singularities along the real y axis, there
is no reason to expect that the above expansion will
be divergent for any value of y. A similar argu-
ment can be made in the case of Reinhardt and
Doll’s expansion of the Dyson equation® in powers
of the self-energy Z(z) for values of z along the
vertical axis z = +4y. The principal difference
between the present results and the so-called
Born approximation of Ref. (6) is that v is ob-
tained through one higher order (3rd) in this work.

The integration of Eq. (31) can be carried out
analytically to give the desired ¥''**, The zeroth-
order contribution to ¥'!*® combines with the pre-
viously calculated ¥** to give:

[yarc+oyllne]i]_:5{}[%_‘_%(“ _ Ei)/l [T €i| ]

1 if p>eg;

25”{0 ifﬁ<e: (32)
which can be written symbolically in terms of the
unit step function 8(x) as 6,,6(u - €;). Notice that
this result is simply the single-determinant com-
ponent of y; all of the effects of electron correla-
tion are contained in that portion of ¥''*® discussed
below.

By analytically integrating the expression for the
second- and third-order components of [{u +iy)1
—H(u +y)]* given in Eq. (31), one obtains the
following contributions to ¥:

1

7’:{:'=§ Z{i [lBi,amﬂiz(l _Si)/(ei'*’E’;B)z]
~3 2 | Bipnan M1 450/ e, - BT, (33)
m<n

o

1 - -
i =3 Z}ﬁ B, amBY amil(Eng + €} (Eng + €,)7!
[+
m

+ (Ei - ej)'l[S,-(E';B+ ei)-l -— Sj(E'ZB + Gj)-l]}'

_l E Bi,namB?,nam{(ei - EZ")-I(Ej _E’:n)-l
m<n
@

—(e;- €,~)-1[Si(€i - E’;n)-l —Sj(€i - E’:”)'l]}

fori#j, (34)
where S; is defined by

31 itp>e
-1 itu<e;

Equations (33) and (34), when combined with Eq.
(32), give our final third-order analytical expres-
sion for the elements of the first-order density
matrix ¥. It should be noticed that no numerical

(35)

integrations remain in our result; ¥ has been ex-
pressed in closed form in terms of the HF or-
bital energies ¢, and the two-electron integrals
(ij1kl). To calculate ¥, one need only carry out a
single computation of the terms contained in Egs.
(32)—(34); this is a significant advantage over the
numerical-integration approach discussed earlier.

If the diagonal elements of ¥ are interpreted as
the electron occupation numbers of the HF spin
orbitals ¢;, an interesting deduction can be in-
ferred from Eqgs. (32) and (33). Except in patho-
logical cases, the chemical potential y can be
chosen such that the occupied HF spin orbitals
{wg} obey u > €z and the unoccupied spin orbitals
{g,} obey k<€, Inthis case, the diagonal ele-
ments of ¥ reduce to

Yeg = 1- Z) IBB,nam I 2/(€B - E’Z")z, (36)
m<n
a
YPP=Z> ‘B.amBlz/(EP-FEZlB)z- (37)
o<B

m
The meaning of the above equations is quite easy
to see. The occupation probability of the function
{(pﬂ} is decreased from its single-determinant
value of 1, the result of which is to transfer elec-
tron density to the spin orbitals {(pj,} which were
unoccupied in zeroth order. This, of course, is
exactly what we would expect, based on our ex-
perience with density matrices of CI wavefunc-
tions.

V. CONCLUSION

In this paper, an analytical evaluation of the
elements of atomic and molecular first-order re-
duced density matrices has been achieved through
third order in the electronic interactions 7;j. To
compute Y for any molecule of interest, one must
carry out a single calculation using Eqs. (32)-
(34), which contain sums of terms involving only
Hartree-Fock orbital energies and two-electron
integrals, The analytical result of this paper has
significant computational advantages over the nu-
merical integration approaches described herein
and used in Refs. (6) and (11). Because ¥ is writ-
ten in a simple closed form here, the present the-
ory also offers better possibilities for gaining
physical insight into the structure of ¥ for corre-
lated systems. We are currently in the process of
adding a subroutine, which embodies the content of
Egs. (32)-(34), to our computer program for cal-
culating molecular electron affinities and ioniza-
tion potentials, The initial results for several di-
atomic molecules of immediate interest should be-
come available in the near future.
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