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numerical values of measured reactant and product concentrations 
during a MeMA BZ oscillator run are given. Since MeMA is 
in excess (0.28 M) compared to Br03- ions (0.10 M), the stoi- 
chiometry of process 3 requires that 0.1 1 M MeMA should be 
left as deuterated or undeuterated species. This is exactly the result 
found in our experiment (Table I). Finally, we calculate the 
concentrations of BrMeMA and acetic acid. From the reacting 
MeMA (0.17 M), 0.10 M BrMeMA and 0.07 M CH,COOH 
should be found, when it is assumed that all bromate has reacted. 
Our observed values for BrMeMA and acetic acid are 0.09 and 
0.06 M, respectively (see Table I), which are in fair agreement 
with the stoichiometric requirement of process 3. 

Conclusion 
Besides carbon dioxide and traces of formic acid and carbon 

monoxide the main end products in the Ce(1V)-catalyzed MeMA 

BZ reaction are BrMeMA and acetic acid. The stoichiometry 
of reactants and the products which quantitatively have been 
followed by N M R  are found to be in agreement with process 3, 
showing that the analysis the FKN mechanism was based upon 
appears to be transferable to the classical MeMA BZ reaction. 

It seems an interesting task to look for the kinetic reason why 
the malonic acid system, in contrast to the MeMA oscillator 
reported here, has a different net reaction compared with FKN's 
original proposal! This will be the subject of a comparative kinetic 
study between malonic acid and MeMA systems using the NMR 
technique. 

Acknowledgment. P.R. thanks Norsk Hydro A/S  for partial 
support of this work. 
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Explicit working expressions are provided for use in applying geometrical constraints to multidimensional potential energy 
surface walking algorithms. In particular, constraints involving center-of-mass displacements, infinitesimal rotations, planes 
of symmetry, bond lengths, bond angles, substituent-group internal rotations, and dihedral angles are all treated. The application 
of such constraints to the Newton-Raphson or Fletcher surface walking procedures, both of which utilize local gradient and 
curvature data, results in a set of linear algebraic equations to be solved for the Lagrange multipliers associated with the 
various constraints. The solution of these equations, together with the solution of the Newton-Raphson or Fletcher equations, 
then allows the computation of a surface walking step which will display the desired behavior as enforced in the constraints. 
Such automatically enforced constraints are likely to be of most use when dealing with multidimensional systems describing 
molecules with several low-frequency internal vibrational motions such as group rotations, ring deformations, and pseudorotations. 

I. Introduction 
Surface walking algorithms which use local gradient and 

curvature information are routinely used' for locating minima and 
saddle points and for otherwise exploring Born-Oppenheimer 
potential energy surfaces. Optimizations over relatively few de- 
grees of freedom, both on very small systems and over selected 
degrees of freedom of larger systems, are typically carried out 
in terms of internal molecular coordinates.2 Internal coordinates 
are convenient in that any "uninteresting" degrees of freedom are 
automatically constrained by omission. In addition to reducing 
the dimensionality of the surface to be characterized, such co- 
ordinate systems enjoy the advantage that center-of-mass (COM) 
translations and rotations, which correspond to null eigenvectors 
for the Hessian matrix, are automatically eliminated from the 
problem. 

Ab initio gradients and Hessians, however, are almost always 
generated, using quantum chemical computer codes? in terms of 
the 3N space-fixed Cartesian coordinates of all of the N atoms. 
If such space-fixed coordinates are to be used, COM translations 
and rotations must somehow be removed from the problem; 
otherwise, the surface walking algorithms mentioned above will 
generate undesirable overall displacements of the molecule cor- 
responding to translations and rotations. In the course of a simple 
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Simons, P. Jorgensen, H. Taylor, and J.  Ozment, J .  Phys. Chem., 87, 2745 
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(2) J. W. McIver and A. Komomicki, J.  Chem. Soc., 94,2625 (1972); K. 
Ishida, M. Morokuma, and A. Komomicki, J.  Chem. Phys., 66,2153 (1977); 
T. A. Halgren and W. N. Lipscomb, Chem. Phys. Lett., 49, 225 (1977). 

(3) P. h l a v  in 'Modern Theoretical Chemistrv". H. F. Schaefer 111. Ed.. 
Plenum Press,<New York, 1977, Chapter 4; P. Jirgensen and J. Simons, J :  
Chem. Phys., 79, 334 (1983). 

optimization problem involving, for example, locating a stationary 
point on the potential energy surface of a small molecule starting 
from a nearby (very reliable) estimate of its location, such zero 
Hessian eigenvalues are not a serious problem. The Hessian 
eigenvectors belonging to the COM displacements and rotations 
can be identified on the basis of their zero or near-zero eigenvalues 
and their components removed from the step vector of the surface 
walking algorithm. In more complex problems, however, the 
identification and elimination of spurious Hessian eigenmodes may 
not be so trivial. For example, when using one of the more 
common surface walking to move from one local 
minimum (Le., stable geometry) to another, across one or more 
saddle points, such an identification may become much more 
difficult, particularly in a large system having many degrees of 
freedom. As nonquadratic potential surface features such as points 
of inflection and side channels (i.e., bifurcations) are encountered, 
Hessian eigenvalues corresponding to nontrivial modes pass near 
or through zero. In such cases and in molecules containing many 
low-frequency internal vibrational modes, the trivial (i.e., COM 
translation and rotation) and very small nontrivial eigenvalues 
are very nearly equal; as a result, their eigenvectors become mixed 
and thus it is difficult to remove the COM motion and rotation 
from the step vector of the walking algorithm. In these circum- 
stances, it would be quite useful to be able to constrain the surface 
walking algorithm to automatically avoid moving in an undesired 
direction. 

Thomas and Emerson4 showed that the so-called Eckart con- 
d i t i o n ~ ~  which constrain COM translation and rotation could be 
conveniently imposed on a Newton-Raphson (NR) surface 

(4) M. W. Thomas and D. Emerson, J .  Mol. Sfrucf., 16, 473 (1973). 
(5 )  C. Eckart, Phys. Rev., 47, 552 (1935). 
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walking algorithm' by the method of Lagrange multipliers. These 
and any other constraints of the linear form6 

AT@ = 0 ( 1 )  

where w is the step vector of the N R  iteration process and A is 
a so-called constraint vector (independent of w )  simply add one 
equation and one variable (the corresponding Lagrange multiplier) 
to the linear equations of the N R  procedure. For such linear 
constraint equations, the Lagrange multiplier can be evaluated 
analytically as demonstrated below in section 11. 

Constraint conditions which are not linear in the step vector 
w, however, require numerical evaluation of the corresponding 
Lagrange multiplier. Such a constraint arises, for example, in 
implementing the Fletcher surface walking algorithm,',' in which 
the usual N R  formula is modified by the imposition of a step- 
length constraint quadratic in w (see section I1 for details). In 
this case, there is only one nonlinear condition, and hence the 
corresponding Lagrange multiplier is easily determined by line- 
search methods. ' The simultaneous determination of several such 
multipliers, however, would constitute a nontrivial multidimen- 
sional optimization problem in itself and thus is, in our opinion, 
to be avoided. 

It is of interest, then, to further consider the application of 
various classes of linear constraints to the N R  and closely related 
algorithms, since most of the commonly employed surface walking 
procedures are of these forms. Rigorously linear constraints 
include those eliminating steps along vectors corresponding to 
COM translations and infinitesimal rotations, as well as the im- 
position of planes of symmetry. The constraint of quantities which 
result in conditions nonlinear in the step vector w, such as bond 
lengths and angles, may, if the step sizes used in the surface 
walking procedures can be controlled and kept small, be linearized 
and thus made computationally tractable. That is, just as the 
nonlinear finite-rotation constraint may be approximated for small 
steps by the linear infinitesimal-rotation constraint, other nonlinear 
conditions may be expanded in w and truncated at first order. The 
resulting linearized constraints are particularly well suited to the 
Fletcher constrained-steplength algorithm,',' which can guarantee 
small relative changes in interatomic distances. In the discussion 
of section 111, exact expressions of the form of eq 1 are obtained 
for the constraints relating to COM translations and infinitesimal 
rotations (the Eckart conditions) and for the conservation of a 
plane of symmetry. Linearized expressions of the same form are 
then developed for fixing bond lengths, bond angles, substituent 
group internal rotations, and dihedral angles. 

11. Computational Implementation of Linear and Linearized 
Constraints within Newton and Related Walking Procedures 

In the straightforward N R  algorithm, the Fletcher1v7 algorithm, 
and the various quasi-Newton methods, the potential energy 
function being optimized is approximated locally by the first three 
terms of its Taylor series: 

( 2 )  E ( w )  i= k(w) = Eo + FTw + YpTHw 

The energy Eo, the gradient F, and the Hessian matrix H can 
presently all be obtained by quantum chemical methods3 even for 

(6) These linear constraints could be more generally written as ATw = c, 
where c IS a scalar determined at the outset of each iteration. For a linearized 
constraint, for example, on the cosine of a bond angle (see section IIIc) one 
might replace eq 30 with 

(V, cos !$)Tu + cos !$(w=O) = cos 40 

where !$(w=O) denotes the value of the bond angle at the start of the current 
potential surface walking iteration, and !$o is the value of the angle specified 
at  the outset of the surface walk (Le., the value at which q4 is to remain fixed). 
Rather than simply eliminate first-order changes in cos q4, the above condition 
would hopefully correct cos !$ toward the desired value cos q40 as the surface 
walk proceeded. The use of this form, however, raises questions of stability 
and of rate of convergence, which we have not yet explored either formally 
or numerically. For example, see B. van de Graaf and J. M. A. Baas, J.  Comp. 
Chem., 5, 314-321 (1984). 

(7) R. Fletcher, "Practical Methods of Optimization", Vol. 1, Wiley, New 
York, 1980. 
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correlated wave functions. The step vector w is determined by 
requiring that E ( o )  be stationary with respect to variation in w. 
A set of M constraints of the form of eq 1 may be imposed on 
w by subtracting the term CEIXi(ATw) from the right-hand side 
of eq 2 thereby generating a new function to be made stationary 
with respect to variations in w. In the case of the Fletcher walking 
algorithm, the step length wTw is also constrained to equal the 
specified value hZ through the addition of another Lagrange 
multiplier term X/2(h2 - oTw) to the right-hand side of eq 2. With 
the inclusion of both steplength and stepdirectien constraint terms 
(Le., terms such as in eq l), the condition that E(o)  be stationary 
with respect to w reads 

M 

i 
VJ = 0 = F - CXjAi - ( X I -  H)w (3) 

so the optimal step is given as 
M 

i 
w = (XI- H)-'[F - CXiAi] (4) 

In the absence of any constraints, eq 3 reduces to the familiar N R  
formula. If the step-length constraint (Le., A) is ignored, eq 3 
and 4 reduce to the case treated by ref 4. 

To find the optimal step vector w, then, it remains to determine 
the Lagrange multiplier; X and Xi, using 

a&/aXi = A ~ W  = 0, i = 1, 2, ..., M 

aB/ax = yz(h2 - A) 2 o 
Substitution of eq 4 in to eq 5 yields 

0 = ATw = AT(XI- H)-'[F - cXjAj], i = 1 ,  2, ..., M 

Rearranging eq 7, and defining the M X M matrix 

M 

J 

Dij = AF(XI - H)-'Aj 

and the M vector 

f;: = AT(XI - H)-'F 

yields a set of linear equations 
M 

J 
cD,Xj  =A, i = 1,2, ..., M 

which (given A) can be solved to determine the X i .  
The numerical evaluation of the step-length parameter X via 

eq 6 ,  which has been discussed in more detail elsewhere,' must 
be modified slightly to allow for the introduction of the above linear 
constraints within the Fletcher constrained-step-length algorithm. 
It should be kept in mind' that the solution of eq 6 even in the 
absence of the linear step-direction constraints (Xi) involves a 
nonlinear equation having many branches (Le., eq 6 with w from 
eq 4 is nonlinear in A). Hence it is instructive to cover briefly 
how eq 6 is solved when the hi are absent. 

In the conventional Fletcher algorithm, the step vector w is first 
calculated for X = 0. If the length of the resulting N R  step is 
within the so-called trust radius h, and if the Hessian matrix H 
has the number of negative eigenvalues appropriate to the sta- 
tionary point (e.g., minimum or saddle point) toward which one 
is walking, then this simple N R  step is taken. If one or both of 
these conditions is not met, a line search in X is carried out until 
both a step vector w having length h and a shifted Hessian ( H  
- X I )  having the proper number of positive and negative eigen- 
values are obtained. The introduction of the additional linear 
constraints described above requires that the calculation of w at 
each iteration of the line search (Le., value of A) be modified both 
to generate, via eq 10, new values of the Xi for each value of X 
and to evaluate the square of the step length according to 

Equation 1 1 differs from the unconstrained steplength expression 
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of ref 3 only in that the gradient elements F are replaced by a 
"reduced force" 

(12) 

Since the inverse matrix (XI- H)-2 appearing in eq 11 is the same 
as that appearing in the unconstrained version, the poles in wTw 
occur where X coincides with the eigenvalues of H a s  is the case 
in the conventional Fletcher process of ref 1 and 7. 

Having thus outlined how the line-search methods of ref 1 and 
7 can be combined with eq 10 to determine both X and the ( X i )  
parameters and hence to carry out Fletcher-type potential surface 
walks, let us turn our attention to formulating each of the con- 
straints mentioned earlier in a form which is linear in w and which 
appears as in eq 1. 

111. Development of Working Constraint Equations 
A .  Eckart Conditions. The threefold condition that a step 

vector of a potential energy surface walking algorithm not translate 
the COM can be written as 
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M 

i 
Frd = F - CXjAj 

Taylor and Simons 

the ith 3 X 3 diagonal subblock of each Rk equal to mick. The 
structure of q, w,  and the Rk is such that when, for example, the 
product qTR1w is evaluated, the subblock miC1 in R 1  is multiplied 
by those elements of q and w which contain ri and si, respectively, 
thereby contributing the term mi(ri X sJ,. 

B. Plane of Symmetry Constraints. The requirement that a 
plane of symmetry be preserved by a step w imposes (3N - L)/2 
linear conditions on the step vector w, where L is the number of 
atoms which lie within the symmetry plane. Given one unit 
three-vector ii normal to the plane (i.e., oriented along the in- 
ternuclear axis connecting two symmetrically loca te  atoms) and 
two linearly independent unit three-vectors ci and b orthogonal 
to ii, the conditions needed to specify reflection symmetry can be 
written in the form of eq 1 as follows. Any atom (labeled k) lying 
in the symmetry plane is constrained to remain within the plane 
by insisting that its displacement have no component along ii: 

(22) 

Here n,, n,,, and n, appear in the positions labeled 3k - 2, 3k - 
1, and 3k, respectively. Similarly, each symmetrically located 
pair of atoms, i and j, not lying in the plane is constrained to mpve 
antisymmetrically along ii and symmetrically along ci and b: 

(0  ,..., O,n,,ny,n,,O ,..., O,n,,ny,n,,O ,..., 0)w = 0 (23) 

(0  ,..., O,n,,ny,n,,O ,..., 0 ) w  = 0 

(0 ,..., O,U,,U~,U,,O ,..., O,-U,,-U~,-U,,O ,..., 0 ) ~  = 0 

(0,. . . ,O,b,,b,,b,,O,. . . ,O,-bx,-by,-b,,O,. . .O)W = 0 

(24) 

(2 5) 

In the above constraint vectors, the n, ny n,, a, ay a, and b, by 
b, elements occur in the positions of the ith anti j th  atoms. 

C. Bond Angle Constraints. All of the above constraint con- 
ditions (eq 14, 21-25) involve rigorously linear expressions. The 
nonlinear condition that a step in a surface walk leave a bond angle 
unchanged is most conveniently written in terms of the cosine of 
the angle. To fix the cosine of the angle 9 between the two 
internuclear axes joining atom i with atoms j and k, respectively, 
requires that 

(rj + sj - ri - si)T(rk + sk - ri - si)lrj + sj - ri - sil-'Irk + sk - 
ri - sil-l - (rj - rJT(rk - ri)lrj - ril-lIrk - ri1-l = 0 (26) 

where, as above, ri is the absolute position of atom i and si is the 
corresponding component of the ( N R  or Fletcher) step vector. 
Equation 26 can be rewritten in terms of the 3N-vectors q and 
w as 

(q + o)TQ'k'(q + w)[(q + w)TQ"'(q + w )  x 
(q + W)T@iki(q + w ) ~ - l / 2  - T iki T 'iji T iki P Q 9[9 Q Q9 @ = 0 

(27) 
where the 3 N  X 3 N  Q matrices are defined so that 

qTQjklq = (ri - rj)T(rk - rl) = r7rk - r7rl - r/Trk + r:rl (28) 

The matrix Q j k l  defined in eq 28 contains two positive and two 
negative 3 X 3 identity matrix subblocks, one of which is associated 
with each of the four vector dot products in the far right-hand 
side of eq 28: 

k I  

N 

i= 1 
Cmisi  = O 

where the mi are the atomic masses, the three vectors si are the 
corresponding atomic displacements generated by the surface 
walking procedure, and the index i runs over the N atoms of the 
system. These equations can be rewritten in the notation used 
earlier as 

ajTw = 0, j = 1, 2, 3 (14) 

where w is the step vector obtained simply by arranging the si so 
that 

u3(i-l)+j = ( S i ) j  (15) 

where i and j again index the N atoms and the three spatial 
coordinates, respectively. The three COM translation constraint 
vectors aj have components 

N 

i=  1 
( a j ) k  = CBk,3(i-l)+jmi (16) 

For example, for j = 1 (Le., the x direction) the a/T vector has 
elements ( m l  00 m2 00 m3 00 m4 00 ... mN 00). 

The three infinitesimal rotation constraints can be written as 
N 

i=l  
Cmi(r i  x si) = 0 (17) 

where ri is the absolute spatial coordinate vector (Le., in a labo- 
ratory-fixed coordinate system) of the ith atom. To express eq 
17 in the form shown in eq 1, the three components of the cross 
product are first written as matrix products: 

N 

i= 1 
Cmir,TCksi = 0 ,  k = 1, 2, 3 (18) 

where the elements of the matrices ck are defined in terms of the 
Levi-Civita permutation symbol as 

Ck, = qp, = 
0 if any two of k, m, and n are equal 
+1 for k ,  m, n an even permutation of 1, 2, 3 
-1 for k, m, n an odd permutation of 1, 2, 3 

(19) 
f 

Next, just as the si were combined to define w, the elements of 
the coordinate vectors ri are concatenated to define a 3 N  vector 
q 

q3(i-l)+j = (ri)j (20) 

so that q has elements (rlxrlyrlrr2xr2yr2r ...). Finally, eq 18 are 
rewritten in the desired form 

qTRku = 0, k = 1, 2, 3 (21) 
where the three 3 N  X 3N matrices Rk are block diagonal, with 

0 0  

p ~ k l =  i 0,. ..,I,. . .,-I,. . .,o (29) 

j 0 ,...,- I ,... ,I ,..., 0 . .  . .  
6 0  

If the first term in eq 27 is expanded in a Taylor series around 
w = 0, the zeroth-order term in the series cancels the second term 
in the equation. Keeping only the terms which are first-order in 
w generates the linearized constraint expression which reads 

(V, cos $)Tu = 0 (30) 

where the constraint vector appearing in eq 30 is 
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V ,  cos 4 = [lrj - ril-'Irk - ril-l(@ki + @ j i )  - cos d(w=O) x 
Irj - ril-2@ji - cos 4(w=O)lrk - ril-2@iki)q (31) 

Imposing eq 30 on the NR or Fletcher formula by means of the 
method of Lagrange multipliers prevents the resulting step vector 
from having any component along the 3N-vector V ,  cos 4 which 
lies tangent, a t  q, to the curve generated by finite variation of the 
bond angle 4. 

D. Bond-Length Constraints. The requirement that the dis- 
tance between atoms i and j remains unchanged by a step is easily 
written as 

lrj + sj - ri - si12 - Irj - ri12 = O 
or 

2(rj - rJT(sj - si) + Isj - siI2 = 0 

2qTQ"jiw + WTQ"'iW = 0 

(32) 

(33) 

(34) 

In terms of q and w ,  this expression can be written as 

which is straightforwardly linearized by neglecting the second term 
qT@ji, = 0 

The Q"" matrix was defined earlier in eq 2 8 - 2 9 .  
E .  Constrained Rotation of a Substituent Group. Given a 

molecule in which the terminal atoms i, j ,  and k (e.g., the three 
H atoms in CH3) are each bonded to an atom 1 which is in turn 
attached to the rest of the molecule by a bond to atom m, the angle 
of rotation of the ijk group (e.g., CH3 group rotation) around the 
1-m bond axis is a curvilinear coordinate. The linearized condition 
to constrain first-order variation in this rotation angle can be 
expressed in terms of the components of the torques (rh X sh) for 
each atom (h = i, j ,  k) along the I,m bond axis 

(35) 

Rewriting eq 35 in the form of eq 1 yields the desired linearized 
constraint condition 

(0 ,..., ax,ay,ur,O ,..., b,,by,b,,O ,..., cx,cy,cz,O ,... )w = 0 (36) 

(37a) 

(37b) 

(37c) 

The components a,, b,, and c, are located in the (3i - 2)th, (3 j  
- 2)th, and (3k - 2)th elements, respectively, of the constraint 
vector of eq 36. 

F. Dihedral Angle Constraints. We now consider a molecule 
in which atoms i, j ,  k, and 1 are bonded together in sequence. The 
dihedral angle 7 between the plane containing atoms i ,  j ,  and k 
and the plane containing atoms j ,  k, and 1 is, like the bond length 
and bond angle coordinates considered above, nonlinear in the 
space-fixed atomic Cartesian coordinates. As was done for bond 
angles, an expression of the form of eq 30 can be developed for 
the first-order constraint of variations in the cosine of the dihedral 
angle. The cosine of the angle 7 can be written as 

C [(rh - rl) x (r/ - r,)ITsh = 0 
h=ijk 

where the three vectors appearing in eq 36 are defined by 

a = (ri  - rl) X (a - r,) 
b = (rj - rl) X (rl - r,) 

c = (rk - rl) X (rl - r,) 

COS 7 = (vkj X ~ j j ) ~ ( ~ / k  X vkj)lvkj X vjjl-'Iv/k X vkj1-I (38) 

where the three vectors v,, are defined in terms of the absolute 
positions r and the displacements s of the respective atoms: 

v,, = r, + s, - r, - s, (39) 
By means of the identity 

(a X b)T(c X d) = (aTc)(bTd) - (aTd)(bTc) (40) 
eq 39 is rewritten as 

COS 7 = [(VkjTV/k)(VijTvkj) - IvkjIZ(vijTv/JI [Ivkj121vij12 - 
( ~ k j T ~ j j ) ~ ] - ' / ~ [ 1 ~ / k 1 2 1 y k j 1 2  - ( ~ / k ~ ~ k j ) ~ ] - ' / ~  (41) 

which can then be rewritten in terms of the 3 N  vectors q and w: 
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cos 7 = [(q + w)T@j'k(q + w)(q + w)TQJk'(q + 0) - 
(q + o)T@Jk'(q + o)(q + w)TQj'k(q + w)] [(q + 

w)T@jk'(q + w)(q + o)TQ"'(q + w )  - 
((9 + w)T@jij(q + w))Z]-'/2[(q + w)TQk"(q + 0) x 
(9 + w)T@'kj(q + w )  - ((q + U)TQ'kk'(q + w ) ) ~ ] - ' / ~  (42) 

where the notation of section IIIC has again been employed. 
Finally, as was done to express the first-order angle constraint 
as ( V ,  cos 4)Tw = 0, we need to evaluate the gradient of 7 with 
respect to w a t  the point w = 0. 

V ,  COS T = V , ( A B ' / Z C ' / 2 )  = B ' / 2 C ' / 2 ( V ~ )  - 
f / 2 A B 3 / 2 C 1 / 2 ( V 3 )  - ' / zAB1/2C3/2 (V ,Q (43) 

where A ,  B, and C a r e  the three scalar quantities which are each 
enclosed in square brackets in eq 41, and again in eq 42, and 

QW)q - (qT@Mq)(Qi"k + QW)q - 2 ( q T ~ Y k q ) ( @ j k j q )  (44) 

2(qT@jijq)(@jij + @G)q (45) 

2(qTQkkjq)(Qkkj + @j'k)q (46) 

VJ(w=O) = (qT@j'kq)(Q'/kj + @"')q + (q'Qj"q)(@j'k + 

V,B(w=O) = 2(qT@jkjq)Q'jijq + 2(qTQJjq)@jkJq - 

V,C(o=O) = 2(qTQk'kq)@jkjq + 2(qT@jkjq)Qk'kq - 

Equations 44-46 can also be written as 

VJ(w=O) = (VkjTVik(Q'k' + @j'j) + VijTVkj(@jlk + O ' k k j )  - 
IVkj12(Qj'k + Q"j) - 2vijTv/k@jk')q (47) 

V,B(w=O) = (21Vkj12Q"" + 21Vijl2@jk' - 2Vki'Vij(@Jij + Q"kJ))q 

(21Vlk12@jk' + 21Vkj12Qk'k - 2V/kTVkj(Qkkj + @J'k))q (49) 

(48) 
V,C(w=O) = 

where, since the gradient is evaluated at  w = 0 

v,, = r, - r, (50) 

involves simply the interatomic position vectors. 

IV. Summary and Discussion 
In this paper we have shown how to, within any of the con- 

ventionally employed potential energy surface walking algorithms, 
impose geometrical constraints involving center-of-mass motion, 
rigid-body and internal rotations, bond lengths and angles (in- 
cluding dihedral angles), and symmetry planes. All of these 
constraints can be written, in linearized forms which are valid for 
small step lengths, as ATw = 0 where A is a constraint vector which 
depends upon the specific kind of constraint being imposed and 
w is the Cartesian step vector of length 3N. The constraint vectors 
(Ai) pertaining to each of the cases mentioned above are explicitly 
given in eq 16, 2 1 ,  22-25, 31, 34, 36, and 43. 

To implement any or all of the constraints treated here, one 
first must obtain values for the local gradient F and Hessian H 
elements in terms of the 3 N  Cartesian coordinates describing the 
locations of the N atoms. We assume that such information is 
available either from ab initio or semiempirical quantum chemical 
calculations or from empirical force-field methods. Next one must 
compute the constraint vectors (Ai) relevant to every constraint 
to be imposed. These vectors depend, as can be seen clearly by 
inspecting the equations mentioned above, on the local geometry 
of the molecule and the masses of its constituent atoms. Next, 
the D matrix of eq 8 can be formed for whatever value of X is 
appropriate (in the NR algorithm, X = 0, in the Fletcher algorithm, 
the optimal choice for X must be determined iteratively as discussed 
in earlier work from our lab (see ref 1) and eq 10 can then be 
solved for the Lagrange multipliers ( X i )  associated with each 
constraint. Finally, the step vector w can be evaluated by using 
eq 4 and the molecule's atomic centers can be displaced by 
amounts contained in w io generate the next point in the potential 
surface walk. This step-by-step walking process can be continued 
until, a t  a local minimum or saddle point, the gradient vector 
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vanishes and hence convergence is reached. 
As mentioned in the Introduction, it may not be necessary to 

utilize the kind of automated constraint algorithm developed here 
when treating walks on potential surfaces characterizing small 
molecules; in such cases, one can simply allow the Newton- 
Raphson, Fletcher, etc. algorithm to generate step vectors o which 
contain COM and rotational displacements and then trivially 
remove these undesired components. However, when dealing with 
multidimensional surfaces which possess nontrivial nearly zero 
Hessian eigenvalues (e&, for low-frequency vibrational modes 
or small curvatures arising near inflection points or bifurcation 
points), it is, in our opinion, important to remove the undesired 

motions automatically and before the walking algorithm has a 
chance to become “confused” by their presence. The method put 
forth here permits one to achieve this goal and to thereby generate 
surface walks which maintain the desired geometrical constraints 
throughout. 
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Effects of Temperature on Oscillatory Behavior in the Bromate-Bromide-Manganous 
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Experiments have been carried out to assess the influence of temperature on the behavior of a minimal bromate oscillator 
(BrO<-Br--Mn2+ in a continuously stirred tank reactor). The results are compared with calculations performed by using 
the NFT mechanism supplemented by a plausible set of activation energies. The oscillatory range is found to be extremely 
sensitive to the values of certain rate constants, some of which do not significantly influence the domain of bistability. The 
agreement between the experimental and calculated amplitude and period as functions of temperature is quite good. 

Introduction 
The study of oscillating chemical reactions has until quite 

recently been dominated by the Belousov-Zhabotinskii reaction 
in particular and, more generally, by the class of bromate-driven 
oscillators. The discovery of inorganic bromate  oscillator^^-^ has 
served both to broaden the scope of oscillatory behavior and to 
facilitate the development of mechanistic understanding. In fact, 
the “minimal bromate oscillator”,s consisting of bromate, bromide, 
and a one-electron redox couple (Ce3+/Ce4+ or Mn2+/Mn3+) in 
a stirred tank reactor (CSTR), has been referred to6 as “the 
simplest chemical oscillator fully understood in terms of elementary 
reactions”. 

With the exception of a single set of experiments,6 all studies 
of the minimal bromate oscillator have been carried out at a single 
fixed temperature. A stringent test of the mechanistic under- 
standing which has been claimed for this system would be to 
investigate its behavior as a function of temperature and to see 
whether that behavior can be modeled by the assumed mechanism 
with a reasonable set of activation energies. 

We present here such a study, in which the reaction of BrO,-, 
Br-, and Mn2+ in a CSTR has been studied both experimentally 
and computationally over a range of temperatures and flow rates. 
We discuss the extent of oscillatory behavior, the variation of 
amplitude and period with temperature, and the choice of a set 
of activation energies that enables us to achieve good agreement 
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TABLE I: Range of kj over Which Oscillations Are Obtaineda at 25 
OC 

1 
-1 

2 
-2 

3 
-3 

4 
-4 

5 
-5 

6 
-6 

7 
-7 

2.00 
0 

0 

0 

1.86 x 109 

2.0 x 109 

9.6 x 103 
1.78 x 107 
1.50 x 105 
2.13 x 107 
0 
0 
0 
0 

2.1 M-.’ s-l 
104 M-1 s-1 

2 x 109 M-2 s-I 
5 x 10-5 M-1 s-I 

1 x 104 M-1 s-1 

2 x 107 M-l s-1 

2.4 x 107 M-1 s-I 

4 x 107 M-1 s-1 

8 X lo9 M-2 SKI 

110 s-1 

1.806 X los M-2 s-’ 

34.56 M-’ s-I 
1.3 X M-3 s-I 

2.1 X M-2 s-l 

2.26 
1.9 x 107 
2.10 x 109 
4.2 x 103 

1.04 x 104 
2.94 x 107 
1.91 x 105 
3.94 x 107 
1.0 x 104 
2.75 x 10-3 

2.4 X 10” 
4.5 x 102 

6.4 X 1O’O 
1.3 X lo-* 

“[Br03Jo = 6.5 X M, [Br-1, = 1.0 X lo4 M, [Mn2*Io = 1.02 
X M, [Htl0 = 1.5 M. *Lowest value for which oscillations are 
obtained. Units as in column b. ‘Value at 25 O C  from ref 10. 
dHighest value for which oscillations are obtained. Units as in column 
b. eNote that eq 8 and 9 hold only for column b and not for columns 
a and c. 

with the observed behavior using the model developed earlier to 
describe the system at 25 OC. 

Experimental Section 
The experiments were carried out in a Pyrex CSTR of a design 

described previ~usly.~ Because the Teflon cap employed in the 
earlier experiments had a coefficient of thermal expansion sig- 
nificantly different from that of the glass reactor, a new, all-glass 
reactor-cap system was built that had a volume of 19.5 cm3. 
Temperature regulation to better than 0.1 OC was achieved by 
using a Forma Model 2095-2 bath and circulator in conjunction 
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