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Using the translational and rotational invariance of the energy, we show that for an N-body
system there exists a subset of 3N — 6 Cartesian coordinates such that the derivatives of the
energy of a given order with respect to the members of this subset form an independent and
complete set. That is, all other derivatives can be calculated knowing these independent
derivatives. We further show that this subset of coordinates can be chosen to be a bonafide set of
internal coordinates. Since these coordinates are a subset of the 3V Cartesian coordinates, they are
orthonormal and uniform. Applications have been made of such internal coordinates in
algorithms which search for stationary points on potential energy surfaces. It is shown that the
surface walking algorithms are exactly separable for these coordinates. Thus the problem can be
reexpressed in terms of (3N — 6) Cartesian variables without the annoying zero eigenvalues of the

Hessian (of the energy) matrix corresponding to the translational and rotational eigenvalues.

I. INTRODUCTION

Ab initio potential energy derivatives are beginning to be
progressively useful for providing quantitative descriptions
of chemical systems in areas such as molecular structure
determination, molecular dynamics, vibrational spectrosco-
py, and statistical mechanics.'~> For N particles the total
energy and its derivatives are often generated in terms of 3N
space fixed coordinates (usually Cartesian coordinates).®
Displacements along all such 3N directions involve compo-
nents of overall translation and rotation of the system. The
energy remains invariant to translations and rotations, and
thus components of translation and rotation are unnecessary
and undesirable. Furthermore, when dealing with potential
energy surfaces, the zero eigenvalues of the Hessian corre-
sponding to translation and rotation are hard to distinguish
from near zero (low frequency) eigenvalues of the internal
degrees of freedom.

The subject of internal coordinates has been dealt with
for a long time.>”~'° For those properties of a system that are
invariant under translation and rotation, our aim is to find a
set of (3N — 6) coordinates in which these properties are
completely determined and in which the “equations of mo-
tion”’are separable. Here the “equation of motion” stands,
e.g., for classical or quantum mechanical equations of mo-
tion, or surface walking algorithms.'"!2 The oldest among
these coordinate systems is the so-called Jacobi coordinates®
with the three translational coordinates being those of the
center of mass (c.m.) and the remaining (3N — 3) coordinates
being relative to the c.m. A commonly used choice of inter-
nal coordinates® for N particles is to choose, for an arbitrary
indexing of the particles, N — 1 relative distances R; (i <),
N — 2in-plane angles between sets of triples (jjk ),and N — 3
dihedral angles between these planes. Such coordinates have
been widely used for treating small vibrations around equi-
librium geometries.”? Thomas and Emerson'? have used the
c.m. translation with (infinitesimal) rotational invariance
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conditions (Eckart coordinates'?) as constraints for a New-
ton—-Raphson surface walking algorithm through the use of
Lagrange multipliers. The walking algorithm thus yields
step vectors which remain orthogonal to the eigenvectors of
the translation and infinitesimal rotation.

We focus our attention in this paper on the consider-
ations of translational and rotational symmetries for the en-
ergy of N-particle systems. Here we show that there exists a
subset of (3N — 6) Cartesian coordinates such that the de-
rivatives of the energy to any given order with respect to
coordinates of this subset form an independent and complete
set. That is, all other derivatives can be calculated knowing
these independent derivatives. We further show that this
subset can be chosen to be a bonafide set of internal coordi-
nates. We then apply these ideas toward searches for station-
ary points on potential energy surfaces in a (3N — 6)-dimen-
sional subspace. The resulting steps are devoid of any
components of overall translation or rotation of any order.
The Cartesian nature of these internal coordinates have the
benefits of orthogonality and uniformity. In what follows,
we choose the invariant property of the system to be the
energy since most equations of motion are written in terms of
some form of energy. However, the development presented
here is applicable to any other invariant property.

Il. TRANSLATIONAL AND ROTATIONAL SYMMETRY
OF ENERGY

The main idea developed in this section is that, due to
the invariance of the total energy under overall translation
and rotation of an N-body system, there exists certain rela-
tionships among the derivatives of the energy relative to the
3N Cartesian coordinates. That is, not all derivatives of ener-
gy of a given order are independent. For example, for a two-
particle system, a consequence of translational invariance is
that dE /3P,, = — JE /3P, (@ = x, y,z) where Py, refers
to the ath Cartesian coordinate of the K th particle. More
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specifically, we will show in this section that there exists a
subset of 3N — 6 (3N — 5 for linear geometries) Cartesian
coordinates such that all unique derivatives of a given order
constructed with respect to these coordinates form an inde-
pendent and complete set.

We start by obtaining a representation of the translation
T and rotation R operators. We note that the action of the T
or R operator is to translate or rotate (about an axis taken
here to be passing through the lab fixed origin) all points P
in space. The energy depends directly upon the {Py}.

For the case of quantum mechanical potential energy
within the Born—-Oppenheimer separation where the contri-
butions due to the motion of electrons have been integrated
over, the rotation of all nuclear centers P is assumed to
mean that the associated electron distributions are also cor-
respondingly rotated. The total energy and its derivatives
remain invariant under T and R:

E({Px})=E(T{ Pg}), (1)

E({Px})=E(R {Pg}) (2)
Equations (1) and (2) also hold when E is replaced by a first
derivative dE /9Py, or by a second derivative 3°E /3Py,
0Pz, or higher order derivatives.

The operator T that induces a translation of all points
Py by a vector t = (f,, t,, t,) can be represented as

?‘:explt-;YpK], (3)

where V= (3/3Px,, 3/3Py,, 3/3Px,) defines the gradient

operator at the point P,. Similarly, the operator R which
generates rotation of all points by an angle ¢ = (¢,, ¢,, ¢,)
about an axis along the direction ¢ through the lab-fixed
origin is

R=crplo 3 L) (4a)
K
where
LK = PK XVPK' (4b)

The operators L, of course satisfy the usual commutation
relations

[LxasLig] = — 65 LK,,, afly = xyz, yzx, zxy.

A. Invariance relations for energy derivatives

Here we rewrite the invariance relations of Eqgs. (1) and
(2) in the representations of Tand R given in Egs. (3) and (4),
respectively, for all ordersin ¢ and ¢. The resulting equations
for each order in ¢ and ¢ yield relations among the deriva-
tives of the energy from which an independent set of deriva-
tives of each order can be constructed. Given this set of inde-
pendent derivatives, the dependent derivatives can be
directly obtained from the above relations. In earlier publi-
cations'>!® we have undertaken a similar analysis of the in-
variance relations for quantum mechanical integrals. Here
we shall only stress the main points, starting with the trans-
lational invariance. Expanding Eq. (1) for E in a Taylor se-
ries, we have

N
a=x,y2z K=
1
+ = Z ta tB ty Z EKaJBMy + oy (5)
3! aBy KIM
where the shorthand notation
oE FE
E.. = : = ————  etC.
) W T N T

has been introduced. Since the ¢, are independent and can be
chosen to be of arbitrary magnitudes, terms of each orderin ¢
must separately vanish. Furthermore, an expansion similar
to Eq. (5) holds for the invariance of the first derivatives E
for the second derivatives E g,,, , and so on. Then the vanish-
ing first order terms give

~ N
TWE=Y Ex, =0, a=x,y,z (6)
K=1

These are the three relations among the gradients of energy.
There are however two ways to generate relations among the
Hessians of energy. From the invariance of energy of Eq. (5)
one obtains

XX, Yy, 22,

Xy, Yz, ZX

and from the invariance of the derivatives E,; one obtains

A N
TOE=Y Exyp =0, af=
KJ

~ N
TWE, =3 Egup=0, aB=x32 J=LN. (7)
K=1

The six relations of 7 E can be constructed from the 9 N
relations of Eq. (7) by summing over J. The 9 N independent
relations of Eq. (7) constitute the constraints on the Hessian
elements. Similarly, for the third derivatives among the rela-
tions 7® E, T E,, ,» and TOE 181y the first two relations
can be constructed from the latter, where

aBy=xp,2

A N
TVE = E =0, . 8
JBMy x§=:1 KaJBMy IM=1N (8)

In general, a complete set of translational invariance rela-
tions of nth order can be written as 70 E"— Y = 0, where
E "~ 1 refers to the set of all (n — 1)th derivatives of energy.

Obtaining relations for the rotational invariance for
each order follows exactly along the same lines. One writes
the expansion of Eq. (2) [similar to that of Eq. (5)] for E and
itsderivatives E 5, E g, ,+ . Then terms of each order of the
expansion yield relations among derivatives of energy. Simi-
lar to the case of translational invariance, a complete set of
rotational invariance relations for the nth order derivatives
of E can be written as RWE®-1_ 0, Using definition of
Ri= =3¥_, Ly and Eq. (4b), the first three of these relations
can be written explicitly as

N
2 {PKaEKB—PKﬂEKa]=0’ (9)
K=1
N af = xy, yzxz,
z { PKa EKBJ;; '—PKﬁ EKaJp} =0’ #»V=X,y, z, (10)
K=1 J.M=1,N,
and
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N
Kzl { Pxa Exgpty — Prg Exapumn} =0,  (Ju)<(My).
(11)

lil. INDEPENDENT ENERGY DERIVATIVES

So far we have obtained relationships among the deriva-
tives of the energy Eg,, Ex,p,---» based on their transla-
tional and rotational invariance. OQur aim next is to find,
from the relationships, sets of independent (and dependent)
derivatives of the energy of a given order. Toward this goal,
we note that the relationships given in Egs. (6)—(8) and Eqgs.
(9)H11), for a given order in the energy derivative, constitute
a system of m simultaneous homogeneous linear equations
with n energy derivatives as the variables. The coeflicient
matrix (mXn) depends only upon the location of centers
{Px }. The problem is to first reduce the respective system of
linear equations to one containing only 7 (<m) independent
relations, where 7 is the rank of the system of equations, by
casting the equations into lower row echelon form.!” Then
one can write r dependent energy derivatives in terms of
n — rindependent ones. In the following subsections we un-
dertake this task; the case of first derivatives is shown in
detail.

A. First derivatives (gradients) of £

For the gradient of energy the relevant relations are giv-
en in Egs. (6) and {9). Toward finding an independent set of

J
- sz 2x 0 - P3y P3/,: AO
0 - P, P, 0 — Py, P,
;;22 0 - ?)ZX ?)32 0 - ﬁ3x

Assuming ;z, #0, from the lower row echelon form of
Eq. (15), a particular choice of dependent gradient elements
is E,,, E,,, E;, for which the independent elements are

E,, E;,, E,,. Then Eq. (15) can be rewritten as
E) E,,
A |E,|=~B |&], (16)
E;x E,,

where A(33) is a nonsingular matrix containing the co-
lumns 1,3,4 of the coefficient matrix of Eq. (15) correspond-
ing to the variables E,, , E,,, and E;, . Similarly the columns
of B(3X3N — 6) correspond to variables E, , E;,, and E;,.
The generalization of this result for the N-center noncollin-
ear case is that, for P,, #0, an independent set of (3¥ — 6)
gradient elements can be chosen to be E,,, E;,, E;,, Eg,
(K =4,N; a =x, y, z). The remaining six dependent gradi-
ents E,,,E,,E,,, E,,, E,,, E;, are obtained from invar-
iance relations; the first three are obtained from Eq. (12) and
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gradients, we first simplify by solving Eq. (6) for E,, as

N
Ela = - 2 EKa’ a=x),2z (12)
K=12

Then we eliminate from Eq. (9) the elements E, ,, to obtain

N A A
z { Pra Eyg — Pyg Ey.} =0, af=uxpy,yz z2x,
K=2

(13)
where
Py, = Pgo — P, K=2N. (14)

Since in the new coordinates defined by Eq. (14) the rota-
tional relations of Eq. (13) do not involve E,, they can be
solved independently of Eq. (12). Furthermore, Eq. (12)
shows that the three derivatives E,, (& = x, y, z) are depen-
dent and can be obtained from E,, (K = 2,¥ ). The remain-
ing set of dependent derivatives are to be found from Eq. (13).
Geometrically, the separation obtained here through the co-
ordinate transformation of Eq. (14) is equivalent to translat-
ing the origin of lab-fixed coordinate system onto particle 1.

The solution of Eq. (13) for the determination of depen-
dent and independent gradients through its reduction to a
lower row echelon form has to be performed as shown in Ref.
15. Here we will merely state the results. First for the special
case of a three-particle system Eq. (13) has the form

B, |
(15)

¥
the last three from Eq. (16).

The case of collinear geometry of the N centers must be
treated separately. Due to the diminished geometrical flexi-
bility only two of the three relations of Eq. (13) are indepen-

dent. For P,, #0, the two chosen relations are
N

xzz { Ppo Exg — Pyg Ex,} =0, aB =uxyyz.
To deal with collinear geometries one must use Eq. (17) in-
stead of Eq. (13), along with Eq. (12). The resuit, using the
echelon form analysis, is that, for P,, #0, an independent set
of (3N —5) gradient elements are E,, E,, (K=3,N;a
=x, J, z). The five dependent gradients are E,,, E,,, E,,,
E,. , E,,; the first three are obtained from Eq. (12) and the
last two from Eq. (17).

B. Second and higher derivatives of £

These results can be generalized for the second deriva-
tives (Hessian) of the energy as well as to higher derivatives

(17)
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due to the similarity in the form of the invariance relations.
Asshown in Sec. I, the invariance relations involving the nth
derivative of the energy arise from 7 E »=1=0 and
RW E®"—1 =0, In particular, for the second derivatives of
the energy the translation and rotation relations, analogous
to Egs. (12) and (13), are
ud J=2,N,
El‘dl‘ T KZZ EKaJu’ a’ﬂ =Xz,
(18)
N
Y Euxa =0, au=xx,yp, zz,xp,yz,2x
K=1
which separate the references of center 1 from the rotational
relations

af} = xy, yz, zx,
N A A H=x)2,

(SxyZz ’ Szx2x ’ Szsz )
(19)

Here (S,,2;) Szxx» Saxz; ) represent redundant conditions that
must be discarded, where S,4,, denotes Eq. (19) for given
values of , B, J, and u, The echelon form of Eq. (19) shows
that for P,,#0 and P, P;, —P,, Py, #0, N'(N' + 1)/2
(N' = 3N — 6) independent Hessian elements can be con-
structed from unique combinations of the N’ differential ele-
ments dP,,, dP,,, IP;,, OPy, (K = 4,N;a = x, y, z). The re-
maining[3N (3N + 1)/2 — N'(N' + 1)/2]dependentHessian
elements can be obtained from Eqs. (18) and (19). Comparing
this result with the previous result for gradient elements, one
finds that it is the same (3N — 6) differential elements that
the independent gradient elements are constructed from.

These results assume P,, 5#0; similar results are ob-
tained for an arbitrary X, for Py, #0, by appropriate permu-
tation of indices. Thus the assumptions P,, #0 and P,, Py,

— P,, P,, #0 are not restrictions on the possible geometries

of the molecule. The implications of these relations are that
the centers 1, 2, and 3 should be chosen such that they donot
reside on a line and the axes x, y, and z should be chosen that
the y components of centers 1 and 2 are not equal.

Similarly the relations obtained for the Hessians corre-
sponding to the linear geometry for P,, #0, are

N oA R aB = xy, yz,
Z (Pxo Exgye — Pxp Exans) =0, #=X,92,J=2,N,
) =+
(SxyZZ)'
(20)

The echelon form of Eq. (20} shows that, for ?’zy #0,
N'(N"+1)/2 (N"=3N-15) independent Hessian
elements can be constructed from unique combinations of
the (3N — 5) differential elements JP,,, Py, (K =3,N;a
= x, y, z). Again, the same differential elements are used to
create independent gradient elements for linear geometry.
Similar analysis can be extended to derivatives of energy
of an arbitrary order n. Then for nonlinear geometries
N'N'+1)N'+2)..\N'+n—1)/n! independent nth
order derivatives (N’ = 3N — 6) can be constructed from all
unique combinations of the (3N — 6) differential elements

3503

oP,,, dP,,, dP;,, P, (K =4,N; a=x,,z). For linear
geometries, N' = 3N — 5, and the (3N — 5) differential ele-
ments are 9P,,, IPy, (K =3, N; a = x, y, z). These results
assume P,, #0; similar results are obtained for an arbitrary
K, for P, #0, by appropriate permutation of indices.

IV. CONSTRUCTION OF INTERNAL COORDINATES

We are now ready to use the results of the previous sec-
tion to construct a set of 3N — 6 (3N — 5 for collinear sys-
tem) internal coordinates {P,} for systems or properties of
N-body systems which remain invariant relative to overall
translation and rotation. The internal coordinates P, must be
such that the set { P, } is independent and complete, and that
for all orders n, the set of all derivatives of the energy with
respect to this set also must be independent and complete.
The first criterion allows one to span all geometries of an N-
body system which are reachable by 3N coordinates. The
second criterion allows joining two arbitrary points within
the (3N — 6)-dimensional subspace of internal coordinates.

To arrive at such internal coordinates we begin by writ-
ing the energy E { Py, } (K =1, N; a = x, y, z) explicitly as a
function of 3N Cartesian coordinates, and then find only
those coordinates that participate independently in produc-
ing change in energy (dE, d ?E, etc.). First the consequence of
translational symmetry is

N
dE = Z EKa dPKa
a=x,nzK=1
N
= z {Ela dPla + z EKa dPKa}' (21)
a=Xx,y12 K=2

Then using the translational invariance condition of Eq. (12),
we have

N

dE=Y Kzz E., d(Px, — Py,) 22)
This shows that changes in energy depend upon at most
3N — 3 relative variables Py, = Py, — P, (K=2,N),and
it does not directly depend upon P,,( = P,,). A convenient
choice of the variable P, is to choose it to be a constant, then
dP,, =0, and P, and P, differ by a constant. In particu-
lar, one may choose P,, = 0 which amounts to translating
the origin onto particle 1 and remaining on it for all geome-
tries. Higher order changes in energy show again that the
active variables are Py, (K = 2, N). For example,

N A A
d’E= L y z Ey,;p APy, dP,g. (23)
2 aff KJ=12

Having eliminated the coordinates of particle 1 as a con-
sequence of translational symmetry, we can now consider
consequences of rotational invariance on dE, d 2E, etc. in-
volving coordinates of N — 1 particles. To simplify writing
let P={P,,,P,,P,,P, K=4,N;, a=x,y,2)}*, a
3N — 6 dimensional vector, and Q = {P,,,P,,, P, }*, a
three-dimensional vector. Vectors G and g, respectively,
contain the gradient elements relative to P and Q. Then

N
dE =3 Y E, dPy,

a K=2

=G*dP +g*dQ. (24)
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The gradient elements g can be written in terms of G from

Eq. (16) as

g=CG. (25)
Here C = — A~ !B where A and B are generalizations of the
matrices defined in Eq. (16). Then

dE=G*(dP+C*dQ). (26)

This shows that dE depends only upon (3N — 6) [(3N — 5)
for the linear case] relative variables P=P + C* Q. Note
that C*Q has dimensions of (3N — 6)X 1 [[3N — 5)x 1 for
the linear case], same as that of P, and the C matrix is deter-
mined solely by the geometry of the system. A very conven-
ient choice is to have the variables Q = constant =0 for
which d Q = 0. For the nonlinear case we then have

dE=G*dP
=E,, dP,, + E;, dP;, + E;, dP,,

N
+ Y > ExadPy,. (27)
a=x,y,zK=4
Higher order changes in E show again that the active varia-
bles are P; for example the second-order change, with
Q =dQ =0, we have

d?E=(dP)*HdP, (28)

where H is a matrix of Hessian elements relative to (3N — 6)
variables P.

We have shown, so far, that in a translated coordinate
system in which the coordinate origin is fixed on particle 1
(ie., P,, =dP,, =0; a = x, y, z} which is then rotated to
have particle 2 on the y axis and particle 3 remaining in the yz
plane (ie., P,, =P, =P, =dP, =dP,,=dP,, =0)
that the (3N—6) Cartesian coordinates
P={P,, P, Py, Py, (K=4,N;a=x,y,z)}" areindeed
internal coordinates.

In practice, one further requires that a particular equa-
tion of motion of interest be separable between the internal
coordinates P = {P,,, Py, P;,, P, (K =4, N;a = x, y, 2)}
and the external coordinates Q= {P,,, P, Py,
P, ,P,, P,}. To achieve separability for a specific case,
appropriate linear combinations among these coordinates
would be necessary. In what follows we show that the “sur-
face walking” algorithms are natually separable among the
P and Q coordinates. Here, one simply chooses to fix particle
1 to be the origin, particle 2 on the y axis, and 3 on the yz
plane, while the movement of the remaining coordinates P
are devoid of the components of the overall translation and
rotation of the N-particle system.

A similar analysis for the linear case shows that P

= {P,,,Px, (K =3, N;a = x, y, z)} are the internal coordi-
nates. By analogy to the nonlinear case, particle 1 would
remain at the origin and particle 2 would remain on the y
axis. Translational and rotational symmetry would say noth-
ing about particle 3. However, in this case the molecule has
cylindrical symmetry (all centers are on the y axis). Thus the
motion of center three in any direction perpendicular to the y
axis is equivalent. Therefore, nothing is lost in retraining
center three to move in the yz plane, and the final procedure
is the same as the nonlinear case.

Before leaving this section, it is instructive to investigate

the derivatives of E with the six external variables, i.e.,
JOE /9P, in the translated coordinate system and JE /dP,,,
J0E /3P,,, IE /3P, in the rotated system. The coordinate
transformation to impose translational symmetry is

P, =P, (29a)
and
Pyo=Pry — Py K=2,N. (29b)

Here the f’la gives the vector for translating the origin while
Py, (K =2, N)are defined relative to the translated origin.
Using this transformation and invariance Eq. (12), we have

A N A\
OE /3P, = 3 (9E /3Py, )0P;/3P,,)
J=1

N
= 3 (9E/3P,,) =0, (30a)
J=1
N

OE /3Pxy = 3 (IE /3P;,)OPso/OPy,) = IE /3Py,
J=1

K=2,N, (30b)

where we have inverted Eq. (29) and used the chain rule.
That is, derivatives relative to the external coordinates van-
ish in the translated coordinate system while the derivatives
with respect to the relative internal coordinates remain the
same. Similarly using the second-order translational invar-
iance Eq. (7), one obtains 3 °E /9P, , 9P,z = 0, and similarly
for all orders. We note that transformation of Eq. (29) is not
unitary, leading to a nonorthogonal system of coordinates.
However, having separated the coordinates of particle 1, the
transformation of Eq. (29b) for (N — 1) particles is unitary
giving back the Cartesian system in the coordinates of N — 1
particles. Thus the metric tensor remains uniform. The oper-
ational implication is that the dependent derivatives
E,., E,,p, etc. do not enter into the calculation of dE, d R,
etc. even though they may have nonzero values calculated in
terms of the 3N Cartesian coordinate system.

To find the derivatives relative to the remaining external
coordinates dE /3P, , dE /dP,,, dE /IP,,, one rotates the
coordinate system (with origin on particle 1) such that parti-
cle 2 rotates onto the new y axis (two angles) and particle 3
onto the new yz plane (one angle). Here we show one repre-
sentative example. The rotation around the x axis which
brings the z coordinate of particle 2 to zero can be represent-
ed as

(?)2;: )__(cos@ —sine)(sz) (31
P,,=0/ \sinf cos@ p,.)’ )

where 6 is the angle of rotation. Similar to Eq. (30) the chain
rule yields dE /dP,, = 0 and JE /9P,, = JE /3P,,. In sum-
mary, the six external variables have vanishing derivatives in
the transformed coordinates, i.e., energy does not directly
depend upon their absolute positions, and the equations of
motion ought to preserve the initial values of these coordi-
nates.

V. APPLICATIONS

We now examine the application of translational and
rotational invariance to algorithms which search for station-
ary points {(minima, maxima, and saddle points) on surfaces.
We assume that the surfaces E (P,,P,,...Py) are translation-
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ally and rotationally invariant. Particular surfaces of interest
to chemists are surfaces of the total electronic energy within
the BO approximation in which the effects of electronic mo-
tion has been integrated over for fixed values of the nuclear
coordinates. Stationary points correspond to the ground and
excited electronic states on such surfaces as well provide in-

formation about reaction dynamics.

Such surfaces are calculated at every point explicitly in
terms of the coordinates of N centers, P, usually in terms of
3N Cartesian coordinates. The derivatives of the energy are
also usually given relative to these 3N Cartesian coordinates.
Using this information about the energy and its derivatives,
the surface stepping algorithms provide a recipe for taking a
step along each degree of freedom. A sequence of these steps
then leads to the desired stationary point on the surface.
Obviously, such a stepping procedure generates unnecessary
components of overall translation and rotation of the N par-
ticles. Our aim is to find modifications of such a stepping
algorithms which take steps that are free from the compo-
nents of overall translation and rotation. The implication of
the results of the previous section is to describe the initial
geometry of N particles in a coordinate system of (3N — 6)
Cartesian internal coordinates P = {P,, P, , P, , P¢, (K

=4,N; a=x,y,2)}]" and six external coordinates Q

= {Py,Pyy, Py Py, Py, Py} with values of zero (ie.,
particle 1 on the origin, 2 on the y axis, 3 on the yz plane). We
wish to find modifications for the stepping algorithm which
constrain the changes in the external variable to zero. We
shall use the method of Lagrange multipliers.

Most stepping algorithms''> model the real surface by
a finite Taylor expansion in the neighborhood of the current
point and then require that each step be a stationary point (of
some order) on the model surface. If A is a vector of length six
containing six Lagrange multipliers, we require stationary
points in (3N + 6) variables

EP.QM =E,+ (g gF) (d P)

dQ
1 + + Hpp HPQ) dP
+5 @PAQ )(HQP Hoo (dQ)
dP
+et0man) (50). (32)

where 0 is the zero vector of length 3N — 6 (3N — 5 for the
linear case). Then

A gr Hep HPQ) (dP) (0)
VEP'Q =0= (gg) + (HQP HQQ dQ Tt A

(33)

and
V,E=0=dQ. (34)
Substituting Eq. (34) in Eq. (33) we arrive at two equations,
g +HppdP + . =0, (35)
g8 +HppdP + -+ A=0. (36)

Equation (35) involves only the internal variables P in the
(3N ~ 6)-dimensional subspace. Furthermore, the form of
the equation (which involves no modification for the calcula-
tion of the gradient and Hessian elements g, Hpp)is asif the
external variables Q have been ignored. Therefore, in prac-
tice, one starts with initial conformation of the N particles
represented completely in terms the (3N — 6) internal co-
ordinates P, with zero values for the external coordinates
Q = 0. The stepping algorithm is performed only in terms of
internal coordinates P, which of course leaves the external
coordinates unchanged. When a stationary point in this

(3N — 6) dimension subspace is reached, it is also a station-
ary point in the 3N-dimensional space. The values of A,
should they be needed, can be calculated at a given point for
a given stepd P. The resulting steps are devoid of any compo-
nent of overall translation or rotation of any order.

Now we shall apply the above recipe toward locating
stationary points on model surfaces. The surface we have
chosen is a coupled anharmonic oscillator surface for three
particles:

E{P,P,P;)=4, "1;2 + 4, ’%3 + 4, rgs + B, "Tz
+Bz"?3 +B3";3- (37)
This surface depends only upon interparticle distances
rg; = |Px — P;| where Py = (Py,, Py, Px,) refers to the
Cartesian coordinates of a particle X, relative to a lab-fixed

origin. The surface E (P,,P,,P,} is an explicit function of
3N =9 coordinates. The function E being translationally

TABLE I. Translation-rotation free path of convergence to the minimum followed by the RFO algorithm on a nine-dimensional model surface of Eq. (37).
The internal coordinates are P = (P, , P,,, P;,), and starting value P, = (2.0,2.0,2.0).

Internal coordinates

Iteration Function value
number p,, Py, P, E(P,, Py, P;,)

0 2.000 2.000 2.000 35.200

1 1.828 1.803 1.718 24.162

2 1.641 1.604 1.447 16.142

3 1.441 1.403 1.189 10.422

4 1.230 1.198 0.944 6.430

5 1.009 0.990 0.713 3.719

6 0.783 0.776 0.500 1.945

7 0.552 0.554 0.309 0.855

8 0.333 0.328 0.152 0.264

9 0.118 0.121 0.045 0.033

10 0.009 0.010 0.002 0.000

11 0.000 0.000 0.000 0.000

Downloaded 23 May 2003 to 155.101.19.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

J. Chem. Phys., Vol. 83, No. 7, 1 October 1985



3506

and rotationally invariant, it is possible to choose 3N — 6
= 3 Cartesian coordinates P = (P,,, P, , P,,) to be the in-
ternal coordinates while the external coordinates Q = (P,,,

P, P,,P,,P,, P,)canbetaken to be zero. The surface E
has a minimum at r,, = r,; = r,; = 0 which in our internal
coordinate system implies that at the minimum P,, = P,,
=P, =0.

We have used the RFO algorithm!! to search for the
minimum in the three-dimensional surface of internal co-
ordinates P with Q = 0. Starting from an initial guess P,, the
RFO algorithm requires a solution of an eigenvalue problem

G o) (1)=<C") o

1

for the lowest eigenvalue € for a minimum search. Here,
g = (0E /3P,,, JE /9P,,, OE /JP,,) contains the gradients
of E relative to the internal coordinates calculated at their
current values, while H is the Hessian matrix. The eigenvec-
tor gives the change AP from which a new starting point
P, =P, + AP is obtained. This process is continued until
convergence for which AP =g=0. In Table I we have
shown the path of convergence followed by the RFO algo-
rithm toward the minimum starting from the initial values of
the internal coordinates P, = (2.0,2.0,2.0). The values for
the coefficients of 7, in Eq. (37) for the surface have been
takentobe 4, =4, =A4;=1.0and B, =B, =B, =0.2.

V1. SUMMARY AND CONCLUSION

In this paper we have given relations among derivatives
of a property (taken here to be the energy) of an N-body
system corresponding to the translational and rotational in-
variances of the property. As a consequence it is shown that
not all derivatives of energy are independent. In particular,
for a nonlinear geometry of the N bodies, all unique deriva-
tives of a given order constructed from the set of (3N — 6)
geometrical variables P = (P,,, P;,, P;,, Py,; K=4,N; a

= X, y, z) are the independent derivatives. All others can be
calculated knowing these using the symmetry relations. For
example, there are M (= 3N — 6) independent gradients,
M (M + 1)/2 Hessians, and M (M + 1)({M + 2)/6 indepen-
dent third derivatives. For linear geometries the
M(=3N-—5) elements of the set are P
=Py, Px,; K=3, Nya=x,p,2.

Banerjee, Jensen, and Simons: Translation-rotation invariance

We have also shown that the elements of P can also be
considered as a bonafide set of internal coordinates in the
sense that these coordinates span all possible geometries of
an N-body system when the six external coordinates Q
= (Pyy, Py, P, Py, P,,, Py,) are taken to be zero. Fur-
thermore, movements along these internal coordinates,
which do not alter the values of external coordinates, will
include no components of overall translation and rotation of
the N bodies. The advantage of these internal coordinates is
their Cartesian nature.

We have applied these results toward search for station-
ary points of a 3N = 9 dimensional surface. Due to the trans-
lational and rotational invariance of this surface, a modified
surface walker in only three coordinates P = (P, , P;, P,,)
is sufficient, and walks to a stationary point are translation
and rotation free.
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