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ABSTRACT. Building upon the Hamiltonian expansion of Helgaker and the

MCSCF energy derivative developments of J0rgensen, an analysis of the
geometrical derivatives of the CI energy is performed. Combining the

geometry variation of the Hamiltonian with that of the molecular
orbitaIs (as given by the MCSCF orbital response of J0rgensen) allows
the variation of the CI eonfiguration expansion eoeffieients to algo

be handled by response theory. After developing the form of the CI

energy derivatives, a few observations are made eoneerning their

eomputational praetieality.

l. INTRODUCTION

In the twe preeedingpapers, Helgaker and J0rgensen have set the stage

for examining eonfiguration interaetion (CI) energy derivatives. In

partieular, Helgaker demonstrated how an espeeially elever atomie
orbital (ao) parameterization and orthonormalization proeessl allows
for effieient treatment of the geometry dependenee of the eleetronie
Hamiltonian (H) and direetly results in expressions whieh are in the
moleeular orbital basis. The resulting expressions for geometrieal

derivatives of the Hamiltonian eontain ao integral derivatives as well

as undifferentiated integrals whieh have been subjeeted to so ealled

one-index transformations (using derivatives of the ao overlap matrix
as transformation matriees (see his Eq. (19))).P. J0rgensen's paper

shows how to use the resulting geometry dependenee of H to develop

expressions for geometrieal derivatives of the MCSCF energy. His

analysis is earried out in terms of exponential unitary operators whieh
. deseribe the responses of the moleeular orbital (mo) and eonfiguration-

spaee expansion eoeffieients to geometrieal displaeements.
In the present paper, analogous methods are utilized to express

the derivative of the CI energy with respeet to geometry. Relative to
the MCSCF ease, twe fundamental ehanges must be made in deriving the

CI expressions:
l) The moleeular orbital expansion eoeffieients ean not be assumed

to be fully variationally optimized; only the eonfiguration-spaee ean
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be taken to obey the generalized Brillouin theorem2 (GBT).

2) The twe-step proeedures by whieh the moleeular orbital and
eonfiguration-spaee wavefunetion amplitudes are ehosen must be properly

represented in the derivation.
Although a few remarks pertinent to the eomputational implementat-

Lon of the working equations are made here, these matters are eovered
in substantial detalI in later papers by R. Shepard and H.J.Aa. Jensen.

The foeus of the present paper is a elear development of the CI energy
derivative expressions building upon the preeeding papers by Helgaker

and J0rgensen. The strategy to be used can be deseribed as follows:
l) The moleeular orbita l and eonfiguration-spaee response

techniques introduced earlier by J0rgensen are used in twe separate

steps to deseribe the geometrieal responses of the mo's (which are
assumed to be SCF- or MCSCF-optimized orbitaIs) and of the eonfigurat-

ion-spaee wavefunetion amplitudes (which are assumed to be CI-
optimized) .

2) The mo responses thus obtained are combined with Helgaker's

Hamiltonian derivative expressions to d~fine and analyze the geometry

dependenee of an_effeetive Hamiltonian H. Isolating the mo responses in
the Hamiltonian H makes the CI energy funetion identical in form to the

MCSCF form treated in the preeeeding papers. This eonneetion to the

MCSCF development allows the CI energy derivatives to be written -
direetly from J0rgensen's MCSCF expressions by simply replaeing H by H.

3) The resulting CI energy derivatives are then written in a

manner whieh elucidates several aspeets of their eomputational
implementation and whieh permits interehange-theorem-like methods to be

implemented.

2. DEVELOPMENT

2.1. The Orbital Response.

The orthonormal moleeular orbitaIs are assumed to have been variation-

ally optimized at a moleeular geometry denoted!o. This optimization
may have involved either an MCSCF or SCF wavefunetion either of whieh

is denoted lo>. The requirement"that the orbital and eonfiguration

amplitudes of lo> are optimized at !o results in the generalized
Brillouin theorem for both the orbital and eonfiguration spaees3 of

lo> (see Eqs. (20), (24) of J0rgensen)

Fn = <ol [Pn,H] lo> = O

Fpq = <ol [Epq,H] lo> = O

(la)

(lb)

where Pn and Epq are the state transfer operators4

Pn = In><ol-Io><nl (2a)

and unitary group generators4
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Epq = ~ (apaaqa-aqcrapa)a
described in the preceeding paper. It should be noted that the

Hamiltonian H and wavefunction lo> are evaluated at !o in Eqs. (l) and
that the functions {In>}span the orthogonal complement space of the

MCSCF.(or SCF, in which case there are no In> and hence no PnI function.
To express the response of the mo's and configuration amplitudes

to a displacement of the geometry from!o to !o +~, J0rgensen's Eq.
(23) is combined with Helgaker's order-by-order (in X) expansion of H

(see his Eq. (30». These orbital responses, denoted-K~&)have been
explicitly given by J0Tgensen and Simons5 through second order (n = 2)

and by Simons, J0rgensen, and Helgaker6through n = 4. For exarnple, the

first-order response pararneters K~~)are obtained by solving
(l)

~o (f(l» = (K(l»

(2b)

(3)

where F~~)and FAl) are GBT elements as in Eq. (l) but with the
Hamiltonian H replaced by Helgaker's first Hamiltonian H (in Eq. (19».

The matrix ~ois J0rgensen's Hessain matrix (see his Eq. (21» which
contains both orbital- and state-function components; the parameters

SAl) describe responses of the MCSCF configuration amplitude. It should
be noted that solution of theOabove orbital response problem involves

simultaneous treatment of the orbital and configuration responses in
situations where MCSCF orbitals are used.

2. 2. The Effective Hamiltonian.

Now that the molecular orbitals' responses to geometrical dis-

placements have been forrnulated, it is possible to address the CI

wavefunction arnplitude response problem. Given a CI wavefunction ICI>
constructed from orbitals which have been optimized as described above

and whose orbital response parameters KP&)are taken as known, attention
is to be focused on the CI energy function

ECI = <CIIHICI> (4)

In particular, the variation of ECI with geometry must be related to
variation in the state-space expansion coefficients and those in the
mo's and in H.

Combining Helgaker's expansion of H in powers of ~ with the above
molecular orbital responses and J0rgensen's unitary exponential
pararneterizations of the configuration arnplitudes and orbital

variations (see J0rgensen's Eq. (16» allows all of the ~-dependence

of ECI to be displayed
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ECI = <CIlexp(IS P) exp(} Kpq Epq)
n n n tsq

H exp(- I Krs Ers) exp(- I S P)ICI>rs m m m

<CIlexp(S) exp(K) H exp(-S) exp(-S)ICI> (5)

where ICI> denotes the CIAfunction at !O. In Eq. (5) as in all of the
subsequent equations the S operator and its Sn parameter$ refer to the
CI state-space. This space is likely to be quite large compared to the
state-space used in Sec. 2.1 in treating the MCSCF response problem.

The, as yet undetermined, Sn parameters can be isolated trem the known

geometry dependence of Kpq and of H by introducing the effective
Hamiltonian

H= ~xp(} KPq Epq) H exp(- I Krs Ers)
tsq rs

(6)

This allows the ECI function of Eq. (5) to be cast into a form in which
only the configuration amplitude variations are explicitly displayed

ECI = <cIlexp(s) H exp(-S)ICI> (7)

The essential point to be made concerning the introduction of His

that the geometry dependences of H (given earlier by Helgaker) and of

~ (as outlined above and explicitly given through fourth order i~ refs.
(5) and (7» combine to provide an order-by-order expansion for H,

which appears through fourth ~rder in ref. (6). The lowest three such
terms in the ~-dependence of H are

HO = H, the Hamiltonian at !o (8a)

Hl = Hl - [K(l),H] (8b)

~H2 = ~H2-[K(1),Hl]-~[K(1), K(1),H]-~[K(2),H] (8c)

It should be stressed that these expressions for the Hn are not simply
disguising difficult-to-evaluate factors. Quite to the contrary, they
are actually suggestive of computationally practical strategies. For

example, each of the commentators [K(l),Rm] can be reexpressed in
terms of a one-and-two-body Hamiltonian whose integrals (or integral
derivatives) have been subjected to the one-index transformation

introduced earlier by Helgaker (but with t~e Kpa) array as the trans-
formation matrix). The net result is that Hn is, in effect, a one-and
twe-body Hamiltonian whose "integrals" have been one-index transformed

one or more times. H.J.Aa. Jensen's, R. Shepard's and T. Helgaker's

later papers more fully treat the computational aspects of these -
transformations. For new it should be sufficient to observe that the Hn
can be viewed as computationally tractable one-and twe electron
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operators which contain the explicit geometry dependence of both the
ao basis orbitaIs and the MCSCF (or SCF/mo's).

2.3. CI Energy Derivatives.

The developments given in the preceeding paper by J0rgensen for MCSCF
wavefunctions can new be applied to Eq. (7) to immediately write the

desired expressions for the CI energy derivatives. J0rgensen's MCSCF
development, when restricted to contain only the state-function

response parameters {Sn} as Eq. (7) and with H replaced by the above H,
yields the appropriate CI derivatives, the first twe of which ara given
below:

El = <cIIHlICI>= <cIIHlICI> -<Cli [K(l),H] ICI>

~E2 = ~<cIIH2ICI> + ~r FAl)sAl)
n

= ~<cIIH2ICI> - <Cli [K(l),HI] ICI>

(9a)

-~<CII[K(l),K(l),H]ICI> - ~<cII[K(2),H]ICI>

+~L{<CIIHlln> - <cII[K(l),H] In>}sAl)
n

(9b)

where sAl) ara the CI state-space amplituda responses obtained by
solving the first order piece of J0rgensen's Eq. (23):

L Gnm s~l) = FAI) = <cIIHlln> - <cli [K(l),H] In>
m

The matrix element Gnm is the state-space Hessian matrix (see
J0rgensen's Eq. (21»:

(10)

Gnm = <nIHlm> - EClonm (11)

and FAI) is the state-space GBT element defined with respect to the

first-order effective Hamiltonian Hl'

2.4. Observations on Implementation of the En'

As written in Eqs. (9), the evaluation of the first twe CI energy

derivatives would appear to require the following steps:
l) The computation of CI expectation values of the Hamiltonian

derivatives Hl and H2 given earlier by Helgaker.
2) The solution of the first- and second-order orbital response

equations (e.g. Eq. 3» for Kt~) and Kt~).
3) Carrying out one-index transformations on the integrals

defining H or Hl' folIowed by calculation of CI expectation values for

the resultant operator s (to compute, for example, <cli [K(n),Hm] !CI>
(n,m = 0,1,2) and <cII[K(l),K(l),H] ICI>.

4) Solution of the first-order CI-space response equation (Eq.
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(10» for sAl) foliowed by contraction of sAl) with the corresponding
GBT element FAI).

Although the computational evaluation of the above CI energy

derivatives is more difficult than in the MCSCF case, the tour-step
outline given above presents an overly pessimistic view of the

situation. Calculation of the CI expectation values of Hl and H2 are
in fact required, but are by no means the bottleneck in the calculat-

ions. Moreover, solution of the state-space response equations, which
may involve ~ 106 configurations, caD be evaluated using direct-CI

like methods by first expressing Gnm and FAI) of Eq. (lO) within the
primitive configuration space as demonstrated in refs. (6) and (S).
The later paper by H.J.Aa. Jensen deals explicitly with the matter and

show that even very large configuration spaces caD be handled.
Evaluation of the second term in Eq. (9a) and the second, third,

and fourth terma in Eq. (9b) requires further analysis. The use of

one-index transformations with K~a) or K~~) as the transformation
matrix caD be used to evaluate <cII[K(l),H] !CI>, <Cli [K{l),Hl] !CI>
and <cli [K{2),H] IcI> as CI expectation values and twe successive one-

index transformations would allow <Cli [K{l),K(l),H] ICI> to be computed
likewise. The disadvantages of such an approach are that one must
solve the MCSCF response equations described earlier for each of the 3

N cartesian displacement directions in ~ and that one must carry out
the one-index transformations for each of these 3 N directions. The

primary advantage of the above approach is that, ODce the one-index
transformations are carried out, only CI average values need be
evaluated.

Handy and Schaefer9 have suggested that contributions such as
those treated above via one-index transformations caD be more

efficiently handled by introducing interchange-theorem-like methods.

For example, they correctly point out that <Cli [K{n),Hm] !CI> caD be
reexpressed in a form whose implementation does not require the

solution of (3N)n linear response e~ations. They use the fact that

the equations which determine the Kp~) parameters are of the form

K(l) ( )GO(- (» ={In)= S n (12)

where the I(n) vector involves lower order ~(1) and ~(1) (1 < n)
parameters (see Eqs. (63) - (66) of ref. (6» and ~o is the fulI
(i.e. orbita 1- and configuration-space) Hessian of-the MCSCF problem

which characterizes the orbital responses. This allows K~~) to be
written (formally):

K~n) = L (Go)pl T(n)+) (Go)pl k T~n)
q rs = q,rs rs ~ = q,

(13)

in terma of the orbital-orbital and orbital-configuration components

{~O)pa,rs and (~O)Pa,k of the MCSCF Hessian matrix. Osina Eq. (13)
allows one to write
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<CI![K(n),Hm]/CI> = bq <cII[Epq,Hm]!CI>
rs

(Go)p-l T(n)+} <CI ![E-p ,H ] ICI> (GO)-p
l
k T!n)

= q,rs rs Pq,k q m = q, h

which can be rewritten as

= ~ ~rs T~~) + } ~k T~n)
rs Je

(14)

is the orbital-space GBT vector for the Hamiltonian Hm but involving
the CI wavefunction. Eqs. (15) would have to be solved only (JN)m

times which, if m < n, results in potentially less werk than solving
for the K(n). For example, for m = o, Eq. (15) is only a single linear

equation whose dimension is equal to that of the combined MCSCF

orbital and configuration parameter spaces.

In summary, the computational implementation of Eqs. (9) for El

and E2 is likely feasible when the fulI power of direct-CI type
methods (for Eq. (10» and one-index transformations are utilized.

Even the third CI energy derivative EJ given in ref. (6) may be
within reach because it still only requires the sAl) CI-space response
parameters (although it algo requires K(J) or the use of a Handy-

Schaefer-typerearrangement).However, the evaluations of E4 (see ref.
(6») requires that the second-order CI response equations be solved

for sA2); This is a considerably more difficult task, so it will be
same time before CI fourth energy derivatives are obtained for

substantial configuration expansion lengths.

'" '"

Here (Krs' Kk) is the vector obtained by solving the linear response
equations

Go = (ClE:)= -
Q

(15)

where

CIFrs :: <C*E;s' Hm] ICI> (16)
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