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Words to the reader about how to use this textbook

I. What This Book Does and Does Not Contain
This is a text dealing with the basics of quantum mechanics and
electronic structure theory. It provides an introduction to molecular
spectroscopy (although most classes on this subject will require
additional material) and to the subject of molecular dynamics (whose
classes again will require additional material).

II. How to Use This Book
Other sources of information may be needed to build background in
the areas of mathematics and physics. These additional subjects are
treated briefly in the associated Appendices whose readings are
recommended at selected places within the text in the following
format:  [Suggested Extra Reading- Appendix A: Mathematics
Review].

III. QMIC Computer Programs
Included with this text are a set of Quantum Mechanics in Chemistry
(QMIC) computer programs. They appear on the floppy disk on the
inside of the back cover. To learn more about what they contain and
how to use them, read the (Microsoft Word) "README" and "writeme"
files on this disk.
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