Section 5 Time Dependent Processes

Chapter 14

Theinteraction of a molecular species with €l ectromagnetic fields can cause trangitions to
occur among the available molecular energy levels (electronic, vibrational, rotational, and
nuclear spin). Collisions among molecular species likewise can cause transitions to occur.
Time-dependent perturbation theory and the methods of molecular dynamics can be
employed to treat such transitions.

|. The Perturbation Describing Interactions With Electromagnetic Radiation

The full N-electron non-relativistic Hamiltonian H discussed earlier in this text
involves the kinetic energies of the electrons and of the nuclei and the mutual coulombic
interactions among these particles

H=Sa1m (-h22ma) N2+ Sj [ (-hZ2me) Nj2- SaZ£2/rj 4]
+ Sj<k €Mjk + Sa<b ZaZh €/Rap.

When an electromagnetic field is present, thisis not the correct Hamiltonian, but it can be
modified straightforwardly to obtain the proper H.

A. The Time-Dependent Vector A(r,t) Potentia

The only changes required to achieve the Hamiltonian that describes the same
system in the presence of an eectromagnetic field are to replace the momentum operators
Paand p;j for the nuclei and electrons, respectively, by (Pa- Za€/cA(Rat)) and (p;j - €/c
A(rj,1)). Here Z, eisthe charge on the &M nucleus, -eisthe charge of the electron, and cis
the speed of light.

The vector potential A depends on timet and on the spatia location r of the particle
in the following manner:

A(r,t) =2 Agcos (Wt -K-r).

The circular frequency of the radiation w (radians per second) and the wave vector k (the
magnitude of k is [k| = 2p/l , where | isthe wavelength of the light) control the temporal



and spatia oscillations of the photons. The vector A characterizes the strength (through
the magnitude of Ao) of the field aswell asthe direction of the A potentid; the direction of

propagation of the photonsis given by the unit vector k/|k|. The factor of 2 in the definition
of A alowsoneto think of Ag as measuring the strength of both exp(i(wt - k- r)) and exp(-
i(wt - k- r)) components of the cos (wt - k- r) function.

B. The Electric E(r ,t) and MagneticH(r ,t) Fields
The eectric E(r,t) and magnetic H (r,t) fields of the photons are expressed in terms
of the vector potential A as

E(r,t)=- UcJAMt=w/c2Aposin(Wt-k-r)
H(rt)= Nx A=Kkx Ag2sin(wt-k-r).

TheE field lies paralld to the A vector, and theH field is perpendicular to A; both are
perpendicular to the direction of propagation of the light k/|k|. E and H have the same

phase because they both vary with time and spatial location as
sin (wt - k- r). Therelative orientations of these vectors are shown below.

>
H/ k

C. The Resulting Hamiltonian



Replacing the nuclear and el ectronic momenta by the modifications shown abovein
the kinetic energy terms of the full electronic and nuclear-motion hamiltonian resultsin the
following additional factors appearing in H:

Hint = Sj { (ieh/mec) A(rj.t) - Nj + (€2/2mec?) JA(r 1)1}
+Sa{ (i Z&h/me) A(Rat) - Na+ (ZL222me?) A(Rat )2}

These so-called interaction perturbations Hipy are what induces transitions among the

various e ectronic/vibrational/rotational states of a molecule. The one-electron additive
nature of Hjpt plays an important role in determining the kind of transitions that Hijnt can

induce. For example, it causes the most intense electronic transitions to involve excitation
of asingle electron from one orbital to another (recall the Slater-Condon rules).

I1. Time-Dependent Perturbation Theory

A. The Time-Dependent Schrodinger Equation

The mathematical machinery needed to compute the rates of transitions among
molecular states induced by such atime-dependent perturbation is contained in time-
dependent perturbation theory (TDPT). The devel opment of this theory proceeds as
follows. One first assumes that one has in-hand all of the eigenfunctions{F } and
eigenvalues { Ex0} that characterize the Hamiltonian HO of the molecule in the absence of
the external perturbation:

HOF, =EOFy.
One then writes the time-dependent Schrédinger equation
iATY /it =(HO+ Hijn) Y

in which the full Hamiltonian is explicitly divided into a part that governsthe system in the
absence of the radiation field and Hipyt which describes the interaction with the field.

B. Perturbative Solution
By treating HO as of zeroth order (in the field strength |Ag|), expanding Y order-by-
order in the field-strength parameter:



Y=Y0+Yl+Y2+Y3+ |
realizing that Hjnt contains terms that are both first- and second- order in |Ag|
Hypn = Sj{ (ieh/mgL) A(rj,t) - Nj }
+Sa{ (i Zeeh/me) A(Rat) - Na},
HZint = S { (e2/2mee?) |A(rj,t)[2 }
+Sa{ (ZLe22me?) IA(Rat)I? },

and then collecting together al terms of like power of |Ag|, one obtains the set of time-
dependent perturbation theory equations. The lowest order such equations read:

iATYO/t=HOYO

i A Y Ut = (HOY 1+ Hjpy Y O)

iAY 2/t = (HOY 2+ H2j YO + HYjp Y D).
The zeroth order equations can easily be solved because HO is independent of time.
Assumingthatatt=-¥, Y =y (weusetheindex i to denote theinitial state), this solution
is:

YO=F;exp(-i EOt/h).

The first-order correctionto Y 0, Y1 can be found by (i) expanding Y 1 in the
complete set of zeroth-order states{F+}:

Y1=SiFi<FeY1>=SiFs Gt
(i) using the fact that

HOF¢ = EQFy,



and (iii) substituting all of thisinto the equation that Y 1 obeys. The resultant equation for
the coefficients that appear in the first-order equation can be written as

iR CMt = Sk {ExO Cil i k }+ <Fi| Hlint [Fi> exp(- i EOt/h),
or
i A ICYMt = EO CiL + <F¢| HYi [Fi> exp(-i EOt/h).
Defining
Crl (t) = Drl(t) exp (-1 EOt /),
this equation can be cast in terms of an easy-to-solve equation for the Df! coefficients:
i h DMt = <F e Hine [Fi> exp(i [E9- EO] t/h).

Assuming that the electromagnetic field A(r,t) is turned on at t=0, and remains on
until t =T, this equation for D! can be integrated to yield:

T
Dfl(t) = (i h)'lé <Fi¢| HLint |[Fi> exp(i [E- EiO] t' / k) dt'.
0

C. Application to Electromagnetic Perturbations

1. First-Order Fermi-Wentzel "Golden Rule"
Using the earlier expressions for H1j: and for A(r t)

Hline = Sj{ (ieh/mg) A(rj.t) - Nj }
+Sa{ (i Zeeh/mg) A(Rat) - Na}

and



2Aocos(Wt-k-r)=Ag{ exp[i Wt-k-r)] +exp[-i Wt-k-r)]},

itisreatively straightforward to carry out the above time integration to achieve afina
expression for Dyl(t), which can then be substituted into C¢ (t) = Del(t) exp (-i E©0t/h)
to obtain the final expression for the first-order estimate of the probability amplitude for the
molecule appearing in the state F t exp(- i 0t /) after being subjected to electromagnetic
radiation fromt =0 until t = T. Thisfina expression reads:

Ci(T)= (ih)Llexp(-i EOT/h) {<F¢|Sj{ (ieh/me) exp [-ik-rj] Ag - Nj

exp(i(w+ wi)T)-1
(W i)

+Sa(i Zeh/mge) exp[-k-Rg Ao+ Na |Fi>}

+(ih)Llexp (-1 BEOT/h) {<F¢|Sj{ (ieh/mg) exp[ik- rj]Ag - N;

+Sa(i Zehimg) exp[ik-Rg Ag- Ng [Fis} =P (i (-i\?i\;+v\\,,:f.’i)) T) - 1’

where
wei = [EQ-EO0]/h

is the resonance frequency for the transition between "initia" state Fj and "fina" state F .
Defining the time-independent parts of the above expression as

af =<F¢|Sj{ (e/me) exp [-ik-rj] Ao - Nj
+Sa(Zge/mg) exp[-ik-Rg Ap- Na |Fi>,
this result can be written as

exp(i(w+ wj) T) -1
F(WHW )

Cl(T)= exp(-i EO T /h) { af,

exp (- (w- ) T) - 1

+axy, :
-i (W-w )

} .



The modulus squared |Cf1(T)P gives the probability of finding the molecule in the final
stateF¢ attimeT, giventhat it wasin Fj at time t = 0. If the light's frequency w is tuned
close to the trangition frequency wg j of aparticular transition, the term whose denominator
contains (W - w j) will dominate the term with (w + w j) in its denominator. Within this
"near-resonance”’ condition, the above probability reducesto:

CAMR =2 fay p L coS(W - Wi)T))
| (W - W j)?

2 sSn2(L2(w - wg)T)
(W - wj)2 '

= 4lag,

Thisisthefinal result of the first-order time-dependent perturbation theory treatment of
light-induced transitions between states F and F+.

The so-caled sinc- function

sSn2(12(w - wg)T)
(W - )2

as shown in the figure below is strongly peaked near w = w j, and displays secondary
maxima (of decreasing amplitudes) nearw=wsj +2np/T ,n=1,2,....IntheT ® ¥
[imit, this function becomes narrower and narrower, and the area under it
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growswith T. Physically, this means that when the molecules are exposed to the light
source for long times (large T), the sinc function emphasizes w values near w j (i.e., the
on-resonancew values). These properties of the sinc function will play important rolesin

what follows.

Intensity

w—p

In most experiments, light sources have a"spread” of frequencies associated with
them; that is, they provide photons of various frequencies. To characterize such sources, it
is common to introduce the spectral source function g(w) dw which gives the probability
that the photons from this source have frequency somewhere between w and w+dw. For
narrow-band lasers, g(w) is asharply peaked function about some "nomina" frequency wp;
broader band light sources have much broader g(w) functions.

When such non-monochromatic light sources are used, it is necessary to average
the above formulafor |CfL(T)P over the g(w) dw probability function in computing the
probability of finding the moleculein state F ¢ after time T, given that it wasin Fj up until t
= 0, when the light source was turned on. In particular, the proper expression becomes:

sSn2(LU2(w - wgj)T) dw

Q
Cii(T)Pave= 4 lasil ogw
IC(T)Fave lat i 69( ) w - Wf,i)z



¥
sSn2(12(w - wg)T)
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= 2JatiP T§ a(w) dWT/2 .

-¥

If the light-source function is "tuned" to peak near w = w¢ j, and if g(w) is much broader (in
sSn2(U2(w - wg)T)

w-space) than the function, g(w) can be replaced by itsvalue at the

(W - wg )2
- .
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Thefact that the probability of excitation from Fi to Ff growslinearly with the time
T over which the light source is turned on implies that the rate of transitions between these
two statesis constant and given by:

Rif=2p gw,) latif;
thisisthe so-called first-order Fermi-Wentzel "golden rule" expression for such
trangition rates. It givesthe rate as the square of atransition matrix el ement between the two

states involved, of the first order perturbation multiplied by the light source function g(w)
evaluated at the transition frequency wy ;.

2. Higher Order Results
Solution of the second-order time-dependent perturbation equations,



which will not be treated in detail here, givesrise to two distinct types of contributions to
the transition probabilities between Fj and F -

i. There will be matrix elements of the form
<F1|Sj{ (e22mec?) JA(rj;t)|2}+ Sa{ (ZLe22mee?) |A(Rat )12 }Fi>

arising when HZj,; couplesFi toFs

ii. There will be matrix elements of the form
Sk <Ft|Sj{ (ieh/m) A(rj,t) - Nj }+ Sa{ (i Z&eh/mg) A(Rat) - Na} [Fi>
<Fk|Sj{ (ieh/mg) A(rj,t) - Nj }+ Sa{ (i Z&eh/mL) A(Rat) - Na} Fi>

arising from expanding Hljn; Y 1 = Sy Cxl HYj¢|F k> and using the earlier result for the
first-order amplitudes Cy 1. Because both types of second-order terms vary quadratically
with the A(r,t) potential, and because A has time dependence of the form cos (wt - k- r),
these terms contain portions that vary with time as cos(2wt). As aresult, transitions
between initial and final states Fj and F  whose transition frequency isws i can be induced
when 2w = w j; in this case, one speaks of coherent two-photon induced transitions in
which the el ectromagnetic field produces a perturbation that has twice the frequency of the
"nominal™ light source frequency w.

D. The"Long-Wavelength" Approximation

To make progress in further analyzing the first-order results obtained above, it is
useful to consider the wavelength | of the light used in most visible/ultraviolet, infrared, or
microwave spectroscopic experiments. Even the shortest such wavelengths (ultraviolet) are
considerably longer than the spatial extent of all but the largest molecules (i.e., polymers
and biomolecules for which the approximations we introduce next are not appropriate).

In the definition of the essential coupling matrix element a

af | :<Ff|Sj (e/mec) exp [-ik-rj] Ao - Nj

+ Sa(Ze/mg) exp[-k-Rg Ag- Na |Fi>,

10



the factors exp [-ik - rj] and exp[-i k- R4 can be expanded as:
exp[-ik-rj] =1+ (-ik-rj) + U2 (-ik-rj)2 + ...
exp[-ik-Rg =1+ (-ik-R) + /2 (-ik-Rg2 + ... .

Because [k| = 2p/l , and the scales of rj and Ra are of the dimension of the molecule, k- rj
and k- R are less than unity in magnitude, within this so-called "long-wavel ength™
approximation.

1. Electric Dipole Transitions
Introducing these expansions into the expression for as j gives rise to terms of
various powersin 1/ . The lowest order terms are:

afi (E1)=<F¢|Sj(e/m) Ag - Nj +Sa(Ze/mg) Ag- Na |Fi>
and are called "dectric dipol€e" terms, and are denoted E1. To see why these matrix
elements are termed E1, we use the following identity (see Chapter 1) between the
momentum operator - i N and the corresponding position operator r:

Nj=-(mg ) [H,rj]

Na=- (md h2) [ H, Ral.
This derives from the fact that H contains Nj and Nzin its kinetic energy operators (as N2,
and sz ).

Substituting these expressions into the above at j (E1) equation and using H Fj o f

=ES or £ Fi or f, ONe obtains:

agj (E1) = (E% - E0) Ag - <F¢| S (e /H2%c) r + Sa(Ze/Hc) Ry |Fi>

Wi Ag- <F¢|Sj (efc)rj +Sa(Zehc) Ra |Fi>

(Wi ac) Ag - <F¢|m|Fi>,

11



where mis the e ectric dipole moment operator for the electrons and nuclei:
m= SJ e rj + Sa Zae Ra.

Thefact that the E1 approximation to afj contains matrix elements of the electric dipole

operator between theinitia and final states makesit clear why thisis called the electric
dipole contribution to a¢ j; within the E1 notation, the E stands for electric moment and the

1 stands for the first such moment (i.e., the dipole moment).
Within this approximation, the overall rate of transitionsis given by:

Rif=2pgw,) laf,?
=2p g(w,) (W Fc)2 JAg - <Ff|m|Fi> |2,

Recalling that E(r,t) = - L/c JA/fit =w/c Ag Sin (wt - k- 1), the magnitude of Ag can be
replaced by that of E, and this rate expression becomes

Rif =(2p/2) g(ws,i) |Eo - <Ff|m|Fi> |2
This expresses the widely used E1 approximation to the Fermi-Wentzel golden rule.

2. Magnetic Dipole and Electric Quadrupole Transitions

When EL1 predictions for the rates of transitions between states vanish (e.g., for
symmetry reasons as discussed below), it is essential to examine higher order contributions
to at. The next termsin the above long-wavelength expansion vary as 1/l and have the
form:

afi(E2+M1) =<F¢|S;j (e/me) [-ik-rj] Ao - N;

+ Sa(Ze/mg) [-ik-Rg Ao - Na |Fi>.
For reasons soon to be shown, they are called electric quadrupole (E2) and magnetic dipole
(M1) terms. Clearly, higher and higher order terms can be so generated. Within the long-

wavelength regime, however, successive terms should decrease in magnitude because of
the successively higher powers of 1/l that they contain.

12



To further analyze the above E2 + M1 factors, let us label the propagation direction
of thelight asthe z-axis (the axis long which k lies) and the direction of Ag asthe x-axis.
These axes are so-called "lab-fixed" axes because their orientation is determined by the
direction of the light source and the direction of polarization of the light source'sE field,
both of which are specified by laboratory conditions. The molecule being subjected to this
light can be oriented at arbitrary angles relative to these lab axes.

With the x, y, and z axes so defined, the above expression for
afj (E2+M1) becomes

afj(E2+M1) =-i (Ag2p/l )<F¢|S; (e/mg) z TMX;
+ Sa( Zee /M) za1/Mxa | Fi>.
Now writing (for both z and z,)
z/MIx =12 (z 191x - x 19z + z 1/9x + x 91/12),
and using
Nj=-(mgh2) [H,rj]
Na= - (md #2) [ H, Ral,
the contributions of 1/2 (z 1/9x + x 1/9z) toa¢,i (E2+M1) can be rewritten as

(Ao €2p w i)

afi(E2) =-i <Ft|Sj 7 Xj +SaZazXa |Fi>.

The operator Sj zj Xj + SaZaZaXa that appears aboveisthe z,x element of the electric
quadrupole moment operator Q; x ; it isfor this reason that this particular component is
labeled E2 and denoted the electric quadrupol e contribution.

Theremaining 1/2 (z 1/x - x 1/9z) contribution to af j (E2+M 1) can be rewritten in
aform that makes its content more clear by first noting that

12 (2% - X TM12) = (i/28) (2 px - X p) = (i/2h) Ly

13



contains the y-component of the angular momentum operator. Hence, the following
contributionto af j (E2+M1) arises:

Ao2p e
asi (M1 =
fi (M1) ol ch

<F¢|S;j Ly, Ime+ Sa Zaly, /ma |Fi>.

The magnetic dipole moment of the electrons about they axisis
Ny electrons = Sj (€/2MeC) Lyj ;

that of the nuclei is
Ny nuclei = Sa(Zae/2mgc) Ly,

Theas; (M1) term thus describes the interaction of the magnetic dipole moments of the
electrons and nuclel with the magnetic field (of strength [H| = Ag k) of the light (which lies

along they axis):
H
afi (M1) :lh_l <Ft|my dectrons+ My nuclei | Fi>.

Thetota rate of transitionsfrom Fj to F¢isgiven, through first-order in
perturbation theory, by

Rif=2p g(w,) lat,l2,
whereasj isasum of itsE1, E2, M1, etc. pieces. In the next chapter, molecular symmetry
will be shown to be of use in analyzing these various pieces. It should be kept in mind that
the contributions caused by E1 terms will dominate, within the long-wavel ength
approximation, unless symmetry causes these termsto vanish. It is primarily under such
circumstances that consideration of M1 and E2 transitions is needed.

[11. The Kinetics of Photon Absorption and Emission

A. The Phenomenologica Rate Laws

14



Before closing this chapter, it isimportant to emphasize the context in which the
transition rate expressions obtained here are most commonly used. The perturbative
approach used in the above development gives rise to various contributions to the overall
rate coefficient for transitions from aninitial state F; to afina state F ¢; these contributions
include the electric dipole, magnetic dipole, and electric quadrupole first order terms as well
contributions arising from second (and higher) order termsin the perturbation solution.

In principle, once the rate expression

Rif=2pgw,) laf,?

has been evaluated through some order in perturbation theory and including the dominant
electromagnetic interactions, one can make use of these state-to-state rates, which are
computed on a per-molecule basis, to describe the time evolution of the populations of the
various energy levels of the molecule under the influence of the light source's
electromagnetic fields.

For example, given two states, denoted i and f, between which transitions can be
induced by photons of frequency w j, the following kinetic model is often used to describe
the time evolution of the numbers of molecules nj and ¢ in the respective states:

dnj
— =-Rifni+Rejny

dns
i =-Rgine+ R0 .

Here, Rj s and Ry j are the rates (per molecule) of transitions for thei ==>f and

f ==>1 trangitions respectively. As noted above, these rates are proportional to the intensity
of the light source (i.e., the photon intensity) at the resonant frequency and to the square of
amatrix element connecting the respective states. This matrix element squareis [a; ¢|2 in the
former case and [at ;|2 in the latter. Because the perturbation operator whose matrix
elementsarea; s and af j isHermitian (thisis true through all orders of perturbation theory
and for al termsin the long-wavelength expansion), these two quantities are complex
conjugates of one another, and, hence [a; |2 = |as i[¢, from which it follows that R = R
. This means that the state-to-state absorption and stimulated emission rate coefficients

(i.e., therate per molecule undergoing the transition) areidentical. Thisresult isreferred to
asthe principle of microscopic reversibility.

15



Quite often, the states between which transitions occur are members of levelsthat
contain more than a single state. For example, in rotational spectroscopy atransition
between a state in the J= 3 level of adiatomic molecule and astatein the J= 4 level involve
such states; the respective levelsare 2H+1 = 7 and 21 = 9 fold degenerate, respectively.

To extend the above kinetic model to this more general case in which degenerate
levels occur, one uses the number of moleculesin each level (N;j and Ns for the two levels
in the above example) as the time dependent variables. The kinetic equations then
governing their time evolution can be obtained by summing the state-to-state equations over
al statesin each leve

dnj , _dN
Siintevel 1 () = g

dnf, _ dN
SfinlevelF(th)thF

and redizing that each state within agiven level can undergo transitionsto all stateswithin

the other level (hence the total rates of production and consumption must be summed over

all statesto or from which transitions can occur). This generalization resultsin a set of rate
laws for the populations of the respective levels:

dNj
< =- 9 Rif Ni+giRej Nt

dNs
<t =9 Rei Ni+0rRiN; .

Here, gi and gr are the degeneracies of the two levels (i.e., the number of statesin each
level) and the R; f and Ry j, which are equal as described above, are the state-to-state rate
coefficients introduced earlier.

B. Spontaneous and Stimulated Emission

It turns out (the development of this concept is beyond the scope of this text) that
the rate at which an excited level can emit photons and decay to alower energy level is
dependent on two factors: (i) the rate of stimulated photon emission as covered above,
and (ii) therate of spontaneous photon emission. The former rate gr R; f (per molecule)
is proportional to the light intensity g(ws ;) at the resonance frequency. It is conventional to

16



separate out thisintensity factor by defining an intensity independent rate coefficient B; ¢ for
this process as:

o Ri,f = d(wr i) Bi .

Clearly, Bj ¢ embodiesthe final-level degeneracy factor gf, the perturbation matrix
elements, and the 2p factor in the earlier expression for R; f. The spontaneous rate of
trangition from the excited to the lower level isfound to be independent of photon
intensity, because it deals with a process that does not require collision with a photon to
occur, and is usually denoted A . The rate of photon-stimulated upward transitions from
dtate f to statei (gi Re,i = gi Ri ¢ inthe present case) is aso proportional to g(w j), soitis
written by convention as:

gi Rfi = d(wr i) By, .

Animportant relation between the Bj ¢ and Bt j parameters exists and is based on the
identity Rj f = R¢,j that connects the state-to-state rate coefficients:

(Bif) _ (oRif) _ of
(Bfi) ~ (@Rfi) G -

This relationship will prove useful in the following sections.

C. Saturated Transitions and Transparency

Returning to the kinetic equations that govern the time evolution of the populations
of two levels connected by photon absorption and emission, and adding in the term needed
for spontaneous emission, one finds (with the initial level being of the lower energy):

dN;

<t = 9Bif Ni+ (At +9Br,i)Ns

dN
—O|t—f =- (Ar,i + 9Bf,i)Nf + gBjf N

where g = g(w) denotes the light intensity at the resonance frequency.

17



At steady state, the populations of these two levels are given by setting
dN; _ dNg

T @ ¢
Nt __ (9Bif)
Ni = (Afj+gBs,i) -

When the light source's intensity is so large asto render gB¢j >> Agj (i.e., when the rate
of spontaneous emission is small compared to the stimulated rate), this population ratio
reaches (B ¢/Bs j), which was shown earlier to equal (g¢/g;). In this case, one says that the
populations have been satur ated by the intense light source. Any further increase in light
intensity will result in zero increase in the rate at which photons are being absorbed.
Transitions that have had their populations saturated by the application of intense light
sources are said to display optical transpar ency because they are unable to absorb (or
emit) any further photons because of their state of saturation.

D. Equilibrium and Relations Between A and B Coefficients

When the moleculesin the two levels being discussed reach equilibrium (at which

timethe—dl\L %I\ﬁ = 0 aso holds) with a photon source that itself isin equilibrium

characterized by atemperature T, we must have:

Ni _g

N =g OPC(E - EKT) = exp(-h w/kT)

where gf and g; are the degeneracies of the states labeled f and i. The photon source that is

characterized by an equilibrium temperature T isknown asablack body radiator, whose
intensity profile g(w) (in erg cm 3 sec) is know to be of the form:

_ 2(hw)

gw) =

Equating the kinetic result that must hold at equilibrium:

Nt __ (9Bif)
Ni ~ (Af,i+0Bt,)

18



to the thermodynamic resullt:
Ni _gr
Ni "o exp(-h w/kT),

and using the above black body g(w) expression and the identity

E. Summary

In summary, the so-caled Einstein A and B rate coefficients connecting a
lower-energy initial statei and afinal state f are related by the following conditions:

ot

Bif =g

Bt,i

and

_ 2(w)3
pc3h2

fi Bt,i.

These phenomenological level-to-level rate coefficients are related to the state-to-state R; f
coefficients derived by applying perturbation theory to the el ectromagnetic perturbation
through

g Ri s =o(wri) Bif .

The A and B coefficients can be used in akinetic equation model to follow the time
evolution of the populations of the corresponding levels:

19



dN;

<t = 9Bif Ni+ (A + gBr,i)N¢

dNs
<t = (Ari + 9B Nf + gBif Nj.
These equations possess steady state solutions

Nt __ (9Bip)
Ni = (Af,i+0Bs,i)

which, for large g(w), produce saturation conditions:

Nt _ (Bif) _ o

Ni “Bri) g
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Chapter 15
Thetools of time-dependent perturbation theory can be applied to transitions among
electronic, vibrational, and rotational states of molecules.

|. Rotational Transitions

Within the approximation that the electronic, vibrational, and rotational states of a
molecule can be treated as independent, the total molecular wavefunction of the "initial"
state is a product

Fi=YeiCvifri

of an electronic functiony ¢, avibrational function cj, and arotational functionf . A
similar product expression holds for the "final" wavefunction F .

In microwave spectroscopy, the energy of the radiation liesin the range of fractions
of acnrl through several cmL; such energies are adequate to excite rotational motions of
molecules but are not high enough to excite any but the weakest vibrations (e.g., those of
weakly bound Van der Waals complexes). In rotational transitions, the electronic and
vibrational states are thus left unchanged by the excitation process, hencey ¢ = Y o and Cyj
= Cvf.

Applying the first-order electric dipole transition rate expressions

Rif=2p gw,) latif
obtained in Chapter 14 to this case requires that the E1 approximation
Rif = (2p/H2) g(wi,i) |Eo - <F¢|m|F> |2

be examined in further detail. Specifically, the electric dipole matrix elements<Ff | m| F >
withm=S; e rj + Sz Zae Ramust be analyzed for Fj and F ¢ being of the product form
shown above.

The integrations over the electronic coordinates contained in <Ff | m| F >, aswell
asthe integrations over vibrational degrees of freedom yield "expectation values' of the
electric dipole moment operator because the electronic and vibrational components of F
and F ¢ areidenticd:
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<Ye |[Mlyea>=m(R)

isthe dipole moment of theinitial eectronic state (which isafunction of the internal
geometrical degrees of freedom of the molecule, denoted R); and

<Cvi |MR) | Ccvi> = Mye

isthe vibrationally averaged dipole moment for the particular vibrationa state labeled c ;.
The vector my,e has components along various directions and can be viewed as a vector
"locked" to the molecul€'sinterna coordinate axis (labeled a, b, ¢ as below).

Z

depends on
f andc
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Therotational part of the <Ff | m| Fi> integral is not of the expectation value form
because the initial rotational function f i, is not the same asthe fina f ¢. Thisintegral hasthe
form:

<fir| mwelfr>=8(Y*L.m (@.f) mweYL m (q,f) sing dq df)

for linear molecules whose initial and final rotational wavefunctionsare Y| v and YL v,
respectively, and

_ _ 2L + 1 2L'+ 1
<f|r|mive|ffr>—\/ 8 p2 \/ 8 p2

8(DL.m .k (0.F.C) mweD*L M k' (a.f,¢) sing dg df dc)

2L +1
p2

for spherical or symmetric top molecules (here, D*L mk (q,f,c) arethe

normalized rotational wavefunctions described in Chapter 13 and in Appendix G). The
anglesq, f, and c refer to how the molecule-fixed coordinate system is oriented with
respect to the space-fixed X, Y, Z axis system.
A. Linear Molecules

For linear molecules, the vibrationally averaged dipole moment myeliesaong the
molecular axis; hence its orientation in the lab-fixed coordinate system can be specified in

terms of the same angles (g and f ) that are used to describe the rotational functionsY | m
(q,f). Therefore, the three components of the <f j; | mue|f 1> integral can be written as:

<fir | myelffx = mB(Y*L m (q.f) sing cosf Y+ m (q,f) sing dg df)

<fir| mwelfi>y=m8B(Y*L M (q,f) sing sinf Y\ (q,f) sing dg df)
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<fir | myelff>z=mB(Y*L m (a.f) cosq Y m' (q,f) sing dq df),

where mis the magnitude of the averaged dipole moment. | f the molecule has no
dipole moment, al of the above electric dipole integrals vanish and theintensity of E1
rotational transitionsis zer o.

Thethree E1 integrals can be further analyzed by noting that cosq 1 Y10 ; sing
cosf p Y11+ Y-1;andsing sinf g Y11 - Y1-1 and using the angular momentum
coupling methodsiillustrated in Appendix G. In particular, the result given in that appendix:

Dj, m, m' DI, n, n'

= SJ,M,M' <JMJj,m;l,n> <j,m’; 1,n'|J;M'> D3 m. M
when multiplied by D* 3 m M and integrated over sing dq df dc, yields:
8(D*sM M Dj, m, m' DI, n, n sing dq df dc)

- B <JMJj,m;l,n><j,m’; I,n'[J,M">
_ﬂ ] |J!m1 !n J!m’ 1n||

—a2ad | Joaed | I 54y Mem
=8p ann -Mgam' n'-l\/l'g(l) o

To usethisresult in the present linear-molecule case, we note that the Dy m k functions and
the Y 3 functions are related by:

Yam (9.F) =\ (23+1)/4p D*3m0 (a.f,C).

The normalization factor is now \/ (23+1)/4p rather than \/ (23+1)/8p2 becausetheY 3\ are
no longer functions of ¢, and thus the need to integrate over O £ ¢ £ 2p disappears.

Likewise, the c-dependence of D* 3 k disappears for K = 0.
We now use these identitiesin the three E1 integrals of the form

m8(Y*L m (a,f) Y1i.m (a,f) YL m (g,f) sing dq df),
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with m = 0 being the Z- axisintegral, and the Y - and X- axis integrals being combinations
of them =1 and m =-1 results. Doing so yields:

m8(Y*L.m (a,F) Y1i,m (a,F) YL m (g,f) sing dq df)

= m\/ZL+1 22 B8(DL m,0 D*1,mo D* 'm0 Sing dq df dc/2p) .
4p 4p  4p

Thelast factor of 1/2p isinserted to cancel out the integration over dc that, because all K-
factorsin the rotation matrices equal zero, trivialy yields 2p. Now, using the result shown
above expressing the integral over three rotation matrices, these E1 integrals for the linear-
molecule case reduce to:

m8(Y*L.m (a,F) Y1i,m (a,F) YL m (g,f) sing dq df)

ma [2FL 2L'+1 3 8p2 ' 1 Lgsgh' 1 Lb(_l)M
4p 4p 4p 2p aM'm-Mga 00-0 g

] i é‘l 1 LO&'. 1 LO_ M
m\/(2L+1)(2L+1)4p M Mga 000 g0 D™ -

Applied to the z-axis integral (identifying m = 0), thisresult therefore vanishes
unless:

M=M
and
L=L"+1orlL'-1.

Even though angular momentum coupling considerations would allow L = L' (because
coupling two angular momentawithj =1 andj =L"'should giveL'+1, L', and L'-1), the

3-j symbol %g vanishesfor the L = L' case since 3-j symbols have the following

symmetry
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6&#0 = (-1)L+L+1 &O

av'm -M M'"-m Mg

with respect to the M, M', and mindices. Applied to the SLOT 3-j symboal, this

means that this particular 3-j element vanishesfor L =L'sinceL + L'+ 1isodd and hence
(_1)L +Ll'+1jg -1.

Applied to the x- and y- axis integrals, which contain m = £ 1 components, this
same analysisyields:

3 4 1L gaé 1 Ly, avm
— 1
\/(2L+1)(2L +1) M 2L Moo 000 g( )

which then requires that

M=M'=+1
and
L=L"+1,L"-1,

with L = L' again being forbidden because of the second 3-j symbol.

These results provide so-called "selection rules" because they limit theL and M
values of the final rotational state, giventheL', M' values of the initial rotational state. In
the figure shown below, the L = L' + 1 absorption spectrum of NO at 120 °K is given. The
intensities of the various peaks are related to the populations of the lower-energy rotational
states which are, in turn, proportional to (2 L' + 1) exp(- L'(L'+1) h2/8p2IKT). Also
included in the intensities are so-called line strength factor s that are proportional to the
sguares of the quantities:

o3 ' 1 Lghk' 1 Lg
m\/(2L+1)(2L+1)E MM Maa 000 g( 1) M

which appear in the E1 integrals analyzed above (recall that the rate of photon absorption
Rif =(2p/h2) g(ws i) |Ep - <Ff|m|Fi>[2involvesthe squares of these matrix elements).
The book by Zare gives an excellent treatment of line strength factors' contributionsto
rotation, vibration, and electronic line intensities.
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Intensity
| |

I =
B. Non-Linear Molecules

For molecules that are non-linear and whose rotational wavefunctions are givenin
terms of the spherical or symmetric top functions D*|_ v k , the dipole moment nyyecan
have components along any or all three of the molecule€'sinternal coordinates (e.g., the
three molecule-fixed coordinates that describe the orientation of the principal axes of the
moment of inertiatensor). For a spherical top molecule, | myd vanishes, so E1 transitions

do not occur.
For symmetric top species, myeliesaong the symmetry axis of the molecule, so

the orientation of myye can again be described interms of q and f, the angles used to locate
the orientation of the molecule's symmetry axis relative to the lab-fixed coordinate system.
Asaresult, the E1 integral again can be decomposed into three pieces:

<fir|mad fox = mé(DL,M,K(q,f,c) cosqg cosf D* ' m' k' (9,f,c) sinq dg df dc)
<fir | muwd fr>y =8 (DL M.k (a.f,c) cosq sinf D* L+ w k: (q,f,¢) sing dq df dc)

<fir | myd ff>z=n8 (DL Mk (9.F,c) cosq D* L m k' (9.f,c) sing dg df dc).
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Using the fact that cosq p D*1,0,0; sing cosf i D*11 0+ D*1-1,0; andsing sinf p
D*1.1,0 - D*1.-1,0, and the tools of angular momentum coupling allows these integrals to be
expressed, as above, in terms of products of the following 3-j symbols:

' 1 Lagk' 1 Lg
M m -MgeK 0 -Kg'

from which the following selection rules are derived:

L=L'"+1,L,L"-1 (butnotL =L'=0),
K=K’
M=M"+m,

with m = O for the Z-axisintegral and m = + 1 for the X- and Y- axisintegrals. In
addition, if K =K"'=0, theL = L' transitions are also forbidden by the second 3-j symbol
vanishing.

[1. Vibration-Rotation Transitions

When theinitial and final electronic states are identical but the respective vibrational
and rotational states are not, one is dealing with transitions between vibration-rotation states
of the molecule. These transitions are studied in infrared (IR) spectroscopy using light of
energy inthe 30 cmr? (far IR) to 5000 cm-1 range. The electric dipole matrix element
analysis still begins with the electronic dipole moment integral <y & | M|y &> = m(R), but
the integration over interna vibrational coordinates no longer produces the vibrationally
averaged dipole moment. Instead one forms the vibrational transition dipole integral:

<cvf |MR) | cvi>=m;
between theinitia ¢ and final c+ vibrational states.
A. The Dipole Moment Derivatives

Expressing n(R) in a power series expansion about the equilibrium bond length
position (denoted Re collectively and Ra e individualy):
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rr(R) = rr(Re) + SaﬂMﬂRa(Ra' Ra'e) + ...,

substituting into the <cyf | MR) | cyi> integral, and using the fact that ¢j and ct are
orthogonal (because they are eigenfunctions of vibrational motion on the same electronic
surface and hence of the same vibrational Hamiltonian), one obtains:

<cvf |MR) | cvi>=mMRe) <Cvf | Cvi>+ SaMMRa<cvi | (Ra- Rag) [Cvi> + ...
= Sa(MYRa) <cvi| (Ra- Rag) ICvi> + ... .
Thisresult can be interpreted as follows:

i. Each independent vibrational mode of the molecule contributes to the n3 ; vector an
amount equal to (fMRy) <cvf| (Ra- Rae) [Cvi> + ...

ii. Each such contribution contains one part (nMfIR;) that depends on how the molecule's
dipole moment function varies with vibration along that particular mode (labeled @),

iii. and asecond part <cyf | (Ra- Rae) | Cvi> that depends on the character of theinitial
and final vibrational wavefunctions.

If the vibration does not produce amodulation of the dipole moment (e.g., aswith
the symmetric stretch vibration of the CO2> molecule), itsinfrared intensity vanishes
because (TmMRy) = 0. One saysthat such transitions are infrared "inactive'.

B. Selection Rules on the Vibrational Quantum Number in the Harmonic Approximation

If the vibrational functions are described within the harmonic oscillator
approximation, it can be shown that the <cyf | (Ra- Rae) | Cvi> integrals vanish unless vf
=vi +1, vi -1 (and that these integrals are proportional to (vi +1)Y2 and (vi)V2 in the
respective cases). Even when cys and ¢y are rather non-harmonic, it turns out that such Dv
=+ 1 transitions have thelargest <cyf | (Ra- Rag) | Cvi> integrals and therefore the highest
infrared intensities. For these reasons, transitions that correspond to Dv = + 1 arecalled
"fundamental”; those withDv = *+ 2 are called "first overtone" transitions.
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In summary then, vibrations for which the molecul€'s dipole moment is modul ated
asthe vibration occurs (i.e., for which (mfRy) is non-zero) and for which Dv = + 1 tend

to have large infrared intensities; overtones of such vibrations tend to have smaller
intensities, and those for which (MR = 0 have no intensity.

C. Rotational Selection Rulesfor Vibrational Transitions

The result of al of the vibrational modes contributions to
Sa(TMTRy) <cvf | (Ra- Rae) | Cvi> isavector myansthat istermed the vibrational
"trangition dipole’ moment. Thisis avector with components along, in principle, all three
of the interna axes of the molecule. For each particular vibrational transition (i.e., each
particular cj and cy) its orientation in space depends only on the orientation of the molecule;
it isthus said to be locked to the molecul€'s coordinate frame. As such, its orientation
relative to the lab-fixed coordinates (which is needed to effect a derivation of rotational
selection rules as was done earlier in this Chapter) can be described much as was done
above for the vibrationally averaged dipole moment that arisesin purely rotational
trangitions. There are, however, important differencesin detail. In particular,

i. For alinear molecule myans Can have components either along (e.g., when stretching
vibrations are excited; these cases are denoted s-cases) or perpendicular to (e.g., when
bending vibrations are excited; they are denoted p cases) the molecul€'s axis.

ii. For symmetric top species, Nnrans Need not lie along the molecule's symmetry axis; it can
have components either along or perpendicular to this axis.

iii. For spherical tops, myans Will vanish whenever the vibration does not induce adipole
moment in the molecule. Vibrations such asthe totally symmetric &g

C-H stretching motion in CH4 do not induce a dipole moment, and are thus infrared

inactive; non-totally-symmetric vibrations can also be inactive if they induce no dipole
moment.

Asaresult of the above considerations, the angular integrals

<fir | Mrans|f > = é(Y*L,M (a,f) Mrans YL',m (,f) sing dq df)
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and
<fir | Mrans|f > = é(DL,M,K (9.,f,c) Mrans D* L', M k" (9,f,c) sing dqg df dc)

that determine the rotational selection rules appropriate to vibrational transitions produce
similar, but not identical, results asin the purely rotational transition case.

The derivation of these selection rules proceeds as before, with the following
additional considerations. The transition dipole moment's nyans components along the lab-

fixed axes must be related to its molecule-fixed coordinates (that are determined by the
nature of the vibrational transition as discussed above). This transformation, asgivenin
Zare'stext, reads as follows:

(Mrang), = Sk D*1,mk (a.f,c) (Mrang,

where (Mrang) ,, Withm = 1, O, -1 refer to the components along the lab-fixed (X, Y, Z)
axes and (Mrang), Withk = 1, O, -1 refer to the components along the molecule- fixed (a, b,

C) axes.
This relationship, when used, for example, in the symmetric or spherical top E1
integral:

<fir |Mrans|f 1> = é(DL,M,K (9,f,¢) Mrans D* L' m' k' (0,f,c) sing dq df dc)
givesriseto products of 3-j symbols of the form:

' 1 Lok 1 Lg
MM -MgeK Kk -Kg°

The product of these 3-j symbols is nonvanishing only under certain conditions that
provide the rotationa selection rules applicable to vibrational lines of symmetric and
spherical top molecules.

Both 3-j symbols will vanish unless

L=L"+1,L"orL"-1.
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In the special casein which L = L' =0 (and hencewithM = M' =0 =K =K', which means
that m = 0 = k), these3-j symbols again vanish. Therefore, transitions with
L=L"=0

areagainforbidden. Asusual, the fact that the lab-fixed quantum number m can range
over m=1,0, -1, requires that

M=M"+1, M, M'-1.

The selection rules for DK depend on the nature of the vibrational transition, in
particular, on the component of myans along the molecule-fixed axes. For the second 3-j
symbol to not vanish, one must have

K =K"+Kk,

wherek =0, 1, and -1 refer to these molecul e-fixed components of the transition dipole.
Depending on the nature of the transition, various k values contribute.

1. Symmetric Tops

In asymmetric top molecule such as NH3, if the transition dipole lies along the
molecul€'s symmetry axis, only k = 0 contributes. Such vibrations preserve the molecule's
symmetry relative to this symmetry axis (e.g. the totally symmetric N-H stretching modein
NH3). The additional selectionruleDK =0
isthus obtained. Moreover, for K = K' =0, al transitions with DL = 0 vanish because the
second 3-j symbol vanishes. In summary, one has:

DK=0; DM =+1,0; DL =+1 ,0 (butL =L'=0isforbiddenand al DL =0
areforbidden for K =K' =0)

for symmetric tops with vibrations whose transition dipole lies along the symmetry axis.
If the transition dipole lies perpendicular to the symmetry axis, only
k = 1 contribute. In this case, one finds

DK =+1;DM =+1,0; DL =+1,0 (neither L =L'=0nor K =K'=0can occur
for such transitions, so there are no additional constraints).
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2. Linear Molecules

When the above analysis is applied to adiatomic speciessuch asHCI, only k =0is
present since the only vibration present in such amoleculeis the bond stretching vibration,
which hass symmetry. Moreover, the rotational functions are spherical harmonics (which
can beviewed as D* ' v k' (9,f,c) functions with K' = 0), so the K and K" quantum
numbers are identically zero. Asaresult, the product of 3-j symbols

' 1 Lagk' 1 Lg
M m -MgaK K -K g

reduces to

b 1 Lagh' 1Ly
M M -Mge000g*

which will vanish unless
L=L"+1,L"-1,

but not L = L' (since parity then causes the second 3-j symbol to vanish), and
M=M+1 M, M1,

TheL =L'+1 transitions are termed R-branch absorptions and those obeying L =L'-1
are caled P-branch transitions. Hence, the selection rules

DM =+1,0; DL = +1

areidentical to those for purely rotational transitions.

When applied to linear polyatomic molecules, these same selection rulesresult if the
vibration isof s symmetry (i.e., hask = 0). If, on the other hand, the transition is of p
symmetry (i.e., hask = 1), so the trangition dipole lies perpendicul ar to the molecul€e's
axis, one obtains:

DM =+1,0; DL =1, 0.
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These selection rules are derived by redlizing that in addition to k = 1, one has:

() alinear-molecule rotational wavefunction that in thev = 0 vibrational level is described
in terms of arotation matrix D' m*,0 (9,f,¢) with no angular momentum along the

molecular axis, K' =0 (ii) av = 1 molecule whose rotational wavefunction must be given
by arotation matrix D m 1 (9,f,c) with one unit of angular momentum about the

molecule's axis, K = 1. In the latter case, the angular momentum is produced by the
degenerate p vibration itself. Asaresult, the selection rules above derive from the

following product of 3-j symbols:

' 1 Lggbh" 1 Lp
aM'm-Mga 01-1 -

Because DL = 0 transitions are allowed for p vibrations, one says that p vibrations possess
Q- branches in addition to their R- and P- branches (with DL = 1 and -1, respectively).

In the figure shown below, the v = 0 ==> v = 1 (fundamental) vibrational
absorption spectrum of HCI is shown. Here the peaks at lower energy (to the right of the
figure) belong to P-branch transitions and occur at energies given approximately by:

E = Wgretch + (h2/8p2l) ((L-1)L - L(L+1))

=h Wstretch -2 (h2/8p2|) L.

The R-branch transitions occur at higher energies given approximately by:

E = h Watretch + (h2/8p21) ((L+1)(L+2) - L(L+1))

= h Wegretch +2 (h28p21) (L+1).

The absorption that is "missing” from the figure below lying slightly below 2900 cmrlis
the Q-branch transition for which L = L"; it is absent because the selection rules forbid it.
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It should be noted that the spacings between the experimentally observed peaksin
HCI are not constant as would be expected based on the above P- and R- branch formulas.
Thisis because the moment of inertia appropriate for thev = 1 vibrational level is different
than that of thev = 0 level. These effects of vibration-rotation coupling can be modeled by
allowingthev=0and v = 1levelsto haverotational energieswritten as

E = hwgretch (v + 1/2) + (h?/8p21y) (L (L+1))

wherev and L arethe vibrational and rotational quantum numbers. The P- and R- branch
trangition energies that pertain to these energy levels can then be written as:

Ep = A Waretch - [ (h%/8p2l1) + (h%/8p2lg) ] L +[ (h2/8p2y) - (h2/8p2g) ] L2
ER = A Watretch + 2 (h%/8p2l 1)
+[ 3(h2/8p2l1) - (h2/8p20) ] L + [ (h2/8p2l7) - (h2/8p2lg) ] L2.

Clearly, these formulas reduce to those shown earlier inthe 1 = Ig limit.

If the vibrationally averaged bond length islonger inthev = 1 statethan inthev =0
state, which isto be expected, 11 will be larger than 1, and therefore [ (n2/8p2l4) -
(h2/8p21g) ] will be negative. In this case, the spacing between neighboring P-branch lines
will increase as shown above for HCI. In contrast, the fact that [ (h2/8p2l1) - (h2/8p2l0) ]
IS negative causes the spacing between neighboring R- branch linesto decrease, again as
shown for HCI.

[11. Electronic-Vibration-Rotation Transitions
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When electronic transitions are involved, theinitial and final states generally differ
in their electronic, vibrational, and rotational energies. Electronic transitions usually require
light in the 5000 cm-1 to 100,000 cm1 regime, so their study lies within the domain of
visible and ultraviolet spectroscopy. Excitations of inner-shell and core orbital el ectrons
may require even higher energy photons, and under these conditions, E2 and M1
transitions may become more important because of the short wavelength of the light
involved.

A. The Electronic Transition Dipole and Use of Point Group Symmetry
Returning to the expression
Rif =(2p/H2) g(wi i) |[Eo - <Ff|m|Fi> 2

for the rate of photon absorption, we realize that the electronic integral now involves
<Yef IMlye>=m, (R),

atrangition dipole matrix element between the initia y & and final y ¢f €lectronic
wavefunctions. This element isafunction of the internal vibrational coordinates of the
molecule, and again is avector locked to the molecule'sinternal axis frame.

Molecular point-group symmetry can often be used to determine whether a
particular transition's dipole matrix element will vanish and, as aresult, the electronic
transition will be "forbidden" and thus predicted to have zero intensity. If the direct product
of the symmetries of theinitial and final electronic statesy ¢ and y ¢ do not match the
symmetry of the electric dipole operator (which has the symmetry of itsx, y, and z
components; these symmetries can be read off the right most column of the character tables
givenin Appendix E), the matrix element will vanish.

For example, the formal dehyde molecule H,CO has a ground electronic state (see
Chapter 11) that has 1A; symmetry in the Coy point group. Its p ==> p* singlet excited
state also has 1A symmetry because both the p and p* orbitals are of by symmetry. In
contrast, the lowest n ==> p* singlet excited state is of 1A, symmetry because the highest
energy oxygen centered n orbital is of by symmetry and the p* orbital is of by symmetry,
so the Slater determinant in which both the n and p* orbitals are singly occupied hasits
symmetry dictated by the by x b1 direct product, which is Ao.
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Thep ==> p* transition thus involves ground (1A1) and excited (1A1) states whose
direct product (A1 x Aj) isof A; symmetry. This trangition thus requires that the electric
dipole operator possess a component of A1 symmetry. A glance at the Cyy, point group's
character table shows that the molecular z-axisisof A1 symmetry. Thus, if the light's
electric field has a non-zero component along the C, symmetry axis (the molecul€'s z-axis),
thep ==> p* trangition is predicted to be allowed. Light polarized along either of the
molecul€'s other two axes cannot induce this transition.

In contrast, the n ==> p* transition has a ground-excited state direct product of B»
x B1 = Az symmetry. The Cpy 's point group character table clearly shows that the electric
dipole operator (i.e., its x, y, and z components in the molecule-fixed frame) has no
component of Az symmetry; thus, light of no electric field orientation can induce thisn ==>
p* transition. We thus say that the n ==> p* transition is E1 forbidden (although itisM1
allowed).

Beyond such electronic symmetry analysis, it is also possible to derive vibrational
and rotational selection rulesfor electronic transitions that are E1 alowed. Aswas donein
the vibrational spectroscopy case, it is conventional to expand n3; (R) in apower series
about the equilibrium geometry of theinitial electronic state (since this geometry is more
characteristic of the molecular structure prior to photon absorption):

mi(R) =mi(Re + SaTm i/TRa(Ra- Rae + -...
B. The Franck-Condon Factors

Thefirst term in this expansion, when substituted into the integral over the
vibrational coordinates, gives my j(Re) <Cvf | Cvi>, which hasthe form of the electronic
transition dipole multiplied by the "overlap integral” between theinitial and final vibrationa
wavefunctions. The ny j(Re) factor was discussed above; it is the electronic E1 transition
integral evaluated at the equilibrium geometry of the absorbing state. Symmetry can often
be used to determine whether thisintegral vanishes, asaresult of which the E1 transition
will be "forbidden”.

Unlike the vibration-rotation case, the vibrational overlap integrals
<cCvf | cvi> do not necessarily vanish because cyf and cyj are no longer eigenfunctions of
the same vibrational Hamiltonian. cyf is an eigenfunction whose potential energy isthe
final electronic state's energy surface; cyj hastheinitia electronic state's energy surface as
its potential. The squares of these <c s | cyi> integrals, which are what eventually enter
into the transition rate expression R; 1 = (2p/h?) g(wr i) | Eo - <Ff|m|Fi> |2, are caled
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"Franck-Condon factor s". Their relative magnitudes play strong roles in determining
the relative intensities of various vibrational "bands’ (i.e., peaks) within a particular
electronic transition's spectrum.

Whenever an electronic transition causes a large change in the geometry (bond
lengths or angles) of the molecule, the Franck-Condon factors tend to display the
characteristic "broad progression” shown below when considered for one initial-state
vibrational level vi and various final-state vibrational levels vf:

|<Ci|Cf>|2

|
vi0 1 23 456
Final state vibrational Energy (E,s)

Notice that as one movesto higher vf values, the energy spacing between the states (Eyf -
Evf-1) decreases, this, of course, reflects the anharmonicity in the excited state vibrational

potential. For the above example, the transition to the vf = 2 state has the largest Franck-

Condon factor. This means that the overlap of theinitial state's vibrational wavefunction

cvj islargest for thefinal state's cyf function with vf = 2.

Asaqualitative rule of thumb, the larger the geometry difference between theinitial
and final state potentials, the broader will be the Franck-Condon profile (as shown above)
and the larger the vf value for which this profile peaks. Differencesin harmonic frequencies
between the two states can also broaden the Franck-Condon profile, although not as
significantly as do geometry differences.

38



For example, if theinitial and fina states have very similar geometries and
frequencies aong the mode that is excited when the particular electronic excitation is
realized, the following type of Franck-Condon profile may result:

2
[<cilce|

v 0 1 23456

Final state vibrational Energy (E.s)

In contragt, if theinitial and final e ectronic states have very different geometries and/or
vibrational frequencies along some mode, a very broad Franck-Condon envelope peaked at
high-vf will result as shown below:

7
|<cilce|

v 0 123456
Final state vibrational Energy (E)
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C. Vibronic Effects

The second term in the above expansion of the transition dipole matrix element Sy
1M j/Ra (Ra - Ra,e) can become important to analyze when the first term ny;(Re) vanishes
(e.g., for reasons of symmetry). This dipole derivative term, when substituted into the
integral over vibrational coordinates gives
Sam i/fRa<cvf | (Ra- Rae)| cvi>. Transitions for which ny j(Re) vanishes but for which
im j/Ra does not for the ah vibrational mode are said to derive intensity through "vibronic
coupling” with that mode. The intensities of such modes are dependent on how strongly the
electronic dipole integral varies along the mode (i.e, on 3 i/Ra) as well as on the
magnitude of the vibrational integral
<cvf | (Ra- Rae)l cvi>.

An example of an E1 forbidden but "vibronically allowed" transition is provided by
the singlet n ==> p* transition of HyCO that was discussed earlier in this section. As
detailed there, the ground electronic state has 1A, symmetry, and the n ==> p* stateis of
1A, symmetry, so the E1 transition integral
<y ef | M|y &> vanishesfor al three (x, y, z) components of the electric dipole operator m.
However, vibrations that are of by symmetry (e.g., the H-C-H asymmetric stretch
vibration) can induce intensity in the n ==> p* trangition asfollows:

(1) For such vibrations, the by mode'svi = 0 to vf = 1 vibronic integral

<cvf | (Ra- Rag)| Cvi> Will be non-zero and probably quite substantial (because, for
harmonic oscillator functions these "fundamental” transition integrals are dominant- see
earlier);

(if) Along these same by modes, the electronic transition dipole integral derivative ny i/Ra
will be non-zero, even though the integral itself nmy j (Re) vanishes when evaluated at the
initial state's equilibrium geometry.

To understand why the derivative fn3 j/Ra can be non-zero for distortions
(denoted Ry) of by symmetry, consider this quantity in greater detail:

M,i/MRa = <y et IM|y 6>/TRa
=<TyelTRalmlye>+ <y et M|y ei/TRa> + <y ef | TMTRa | y &i>.
Thethird integral vanishes because the derivative of the dipole operator itself
m=S;j e rj + Sy Zae RaWwith respect to the coordinates of atomic centers, yields an

operator that contains only a sum of scalar quantities (the elementary charge e and the
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magnitudes of various atomic charges Z5); as aresult and because the integra over the
electronic wavefunctions <y ¢f | y &> vanishes, this contribution yields zero. The first and
second integrals need not vanish by symmetry because the wavefunction derivatives

TV e/ TRz and Ty /R4 do not possess the same symmetry as their respective
wavefunctionsy ¢ and y . In fact, it can be shown that the symmetry of such aderivative
isgiven by the direct product of the symmetries of its wavefunction and the symmetry of
the vibrational mode that gives rise to the f/fiRa. For the H>CO case at hand, the b, mode
vibration can induce in the excited 1A, state a derivative component (i.e., Ty «/Ra) that is
of 1B1 symmetry) and this same vibration can induce in the 1A; ground state a derivative
component of 1B, symmetry.

As aresult, the contribution <fly f/fRa | M|y &> to 1n3 j/IR4 arising from vibronic
coupling within the excited electronic state can be expected to be non-zero for components
of the dipole operator mthat are of (y f/fRa X Y &) = (B1 X A1) = B1 symmetry. Light
polarized along the molecul€e's x-axis gives such ab; component to m(see the Cyy, character
tablein Appendix E). The second contribution <y ¢ | m| fly &i/fRz> can be non-zero for
components of mthat are of (y ¢f X Ty &/IRa) = (A2 X B2) = B1 symmetry; again, light of
x-axis polarization can induce such atransition.

In summary, electronic transitions that are E1 forbidden by symmetry can derive
significant (e.g., in HoCO the singlet n ==> p* transition israther intense) intensity
through vibronic coupling. In such coupling, one or more vibrations (either in the initial or
the final state) cause the respective e ectronic wavefunction to acquire (through fly /1Rz) a
symmetry component that is different than that of y itself. The symmetry of fly /R which
isgiven asthe direct product of the symmetry of y and that of the vibration, can then cause
the eectric dipole integral <y '|nly /fRz> to be non-zero even when <y |y > is zero.
Such vibronically allowed transitions are said to derive their intensity through vibronic
borrowing.

D. Rotationa Selection Rulesfor Electronic Transitions
Each vibrational peak within an electronic transition can also display rotational
structure (depending on the spacing of the rotational lines, the resolution of the

spectrometer, and the presence or absence of substantial line broadening effects such as
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those discussed later in this Chapter). The selection rules for such transitions are derived in
afashion that parallels that given above for the vibration-rotation case. The mgjor difference
between this el ectronic case and the earlier situation is that the vibrational transition dipole
moment Myans appropriate to the former is replaced by ny j(Re) for conventional (i.e., non-
vibronic) transitions or T} j/R4 (for vibronic transitions).

Asbefore, when 3 j(Re) (or T3 i/R5) lies along the molecular axis of alinear
molecule, the transition is denoted s and k = 0 applies; when this vector lies perpendicular
totheaxisitiscalled p and k = +1 pertains. The resultant linear -molecul e rotationa
selection rules are the same as in the vibration-rotation case:

DL=x1,and DM =+ 1,0 (for s transitions).
DL=%1,0 and DM =+1,0 (for p transitions).

In the latter case, the L = L' = 0 situation does not arise because ap transition has one unit
of angular momentum along the molecular axis which would preclude both L and L'
vanishing.

For non-linear molecules of the spherical or symmetric top variety, n3 j(Re) (or
m j/IR5) may be aligned along or perdendicular to a symmetry axis of the molecule. The
selection rulesthat result are

DL=+10,DM=+10;andDK =0 (L =L"'=0isnot allowed and al DL =
0 are forbidden when K = K' = 0)

which applieswhen n3 j(Re) or T i/fRalies along the symmetry axis, and
DL=+10;DM=+10;and DK = + 1 (L =L' = 0isnot allowed)
which applieswhen my j(Re) or 1 i/fIRa lies perpendicular to the symmetry axis.
IV. Time Correlation Function Expressions for Transition Rates
Thefirst-order E1 "golden-rule” expression for the rates of photon-induced
trangitions can be recast into aform in which certain specific physical models are easily
introduced and insights are easily gained. Moreover, by using so-called equilibrium

averaged time correlation functions, it is possible to obtain rate expressions appropriate to a
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large number of molecules that exist in adistribution of initial states (e.g., for molecules
that occupy many possible rotational and perhaps severa vibrationa levels at room
temperature).

A. State-to-State Rate of Energy Absorption or Emission
To begin, the expression obtained earlier
Rif =(2p/H2) 9w i) |[Eo - <Ff|m|Fi> 2,

that is appropriate to transitions between a particular initial state Fj and a specific final state
F, isrewritten as

Rif = (2p/2) Bgw) | Eo - <Ff | m| Fi> |2 dw; - w) dw.

Here, the d(w i - w) function is used to specifically enforce the "resonance condition” that
resulted in the time-dependent perturbation treatment given in Chapter 14; it states that the
photons' frequency w must be resonant with the transition frequency w; . It should be
noted that by allowing w to run over positive and negative values, the photon absorption
(with wg j positive and hence w positive) and the stimulated emission case (with w
negative and hence w negative) are both included in this expression (aslong asg(w) is
defined as g(jw|) so that the negative-w contributions are multiplied by the light source
intensity at the corresponding positive w value).

The following integral identity can be used to replace the d-function:

¥

d(w, 'W):z_lp Bexplitwr - wyt] dt
¥

by aform that is more amenable to further development. Then, the state-to-state rate of
transition becomes:
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(’) ¥
Rif=(1/h2) Ogw) | Eo - <Ff| m| Fi>R8expi(w - w)t] dt dw.
0 ¥

B. Averaging Over Equilibrium Boltzmann Population of Initial States

If this expression is then multiplied by the equilibrium probability r that the
moleculeisfound in the state F; and summed over al such initia states and summed over
al fina states F 1 that can be reached from F with photons of energy-hw, the equilibrium
averaged rate of photon absorption by the molecular sampleis obtained:

Reqave. = (1/R?) Si, fri

é ¥
Ogw) | Eo - <Ff| m| Fi>RBexpli(w; - wt] dt dw.
0 ¥

This expression is appropriate for an ensemble of molecules that can bein variousinitia
statesF; with probabilitiesr j. The corresponding result for transitionsthat originate in a

particular state (F ) but end up in any of the "allowed" (by energy and selection rules) final
states reads:

Reatei. = (R St8gw) | Eg - <F¢| m| Fi>R

¥

Bexpli(wj - w)t] dtdw .
¥

For acanonical ensemble, in which the number of molecules, the temperature, and the
system volume are specified, r j takes the form:

_ i exp(- E9/KT)
ri = 0
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where Q isthe canonical partition function of the molecules and g; is the degeneracy of the
state F j whose energy is E9.

In the above expression for Reg.ave,, @ double sum occurs. Writing out the elements
that appear in this sumin detail, one finds:

Si,f ri Eo- <Fi|m|F¢> Eg- <Ff|m|Fi>expi(wt.
In situationsin which oneisinterested in developing an expression for the intensity arising
from transitions to all allowed fina states, the sum over these final states can be carried out
explicitly by first writing

<F¢ | m| Fi> expi(wg i)t = <F ¢ |exp(iHt/R) mexp(-iHtA)| Fi>
and then using the fact that the set of states{F x} are complete and hence obey

SkIFi><Fil=1.

Theresult of using these identities aswell asthe Heisenber g definition of thetime-
dependence of the dipole operator

m(t) = exp(iHt/R) mexp(-iHt/A),

Sil’i <Fi|Eo- mEg- m(t) |Fi>.

In thisform, one says that the time dependence has been reduce to that of an equilibrium
averaged (n.b., the Si ri <Fi| |Fj>)time correlation function involving the

component of the dipole operator along the external electricfieldat t =0 ( Eg - m) and this
component at adifferent timet (Eg - m(t)).

C. Photon Emission and Absorption
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If wg j is positive (i.e., in the photon absorption case), the above expression will
yield anon-zero contribution when multiplied by exp(-i wt) and integrated over positive w-
values. If wg j is negative (asfor stimulated photon emission), this expression will
contribute, again when multiplied by exp(-i wt), for negativew-values. In the latter
situation, r j is the equilibrium probability of finding the moleculein the (excited) state from
which emission will occur; this probability can be related to that of the lower state r ¢ by

I excited = I lower €XP[ - (EV%xcited - E%ower)/KT ]
=T |ower €XP[ - AW/KT ].

In thisform, it isimportant to realize that the excited and lower states are treated as
individual states, not as levelsthat might contain a degenerate set of states.

The absorption and emission cases can be combined into asingle net expression for
the rate of photon absorption by recognizing that the latter process leads to photon
production, and thus must be entered with a negative sign. The resultant expression for the
net rate of decrease of photonsis:

Reqavenet = (A S 1 (1- exp(- hwikT))

28gw) <Fi| (Eo - m) Eo- m(t) | Fi> exp(-iwt) dwd.

D. The Line Shape and Time Correlation Functions

Now, it is convention to introduce the so-called "line shape" function | (w):
lw)= S ri6 <F;| (Eop- m) Eg - m(t) | Fi> exp(-iwt) dt

in terms of which the net photon absorption rate is
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Regavenet = (L/R2) (1 - exp(- hwikT) )8 g(w) | (w) dw.
As stated above, the function
Ct)=S ri <Fi|(Eo- m)Ep- m(t) |Fi>

is caled the equilibrium averaged time correlation function of the component of the
electric dipole operator along the direction of the external electric field Eq. Its Fourier
transform is| (w), the spectral line shape function. The convolution of | (w) with the
light source's g (w) function, multiplied by

(1 - exp(-h W/KT) ), the correction for stimulated photon emission, gives the net rate of
photon absorption.

E. Rotational, Trandational, and Vibrational Contributions to the Correlation Function

To apply the time correlation function machinery to each particular kind of
spectroscopic transition, one proceeds as follows:

1. For purely rotational transitions, theinitial and final eectronic and vibrational states
are the same. Moreover, the € ectronic and vibrationa states are not summed over in the

analog of the above development because oneisinterested in obtaining an expression for a
paticular cjy Yie ==> Cty Y fe€lectronic-vibrational transition's lineshape. As aresult, the

sum over final states contained in the expression (see earlier) Si'f riEo- <Fi|m|F¢
Eo- <Ff|m(t) | Fi> expi(ws i)t applies only to summing over final rotational states. In
more detail, this can be shown as follows:

Si,f riEo- <Fi|m|F¢>Eq- <Ff|m(t) |Fi>
=Si,f riEo- <firCivyied m[ftcCivyie> Eo- <ft#cCivYie|m() |firCivYie

=Si,f FirfivrieEo- <firciv [MR) |ffrciv>Eo- <fgciv IM(RY) | firciy >
=Si,f FirlivrieEo- <fir|mweiv|ffr>Eo- <f# | maeiv (t) |Tir>
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:Si FirfivrieEo- <fir|Mweiv Eo- Maweiv (t) |fir>.

In moving from the second to the third lines of this derivation, the following identity was
used:

<ffrcivyielm() [fir Civ Yie> = <ftr Civ Yie| exp(iHth)
mexp(-iHth) | fir Civ Y ie>
=<ftrCiv Yie| exp(iHy, ) mR) exp(-iHy /tA) [fir Civ yie>,
where H isthe full (electronic plus vibrational plusrotational) Hamiltonian and Hy ¢ is the
vibrational and rotational Hamiltonian for motion on the electronic surface of the statey je
whose dipole moment is m(R). From the third line to the fourth, the (approximate)
separation of rotational and vibrational motionsin Hy
Hy,r=Hy +Hy
has been used along with the fact that cjy is an eigenfunction of Hy:
Hy civ =Eiv Civ
to write
<cijy |[M(R,t) [civ > =exp(i Hy t/h) <cjy | exp( iHy tHh)
m(R) exp(- iHy tA) | cjy > exp(- iH; t/)
=exp(i Hy th) <cjy | exp(iEjy t/h)
m(R) exp(- iEy t) | civ > exp(- iHr tHh)

=exp(i Hr t/R) <ciy [ m(R)[ciy > exp(- iH th)
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= Mueiv (1)

In effect, misreplaced by the vibrationally averaged electronic dipole moment nyyejy for
each initial vibrationa state that can be involved, and the time corre ation function thus
becomes:

C®=Si rirriv rie<fir| (Eo- Muejiv) Eo* Mueiv (t) Ifir>,
where myejv (t) isthe averaged dipole moment for the vibrational state cjy at timet, given
that it was myyejv a timet = 0. The time dependence of myyejv (t) isinduced by the
rotational Hamiltonian Hy, as shown clearly in the steps detailed above:

Mve,iv (1) = exp(i Hr ) <ciy [M(R)|civ > exp(- iH t/h).
In this particular case, the equilibrium average is taken over the initial rotational states
whose probabilities are denoted r j, , any initial vibrationa states that may be populated,

with probabilitiesr jy, and any populated electronic states, with probabilitiesr je.

2. For vibration-rotation transitions within asingle electronic state, theinitial and
final electronic states are the same, but the initial and final vibrational and rotationd states
differ. Asaresult, the sum over final states contained in the expression Si,f ri Eo- <Fi|
m|F¢> Eo - <Ff|m|Fi> expi(w )t applies only to summing over final vibrational and
rotational states. Paralleling the devel opment made in the pure rotation case given above,
this can be shown asfollows:

Si,f riEo- <Fi|m|F¢>Eg- <Ff|m(t) |Fi>
=Si,f ri Eo- <fircivyid m|fercrvyie> Eo- <ftrCevYielm@) [firCivyie>
=Si,f FirfivrieEo- <firCiv Im(R)|f¢rCfy > Eo - <ffrcey |[M(RY) | firCiv >

=Si frirrivrieEo- <fircivlmRe) + Sa(Ra- Raeg) TR, | f fr Cv>
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Eo- <frcrlexpiHtR)(MRe) + Sa(Ra- Raey TR
exp(-iHit/R)| firCiv > exp(iwsy,ivt)
= Siriv.ieir Fiv T ie Sty fr Da<Civl(Ra- Raeg)lCtv>
St <cul(Rat - Rateq) Civ>exp(iwgu,ivt)
Eo- <fir | IMTRa Eo - exp(iHtM)IMTRa exp(-iHth)| f iy >
= Sir, iv, ieTirTiv T ie Sfv,fr €xp(iry,ivt)
<fir| (Eo- Mrang) Eo: exp(iHAHR) Myrans exp(-iHtA)| fir >,
where the vibrational transition dipole matrix element is defined as before
Mrans= Sa<Civl(Ra- Raeg)lcv> TR,
and derives its time dependence above from the rotational Hamiltonian:
Mrans (t) = exp(iHtA) Myans exp(-iHAA).
The corresponding final expression for the time correlation function C(t) becomes:
C®=Si rirriv rie<firl (o Mrans) Eo - Mrans(®) [fir> exp(iwg,vt).
The net rate of photon absorption remains:
Regavena = (UR?) (1-exp(-hw) ) 8 g(w) | (w) dw,

where [(w) is the Fourier transform of C(t).

The expression for C(t) clearly contains two types of time dependences: (i) the
exp(iwsy ivt), upon Fourier transforming to obtain I(w), produces d-function "spikes" at
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frequenciesw = wyy jy equal to the spacings between the initial and final vibrational states,
and (ii) rotational motion time dependence that causes myans (t) to change with time. The
latter appears in the form of a correlation function for the component of myansaong Eg at

timet = 0 and this component at another timet. The convolution of both these time
dependences determines the from of I(w).

3. For electronic-vibration-rotation transitions, theinitial and final eectronic states
aredifferent asaretheinitial and final vibrational and rotational states. As aresult, the sum

over fina states contained in the expression Si,f riEo- <Fi|m|F¢>Eqg- <F¢|m|F;>
expi(wg i)t applies to summing over final electronic, vibrational, and rotational states.

Paralleling the development made in the pure rotation case given above, this can be shown
asfollows:

Si,f riEo- <Fi|m|F¢>Eq- <Ff|m(t) |Fi>
=Si,f ri Eo- <fircivyid m|fercrvyfe> Eo- <frcev el m() [firCivyie>

=Si,f FirlivrieEo: <firciv |Mm#(R)|ffrcey>Eo- <fgrctv |[Ms(R.E) | fir Civ

>
=Sif rirrivrieEo- <fir Ims(Ralf 1> I<ciy |cr>P
Eo - <f |lexp(iHtAR) m $(Re) exp(-iHtA)| fir> exp(iwgy jvt + iDE; ft/)
=Si ¢ rirrivrie <fir [Eo- ms(Ra Eo- mi(Ret) Ifir> I<civ | c>P
exp(iwy iyt + IDE; ft/h),
where

M f(Ret) = exp(iHtH) m ¢(Re) exp(-iHit/)
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isthe electronic transition dipole matrix e ement, evaluated at the equilibrium geometry of
the absorbing state, that derivesits time dependence from the rotational Hamiltonian Hy as
in the time correlation functions treated earlier.

This development thus leads to the following definition of C(t) for the electronic,
vibration, and rotation case:

Ct)= Si f rirtivrie <fir|[Eo- m#(Re Eo- m#(Rel) If ir> [<Civ | cr>
exp(iwsy iyt + IDE; st/h)
but the net rate of photon absorption remains:
Reqavenet = (1/A?) (- exp(- Aw/kT)) 8 g(w) | (w) dw.
Here, 1(w) isthe Fourier transform of the above C(t) and DE; ¢ isthe adiabatic electronic
energy difference (i.e.,, the energy difference between thev = 0 level in thefinal electronic
state and the v = O level in theinitia electronic state) for the electronic transition of interest.
The above C(t) clearly contains Franck-Condon factors as well astime dependence
exp(iwsy ivt + IDE; st/R) that produces d-function spikes at each €lectronic-vibrational
trangition frequency and rotationa time dependence contained in the time correlation
function quantity <f i [ Eg - m(Re) Eo - mf(Ret) |fir>.
To summarize, the line shape function I(w) produces the net rate of photon
absorption
Regavenet = (1/2) (1- exp(-AwkT) )8 g(w) | (w) dw
in all of the above cases, and I(w) isthe Fourier transform of a corresponding time-

dependent C(t) functionin al cases. However, the pure rotation, vibration-rotation, and
electronic-vibration-rotation cases differ in the form of their respective C(t)'s. Specificaly,

CM=Sirirriv rie<fir| (Eo- Mwveiv) Eo - Mweiv (1) |fir>

in the pure rotational case,
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C®=Si rirriv rie<fir| (Eo* Mrans) Eo* Mrans(t) |fir> exp(iwty,ivt)
in the vibration-rotation case, and
CH) = Sif rirrivrie <fir|Eo- mi(Re Eo- ms(Rel) Ifir> [<civ | cr>PR
exp(iwy jvt + DE; st/h)

in the el ectronic-vibration-rotation case.

All of these time correlation functions contain time dependences that arise from
rotational motion of adipole-related vector (i.e., the vibrationally averaged dipole myye.iv
(t), the vibrational transition dipole myans (), or the electronic transition dipole m f(Ret))
and the | atter two also contain oscillatory time dependences (i.e., exp(iwsy jyt) or
exp(iwgy vt + IDE; st/R)) that arise from vibrational or electronic-vibrational energy level
differences. In the treatments of the following sections, consideration is given to the
rotational contributions under circumstances that characterize, for example, dilute gaseous
samples where the collision frequency is low and liquid-phase samples where rotationa
motion is better described in terms of diffusional motion.

F. Line Broadening Mechanisms

If the rotational motion of the moleculesis assumed to be entirely unhindered (e.g.,
by any environment or by collisions with other molecules), it is appropriate to express the
time dependence of each of the dipole time correlation functions listed above in terms of a

"freerotation™ model. For example, when dealing with diatomic molecules, the electronic-
vibrational-rotational C(t) appropriate to a specific electronic-vibrationa transition becomes:

C(t) = (o Ov e &) Sy (23+1) exp(- h2X(I+1)/(8p2IKT)) exp(- hyipvi /kT)

gie <fJ|Eo- m#(Re Eo- m#(Rel) If 2 [<Civ | crv>?
exp(i [hnyip] t + IDE; f t/h).

Here,
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gr = (8p2lkT/M2)

isthe rotational partition function (I being the molecule's moment of inertia
| = mRe?, and h2J(3+1)/(8p2l) the molecule's rotational energy for the state with quantum

number J and degeneracy 23+1)
Qv = exp(-hnyip/2KT) (1-exp(-hnyip/kT))L

isthe vibrationa partition function (nyjp being the vibrational frequency), gieisthe
degeneracy of theinitia electronic state,

g = (2pmkT/2)3/2 v

isthe trandational partition function for the molecules of mass m moving in volume V, and
DE; s isthe adiabatic electronic energy spacing.

Thefunctions<f 3| Eg - m#(Re) Eo - m#(Ret) |f 5 describe the time evolution of
the dipole-related vector (the electronic transition dipole in this case) for the rotational state
J. In a"free-rotation" model, this function is taken to be of the form:

<fj|Eo- mt(Re) Eo- m(Ret) If

h J(J+1) t
=<fj|Eo- mi(Re) Eo- Mf(Re0) |f 5> Cos (4 | : '

where

h J(J+1) = w;
4pl

isthe rotational frequency (in cycles per second) for rotation of the moleculein the state
labeled by J. This oscillatory time dependence, combined with the exp(iwsy jyt + IDE; stH)
time dependence arising from the electronic and vibrational factors, produce, when this C(t)

function is Fourier transformed to generate 1(w) a series of d-function "peaks’ whenever

W= Wy iy + DE A+ wj.
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Theintensities of these peaks are governed by the
(or v Qe ) Sy (23+1) exp(- h2)(F+1)/(8p2IKT)) exp(- hripvi /KT) ge

Boltzmann population factors as well as by the |<cijy | cf>|? Franck-Condon factors and
the <f 3| Eo - mf(Re) Eo - mi(Re0) [f 5> terms.

This same analysis can be applied to the pure rotation and vibration-rotation C(t)
time dependences with analogous results. In the former, d-function peaks are predicted to
occur at

w=xw;
and in the latter at
W= Wy jy £ W3,

with the intensities governed by the time independent factors in the corresponding
expressions for C(t).

In experimental measurements, such sharp d-function peaks are, of course, not
observed. Even when very narrow band width laser light sources are used (i.e., for which
g(w) isan extremely narrowly peaked function), spectral lines are found to possess finite
widths. Let us now discuss several sources of line broadening, some of which will relate to
deviations from the "unhindered" rotational motion model introduced above.

1. Doppler Broadening

In the above expressions for C(t), the averaging over initial rotational, vibrational,
and electronic states is explicitly shown. There is also an average over the trandational
motion implicit in al of these expressions. Itsrole has not (yet) been emphasized because
the molecular energy levels, whose spacings yield the characteristic frequencies at which
light can be absorbed or emitted, do not depend on trandational motion. However, the
frequency of the electromagnetic field experienced by moving molecules does depend on
the velocities of the molecules, so thisissue must now be addressed.

Elementary physics classes express the so-called Doppler shift of awave's
frequency induced by movement either of the light source or of the molecule (Einstein tells
us these two points of view must give identical results) asfollows:
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Wobsarved = Wnominal (1 +VZ/€)1» Wnomina (1 - vZC + ...).

Here, Wnomina 1S the frequency of the unmoving light source seen by unmoving molecules,
vz isthe velocity of relative motion of the light source and molecules, c is the speed of

light, and wgopsarved IS the Doppler shifted frequency (i.e., the frequency seen by the
molecules). The second identity is obtained by expanding, in a power series, the (1 + v,/c)
1 factor, and is valid in truncated form when the molecules are moving with speeds
significantly below the speed of light.

For all of the cases considered earlier, a C(t) function is subjected to Fourier
transformation to obtain a spectral lineshape function I(w), which then provides the
essentia ingredient for computing the net rate of photon absorption. In this Fourier
transform process, the variable w is assumed to be the frequency of the electromagnetic
field experienced by the molecules. The above considerations of Doppler shifting then leads
oneto realize that the correct functional form to usein converting C(t) to I(w) is:

I(w) = BC(t) exp(-itw(1-vz/c)) dt

where w is the nominal frequency of the light source.

As stated earlier, within C(t) there is aso an equilibrium average over trandational
motion of the molecules. For a gas-phase sample undergoing random collisions and at
thermal equilibrium, this average is characterized by the well known Maxwell-Boltzmann
velocity distribution:

(M/2pKT)3/2 exp(-m (vx2+vy2+Vz2)/2KT) dvy dvy dvz.

Here m is the mass of the molecules and vy, vy, and v label the velocities along the [ab-

fixed cartesian coordinates.

Defining the z-axis as the direction of propagation of the light's photons and
carrying out the averaging of the Doppler factor over such avelocity distribution, one
obtains:

¥
B exp(-itw(1-vz/c)) (m/2pkT)3/2 exp(-m (Vx2+vy2+vZ2)/2KT) dvy dvy dv;
-¥
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¥

= exp(-iwt) 8 (M/2pkT)L/2 exp(iwtv,/c) exp(-mvz2/2kT) dv;
-¥

= exp(-iwt) exp(- w2t2kT/(2mc2)).

This result, when substituted into the expressions for C(t), yields expressions identical to
those given for the three cases treated above but with one modification. The trandational
motion average need no longer be considered in each C(t); instead, the earlier expressions
for C(t) must each be multiplied by afactor exp(- w2t2kT/(2mc2)) that embodies the
trandationally averaged Doppler shift. The spectral line shape function 1(w) can then be
obtained for each C(t) by simply Fourier transforming:

¥
I(w) = Bexp(-iwt) C(t) dt .
-¥
When applied to the rotation, vibration-rotation, or el ectronic-vibration-rotation
cases within the "unhindered” rotation model treated earlier, the Fourier transform involves
integrals of the form:

¥

I(w) = Bexp(-iwt) exp(- W2t2kT/(2mc2))exp(i(Wiviv + DEifh + wit) dt .
-¥

Thisintegral would arise in the electronic-vibration-rotation case; the other two cases would
involveintegrals of the same form but with the DE; ¢/h absent in the vibration-rotation
Situation and with wsy jy + DE; /A missing for pure rotation transitions. All such integrals
can be carried out analytically and yield:

2mc?
o[22

Theresult isaseries of Gaussian "peaks' in w-space, centered at:

exp[ -(w-wgy jv - DEj /h + w)2 mc?/(2w2kT)].
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W = Wy iy + DEj tfh £ w;
with widths (s) determined by
s2 = w2kT/(mc?),

given the temperature T and the mass of the molecules m. The hotter the sample, the faster
the molecules are moving on average, and the broader is the distribution of Doppler shifted
frequencies experienced by these molecules. The net result then of the Doppler effect isto
produce a line shape function that is similar to the "unhindered” rotation model's series of
d-functions but with each d-function peak broadened into a Gaussian shape.

2. Pressure Broadening

To include the effects of collisions on the rotational motion part of any of the above
C(t) functions, one must introduce a model for how such collisions change the dipole-
related vectorsthat enter into C(t). The most el ementary model used to address collisions
applies to gaseous samples which are assumed to undergo unhindered rotational motion
until struck by another molecule at which time arandomizing "kick" is applied to the dipole
vector and after which the molecule returnsto its unhindered rotational movement.

The effects of such collisionally induced kicks are treated within the so-called
pressure broadening (sometimes called collisional broadening) model by modifying the
free-rotation correlation function through the introduction of an exponential damping factor
exp( -[t)/t):

h J(J+1) t
<fj|Eo- mt(Re) Eo- ms(ReO) |f 5> COS%

P <fj|Eo- mi(Re Eo- mi(Re0) [f 5> Cos

% exp( -Itt).

This damping function's time scale parameter t is assumed to characterize the average time
between collisions and thus should be inversely proportiona to the collision frequency. Its
magnitude is also related to the effectiveness with which collisions cause the dipole
function to deviate from its unhindered rotational motion (i.e., related to the collision
strength). In effect, the exponential damping causes the time correlation function <f 5| Eg -
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m(Re) Eo - m¢(Ret) [f 5 to"loseits memory" and to decay to zero; this"memory" point
of view isbased on viewing <f 3| Eg - m$(Re) Eo - mf(Ret) |f 7 asthe projection of Eg
- m¢#(Ret) dongitst =0value Ep - m¢(Re0) asafunction of timet.

Introducing this additional exp( -[t|/t) time dependence into C(t) produces, when
C(t) is Fourier transformed to generate I (w),

¥

I(w) = B exp(-iwt)exp(-Itft )exp(-w2t2kT/(2mc2))exp(i (Wi, iv+DE; /A + wa)t)dt .
¥

In the limit of very small Doppler broadening, the (W2t2kT/(2mc2)) factor can be ignored
(i.e., exp(-w2t2kT/(2mc2)) set equal to unity), and

¥

(W) = Bexp(-iwt)exp(-|tht )exp(iwy,iv+DE; £A + wyt)dt
-¥

results. Thisintegral can be performed analytically and generates:

W= = ¢ - - - }
4p © (Ut)2+ (W-whyiy-DEi¢/h = w2 (Ut)2+ (W+wry iv+DEit/h £ wy)2 ~

apair of Lorentzian peaks inw-space centered again at
W=+ [Wry ivtDE A+ wy].

The full width at half height of these Lorentzian peaksis 2/t. One says that the individual
peaks have been pressure or collisionally broadened.

When the Doppler broadening can not be neglected relative to the collisiona
broadening, the above integral

¥

I(w) = B exp(-iwt)exp(-|tft )exp(-w2t2kT/(2mc2))exp(i (Wry,jv+DE; /A + wa)t)dt
-¥
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is more difficult to perform. Nevertheless, it can be carried out and again produces a series
of peaks centered at

W = Wy jiv+DE A £ w;

but whose widths are determined both by Doppler and pressure broadening effects. The
resultant line shapes are thus no longer purely Lorentzian nor Gaussian (which are
compared in the figure below for both functions having the same full width at half height
and the same integrated area), but have a shape that is called aVV oight shape.

Gaussian -

(Doppler)

Intensity 9

Lorentzian

3. Rotational Diffusion Broadening

Moleculesin liquids and very dense gases undergo frequent collisions with the
other molecules; that is, the mean time between collisionsis short compared to the
rotational period for their unhindered rotation. As aresult, the time dependence of the
dipole related correlation function can no longer be modeled in terms of free rotation that is
interrupted by (infrequent) collisions and Dopler shifted. Instead, amodel that describes the
incessant buffeting of the molecul€'s dipole by surrounding molecules becomes
appropriate. For liquid samplesin which these frequent collisions cause the molecule's
dipole to undergo angular motions that cover al angles (i.e., in contrast to afrozen glass or
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solid in which the molecul€'s dipole would undergo strongly perturbed pendular motion
about some favored orientation), the so-called r otational diffusion model is often used.
In this picture, the rotation-dependent part of C(t) is expressed as.

<f3|Eo- mi(Re) Eo- mf(Ret) [f 5>
=<fj]Eo- m#(Re) Eo- M(Re0) [f 5> exp(-2Drotlt]),
where Dyqt is therotational diffusion constant whose magnitude details the time

decay in the averaged value of Eg - m f(Ret) at timet with respect to itsvalue at timet = 0;
the larger Dyqt, the faster isthis decay.

As with pressure broadening, this exponential time dependence, when subjected to
Fourier transformation, yields:

¥
I(w) = 8 exp(-iwt)exp(-2Drotlt) exp(-w2t2kT/(2mc2))exp(i (Wi iv+DE; 1/ + wa)t)dt .

-¥
Again, in the limit of very small Doppler broadening, the (W2t2kT/(2mc?2)) factor can be
ignored (i.e., exp(-w2t2kT/(2mc?)) set equal to unity), and

¥

I(w) = B exp(-iwt)exp(-2Drorlt])exp(i(wry iv+DE; /A £ wy)t)dt
-¥

results. Thisintegral can be evaluated analytically and generates:

1 { 2Drot

I(w) =
4p  (2Dro)%+ (W-Wry,iv-DEj t/h + wj)2

N 2Dyt }
(2Dro)2+ (W+Wry iy +DE; t/h £ wy)2

apair of Lorentzian peaks inw-space centered again at

W = +[Wry iy +DE; i £ wy.
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The full width at half height of these Lorentzian peaksis 4Dyqt. In this case, one says that
the individual peaks have been broadened viarotationa diffusion.  When the Doppler
broadening can not be neglected relative to the collisional broadening, the above integral

¥

I(w) = B exp(-iwt)exp(-2Drotlt) exp(-w2t2kT/(2mc2))exp(i (Wi iy +DE; /A + wa)t)dt .
-¥

is more difficult to perform. Nevertheless, it can be carried out and again produces a series
of peaks centered at

W = [Wry,iv+DE; t/A + wy|
but whose widths are determined both by Doppler and rotational diffusion effects.

4. Lifetime or Heisenberg Homogeneous Broadening

Whenever the absorbing species undergoes one or more processes that depletesits
numbers, we say that it has afinite lifetime. For example, a species that undergoes
unimolecular dissociation has afinite lifetime, as does an excited state of a molecule that
decays by spontaneous emission of a photon. Any process that depletes the absorbing
species contributes another source of time dependence for the dipole time correlation

functions C(t) discussed above. This time dependence is usually modeled by appending, in
amultiplicative manner, afactor exp(-[tj/t). This, in turn modifies the line shape function
I (w) in amanner much like that discussed when treating the rotational diffusion case:

¥
I(w) = B exp(-iwt)exp(-Ityt )exp(-w2t2kT/(2mc2))exp(i (Wi, iv+DE; /A + wa)t)dt .
-¥
Not surprisingly, when the Doppler contribution is small, one obtains:
1 Ut

I(w) =
) 4p { (Ut)2+ (w-wiy,iy-DEi t/h £ wy)?

N 1 )
(1/t)2+ (W+wry jy+DEj t/h £ w2~
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In these Lorentzian lines, the parameter t describes the kinetic decay lifetime of the
molecule. One says that the spectral lines have been lifetime or Heisenberg
broadened by an amount proportional to 1/t. The latter terminology arises because the
finite lifetime of the molecular states can be viewed as producing, viathe Heisenberg
uncertainty relation DEDt > h, states whose energy is"uncertain” to within an amount DE.

5. Site Inhomogeneous Broadening

Among the above line broadening mechanisms, the pressure, rotational diffusion,
and lifetime broadenings are al of the homogeneous variety. This means that each
moleculein the sample is affected in exactly the same manner by the broadening process.
For example, one does not find some molecules with short lifetimes and others with long
lifetimes, in the Heisenberg case; the entire ensemble of moleculesis characterized by a
singlelifetime.

In contrast, Doppler broadening isinhomogeneous in nature because each
mol ecul e experiences a broadening that is characteristic of its particular nature (velocity vz
inthiscase). That is, the fast molecules have their lines broadened more than do the slower
molecules. Another important example of inhomogeneous broadening is provided by so-
caled site broadening. Moleculesimbedded in aliquid, solid, or glass do not, at the
instant of photon absorption, al experience exactly the same interactions with their
surroundings. The distribution of instantaneous "solvation™ environments may be rather
"narrow" (e.g., in ahighly ordered solid matrix) or quite "broad" (e.g., in aliquid at high
temperature). Different environments produce different energy level splittings w =
Wry iv+DE; £/ + wj (because the initial and final states are "solvated" differently by the
surroundings) and thus different frequencies at which photon absorption can occur. The
distribution of energy level splittings causes the sample to absorb at arange of frequencies
asillustrated in the figure below where homogeneous and inhomogeneous line shapes are
compared.
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Homogeneous (a) and inhomogeneous (b) band shapes having
inhomogeneous width DnINH‘ and homogeneous width DnH .

The spectra line shape function I (w) is further broadened when site inhomogeneity
is present and significant. These effects can be modeled by convolving the kind of 1(w)
function that results from Doppler, lifetime, rotational diffusion, and pressure broadening
with a Gaussian distribution P(DE) that describes the inhomogeneous distribution of
energy level splittings:

I(w) = 810(w;DE) P(DE) dDE .

Here I9(w;DE) is aline shape function such as those described earlier each of which
contains a set of frequencies (e.g., w = Wy jy+DE; /A = wy = w + DE/R) at which
absorption or emission occurs.

A common experimental test for inhomogeneous broadening involves hole
burning. In such experiments, an intense light source (often alaser) istuned to a
frequency wpyrn that lies within the spectral line being probed for inhomogeneous
broadening. Then, a second tunable light source is used to scan through the profile of the
spectral line, and, for example, an absorption spectrum is recorded. Given an absorption
profile as shown below in the absence of the intense burning light source:
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Intensity

one expects to see a profile such as that shown below:

Intensity

w—

if inhomogeneous broadening is operative.

The interpretation of the change in the absorption profile caused by the bright light
source proceeds as follows:
(1) In the ensemble of molecules contained in the sample, some molecules will absorb at or
near the frequency of the bright light source wiyyrm; other molecules (those whose
environments do not produce energy level splittings that match wiyyrm) will not absorb at
this frequency.
(i) Those molecules that do absorb at Wi Will have their transition saturated by the
intenselight source, thereby rendering this frequency region of the line profile transparent
to further absorption.
(iii) When the "probe" light source is scanned over the line profile, it will induce
absorptions for those molecules whose local environments did not allow them to be
saturated by the wyyrn light. The absorption profile recorded by this probe light source's
detector thus will match that of the original line profile, until
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(iv) the probe light source's frequency matches wyyrn, Upon which no absorption of the
probe source's photons will be recorded because molecules that absorb in this frequency
regime have had their transition saturated.

(v) Hence, a"hole" will appear in the spectrum recorded by the probe light source's
detector in the region of Wiyrn.

Unfortunately, the technique of hole burning does not provide afully reliable
method for identifying inhomogeneously broadened lines. If aholeis observed in such a
burning experiment, this provides ample evidence, but if one is not seen, the result is not
definitive. In the latter case, the transition may not be strong enough (i.e., may not have a
large enough "rate of photon absorption” ) for the intense light source to saturate the
transition to the extent needed to form a hole.

This completes our introduction to the subject of molecular spectroscopy. More
advanced treatments of many of the subjects treated here as well as many aspects of modern
experimental spectroscopy can be found in the text by Zare on angular momentum as well
asin Seinfeld's text Molecules and Radiation, 2nd Edition, by J. . Seinfeld, MIT Press
(1985).
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Chapter 16

Collisions among molecules can also be viewed as a problem in time-dependent quantum
mechanics. The perturbation is the "interaction potential”, and the time dependence arises
from the movement of the nuclear positions.

The simplest and most widely studied problems in chemical reaction dynamics
involve describing the unimolecular motion or bimolecular collision of asystemin awell
characterized electronic state. Referring back to the discussion of Chapter 3, we recall that
the motion of the nuclei are governed by a Schrodinger equation

[ E(R) on (R +T XjO(R)] = EXj0 (R)

in which the electronic energy E;j (R) assumesthe role of the potential upon which
movement occurs. This treatment of the nuclear motion is based on the Born-Oppenheimer
approximation (see Chapter 3 for details) which assumes that coupling to nearby electronic
states can be ignored. These assumptions are valid only when the energy surface of interest
Ej(R) isnot crossed or closely approached by another electronic energy surface Ex(R).
When the electronic states are so widely spaced, it is proper to speak of the movement of
the molecule(s) on the electronic surface Ej(R), and to use either classical or quantum
mechanical methods to follow such movements.

To smplify the notation throughout this Chapter, the above Schrodinger equation
appropriate to movement on a single electronic energy surface will be written as follows:

[T+V(R)]X(R)=EX (R),

where T denotes the kinetic energy operator for all 3N of the geometrical coordinates
(collectively denoted R) needed to specify the location of the N nuclel, V(R) isthe
electronic energy as afunction of these coordinates, and

X (R) is the nuclear-motion wavefunction.

For example, when diatomic species are considered, V isafunction of the radial
coordinate describing the distance between the two nuclel, T contains derivatives with
respect to radial aswell astwo angular coordinates (those pertaining to rotation or relative
angular motion of the two nuclel), and R refersto these radial and angular coordinates. For
atriatomic species such as H20, V isafunction of two O-H bond lengths and the H-O-H

angle, and R refers to these three internal coordinates as well as the three angle coordinates
needed to specify the orientation of the H,O molecule in space relative to a space-fixed
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coordinate system (e.g., three Euler angles used in Chapter 3 to treat rotation of spherical
and symmetric top molecules).

In Chapters 1 and 3 and in all of Section 4, such nuclear-motion Schrédinger
equations were used to treat the bound vibrational motions of molecules (i.e., the
movement of the nuclei when the energy available is not adequate to rupture one or more of
the bonds in the molecule). These same Schrédinger equations also apply to the scattering
of the constituent nuclei (e.g., the vibration-rotation motion of HCl istreated by the same
Schrédinger equation as the scattering of an H atom and a Cl atom). The primary difference
between these two situations lies in the total energy (E) available: in the former, E lies
below the dissociation asymptote of the ground-state HCI electronic potential energy; in the
latter E is higher than this asymptote (e.g., see the potential curve shown below with some
of its bound state energies and a state in the continuum).

4
State at energy E in the
continuum
21 | »
> 04 }p---------~g--==
(@)] . .
= Dissociation
c 5 Threshold
£ .
-4
-6 T T T
0 1 2 3 4

Internuclear distance

The different energies appropriate to bound-state and scattering situations affect the
boundary conditions appropriate to the nuclear-motion wavefunctionsin the large
internuclear distance region. For the HCI example at hand, the bound-state vibrational
wavefunctions X (R,q,f) decay exponentially (see Chapter 1) for large R because such R-
valuesliein the classically forbidden region of R-space where E - V(R) is negative. In
contrast, the scattering wavefunctions for this same V(R) potential and the same HCI
molecule need not decay in the large-E region. Asillustrated explicitly below for a model
problem, this difference in large-R boundary conditions causes major differencesin the
eigenvalue spectrum of the Hamiltonian in these two cases. In particular, the bound-state
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energy levels of HCI are discrete (i.e., quantized) but the scattering states are not (i.e., an
H atom and a Cl atom may collide with arbitrary relative trandational energy).

L et us now examine how the Schrodinger equation is solved for casesin which E
lies above the dissociation energy of V(R) by considering afew ssimple model problems
that can be solved exactly.

|. One Dimensional Scattering

Atom-atom scattering on a single Born-Oppenheimer energy surface can be reduced
to aone-dimensional Schrodinger equation by separating the radial and angular parts of the
three-dimensional Schrodinger equation in the same fashion as used for the Hydrogen atom
in Chapter 1. The resultant equation for the radial part y (R) of the wavefunction can be
written as:

- (h2/2m) R-2 /R (R2fly /R) + L (L+1)h2/(2nR2) y +V(R)y =Ey,

where L isthe quantum number that |abels the angular momentum of the colliding particles
whose reduced massism

Defining Y (R) = Ry (R) and substituting into the above equation gives the
following equation for Y :

- (h2/2r) 12Y IR2 + L (L+1)h2/(2nR2) Y +V(R)Y =EY.

The combination of the "centrifugal potential” L (L+1)h2/(2nR2) and the electronic potential
V(R) thus produce a total "effective potential” for describing the radial motion of the
system.

The simplest reasonable model for such an effective potential is provided by the
"square well" potentid illustrated below. This model V(R) could, for example, be applied
to the L = O scattering of two atoms whose bond dissociation energy is De and whose

equilibrium bond length for this electronic surface lies somewhere between R=0and R =

Rmax.
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V(R)

0.0

Rmax

Interatomic Distance R >

The piecewise constant nature of this particular V(R) allows exact solutions to be written
both for bound and scattering states because the Schrédinger equation

-(22m d2Y /dR2 =EY  (for 0£ RE Rmay)
- (122m) d2Y /dR2+ DgY =EY  (Rmax£ R<¥)

admits ssimple sinusoidal solutions.

A. Bound States

Thebound states are characterized by having E < De. For the inner region, the
two solutions to the above equation are

Y 1(R) = A sin(kR)

and
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Y 2(R) = B cos(kR)

where

k = \/ 2nE/R2

istermed the "local wave number" becauseit is related to the momentum vaues for the
exp(zx i k R) components of such afunction:

-ihAfexp@z i kR)NR=hkexpixikR).
The cos(kR) solution must be excluded (i.e., its amplitude B in the general solution of the
Schrodinger equation must be chosen equal to 0.0) because this function does not vanish at
R =0, where the potential moves to infinity and thus the wavefunction must vanish. This
means that only the

Y =AsnkR)
term remains for thisinner region.

Within the asymptotic region (R > Rmax) there are also two solutions to the
Schrodinger equation:

Y 3= C exp(-kR)
and

Y4 =D expk R)

where

k = \[2M(De - E)/h2 .

Clearly, one of these functionsis a decaying function of R for large R and the other Y 4
grows exponentialy for large R. The latter's amplitude D must be set to zero because this
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function generates a probability density that grows larger and larger as R penetrates deeper
and deeper into the classically forbidden region (where E < V(R)).

Toconnect Y 1 intheinner regionto Y 3 in the outer region, we use the fact that Y
and dY /dR must be continuous except at points R where V(R) undergoes an infinite
discontinuity (see Chapter 1). Continuity of Y at Rmax gives:

A sin(kRmax) = C exp(-kRmax),
and continuity of dY /dR at Rmax yields
A k cos(KRmax) = - kC exp(-kRmax)-
These two equations allow theratio C/A aswell asthe energy E (which appearsin k and in
k) to be determined:
A/C =-k/k exp(-k Rmax)/cos(KRmax)-
The condition that determines E is based on the well known requirement that the

determinant of coefficients must vanish for homogeneous linear equations to have no-trivial
solutions (i.e., not A = C = 0):

&esiN(kRmax) - exp(-kKRmax) 6 _ 0
€kcos(KRmax) Kexp(-KRmax) &

The vanishing of this determinant can be rewritten as

k sin(kRmax) exp(-kRmax) + k cos(kRmax) exp(-kRmax) =0
or

tan(kRmax) =- k/k .
When employed in the expression for A/C, this result gives

A/IC = exp(-kRmax)/sin(kRmax)-
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For very large De compared to E, the above equation for E reducesto the familiar
"particlein abox" energy level result since k/k vanishesin thislimit, and thus tan(kRmax)
=0, which is equivalent to sin(kRmax) = 0, which yields the familiar E = n2h2/(8nR2yax)
andC/A =0,0Y =AsinkR).

When Deis not large compared to E, the full transcendental equation tan(kRmax) =
- k/k must be solved numerically or graphically for theeigenvalues,, n =1, 2, 3, ...
These energy levels, when substituted into the definitions for k and k give the
wavefunctions:

Y =A sin(kR) (for O£ R£ Rmax)
Y = A sin(kRmax) exp(kRmax) exp(-kR) (for Rmax E R<¥ ).

The one remaining unknown A can be determined by requiring that the modulus
sguared of the wavefunction describe a probability density that is normalized to unity when
integrated over all space:

¥

BIYRdR = 1.
0

Note that this condition is equivaent to
¥

By R2dR =1
0

which would pertain to the origina radial wavefunction. In the case of an infinitely deep
potential well, this normalization condition reducesto

Rmax

8A28n2(kR)dR =1
0

which produces
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B. Scattering States

Thescattering states are treated in much the same manner. The functions Y 1 and
Y 7 arise as above, and the amplitude of Y 2 must again be chosen to vanish because Y

must vanish at R = 0 where the potential moves to infinity. However, in the exterior region
(R> Rmax), the two solutions are now written as:

Y 3=Cexp(ik'R)
Y 4 =D exp(-ik'R)

where the large-R local wavenumber

k' = \/2m(E - D/

arises because E > De for scattering states.
The conditionsthat Y and dY /dR be continuous at Rmax still apply:

A sin(kRmax) = C exp(i k'Rmax) + D exp(-i K'Rmax)
and
k A cos(kRmax) = 1 K'C exp(i k'Rmax) - ik' D exp(-i K'Rmax)-

However, these two equations (inthreeunknowns A, C, and D) can no longer be solved to
generate eilgenvalues E and amplitude ratios. There are now three amplitudes aswell asthe
E value but only these two equations plus a normalization condition to be used. The result
isthat the energy no longer is specified by a boundary condition; it can take on any value.
We thus speak of scattering states as being "in the continuum’ because the allowed values
of E form a continuum beginning at E = D¢ (Since the zero of energy isdefined in this
example as at the bottom of the potential well).

The R > Rmjax components of Y are commonly referred to as "incoming”
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Y in = D exp(-ik'R)
and "outgoing"
Y out = C exp(ik'R)

because their radiad momentum eigenvalues are-h k' and h k', respectively. It isacommon
convention to define the amplitude D so that the flux of incoming particlesis unity.
Choosing

m
D_ hkl

produces an incoming wavefunction whose current density is:
S(R) = -ih/2m[Y jp* (d/dR Y jp) - (dY in/dR)* Y in]
= D]2 (-i2n) [-2iK’]
=-1

This means that there is one unit of current density moving inward (this produces the minus
sign) for al valuesof R at which Y j,, is an appropriate wavefunction (i.e., R > Rnax). This
condition takes the place of the probability normalization condition specified in the bound-
state case when the modulus squared of the total wavefunction is required to be normalized
to unity over all space. Scattering wavefunctions can not be so normalized because they do
not decay at large R; for this reason, the flux normalization condition is usually employed.
The magnitudes of the outgoing (C) and short range (A) wavefunctions relative to that of
the incoming function (D) then provide information about the scattering and "trapping” of
incident flux by the interaction potential .

Once D is so specified, the above two boundary matching equations are written asa
set of two inhomogeneous linear equations in two unknowns (A and C):

A Sn(kRmax) -C eXp(I k'Rmax) =D eXp(-I klRmax)

75



and
k A cos(kRmax) - i K'C exp(i k'Rmax) = - ik' D exp(-i k'Rmax)
or

ae SIN(KRmax) -exp(i K'Rmax) ('jgﬁ < _ae Dexp(-i KRmax) ¢
e kcos(kRmax) -i k'exp(i k'Rmax) g€C g=a ik' D exp(-i K'Rmax) g

Non-trivia solutionsfor A and C will exist except when the determinant of the matrix on
the left side vanishes:

-i K' sin(kRmax) + k cos(kRmax) = 0,
which can betrue only if
tan(kRmax) = ik'/K.

This equation is not obeyed for any (real) value of the energy E, so solutionsfor A and C
in terms of the specified D can always be found.

In summary, specification of unit incident flux is made by choosing D as indicated
above. For any collision energy E > Dg, the 2x1 array on the right hand side of the set of
linear equations written above can be formed, as can the 2x2 matrix on the left side. These
linear equations can then be solved for A and C. The overall wavefunction for thisE isthen
given by:

Y = A sin(kR) (for O£ R £ Rmax)

Y =Cexp(ik'R) + D exp(-ik'R) (for Rmax £ R<¥).

C. Shape Resonance States
If the angular momentum quantum number L in the effective potential introduced

earlier is non-zero, this potential has a repulsive component at large R. This repulsion can
combine with short-range attractive interactions due, for example, to chemical bond forces,
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to produce an effective potential that one can model in terms of simple piecewise functions
shown below.

V(R)

-~ >

0.0

Rmax Rmax + d

Interatomic Distance R >

Again, the piecewise nature of the potential allows the one-dimensional Schrodinger
equation to be solved analytically. For energies below Dg, one again finds bound states in

much the same way asillustrated above (but with the exponentially decaying function exp(-
k'R) used intheregion Rmax £ R £ Rmax + d, with k' = \/ZrT(De +dV - E)/h?).

For energies lying above De + dV, scattering states occur and the four amplitudes of
the functions (sin(kR), exp(xi k™'R) with k™' = \/Zm(-De -dV + E)/h2 , and exp(i k'R))
appropriate to each R-region are determined in terms of the amplitude of the incoming
asymptotic function D exp(-ik'R) from the four equations obtained by matching Y and
dY /dR at Rmax and at Rmax + d .

For energies lying in therange De < E < De +dV, aqualitatively different class of

scattering function exists. These so-called shape r esonance states occur at energies that
are determined by the condition that the amplitude of the wavefunction within the barrier
(i.e., for 0 £ R £ Rmax ) belarge so that incident flux successfully tunnels through the
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barrier and builds up, through constructive interference, large probability amplitude there.

Let us now turn our attention to this specific energy regime.
The piecewise solutions to the Schrédinger equation appropriate to the shape-

resonance case are easily written down:

Y =Asin(kR) (for O£ RE£ Rmax)
Y =B+ exp(k'R) + B. exp(-k'R) (for Rmax £ R £ Rmax +d)
Y =Cexp(ik'R) + D exp(-ik'R) (for Rmax td £ R<¥).

Note that both exponentially growing and decaying functions are acceptable in the Rmax £
R £ Rmax *+d region because thisregion does not extendto R=¥%. Therearefour
amplitudes (A, B+, B, and C) that must be expressed in terms of the specified amplitude D
of the incoming flux. Four equations that can be used to achieve this goal result when' Y

and dY /dR are matched at Rmax and at Ryax + d:
Asin(kRmax) = B+ exp(k'Rmax) + B- exp(-k'Rmax),
Akcos(kRmax) = k'B+ exp(k'Rmax) - k'B- exp(-k'Rmax),
B+ exp(k'(Rmax *+ d)) + B- exp(-k'(Rmax + d))
= C exp(ik'(Rmax + d)) + D exp(-ik'(Rmax *+ d)),
k'B+ exp(k'(Rmax + d)) - k'B. exp(-k'(Rmax + d))
= ik'C exp(ik'(Rmax + d)) -ik' D exp(-ik'(Rmax + d)).

It isespecialy instructive to consider the value of A/D that results from solving this set of
four equations in four unknowns because the modulus of thisratio provides information

about the relative amount of amplitude that exists inside the centrifugal barrier in the
attractive region of the potential compared to that existing in the asymptotic region as

incoming flux.
Theresult of solving for A/D is.
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AID = 4k'exp(-ik'(Rmax+d))
{exp(k' d)(ik'-k") (K'sin(KRmax) +Kcos(kRmax))/ik'
+ exp(-k' d)(ik'+k") (k'sin(kRmad)-kcos(kRma)/ik' }-L.

Further, it isinstructive to consider this result under conditions of ahigh (large De + dV -
E) and thick (large d) barrier. In such a case, the "tunnelling factor" exp(-k'd) will be very
small compared to its counterpart exp(k' d), and so

AD = 41KK
ik'

- eXp(-ik'(Rmax*+d)) exp(-k' d) { k'sin(kRmax)+kcos(kRmax) }-1

The exp(-k'd) factor in A/D causes the magnitude of the wavefunction inside the barrier to
be small in most circumstances; we say that incident flux must tunnel through the barrier to

reach the inner region and that exp(-k' d) gives the probability of thistunnelling. The

magnitude of the A/D factor could become large if the collision energy E is such that
k'sin(kRmax)+kcos(kRmax)

issmall. In fact, if

tan(KRmax) = - k/K'

this denominator factor in A/D will vanish and A/D will become infinite. Note that the
above condition is smilar to the energy quantization condition

tan(KRmax) = - k/K

that arose when bound states of afinite potential well were examined earlier in this Chapter.
Thereis, however, an important difference. In the bound-state situation

k= \/2n‘|3h2

and
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k = \[2M(De - E)/h2 :

in this shape-resonance case, k is the same, but

k'= \2m(De +aV - E)/A2 )
rather than k occurs, so the two tan(kRmax) equations are not identical.

However, in the case of avery high barrier (so that k' is much larger than k), the
denominator

k'sin(KRmax)+kcos(kRmax) @K' sin(kRmax)
in A/D can become small if

sin(kRmax) @0.

This condition is nothing but the energy quantization condition that would occur for the
particle-in-a-box potential shown below.
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V(R)

0.0

Rmax

Interatomic Distance R >

This potential isidentical to the true effective potential for 0£ R £ Rmax , but extends to
infinity beyond Rmax ; the barrier and the dissociation asymptote displayed by the true
potential are absent.

In summary, when abarrier is present on a potential energy surface, at energies
above the dissociation asymptote De but below the top of the barrier (De + dV here), one
can expect shape-resonance statesto occur at "special” scattering energies E. These so-
called resonance energies can often be approximated by the bound-state energies of a
potential that isidentical to the potential of interest intheinner region (0 £ R £ Ryax here)
but that extends to infinity beyond the top of the barrier (i.e., beyond the barrier, it does not
fall back to values below E).

The chemical significance of shape resonances is great. Highly rotationally excited
molecules may have more than enough total energy to dissociate (Dg), but this energy may
be "stored" in the rotational motion, and the vibrational energy may be lessthan De. In
terms of the above model, high angular momentum may produce asignificant barrier in the
effective potential, but the system's vibrational energy may lie significantly below De In
such a case, and when viewed in terms of motion on an angular momentum modified
effective potential, the lifetime of the molecule with respect to dissociation is determined by
the rate of tunnelling through the barrier.
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For the case at hand, one speaks of "rotational predissociation” of the molecule.
Thelifetimet can be estimated by computing the frequency n a which flux existing inside
Rmax strikes the barrier at Rmax

n= hk (sec)
2mMRmax

and then multiplying by the probability P that flux tunnels through the barrier from Ryax to
Rmax + d:

P =exp(-2k'd).

The result isthat

t 1= hk

2 max

exp(-2k" d)

with the energy E entering into k and k' being determined by the resonance condition:
(k'sin(kRmax)+kcos(kRmax)) = minimum.

Although the exampl es treated above involved piecewise constant potentials (so the
Schrédinger equation and the boundary matching conditions could be solved exactly),
many of the characteristics observed carry over to more chemically realistic Situations. As
discussed, for example, in Energetic Principles of Chemical Reactions, J. Simons, Jones
and Bartlett, Portola Valley, Calif. (1983), one can often model chemical reaction processes
in terms of:

(i) motion along a "reaction coordinate” (s) froma region characteristic of reactant
materials where the potential surfaceis positively curved in all direction and all forces (i.e.,
gradients of the potential along all internal coordinates) vanish,

(i) to a trangtion state at which the potential surface's curvature along sis negative
while all other curvatures are positive and all forces vanish,

(iii) onward to product materials where again all curvatures are positive and all
forces vanish.
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Within such a "reaction path™ point of view, motion transverse to the reaction coordinate s
is often modelled in terms of local harmonic motion although more sophisticated treatments
of the dynamicsis possible. In any event, this picture leads one to consider motion along a
single degree of freedom (s), with respect to which much of the above treatment can be
carried over, coupled to transverse motion along all other internal degrees of freedom
taking place under an entirely positively curved potential (which therefore produces
restoring forces to movement away from the "streambed” traced out by the reaction path s).

[1. Multichannel Problems

When excited electronic states are involved, couplings between two or more
electronic surfaces may arise. Dynamics occuring on an excited-state surface may evolvein
away that produces flux on another surface. For example, collisions between an
electronically excited 1s2s (3S) He atom and a ground-state 1s? (1S) He atom occur on a

potentia energy surface that isrepulsive at large R (due to the repulsive interaction between
the closed-shell 1s? He and the large 2s orbital) but attractive at smaller R (dueto the s2s*1

orbital occupancy arising from the three 1s-derived electrons). The ground-state potential

energy surface for this system (pertaining to two 1s? (1S) He atomsis repulsive at small R
values (because of the s2s*2 nature of the electronic state). In this case, there are two

Born-Oppenheimer electronic-nuclear motion states that are degenerate and thus need to be
combined to achieve a proper description of the dynamics:

Y 1= |SZS*2| Ygrnd(qu!f)

pertaining to the ground electronic state and the scattering state Y grng, on this energy
surface, and

Y2=Is2s*12sY Y & (R.0,f)

pertaining to the excited electronic state and the nuclear-motion state Y e, on this energy
surface. Both of these wavefunctions can have the same energy E; the former has high
nuclear-motion energy and low e ectronic energy, while the latter has higher electronic
energy and lower nuclear-motion energy.
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A ssmple mode that can be used to illustrate the two-state couplingsthat arise in
such casesis introduced through the two one-dimensional piecewise potential surfaces

shown below.
De
V(R)
0.0
E Rmax
N 1
Interatomic Distance R »>
The dashed energy surface
V(R)=-D (for O£ R<¥)

provides a smple representation of arepulsive lower-energy surface, and the solid-line plot
represents the excited-state surface that has awell of depth De and whose well lies D above
the ground-state surface.

In this case, and for energies lying above zero (for E < 0, only nuclear motion on
the lower energy dashed surfaceis"open” (i.e., accessible)) yet below Deg, the nuclear-
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motion wavefunction can have amplitudes belonging to both surfaces. That is, the total
(electronic and nuclear) wavefunction consists of two portions that can be written as:

Y =Af ankR) +f" A" sin(k"R) (for O£ R£ Rmax)
and

Y =Af sin(kRmax) exp(kRmax) exp(-kR) + " A" sin(k"R)

(for Rmax E R<¥ ),

wheref and f " denote the electronic functions belonging to the upper and lower energy
surfaces, respectively. The wavenumbers k and k™ are defined as:

k =\ 2nE/R2

k" = \/2m(E + D)2

and k is as before

k = \[27(De- E)/h2 .

For the lower-energy surface, only the sin(k"R) function is allowed because the cos(k"R)
function does not vanish at R = 0.

A. The Coupled Channel Equations

In such cases, the relative amplitudes (A and A") of the nuclear motion
wavefunctions on each surface must be determined by substituting the above "two-channel”

wavefunction ( the word channel is used to denote separate asymptotic states of the system;
in this case, thef and f" electronic states) into the full Schrédinger equation. In Chapter 3,
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the couplings among Born-Oppenheimer states were so treated and resulted in the
following equation:

[ER)-B)X (R +TX|(R)]=-Si{ <Yj[T[Yi>(R)Xi(R)
+Sa=1M (- B%ma) < Y [Na| Yi>(R) - NaXi(R) }
where E(R) and X;(R) denote the electronic energy surfaces and nuclear-motion
wavefunctions, Y j denote the corresponding electronic wavefunctions, and the Na
represent derivatives with respect to the various coordinates of the nuclei.  Changing to

the notation used in the one-dimensional model problem introduced above, these so-called
coupled-channel equationsread:

[(-D - E) - h22md2/dR2 ] A"sin(k"R)
= - {<f"| - h2/2md2/dR2f "> A"sin(k"R)

+ (- h2im) <f"|d/dRf > d/dR A sin(kR)}  (for 0 £ R £ Rmay),

[(-D - E) - h2/2md2/dR2 ] A"sin(k"R)
= - {<f"|- hZ2md2/dR2f "> A"sin(k"R)
+ (-h2/m) <f"|d/dR|f > d/dR A f sin(kRmax) exp(k Rmax) exp(-KR) }
(for Rmax E R< ¥ );
when the index | refers to the ground-state surface (V(R) =-D, for 0<R <¥), and
[(O - E) - h2/2md2/dR? ] Asin(kR) = - {<f | - h%/2md2/dR2ff > Asin(kR)

+ (- h2/m) <f |/dRIf > d/dR A" sin(k"R) } (for 0 £ R £ Rma),

[(De- E) - h2/2md2/dR2 ] Asin(kRmax) exp(k Rmax) EXp(-KR)
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= - {<f |- h2/2md2/dR2ff > ASin(kRmax) eXp(K Rmax) exp(-KR)
+ (- h2/m) <f |/ARf > d/dR A"sin(k"R) } (for Rmax £ R< ¥ )

when the index | refersto the excited-state surface (where V(R) =0, for 0< R £ Rmax and
V(R) = Defor Rmax £ R< ¥ ).

Clearly, if the right-hand sides of the above equations are ignored, one simply
recaptures the Schrédinger equations describing motion on the separate potential energy
surfaces:

[(-D - E) - h22md2/dR2 ] A"sin(k"R) = 0 (for 0£ R £ Rmay),

[(-D - E) - h22md2/dR2 ] A"sin(k"R) = 0 (for Rmax £ R< ¥ );

that describe motion on the lower-energy surface, and

[(0- E) - h22md2/dR2] Asin(kR) = 0 (for 0£ R £ Rmay),

[(De- E) - h2/2md2/dR? | Asin(kRmax) eXp(k Rmax) exp(-kR) = 0
(for Rmax E R<¥)

describing motion on the upper surface on which the bonding interaction occurs. The terms
on the right-hand sides provide the couplings that cause the true solutions to the
Schrédinger equation to be combinations of solutions for the two separate surfaces.

In applications of the coupled-channel approach illustrated above, coupled sets of
second order differential equations (two in the above example) are solved by starting with a
specified flux in one of the channels and a chosen energy E. For example, one might
specify the amplitude A to be unity to represent preparation of the system in a bound
vibrational level (with E < Dg) of the excited e ectronic-state potential. One would then
choose E to be one of the eigenenergies of that potential. Propagation methods could be
used to solve the coupled differential equations subject to these choices of E and A. The
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result would be the determination of the amplitude A" of the wavefunction on the ground-
state surface. Theratio A'/A provides a measure of the strength of coupling between the
two Born-Oppenheimer states.

B. Perturbative Treatment

Alternatively, one can treat the coupling between the two states viatime dependent
perturbation theory. For example, by taking A = 1.0 and choosing E to be one of the
eigenenergies of the excited-state potential, one is specifying that the system isinitially (just
prior tot = 0) prepared in a state whose wavefunction is.

Y Og = f sin(kR) (for 0£ R£ Ryax)

Y Og = Sin(KRmax) eXp(KRmax) eXp(-KR) (for Rmax £ R< ¥ ).
From t = 0 on, the coupling to the other state

Y Oyrng= ' sin(k'R) (for O£ R<¥)

isinduced by the "perturbation” embodied in the terms on the right-hand side of the
coupled-channel equations.

Within this time dependent perturbation theory framework, the rate of transition of
probability amplitude from theinitially prepared state (on the excited state surface) to the
ground-state surface is proportional to the square of the perturbation matrix elements
between these two states:

Rmax
Ratea | ésin(kR) <f|d/dRJf "> (d/dRsin(k"R))dR
0

¥
+ Bsin(kRmax) exp(KRmax) exp(-kR) <f |d/dR]f ">(d/dR sin(k"R))dR |2
Rmax

The matrix elements occurring here contain two distinct parts:
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<f |/dR]f **>

has to do with the el ectronic state couplings that are induced by radial movement of the
nuclei; and both

sin(kR) d/dRsin(k"R)

and

sin(kRmax) eXp(kRmax) exp(-kR) d/dR sin(k"R)

relate to couplings between the two nuclear-motion wavefunctions induced by these same
radial motions. For atransition to occur, both the electronic and nuclear-motion states must
undergo changes. Theinitially prepared state (the bound state on the upper electronic
surface) has high electronic and low nuclear-motion energy, while the state to which
transitions may occur (the scattering state on the lower electronic surface) has low electronic
energy and higher nuclear-motion energy.

Of course, in the above example, the integrals over R can be carried out if the
electronic matrix e ements <f |d/dR|f "> can be handled. In practical chemical applications
(for an introductory treatment see Energetic Principles of Chemical Reactions, J. Simons,
Jones and Bartlett, Portola Valey, Calif. (1983)), the evaluation of these electronic matrix
elementsis aformidable task that often requires computation intensive techniques such as
those discussed in Section 6.

Even when the electronic coupling elements are available (or are modelled or

parameterized in some reasonable manner), the solution of the coupled-channel equations
that govern the nuclear motion is a demanding task. For the purposes of thistext, it suffices
to note that:

(i) couplings between motion on two or more electronic states can and do occur;
(i) these couplings are essential to treat whenever the electronic energy difference
(i.e., the spacing between pairs of Born-Oppenheimer potential surfaces) issmall (i.e.,

comparableto vibrational or rotational energy level spacings);

(iii) there exists arigorous theoretical framework in terms of which one can evaluate
the rates of so-called radiationless transitions between pairs of such electronic,
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vibrational, rotational states. Expressions for such transitions involve (a) electronic matrix
elements <f |d/dR|f "> that depend on how strongly the electronic states are modul ated by
movement (hence the d/dR) of the nuclei, and (b) nuclear-motion integrals connecting the
initial and final nuclear-motion wavefunctions, which also contain d/dR because they
describe the "recoil” of the nuclel induced by the electronic transition.

C. Chemica Rdevance

As presented above, the most obvious situation of multichannel dynamics arises
when electronically excited molecules undergo radiationless relaxation (e.g., interna
conversion when the spin symmetry of the two states is the same or intersystem crossing
when the two states differ in spin symmetry). These subjects are treated in some detail in the
text Energetic Principles of Chemical Reactions, J. Simons, Jones and Bartlett, Portola
Valley, Calif. (1983)) where radiationless transitions arising in photochemistry and
polyatomic molecule reactivity are discussed.

Let us consider an example involving the chemical reactivity of electronically
excited akaline earth or d10s2 transition metal atoms with H molecules. The particular case
for Cd* + Ho ® CdH + H has been studied experimentally and theoretically. In such
systems, the potential energy surface connecting to ground-state Cd (1S) + H, becomes

highly repulsive as the collision partners approach (see the depiction provided in the Figure
shown below). The three surfaces that correlate with the Cd (1P) + H» species prepared by
photo-excitation of Cd (1S) behave quite differently as functions of the Cd-to-H distance
because in each the singly occupied 6p orbital assumes a different orientation relative to the
H2> molecule's bond axis. For (near) Coy orientations, these states are labeled 1B, , 1B1,
and 1A4; they have the 6p orbital directed as shown in the second Figure, respectively. The
corresponding triplet surfaces that derive from Cd (3P) + H behave, as functions of the
Cd-to-H» distance (R) in ssimilar manner, except they are shifted to lower energy because
Cd (3P) liesbelow Cd (1P) by ca. 37 kcal/mol.

Collisions between Cd (1P) and H» can occur on any of the three surfaces
mentioned above. Flus on the 1A; surface is primarily reflected (at low collision energies
characteristic of the thermal experiments) because this surfaceis quite repulsive at large R.
Flux on the 1B, surface can proceed in to quite small R (ca. 2.4 A ) before repulsive forces
on this surface reflect it. At geometries near R = 2.0A and ryy = 0.88 A, the highly
repulsive3A; surface intersects this 1B surface from below. At and near thisintersection,
acombination of spin-orbit coupling (whichislarge for Cd) and non-adiabatic coupling
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may induce flux to evolve onto the 3A; surface, after which fragmentation to Cd (3P) + H»
could occur.

In contrast, flux on the 1B, surface propogatesinward under attractive forcesto R
=2.25A and ryn = 0.79 A where it may evolve onto the 3A; surface which intersects from
below. At and near this intersection, a combination of spin-orbit coupling (whichislarge
for Cd) and non-adiabatic coupling may induce flux to evolve onto the 3A1 surface, after
which fragmentation to Cd (3P) + H2 could occur. Flux that continues to propogate inward
to smaller R values experiences even stronger attractive forces that lead, near R = 1.69 A
and ryH = 1.54 A, to an intersection with the 1A surface that connectsto Cd (1S) + Ho.
Here, non-adiabatic couplings may cause flux to evolve onto the 1A1 surface which may
then lead to formation of ground state Cd (1S) + H or Cd (1S) + H + H, both of which are
energetically possible. Processes in which electronically excited atoms produce ground-
state atoms through such collisions and surface hopping are termed "electronic quenching”.

The nature of the non-adiabatic couplings that arise in the two examples given
above are quite different. In the former case, when the 1B1 and 3A; surfaces arein close
proximity to one another, the first-order coupling element:

<Y (1B1) INj Y (3Ay)>

is non-zero only for nuclear motions (i.e., N j ) of bixas = b1 symmetry. For the CdH>
collision complex being considered in (or near) Cp, symmetry, such a motion corresponds

to rotational motion of the nuclel about an axislying parallel to the H-H bond axis. In
contrast, to couple the 3A; and 1B, electronic states through an element of the form

<Y (1BY) INj Y (Ap)>,

the motion must be of boxap = by symmetry. This movement corresponds to asymmetric
vibrational motion of the two Cd-H interatomic coordinates.

Theimplications of these observations are clear. For example, in so-called half-
collision experiments in which avan der Waals CdH2 complex is probed, internal rotational
motion would be expected to enhance 1B1 ® 3A; quenching, whereas asymmetric
vibrational motion should enhancethe 1B, ® 3A; process.

Moreover, the production of ground-state Cd (1S) +H» vialBy, ® 1A, surface
hopping (near R = 1.69 A and rqy = 1.54 A) should also be enhanced by asymmetric
vibrational excitation. The 1B, and 1A1 surfaces also provide, through their non-adiabatic
couplings, a"gateway" to formation of the asymmetric bond cleavage products CdH (2S) +
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H. It can be shown that the curvature (i.e., second energy derivative) of a potential energy
surface consists of two parts: (i) one part that in always positive, and (ii) a second that can
be represented in terms of the non-adiabatic coupling elements between the two surfaces
and the energy gap DE between the two surfaces. Applied to the two states at hand, this
second contributor to the curvature of the 1B, surface is:

<Y (1B2) | Nj |Y (tAp)> |2
E(1By) - E(1A1) '

Clearly, when the 1A; state is higher in energy but strongly non-adiabatically coupled to the
1B, state, negative curvature along the asymmetric by vibrational mode is expected for the
1B, state. When the 1A1 stateis lower in energy, negative curvature along the by

vibrational mode is expected for the 1A; state (because the above expression also expresses
the curvature of the 1A; state).

Therefore, in the region of close-approach of these two states, state-to-state surface
hopping can be facile. Moreover, one of the two states (the lower lying at each geometry)
will likely possess negative curvature along the by vibrational mode. It isthis negative
curvature that causes movement away from Cp, symmetry to occur spontaneously, thus
leading to the CdH (2S) + H reaction products.
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CdH (B%S) + H—»163
CdH (A®P) + H-» 157 Cd (*P) + H,

1254~

Cd (1S) +2H—> 110

CdH (X?S)+ H—» 92 88<—Cd (°P) + H,

E in kcal/mol

HCdH ('S,") —» 24

0<—Cd (!S) + H,

O
O

b, overlap b, overlap a; overlap
of Cd 6p orbital of Cd 6p orbital of Cd 6p orbital
and Hsg4 orbital and Hsg4 orbital and Hsg4 orbital

Coupled-state dynamics can also be used to describe situations in which vibrational
rather than electronic-state transitions occur. For example, when van der Waals complexes
such as HCI---Ar undergo so-called vibrational predissociation, one thinks in terms of
movement of the Ar atom relative to the center of mass of the HCl molecule playing the role
of the R coordinate above, and the vibrational state of HCl as playing the role of the
guantized (electronic) state in the above example.
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In such cases, avibrationally excited HCI molecule (e.g., inv = 1) to which an Ar
atom is attached viaweak van der Waals attraction transfersits vibrational energy to the Ar
atom, subsequently dropping to alower (e.g., v = 0) vibrational level. Within the two-
coupled-state model introduced above, the upper energy surface pertainsto Ar in abound
vibrational level (having dissociation energy Dg) with HCI in an excited vibrationa state (D
being thev =0to v = 1 vibrationa energy gap), and the lower surface describes an Ar atom
that is free from the HCl molecule that isitself initsv = 0 vibrationa state. In this case, the
coordinate R is the Ar-to-HCI distance.

In analogy with the electronic-nuclear coupling example discussed earlier, the rate of
transition from HCI (v=1) bound to Ar to HCI(v=0) plus afree Ar atom depends on the
strength of coupling between the Ar---HCI relative motion coordinate (R) and the HCI
internal vibrationa coordinate. The <f |d/dR|f "> coupling elementsin this case are integrals
over the HCI vibrational coordinate x involvingthev =0 (f) andv =1 (f ") vibrational
functions. Theintegrals over the R coordinate in the earlier expression for the rate of
radiationless transitions now involve integration over the distance R between the Ar atom
and the center of mass of the HCI molecule.

This completes our discussion of dynamical processes in which more than one
Born-Oppenheimer state isinvolved. There are many situations in molecular spectroscopy
and chemical dynamics where consideration of such coupled-state dynamicsis essential.
These cases are characterized by

(i) total energies E which may be partitioned in two or more ways among the internal
degrees of freedom (e.g., € ectronic and nuclear motion or vibrational and ad-atomin the

above examples),

(i) Born-Oppenheimer potentials that differ in energy by a small amount (so that
energy transfer fromthe other degree(s) of freedomisfacile).

[11. Classical Treatment of Nuclear Motion

For al but very elementary chemical reactions (e.g., D+ HH® HD+Hor F +
HH ® FH + H) or scattering processes (e.g., CO (v,J) + He® CO (v',J) + He), the
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above fully quantal coupled channel equations ssmply can not be solved even when modern
supercomputers are employed. Fortunately, the Schrodinger equation can be replaced by a
simple classical mechanics treatment of nuclear motions under certain circumstances.

For motion of aparticle of mass malong adirection R, the primary condition under

which aclassical treatment of nuclear motion isvalid
| 1 (dp
— = |5 | <<1
4p P |dR

relates to the fractional change in the local momentum defined as:

p="\2mE - Ej(R))

along R within the 3N - 5 or 3N - 6 dimensional internal coordinate space of the molecule,
aswell asto the local de Broglie wavelength

2ph

Ipl

d
Theinverse of the quantity F_l) |d_lg | can be thought of as the length over which the

momentum changes by 100%. The above condition then states that the local de Broglie
wavelength must be short with respect to the distance over which the potential changes
appreciably. Clearly, whenever oneis dealing with heavy nucle that are moving fast (so |p|
islarge), one should anticipate that the local de Broglie wavelength of those particles may
be short enough to meet the above criteriafor classical treatment.

It has been determined that for potentials characteristic of typical chemical bonding
(whose depths and dynamic range of interatomic distances are well known), and for all but
low-energy motions (e.g., zero-point vibrations) of light particles such as Hydrogen and
Deuterium nuclei or electrons, the local de Broglie wavelengths are often short enough for
the above condition to be met (because of the large masses mof non-Hydrogenic species)
except when their velocities approach zero (e.g., near classical turning points). It is
therefore common to treat the nuclear-motion dynamics of molecules that do not contain H
or D atomsin a purely classica manner, and to apply so-called semi-classical corrections
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near classical turning points. The motions of H and D atomic centers usually require
guantal treatment except when their kinetic energies are quite high.

A. Classical Trajectories

To apply classical mechanics to the treatment of nuclear-motion dynamics, one
solves Newtonian equations

d2 Xk _ g
dt2 - dXk

Mi

where X denotes one of the 3N cartesian coordinates of the atomic centersin the molecule,

Mk is the mass of the atom associated with this coordinate, and g—xt isthe derivative of the

potential, which is the electronic energy E;j(R), dong the kth coordinate's direction. Starting
with coordinates { Xk(0)} and corresponding momenta{ Px(0)} at someinitial timet=0,

. . d . .
and given the ability to compute the force - d—)I(ELk at any location of the nuclei, the Newton

equations can be solved (usually on acomputer) using finite-difference methods:

Xk(t+dt) = X(t) + Py(t) dt/my
P(t+dlt) = P(t) g—ft ® dt.

In so doing, one generates a sequence of coordinates { Xk(tn)} and momenta
{Px(tn)}, one for each "time step"” t,,. The histories of these coordinates and momenta as
functions of time are called "classical trajectories". Following them from early times,
characteristic of the molecule(s) at "reactant” geometries, through to late times, perhaps
characteristic of "product” geometries, allows one to monitor and predict the fate of the time
evolution of the nuclear dynamics. Even for large molecules with many atomic centers,
propagation of such classical trgjectoriesis feasible on modern computersif the forces -

d—)I(ELk can be computed in a manner that does not consume inordinate amounts of computer

time.

In Section 6, methods by which such force calculations are performed using first-
principles quantum mechanical methods (i.e., so-called ab initio methods) are discussed.
Suffice it to say that these calculations are often the rate limiting step in carrying out
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classical trgjectory smulations of molecular dynamics. The large effort involved in the ab
initio determination of electronic energies and their gradients - dd_)lft motivate one to

consider using empirical "forcefield” functions Vj(R) in place of the ab initio electronic
energy (R). Such model potentials Vj(R), are usually constructed in terms of easy to
compute and to differentiate functions of the interatomic distances and valence angles that
appear in the molecule. The parameters that appear in the attractive and repulsive parts of
these potentials are usually chosen so the potentia is consistent with certain experimenta
data (e.g., bond dissociation energies, bond lengths, vibrational energies, torsion energy
barriers).

For alarge polyatomic molecule, the potential function V usualy contains several
distinct contributions:

V =Vpond*+ Vbend + VvandeWads + Vitorsion + Vdectrostatic:

Here Vpond gives the dependence of V on stretching displacements of the bonds
(i.e., interatomic distances between pairs of bonded atoms) and is usually modeled asa
harmonic or Morse function for each bond in the molecule:

Vbond = O3 12 kj (Ry -Reg,)?
or

Viond = Oj De,j (1-exp(-ax(R; -Req,D))?

where the index J labels the bonds and the k3, a3 and Reg,g are the force constant and

equilibrium bond length parameters for the Jh bond.
Vpend describes the bending potentias for each triplet of atoms (ABC) that are

bonded in a A-B-C manner; it is usually modeled in terms of a harmonic potential for each
such bend:

Vbend = O3 /2 k93 (4 -GeqJ? -

The geg,yand k9, are the equilibrium angles and force constants for the Jhangle.
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VvanderWads represents the van der Waals interactions between al pairs of atoms
that are not bonded to one another. It is usually written as asum over al pairs of such
atoms (labeled J and K) of a Lennard-Jones 6,12 potential:

Vyandewads= OxK [a1k (R3k)12- byk (Rik)©]

where g3k and by are parameters relating to the repulsive and dispersion attraction forces,
respectively for the Jh and Kth atoms.

Viorsion contributions describe the dependence of V on angles of rotation about
single bonds. For example, rotation of a CHz group around the single bond connecting the
carbon atom to another group may have an angle dependence of the form:

Viorsion = Vo (1 - cos(3q))

where q isthe torsion rotation angle, and Vg is the magnitude of the interaction between the
C-H bonds and the group on the atom bonded to carbon.

Vdectrostatic contains the interactions among polar bonds or other polar groups
(including any charged groups). It isusually written as a sum over pairs of atomic centers
(Jand K) of Coulombic interactions between fractional charges{Qj} (chosen to represent
the bond polarity) on these atoms:

Veleatrostatic = Dxk QiQk/ Ryk

Although the total potential V' as written above contains many components, each isa
relatively ssmple function of the Cartesian positions of the atomic centers. Therefore, itis
relatively straightforward to evaluate V and its gradient along all 3N Cartesian directionsin
acomputationally efficient manner. For this reason, the use of such empirical forcefieldsin
so-caled molecular mechanics simulations of classical dynamicsiswidely used for
treating large organic and biological molecules.

B. Initial Conditions
No single trgjectory can be used to simulate chemical reaction or collisions that

relate to realistic experiments. To generate classical trgjectoriesthat are characteristic of
particular experiments, one must choose many initial conditions (coordinates and momenta)
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the collection of which is representative of the experiment. For example, to use an
ensembl e of trgectoriesto smulate a molecular beam collision between H and Cl atoms at
acollision energy E, one must follow many classical tragjectories that have arange of
"impact parameters’ (b) from zero up to some maximum value byax beyond which the

H ----Cl interaction potential vanishes. The figure shown below describes the impact
parameter as the distance of closest approach that atrgjectory would have if no attractive or
repulsive forces were operative.

H atom

< 9,
T initial momentum

Impact vector
parameter

Cl atom

Moreover, if the energy resolution of the experiment makes it impossibleto fix the collision
energy closer than an amount dE, one must run collections of trajectories for values of E
lying within this range.

If, in contrast, one wishes to simulate thermal reaction rates, one needs to follow
trgjectories with various E values and various impact parametersb from initiation at t = 0 to
their conclusion (at which time the chemical outcomeisinterrogated). Each of these
trgjectories must have their outcome weighted by an amount proportional to a Boltzmann
factor exp(-E/RT), where R isthe ideal gas constant and T is the temperature because this
factor specifies the probability that a collision occurs with kinetic energy E.

Asthe complexity of the molecule under study increases, the number of parameters
needed to specify theinitial conditions also grows. For example, classical trgjectories that
relateto F + Ho ® HF + H need to be specified by providing (i) an impact parameter for
the F to the center of mass of Ho, (ii) the relative trandational energy of the F and Hy, (iii)
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the radial momentum and coordinate of the H, molecul€'s bond length, and (iv) the angular
momentum of the H, molecule aswell as the angle of the H-H bond axis relative to the line
connecting the F atom to the center of mass of the H2 molecule. Many such sets of initial
conditions must be chosen and the resultant classical trgjectories followed to generate an
ensemble of trgjectories pertinent to an experimental situation.

It should be clear that even the classical mechanical smulation of chemical
experiments involves considerable effort because no single trgjectory can represent the
experimental Situation. Many trgjectories, each with different initial conditions selected so
they represent, as an ensemble, the experimental conditions, must be followed and the
outcome of all such tragjectories must be averaged over the probability of realizing each
specificinitia condition.

C. Analyzing Final Conditions

Even after classical trgectories have been followed from t = O until the outcomes of
the collisions are clear, one needs to properly relate the fate of each trgjectory to the
experimental situation. For the F + H, ® HF + H example used above, one needs to
examine each trgjectory to determine, for example, (i) whether HF + H products are formed
or non-reactive collision to produce F + H has occurred, (ii) the amount of rotational
energy and angular momentum that is contained in the HF product molecule, (iii) the
amount of relative trandational energy that remainsin the H + FH products, and (iv) the
amount of vibrational energy that ends up in the HF product molecule.

Because classical rather than quantum mechanical equations are used to follow the
time evolution of the molecular system, there is no guarantee that the amount of energy or
angular momentum found in degrees of freedom for which these quantities should be
quantized will be so. For example, F+ Hy, ® HF + H trgectories may produce HF
molecules with internal vibrational energy that is not ahalf integral multiple of the
fundamental vibrational frequency w of the HF bond. Also, the rotational angular
momentum of the HF molecule may not fit the formula J (3+1) h2/(8p2l), where | isHF's
moment of inertia.

To connect such purely classical mechanical results more closely to the world of
guantized energy levels, amethod know as "binning” is often used. In this technique, one
assigns the outcome of aclassical trgjectory to the particular quantum state (e.g., toa
vibrational state v or arotational state J of the HF molecule in the above example) whose
guantum energy is closest to the classically determined energy. For the HF example at
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hand, the classical vibrational energy Eq vip is Smply used to define, as the closest integer,
avibrationa quantum number v according to:

, = (Edlvib)

hw

-1/2.

Likewise, arotational quantum number J can be assigned as the closest integer to that
determined by using the classical rotational energy Eg ot in the formula:

J=12{ (1+32p2Eq ror/n?) V2 -1}

which is the solution of the quadratic equation J (3+1) h2/8p2l = Eg rot. By following
many trajectories and assigning vibrationa and rotational quantum numbers to the product
molecules formed in each trgjectory, one can generate histograms giving the frequency with
which each product molecule quantum state is observed for the ensemble of trajectories
used to simulate the experiment of interest. In thisway, one can approximately extract
product-channel quantum state distributions from classical trgjectory simulations.

V. Wavepackets

In an attempt to combine the attributes and stregths of classical trajectories, which
allow usto "watch" the motions that molecules undergo, and quantum mechanical
wavefunctions, which are needed if interference phenomena are to be treated, a hybrid
approach is sometimes used. A popular and rather successful such point of view is
provided by so called coherent state wavepackets.

A quantum mechanical wavefunctiony (x| X, P) that isafunction of al pertinent
degrees of freedom (denoted collectively by x) and that depends on two sets of parameters
(denoted X and P, respectively) is defined as follows:

N

~

y (x| X, P) = O (2p<Dxi>2)"V2exp{iPx/h - (Xk-XK)2/(4<Dxy>2)} .
k=1

Here, <Dxy>2 isthe uncertainty

<Dxi>2 = By (xk-X ) 2dx
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along the kth degree of freedom for this wavefunction, defined as the mean squared
displacement away from the average coordinate

Bly Pxydx = Xi.

So, the parameter Xy specifies the average value of the coordiate xk. In like fashion, it can
be shown that the parameter Py is equal to the average value of the momentum along the kth
coordinate:

By * (-ihT/Mxky Ydx = Py.
The uncertainty in the momentum aong each coordinate:
<Dpy>2 = By * (-infl/xk-Pi)2y dx

isgiven, for functions of the coherent state form, in terms of the coordinate uncertainty as
<Dpy>2 <Dxy>2 = h2/4.

Of course, the general Helsenberg uncertainty condition
<Dpy>2 <Dxx>23 h2/4

limits the coordinate and momentum uncertainty products for arbitrary wavefunctions. The
coherent state wave packet functions are those for which this uncertainty product is
minimum. In this sense, coherent state wave packets are seen to be as close to classical as
possible since in classical mechanics there are no limits placed on the resolution with which
one can observe coordinates and momenta.

These wavepacket functions are employed as follows in the most straightforward
treatements of combined quantal/classical mechanics:

1. Classical trgjectories are used, as discribed in greater detail above, to generate a
series of coordinates Xk(tn) and momenta Py(tn) at a sequence of times denoted {tn} .
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2. These classical coordinates and momenta are used to definea wavepacket
function as written above, whose Xk and Pk parameters are taken to be the coordinates and
momenta of the classical trgectory. In effect, the wavepacket moves around "riding" the
classical trgjectory's coordiates and momenta as time evolves.

3. At any time t,, the quantum mechanical properties of the system are computed by
forming the expectation values of the corresponding quantum operators for a wavepacket
wavefunction of the form given above with Xy and Pk given by the classical coordinates
and momenta a that time ty,.

Such wavepackets are, of course, simple approximations to the true quantum
mechanical functions of the system because they do not obey the Schrédinger equation
appropriate to the system. The should be expected to provide accurate representations to the
true wavefunctions for systemsthat are more classical in nature (i.e., when the local de
Broglie wave lengths are short compared to the range over which the potentials vary
appreciably). For species containing light particles (e.g., electrons or H atoms) or for low
kinetic energies, the local de Broglie wave lengths will not satisfy such criteria, and these
approaches can be expected to be less reliable. For further information about the use of
coherent state wavepackets in molecular dynamics and molecular spectroscopy, seeE. J.
Heller, Acc. Chem. Res. 14, 368 (1981).

This completes our treatment of the subjects of molecular dynamics and molecular
collisions. Neither its depth not its level was at the research level; rather, we intended to
provide the reader with an introduction to many of the theoretical concepts and methods that
arise when applying either the quantum Schrodinger equation or classical Newtonian
mechanics to chemical reaction dynamics. Essentially none of the experimental aspects of
this subject (e.g., molecular beam methods for preparing "cold" molecules, laser pump-
probe methods for preparing reagentsin specified quantum states and observing products
in such states) have been discussed. An excellent introduction to both the experimental and
theoretical foundations of modern chemical and collision dynamicsis provided by the text
Molecular Reaction Dynamics and Chemical Reactivity by R. D. Levine and R. B.
Bernstein, Oxford Univ. Press (1987).
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