
Section 5 Time Dependent Processes

Chapter 14

The interaction of a molecular species with electromagnetic fields can cause transitions to

occur among the available molecular energy levels (electronic, vibrational, rotational, and

nuclear spin). Collisions among molecular species likewise can cause transitions to occur.

Time-dependent perturbation theory and the methods of molecular dynamics can be

employed to treat such transitions.

I. The Perturbation Describing Interactions With Electromagnetic Radiation

The full N-electron non-relativistic Hamiltonian H discussed earlier in this text

involves the kinetic energies of the electrons and of the nuclei and the mutual coulombic

interactions among these particles

H = Σa=1,M ( - h2/2ma ) ∇a2 + Σ j  [ ( - h2/2me ) ∇j2 - Σa Zae2/rj,a ]

+ Σ j<k  e2/rj,k  + Σa < b  Za Zb e2/Ra,b.

When an electromagnetic field is present, this is not the correct Hamiltonian, but it can be

modified straightforwardly to obtain the proper H.

A. The Time-Dependent Vector A(r,t) Potential

The only changes required to achieve the Hamiltonian that describes the same

system in the presence of an electromagnetic field are to replace the momentum operators

Pa and pj  for the nuclei and electrons, respectively, by (Pa - Za e/c A(Ra,t)) and (pj - e/c

A(rj,t)). Here Za e is the charge on the ath nucleus, -e is the charge of the electron, and c is

the speed of light.

 The vector potential A depends on time t and on the spatial location r of the particle

in the following manner:

A(r,t) = 2 Ao cos (ωt - k•r).

The circular frequency of the radiation ω (radians per second) and the wave vector k (the

magnitude of k is |k| = 2π/λ, where λ is the wavelength of the light) control the temporal
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and spatial oscillations of the photons. The vector Ao characterizes the strength (through

the magnitude of Ao) of the field as well as the direction of the A potential; the direction of

propagation of the photons is given by the unit vector k/|k|. The factor of 2 in the definition

of A allows one to think of A0 as measuring the strength of both exp(i(ωt - k•r)) and exp(-

i(ωt - k•r)) components of the cos (ωt - k•r) function.

B. The Electric E(r,t) and Magnetic H(r,t) Fields

The electric E(r,t) and magnetic H(r,t) fields of the photons are expressed in terms

of the vector potential A as

E(r,t) = - 1/c ∂A/∂t = ω/c 2 Ao sin (ωt - k•r)

H(r,t) =  ∇ x A = k x Ao 2 sin (ωt - k•r).

The E field lies parallel to the Ao vector, and the H field is perpendicular to Ao; both are

perpendicular to the direction of propagation of the light k/|k|. E and H have the same

phase because they both vary with time and spatial location as

sin (ωt - k•r). The relative orientations of these vectors are shown below.

H

E

k

C. The Resulting Hamiltonian
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Replacing the nuclear and electronic momenta by the modifications shown above in

the kinetic energy terms of the full electronic and nuclear-motion hamiltonian results in the

following    additional    factors appearing in H:

Hint = Σ j { (ie h /mec) A(rj,t) • ∇j + (e2/2mec2) |A(rj,t )|2 }

+ Σa { (i Zae h /mac) A(Ra,t) • ∇a + (Za2e2/2mac2) |A(Ra,t )|2 }.

These so-called interaction perturbations Hint are what induces transitions among the

various electronic/vibrational/rotational states of a molecule. The one-electron additive

nature of Hint plays an important role in determining the kind of transitions that Hint can

induce. For example, it causes the most intense electronic transitions to involve excitation

of a single electron from one orbital to another (recall the Slater-Condon rules).

II. Time-Dependent Perturbation Theory

A. The Time-Dependent Schrödinger Equation

The mathematical machinery needed to compute the rates of transitions among

molecular states induced by such a time-dependent perturbation is contained in time-

dependent perturbation theory (TDPT). The development of this theory proceeds as

follows. One first assumes that one has in-hand    all    of the eigenfunctions {Φk} and

eigenvalues {Ek0} that characterize the Hamiltonian H0 of the molecule in the absence of

the external perturbation:

H0 Φk = Ek0 Φk.

One then writes the time-dependent Schrödinger equation

i h ∂Ψ/∂t = (H0 + Hint) Ψ

in which the full Hamiltonian is explicitly divided into a part that governs the system in the

absence of the radiation field and Hint which describes the interaction with the field.

B. Perturbative Solution

By treating H0 as of zeroth order (in the field strength |A0|), expanding Ψ order-by-

order in the field-strength parameter:
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Ψ = Ψ0 + Ψ1 + Ψ2 + Ψ3 + ...,

realizing that Hint contains terms that are both first- and second- order in |A0|

H1int = Σ j { (ie h /mec) A(rj,t) • ∇j  }

+ Σa { (i Zae h /mac) A(Ra,t) • ∇a },

H2int = Σ j { (e2/2mec2) |A(rj,t )|2 }

+ Σa {  (Za2e2/2mac2) |A(Ra,t )|2 },

and then collecting together all terms of like power of |A0|, one obtains the set of time-

dependent perturbation theory equations. The lowest order such equations read:

i h ∂Ψ0/∂t = H0 Ψ0

i h ∂Ψ1/∂t  = (H0 Ψ1+ H1int Ψ0)

i h ∂Ψ2/∂t  = (H0 Ψ2+ H2int Ψ0 + H1int Ψ1).

The zeroth order equations can easily be solved because H0 is independent of time.

Assuming that at t = - ∞, Ψ = ψi (we use the index i to denote the initial state), this solution

is:

Ψ0 = Φi exp(- i Ei0 t / h ).

The first-order correction to Ψ0, Ψ1  can be found by (i) expanding Ψ1 in the

complete set of zeroth-order states {Φf}:

Ψ1 = Σf Φf <Φf|Ψ1> = Σf Φf  Cf1,

(ii) using the fact that

H0 Φf  = Ef0 Φf,



5

and (iii) substituting all of this into the equation that Ψ1 obeys. The resultant equation for

the coefficients that appear in the first-order equation can be written as

i h ∂Cf1/∂t = Σk {Ek0 Ck1 δf,k }+ <Φf| H1int |Φi> exp(- i Ei0 t / h ),

or

i h ∂Cf1/∂t = Ef0 Cf1  + <Φf| H1int |Φi> exp(- i Ei0 t / h ).

Defining

Cf1 (t) = Df1(t) exp (- i Ef0 t / h ),

this equation can be cast in terms of an easy-to-solve equation for the Df1 coefficients:

i h ∂Df1/∂t = <Φf| H1int |Φi> exp( i [Ef0- Ei0 ] t / h ).

Assuming that the electromagnetic field A(r,t) is turned on at t=0, and remains on

until t = T, this equation for Df1 can be integrated to yield:

Df1(t) = (i h)-1 ⌡⌠
0

T

 < Φf|  H1int |Φi> exp( i [Ef0- E i0 ]  t '  /  h  )  dt '  .

C. Application to Electromagnetic Perturbations

1. First-Order Fermi-Wentzel "Golden Rule"

Using the earlier expressions for H1int and for A(r,t)

H1int = Σ j { (ie h /mec) A(rj,t) • ∇j  }

+ Σa { (i Zae h /mac) A(Ra,t) • ∇a }

and
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2 Ao cos (ωt - k•r) = Ao { exp [i (ωt - k•r)] + exp [ -i (ωt - k•r)] },

it is relatively straightforward to carry out the above time integration to achieve a final

expression for Df1(t), which can then be substituted into Cf1 (t) = Df1(t) exp (- i Ef0 t / h )

to obtain the final expression for the first-order estimate of the probability amplitude for the

molecule appearing in the state Φf exp(- i Ef0 t / h ) after being subjected to electromagnetic

radiation from t = 0 until t = T. This final expression reads:

Cf1(T) =  (i h)-1 exp (- i Ef0 T / h ) {<Φf | Σ j { (ie h /mec) exp [-ik•rj] A0 • ∇j

+ Σa (i Zae h /mac)  exp [-ik•Ra] A0 • ∇a  | Φi>}    
exp (i (ω +  ωf,i)  T) -  1

i(ω+ωf,i)
 

+ (i h)-1 exp (- i Ef0 T / h ) {<Φf | Σ j { (ie h /mec) exp [ik•rj]A0 • ∇j

+ Σa (i Zae h /mac)  exp [ik•Ra] A0 • ∇a  | Φi>}    
exp (i (-ω +  ωf,i)  T) -  1

i(-ω+ωf,i)
 ,

where

ωf,i = [Ef0- Ei0 ] / h

is the resonance frequency for the transition between "initial" state Φi and "final" state Φf.

Defining the time-independent parts of the above expression as

αf,i = <Φf | Σ j { (e /mec) exp [-ik•rj] A0 • ∇j

+ Σa ( Zae /mac)  exp [-ik•Ra] A0 • ∇a  | Φi>,

this result can be written as

Cf1(T) =  exp (- i Ef0 T / h ) { αf,i  
exp (i (ω +  ωf,i)  T) -  1

i(ω+ωf,i)
 

+ α∗f,i 
exp (-i (ω -  ωf,i)  T) -  1

-i(ω-ωf,i)
   } .
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The modulus squared  |Cf1(T)|2 gives the probability of finding the molecule in the final

state Φf  at time T, given that it was in Φi at time  t = 0. If the light's frequency ω is tuned

close to the transition frequency ωf,i of a particular transition, the term whose denominator

contains (ω - ωf,i) will dominate the term with (ω + ωf,i) in its denominator. Within this

"near-resonance" condition, the above probability reduces to:

|Cf1(T)|2 = 2 |αf,i|2  
(1 - cos((ω -  ωf,i)T))

(ω -  ωf,i)2
  

=   4 |αf,i|2  
sin2(1/2(ω -  ωf,i)T)

(ω -  ωf,i)2
   .

This is the final result of the first-order time-dependent perturbation theory treatment of

light-induced transitions between states Φi and Φf.

The so-called sinc- function

 
sin2(1/2(ω -  ωf,i)T)

(ω -  ωf,i)2
   

as shown in the figure below is strongly peaked near ω = ωf,i, and displays secondary

maxima (of decreasing amplitudes) near ω = ωf,i + 2 n π/T , n = 1, 2, ... . In the T → ∞
limit, this function becomes narrower and narrower, and the area under it

⌡

⌠

-∞

∞

 
sin2(1/2(ω -  ωf,i)T)

(ω -  ωf,i)2
 dω    = T/2

⌡

⌠

-∞

∞

 
sin2(1/2(ω -  ωf,i)T)

1/4T2(ω -  ωf,i)2
 dωT/2  

 = T/2
⌡

⌠

-∞

∞

 
sin2(x)

x2
 dx  = π T/2
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grows with T. Physically, this means that when the molecules are exposed to the light

source for long times (large T), the sinc function emphasizes ω values near ωf,i (i.e., the

on-resonance ω values). These properties of the sinc function will play important roles in

what follows.

In
te

n
si

ty

ω

In most experiments, light sources have a "spread" of frequencies associated with

them; that is, they provide photons of various frequencies. To characterize such sources, it

is common to introduce the spectral source function g(ω) dω which gives the probability

that the photons from this source have frequency somewhere between ω and ω+dω. For

narrow-band lasers, g(ω) is a sharply peaked function about some "nominal" frequency ωo;

broader band light sources have much broader g(ω) functions.

When such non-monochromatic light sources are used, it is necessary to average

the above formula for  |Cf1(T)|2 over the g(ω) dω probability function in computing the

probability of finding the molecule in state Φf after time T, given that it was in Φi up until t

= 0, when the light source was turned on. In particular, the proper expression becomes:

|Cf1(T)|2ave =  4 |αf,i|2 
⌡

⌠

g(ω)  
sin2(1/2(ω -  ωf,i)T)

(ω -  ωf,i)2
 dω  



9

=  2 |αf,i|2 T
⌡

⌠

-∞

∞

 g(ω)  
sin2(1/2(ω -  ωf,i)T)

1/4T2(ω -  ωf,i)2
 dωT/2  .

If the light-source function is "tuned" to peak near ω = ωf,i, and if g(ω) is much broader (in

ω-space) than the 
sin2(1/2(ω -  ωf,i)T)

(ω -  ωf,i)2
  function, g(ω) can be replaced by its value at the

peak of the 
sin2(1/2(ω -  ωf,i)T)

(ω -  ωf,i)2
  function, yielding:

|Cf1(T)|2ave  =  2 g(ωf,i) |αf,i|2 T
⌡

⌠

-∞

∞

  
sin2(1/2(ω -  ωf,i)T)

1/4T2(ω -  ωf,i)2
 dωT/2  

=  2 g(ωf,i) |αf,i|2 T
⌡

⌠

-∞

∞

  
sin2(x)

x2
 dx  = 2 π g(ωf,i) |αf,i|2 T.

The fact that the     probability     of excitation from Φi  to Φf grows linearly with the time

T over which the light source is turned on implies that the    rate    of transitions between these

two states is constant and given by:

Ri,f = 2 π g(ωf,i) |αf,i|2 ;

this is the so-called first-order Fermi-Wentzel "golden rule" expression for such

transition rates. It gives the rate as the square of a transition matrix element between the two

states involved, of the first order perturbation multiplied by the light source function g(ω)

evaluated at the transition frequency ωf,i.

2. Higher Order Results

Solution of the second-order time-dependent perturbation equations,

i h ∂Ψ2/∂t  = (H0 Ψ2+ H2int Ψ0 + H1int Ψ1)
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which will not be treated in detail here, gives rise to two distinct types of contributions to

the transition probabilities between Φi and Φf:

i. There will be matrix elements of the form

<Φf | Σ j { (e2/2mec2) |A(rj,t )|2 }+ Σa {  (Za2e2/2mac2) |A(Ra,t )|2 }|Φi>

arising when H2int couples Φi to Φf .

ii. There will be matrix elements of the form

Σk <Φf | Σ j { (ie h /mec) A(rj,t) • ∇j  }+ Σa { (i Zae h /mac) A(Ra,t) • ∇a } |Φk>

<Φk | Σ j { (ie h /mec) A(rj,t) • ∇j  }+ Σa { (i Zae h /mac) A(Ra,t) • ∇a } |Φi>

arising from expanding H1int Ψ1 = Σk Ck1 H1int|Φk> and using the earlier result for the

first-order amplitudes Ck1. Because both types of second-order terms vary quadratically

with the A(r,t) potential, and because A has time dependence of the form cos (ωt - k•r),

these terms contain portions that vary with time as cos(2ωt). As a result, transitions

between initial and final states Φi and Φf whose transition frequency is ωf,i can be induced

when 2ω = ωf,i; in this case, one speaks of coherent two-photon induced transitions in

which the electromagnetic field produces a perturbation that has twice the frequency of the

"nominal" light source frequency ω.

D. The "Long-Wavelength" Approximation

To make progress in further analyzing the first-order results obtained above, it is

useful to consider the wavelength λ of the light used in most visible/ultraviolet, infrared, or

microwave spectroscopic experiments. Even the shortest such wavelengths (ultraviolet) are

considerably longer than the spatial extent of all but the largest molecules (i.e., polymers

and biomolecules for which the approximations we introduce next are not appropriate).

In the definition of the essential coupling matrix element αf,i

αf,i = <Φf | Σ j  (e /mec) exp [-ik•rj] A0 • ∇j

+ Σa ( Zae /mac)  exp [-ik•Ra] A0 • ∇a  | Φi>,
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the factors exp [-ik•rj] and exp[-i k•Ra] can be expanded as:

exp [-ik•rj]   = 1 + (-ik•rj) + 1/2 (-ik•rj)2 + ...

exp[-i k•Ra] = 1 + (-i k•Ra) + 1/2 (-i k•Ra)2 + ...  .

Because |k| = 2π/λ, and the scales of rj and Ra are of the dimension of the molecule, k•rj

and k•Ra are less than unity in magnitude, within this so-called "long-wavelength"

approximation.

1. Electric Dipole Transitions

Introducing these expansions into the expression for αf,i gives rise to terms of

various powers in 1/λ. The lowest order terms are:

αf,i (E1)= <Φf | Σ j (e /mec) A0 • ∇j  + Σa ( Zae /mac) A0 • ∇a  | Φi>

and are called "electric dipole" terms, and are denoted E1. To see why these matrix

elements are termed E1, we use the following identity (see Chapter 1) between the

momentum operator - i  h ∇ and the corresponding position operator r:

∇j = - (me/ h2 ) [ H, rj ]

∇a = - (ma/ h2 ) [ H, Ra ].

This derives from the fact that H contains ∇j and ∇a in its kinetic energy operators (as ∇2a

and  ∇2j ).

Substituting these expressions into the above αf,i(E1) equation and using H Φi or f

= E0i or f Φi or f, one obtains:

αf,i (E1) = (E0f - E0i) A0 • <Φf | Σ j  (e /h2c) rj  + Σa ( Zae /h2c)  Ra  | Φi>

=  ωf,i  A0 • <Φf | Σ j  (e /hc) rj  + Σa ( Zae /hc)  Ra  | Φi>

=  (ωf,i /hc) A0 • <Φf | µ | Φi>,
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where µ is the electric dipole moment operator for the electrons and nuclei:

µ = Σ j  e  rj  + Σa  Za e   Ra .

The fact that the E1 approximation to αf,i contains matrix elements of the electric dipole

operator between the initial and final states makes it clear why this is called the electric

dipole contribution to αf,i; within the E1 notation,  the E stands for electric moment and the

1 stands for the first such moment (i.e., the dipole moment).

Within this approximation, the overall rate of transitions is given by:

Ri,f = 2 π g(ωf,i) |αf,i|2

= 2 π g(ωf,i) (ωf,i /hc)2 |A0 • <Φf | µ | Φi> |2.

Recalling that E(r,t) = - 1/c ∂A/∂t = ω/c Ao sin (ωt - k•r), the magnitude of A0 can be

replaced by that of E, and this rate expression becomes

Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2.

This expresses the widely used E1 approximation to the Fermi-Wentzel golden rule.

2. Magnetic Dipole and Electric Quadrupole Transitions

When E1 predictions for the rates of transitions between states vanish (e.g., for

symmetry reasons as discussed below), it is essential to examine higher order contributions

to αf,i. The next terms in the above long-wavelength expansion  vary as 1/λ and have the

form:

αf,i(E2+M1)  = <Φf | Σ j  (e /mec) [-ik•rj] A0 • ∇j

+ Σa ( Zae /mac) [-ik•Ra] A0 • ∇a  | Φi>.

For reasons soon to be shown, they are called electric quadrupole (E2) and magnetic dipole

(M1) terms. Clearly, higher and higher order terms can be so generated. Within the long-

wavelength regime, however, successive terms should decrease in magnitude because of

the successively higher powers of 1/λ that they contain.
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To further analyze the above E2 + M1 factors, let us label the propagation direction

of the light as the z-axis (the axis along which k lies) and the direction of A0 as the x-axis.

These axes are so-called "lab-fixed" axes because their orientation is determined by the

direction of the light source and the direction of polarization of the light source's E field,

both of which are specified by laboratory conditions. The molecule being subjected to this

light can be oriented at arbitrary angles relative to these lab axes.

With the x, y, and z axes so defined, the above expression for

αf,i (E2+M1) becomes

αf,i(E2+M1)  = - i (A02π/λ )<Φf | Σ j  (e /mec) zj ∂/∂xj

+ Σa ( Zae /mac) za∂/∂xa  | Φi>.

Now writing (for both zj and za)

z ∂/∂x = 1/2 (z ∂/∂x - x ∂/∂z + z ∂/∂x + x ∂/∂z),

and using

∇j = - (me/ h2 ) [ H, rj ]

∇a = - (ma/ h2 ) [ H, Ra ],

the contributions of 1/2 (z ∂/∂x + x ∂/∂z) to αf,i (E2+M1) can be rewritten as

αf,i(E2)  = - i 
(A0  e2π ωf,i)

cλh
  <Φf | Σ j  zj xj  + Σa Za zaxa  | Φi>.

The operator Σ i  zi xj  + Σa Za zaxa  that appears above is the z,x element of the electric

quadrupole moment operator Qz,x ; it is for this reason that this particular component is

labeled E2 and denoted the electric quadrupole contribution.

The remaining 1/2 (z ∂/∂x - x ∂/∂z) contribution to αf,i (E2+M1) can be rewritten in

a form that makes its content more clear by first noting that

1/2 (z ∂/∂x - x ∂/∂z)  = (i/2h) (z px - x pz) = (i/2h) Ly
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contains the y-component of the angular momentum operator. Hence, the following

contribution to αf,i (E2+M1) arises:

αf,i (M1) = 
A02π e

2λch 
   <Φf | Σ j Lyj /me + Σa  Za Lya /ma  | Φi>.

The magnetic dipole moment of the electrons about the y axis is

µy ,electrons = Σ j (e/2mec)  Lyj ;

that of the nuclei is

µy ,nuclei = Σa (Zae/2mac)  Lya.

The αf,i (M1) term thus describes the interaction of the magnetic dipole moments of the

electrons and nuclei with the magnetic field (of strength |H| = A0 k) of the light (which lies

along the y axis):

αf,i (M1) = 
|H| 
h    <Φf | µy ,electrons + µy ,nuclei  | Φi>.

The total rate of transitions from Φi  to Φf is given, through first-order in

perturbation theory, by

Ri,f = 2 π g(ωf,i) |αf,i|2,

where αf,i is a sum of its E1, E2, M1, etc. pieces. In the next chapter, molecular symmetry

will be shown to be of use in analyzing these various pieces. It should be kept in mind that

the contributions caused by E1 terms will dominate, within the long-wavelength

approximation, unless symmetry causes these terms to vanish. It is primarily under such

circumstances that consideration of M1 and E2 transitions is needed.

III. The Kinetics of Photon Absorption and Emission

A. The Phenomenological Rate Laws
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Before closing this chapter, it is important to emphasize the context in which the

transition rate expressions obtained here are most commonly used. The perturbative

approach used in the above development gives rise to various contributions to the overall

rate coefficient for transitions from an initial state Φi to a final state Φf; these contributions

include the electric dipole, magnetic dipole, and electric quadrupole first order terms as well

contributions arising from second (and higher) order terms in the perturbation solution.

In principle, once the rate expression

Ri,f = 2 π g(ωf,i) |αf,i|2

has been evaluated through some order in perturbation theory and including the dominant

electromagnetic interactions, one can make use of these    state-to-state rates   , which are

computed on a per-molecule basis, to describe the time evolution of the populations of the

various energy levels of the molecule under the influence of the light source's

electromagnetic fields.

For example, given two states, denoted i and f, between which transitions can be

induced by photons of frequency ωf,i, the following kinetic model is often used to describe

the time evolution of the numbers of molecules ni and nf in the respective states:

dni
dt   = - Ri,f ni + Rf,i nf

dnf
dt   = - Rf,i nf + Ri,fni .

Here, Ri,f and Rf,i are the rates (per molecule) of transitions for the i ==> f and

f ==> i transitions respectively. As noted above, these rates are proportional to the intensity

of the light source (i.e., the photon intensity) at the resonant frequency and to the square of

a matrix element connecting the respective states. This matrix element square is |αi,f|2 in the

former case and |αf,i|2 in the latter. Because the perturbation operator whose matrix

elements are αi,f and αf,i is Hermitian (this is true through all orders of perturbation theory

and for all terms in the long-wavelength expansion), these two quantities are complex

conjugates of one another, and, hence |αi,f|2 = |αf,i|2, from which it follows that  Ri,f = Rf,i

. This means that the state-to-state absorption and stimulated emission rate coefficients

(i.e., the rate per molecule undergoing the transition) are identical. This result is referred to

as the principle of microscopic reversibility.
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Quite often, the states between which transitions occur are members of    levels    that

contain more than a single state. For example, in rotational spectroscopy a transition

between a state in the J = 3 level of a diatomic molecule and a state in the J = 4 level involve

such states; the respective levels are 2J+1 = 7 and 2J+1 = 9 fold degenerate, respectively.

To extend the above kinetic model to this more general case in which degenerate

levels occur, one uses the number of molecules in each level (Ni and Nf for the two levels

in the above example) as the time dependent variables. The kinetic equations then

governing their time evolution can be obtained by summing the state-to-state equations over

all states in each level

Σi in level I (
dni
dt  ) = 

dNI
dt  

Σf in level F (
dnf
dt  ) = 

dNF
dt  

and realizing that each state within a given level can undergo transitions to all states within

the other level (hence the total rates of production and consumption must be summed over

all states to or from which transitions can occur). This generalization results in a set of rate

laws for the populations of the respective levels:

dNi
dt   = - gf Ri,f Ni + gi Rf,i Nf

dNf
dt   = - gi Rf,i Nf + gf Ri,fNi .

Here, gi and gf are the degeneracies of the two levels (i.e., the number of states in each

level) and the Ri,f and Rf,i, which are equal as described above, are the state-to-state rate

coefficients introduced earlier.

B. Spontaneous and Stimulated Emission

It turns out (the development of this concept is beyond the scope of this text) that

the rate at which an excited level can emit photons and decay to a lower energy level is

dependent on two factors: (i) the rate of stimulated photon emission as covered above,

and (ii) the rate of spontaneous photon emission.  The former rate gf Ri,f (per molecule)

is proportional to the light intensity g(ωf,i) at the resonance frequency. It is conventional to
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separate out this intensity factor by defining an intensity independent rate coefficient Bi,f for

this process as:

gf Ri,f = g(ωf,i) Bi,f.

Clearly, Bi,f  embodies the final-level degeneracy factor gf, the perturbation matrix

elements, and the 2π factor in the earlier expression for Ri,f. The spontaneous rate of

transition from the excited to the lower level is found to be    independent     of photon

intensity, because it deals with a process that does not  require collision with a photon to

occur, and is usually denoted Ai,f. The rate of photon-stimulated upward transitions from

state f to state i (gi Rf,i = gi Ri,f in the present case) is also proportional to g(ωf,i), so it is

written by convention as:

gi Rf,i = g(ωf,i) Bf,i .

An important relation between the Bi,f and Bf,i parameters exists and is based on the

identity Ri,f = Rf,i that connects the state-to-state rate coefficients:

(Bi,f)
(Bf,i)

  = 
(gfRi,f)
(giRf,i)

  = 
gf
gi

  .

This relationship will prove useful in the following sections.

C. Saturated Transitions and Transparency

Returning to the kinetic equations that govern the time evolution of the populations

of two levels connected by photon absorption and emission, and adding in the term needed

for spontaneous emission, one finds (with the initial level being of the lower energy):

dNi
dt   = -  gBi,f Ni + (Af,i + gBf,i)Nf

dNf
dt   = - (Af,i + gBf,i)Nf + gBi,f Ni

where g = g(ω) denotes the light intensity at the resonance frequency.
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At steady state, the populations of these two levels are given by setting
dNi
dt    = 

dNf
dt    = 0:

Nf
Ni

  = 
(gBi,f)

(Af,i+gBf,i)
  .

When the light source's intensity is so large as to render gBf,i >> Af,i (i.e., when the rate

of spontaneous emission is small compared to the stimulated rate), this population ratio

reaches (Bi,f/Bf,i), which was shown earlier to equal (gf/gi). In this case, one says that the

populations have been saturated by the intense light source. Any further increase in light

intensity will result in    zero     increase in the rate at which photons are being absorbed.

Transitions that have had their populations saturated by the application of intense light

sources are said to display optical transparency because they are unable to absorb (or

emit) any further photons because of their state of saturation.

D. Equilibrium and Relations Between A and B Coefficients

When the molecules in the two levels being discussed reach    equilibrium      (at which

time the 
dNi
dt    = 

dNf
dt    = 0 also holds) with a photon source that itself is in equilibrium

characterized by a temperature T, we must have:

Nf
Ni

   = 
gf
gi

  exp(-(Ef - Ei)/kT) =  
gf
gi

  exp(-h ω/kT)

where gf and gi are the degeneracies of the states labeled f and i. The photon source that is

characterized by an equilibrium temperature T is known as a black body radiator, whose

intensity profile g(ω) (in erg cm-3 sec) is know to be of the form:

g(ω) = 
2(hω)3

πc3h2
 (exp(hω/kT) - 1) -1.

Equating the kinetic result that must hold at equilibrium:

Nf
Ni

  = 
(gBi,f)

(Af,i+gBf,i)
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to the thermodynamic result:

Nf
Ni

   = 
gf
gi

  exp(-h ω/kT),

and using the above black body g(ω) expression and the identity

(Bi,f)
(Bf,i)

  = 
gf
gi

  ,

one can solve for the Af,i rate coefficient in terms of the Bf,i coefficient. Doing so yields:

Af,i = Bf,i 
2(hω)3

πc3h2  .

E. Summary

In summary, the so-called Einstein A and B rate coefficients connecting a

lower-energy initial state i and a final state f are related by the following conditions:

Bi,f = 
gf
gi

  Bf,i

and

Af,i = 
2(hω)3

πc3h2
  Bf,i.

These phenomenological level-to-level rate coefficients are related to the state-to-state Ri,f

coefficients derived by applying perturbation theory to the electromagnetic perturbation

through

gf Ri,f = g(ωf,i) Bi,f .

The A and B coefficients can be used in a kinetic equation model to follow the time

evolution of the populations of the corresponding levels:
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dNi
dt   = -  gBi,f Ni + (Af,i + gBf,i)Nf

dNf
dt   = - (Af,i + gBf,i)Nf + gBi,f Ni .

These equations possess steady state solutions

Nf
Ni

  = 
(gBi,f)

(Af,i+gBf,i)
  

which, for large g(ω), produce saturation conditions:

Nf
Ni

  = 
(Bi,f)
(Bf,i)

  = 
gf
gi

  .
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Chapter 15

The tools of time-dependent perturbation theory can be applied to transitions among

electronic, vibrational, and rotational states of molecules.

I. Rotational Transitions

Within the approximation that the electronic, vibrational, and rotational states of a

molecule can be treated as independent,  the total molecular wavefunction of the "initial"

state is a product

Φi = ψei χvi φri

of an electronic function ψei, a vibrational function χvi, and a rotational function φri. A

similar product expression holds for the "final" wavefunction Φf.

In microwave spectroscopy, the energy of the radiation lies in the range of fractions

of a cm-1 through several cm-1; such energies are adequate to excite rotational motions of

molecules but are not high enough to excite any but the weakest vibrations (e.g., those of

weakly bound Van der Waals complexes). In rotational transitions, the electronic and

vibrational states are thus left unchanged by the excitation process; hence ψei = ψef and χvi

= χvf.

Applying the first-order electric dipole transition rate expressions

Ri,f = 2 π g(ωf,i) |αf,i|2

obtained in Chapter 14 to this case requires that the E1 approximation

Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2

be examined in further detail. Specifically, the electric dipole matrix elements <Φf | µ | Φi>

with µ = Σ j  e  rj  + Σa  Za e   Ra must be analyzed for Φi and Φf being of the product form

shown above.

The integrations over the electronic coordinates contained in <Φf | µ | Φi>, as well

as the integrations over vibrational degrees of freedom yield "expectation values" of the

electric dipole moment operator because the electronic and vibrational components of Φi

and Φf are identical:
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<ψei | µ | ψei> = µ (R)

is the dipole moment of the initial electronic state (which is a function of the internal

geometrical degrees of freedom of the molecule, denoted R); and

<χvi | µ(R) | χvi> = µave

is the vibrationally averaged dipole moment for the particular vibrational state labeled χvi.

The vector  µave has components along various directions and can be viewed as a vector

"locked" to the molecule's internal coordinate axis (labeled a, b, c as below).

depends on
φ  and χ

θ

c

a

 b

Z 

X Y
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The rotational part of the <Φf | µ | Φi> integral is not of the expectation value form

because the initial rotational function φir is not the same as the final φfr. This integral has the

form:

<φir |  µave | φfr> = ⌡⌠(Y*L,M (θ,φ)   µave YL',M' (θ,φ) sinθ dθ dφ) 

for linear molecules whose initial and final rotational wavefunctions are YL,M and YL',M' ,

respectively, and

<φir |  µave | φfr> = 
2L + 1

8  π2
 

2L'  + 1

8  π2
  

 ⌡⌠(DL,M,K (θ,φ,χ)  µave D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) 

for spherical or symmetric top molecules (here, 
2L + 1

8  π2
   D*L,M,K (θ,φ,χ) are the

normalized rotational wavefunctions described in Chapter 13 and in Appendix G). The

angles θ, φ, and χ refer to how the molecule-fixed coordinate system is oriented with

respect to the space-fixed X, Y, Z axis system.

A. Linear Molecules

For linear molecules, the vibrationally averaged dipole moment  µave lies along the

molecular axis; hence its orientation in the lab-fixed coordinate system can be specified in

terms of the same angles (θ and φ) that are used to describe the rotational functions YL,M

(θ,φ). Therefore, the three components of the <φir |  µave | φfr> integral can be written as:

<φir |  µave | φfr>x  = µ ⌡⌠(Y*L,M (θ,φ) sinθ cosφ YL',M' (θ,φ) sinθ dθ dφ) 

<φir |  µave | φfr>y = µ ⌡⌠(Y*L,M (θ,φ) sinθ sinφ YL',M' (θ,φ) sinθ dθ dφ) 



24

<φir |  µave | φfr>z = µ ⌡⌠(Y*L,M (θ,φ) cosθ YL',M' (θ,φ) sinθ dθ dφ) ,

where µ is the magnitude of the averaged dipole moment. If the molecule has no

dipole moment, all of the above electric dipole integrals vanish and the intensity of E1

rotational transitions is zero.

The three E1 integrals can be further analyzed by noting that cosθ ∝ Y1,0 ; sinθ
cosφ ∝ Y1,1 + Y1,-1 ; and sinθ sinφ ∝ Y1,1 - Y1,-1 and using the angular momentum

coupling methods illustrated in Appendix G. In particular, the result given in that appendix:

 Dj, m, m' Dl, n, n'

= ΣJ,M,M' <J,M|j,m;l,n> <j,m'; l,n'|J,M'> DJ, M, M'

when multiplied by D*J,M,M' and integrated over sinθ dθ dφ dχ, yields:

⌡⌠(D*J,M,M' Dj ,  m, m' D l ,  n, n' sinθ dθ dφ dχ) 

=  
8π2

2J+1   <J,M|j,m;l,n> <j,m'; l,n'|J,M'>

= 8π2  




j   l   J

m n -M  




j   l   J

m'  n '  -M'  (-1) M+M'.

To use this result in the present linear-molecule case, we note that the DJ,M,K functions and

the YJ,M functions are related by:

YJ,M (θ,φ) = (2J+1)/4π  D*J,M,0 (θ,φ,χ).

The normalization factor is now (2J+1)/4π   rather than (2J+1)/8π2   because the YJ,M are

no longer functions of χ, and thus the need to integrate over 0 ≤ χ ≤ 2π disappears.

Likewise, the χ-dependence of D*J,M,K  disappears for K = 0.

We now use these identities in the three E1 integrals of the form

µ ⌡⌠(Y*L,M (θ,φ) Y1,m (θ,φ) YL',M' (θ,φ) sinθ dθ dφ) ,
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with m = 0 being the Z- axis integral, and the Y- and X- axis integrals being combinations

of the m = 1 and m = -1 results. Doing so yields:

µ ⌡⌠(Y*L,M (θ,φ) Y1,m (θ,φ) YL',M' (θ,φ) sinθ dθ dφ) 

= µ 
2L+1

4π
 
2L'+1

4π
 

3

4π
  ⌡⌠(DL,M,0 D*1,m,0 D*L',M',0 sinθ dθ dφ dχ/2π) .

The last factor of 1/2π is inserted to cancel out the integration over dχ that, because all K-

factors in the rotation matrices equal zero, trivially yields 2π. Now, using the result shown

above expressing the integral over three rotation matrices, these E1 integrals for the linear-

molecule case reduce to:

µ ⌡⌠(Y*L,M (θ,φ) Y1,m (θ,φ) YL',M' (θ,φ) sinθ dθ dφ) 

=  µ 
2L+1

4π
 
2L'+1

4π
 

3

4π
  
8π2

2π
  




L '   1   L

M' m -M  




L '   1   L

0 0 -0  (-1) M

=  µ (2L+1)(2L'+1) 
3

4π
    





L '   1   L

M' m -M  




L '   1   L

0 0 -0  (-1) M  .

Applied to the z-axis integral (identifying m = 0), this result therefore vanishes

unless:

M = M'

and

L = L' +1 or L' - 1.

Even though angular momentum coupling considerations would allow L = L' (because

coupling two angular momenta with j = 1 and j = L' should give L'+1, L', and L'-1), the

3-j symbol  




L '   1   L

0 0 -0   vanishes for the L = L' case since 3-j symbols have the following

symmetry



26





L '   1   L

M' m -M   = (-1)L+L'+1 




L '   1   L

-M' -m M   

with respect to the M, M', and m indices. Applied to the  




L '   1   L

0 0 -0    3-j symbol, this

means that this particular 3-j element vanishes for L = L' since L + L' + 1 is odd and hence

(-1)L + L' + 1 is  -1.

Applied to the x- and y- axis integrals, which contain m = ± 1 components, this

same analysis yields:

 µ (2L+1)(2L'+1) 
3

4π
    





L '   1   L

M'  ±1 -M
 




L '   1   L

0 0 -0  (-1) M

which then requires that

M = M' ± 1

and

L = L' + 1, L' - 1,

with L = L' again being forbidden because of the second 3-j symbol.

These results provide so-called "selection rules" because they limit the L and M

values of the final rotational state, given the L', M' values of the initial rotational state. In

the figure shown below, the L = L' + 1 absorption spectrum of NO at 120 °K is given. The

intensities of the various peaks are related to the populations of the lower-energy rotational

states which are, in turn, proportional to (2 L' + 1) exp(- L'(L'+1) h2/8π2IkT). Also

included in the intensities are so-called line strength factors that are proportional to the

squares of the quantities:

 µ (2L+1)(2L'+1) 
3

4π
    





L '   1   L

M' m -M  




L '   1   L

0 0 -0  (-1) M

which appear in the E1 integrals analyzed above (recall that the rate of photon absorption

Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2 involves the squares of these matrix elements).

The book by Zare gives an excellent treatment of line strength factors' contributions to

rotation, vibration, and electronic line intensities.
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B. Non-Linear Molecules

For molecules that are non-linear and whose rotational wavefunctions are given in

terms of the spherical or symmetric top functions D*L,M,K , the dipole moment  µave can

have components along any or all three of the molecule's internal coordinates (e.g., the

three molecule-fixed coordinates that describe the orientation of the principal axes of the

moment of inertia tensor). For a spherical top molecule, | µave| vanishes, so E1 transitions

do not occur.

For symmetric top species,  µave lies along the symmetry axis of the molecule, so

the orientation of  µave can again be described in terms of θ and φ, the angles used to locate

the orientation of the molecule's symmetry axis relative to the lab-fixed coordinate system.

As a result, the E1 integral again can be decomposed into three pieces:

<φir | µave| φfr>x = µ ⌡⌠(DL,M,K(θ,φ,χ) cosθ cosφ D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) 

<φir |  µave| φfr>y = µ⌡⌠(DL,M,K (θ,φ,χ) cosθ sinφ D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) 

 <φir |  µave| φfr>z = µ⌡⌠(DL,M,K (θ,φ,χ) cosθ D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) .
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Using the fact that cosθ ∝ D*1,0,0 ; sinθ cosφ ∝ D*1,1,0 + D*1,-1,0 ; and sinθ sinφ ∝
D*1,1,0 - D*1,-1,0, and the tools of angular momentum coupling allows these integrals to be

expressed, as above, in terms of products of the following 3-j symbols:

 




L '   1   L

M' m -M  




L '   1   L

K'  0  -K   ,

from which the following selection rules are derived:

 L = L' + 1, L', L' - 1 (but not L = L' = 0),

K = K',

M = M' + m, 

with m = 0 for the Z-axis integral and m =  ± 1 for the X- and Y- axis integrals. In

addition, if K = K' = 0, the L = L' transitions are also forbidden by the second 3-j symbol

vanishing.

II. Vibration-Rotation Transitions

When the initial and final electronic states are identical but the respective vibrational

and rotational states are not, one is dealing with transitions between vibration-rotation states

of the molecule. These transitions are studied in infrared (IR) spectroscopy using light of

energy in the 30 cm-1 (far IR) to 5000 cm-1 range. The electric dipole matrix element

analysis still begins with the electronic dipole moment integral <ψei | µ | ψei> = µ (R), but

the integration over internal vibrational coordinates no longer produces the vibrationally

averaged dipole moment. Instead one forms the vibrational transition dipole integral:

<χvf | µ(R) | χvi> = µf,i

between the initial χi and final χf vibrational states.

A. The Dipole Moment Derivatives

Expressing µ(R) in a power series expansion about the equilibrium bond length

position (denoted Re collectively and Ra,e individually):
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µ(R) = µ(Re) + Σa ∂µ/∂Ra (Ra - Ra,e) + ...,

substituting into the <χvf | µ(R) | χvi> integral, and using the fact that χi and χf are

orthogonal (because they are eigenfunctions of vibrational motion on the same electronic

surface and hence of the same vibrational Hamiltonian), one obtains:

<χvf | µ(R) | χvi> = µ(Re) <χvf | χvi> + Σa ∂µ/∂Ra <χvf |  (Ra - Ra,e) | χvi>  + ...

= Σa (∂µ/∂Ra) <χvf |  (Ra - Ra,e) | χvi>  + ...  .

This result can be interpreted as follows:

i. Each independent vibrational mode of the molecule contributes to the µf,i vector an

amount equal to (∂µ/∂Ra) <χvf |  (Ra - Ra,e) | χvi>  + ... .

ii. Each such contribution contains one part (∂µ/∂Ra) that depends on how the molecule's

dipole moment function varies with vibration along that particular mode (labeled a),

iii. and a second part  <χvf |  (Ra - Ra,e) | χvi> that depends on the character of the initial

and final vibrational wavefunctions.

If the vibration does not produce a modulation of the dipole moment (e.g., as with

the symmetric stretch vibration of the CO2  molecule), its infrared intensity vanishes

because (∂µ/∂Ra) = 0. One says that such transitions are infrared "inactive".

B. Selection Rules on the Vibrational Quantum Number in the Harmonic Approximation

If the vibrational functions are described within the harmonic oscillator

approximation, it can be shown that the  <χvf |  (Ra - Ra,e) | χvi> integrals vanish unless vf

= vi +1 , vi -1 (and that these integrals are proportional to (vi +1)1/2 and (vi)1/2 in the

respective cases). Even when χvf and χvi are rather non-harmonic, it turns out that such ∆v

= ± 1 transitions have the largest <χvf |  (Ra - Ra,e) | χvi> integrals and therefore the highest

infrared intensities. For these reasons, transitions that correspond to ∆v = ± 1 are called

"fundamental"; those with ∆v = ± 2 are called "first overtone" transitions.
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In summary then, vibrations for which the molecule's dipole moment is modulated

as the vibration occurs (i.e., for which  (∂µ/∂Ra) is non-zero)    and     for which ∆v = ± 1 tend

to have large infrared intensities; overtones of such vibrations tend to have smaller

intensities, and those for which  (∂µ/∂Ra) = 0 have no intensity.

C. Rotational Selection Rules for Vibrational Transitions

The result of all of the vibrational modes' contributions to

Σa (∂µ/∂Ra) <χvf |  (Ra - Ra,e) | χvi> is a vector µtrans that is termed the vibrational

"transition dipole" moment. This is a vector with components along, in principle, all three

of the internal axes of the molecule. For each particular vibrational transition (i.e., each

particular χi and χf) its orientation in space depends only on the orientation of the molecule;

it is thus said to be locked to the molecule's coordinate frame. As such, its orientation

relative to the lab-fixed coordinates (which is needed to effect a derivation of rotational

selection rules as was done earlier in this Chapter) can be described much as was done

above for the vibrationally averaged dipole moment that arises in purely rotational

transitions. There are, however, important differences in detail. In particular,

i. For a linear molecule µtrans can have components either along (e.g., when stretching

vibrations are excited; these cases are denoted σ-cases) or perpendicular to (e.g., when

bending vibrations are excited; they are denoted π cases) the molecule's axis.

ii. For symmetric top species, µtrans need not lie along the molecule's symmetry axis; it can

have components either along or perpendicular to this axis.

iii. For spherical tops, µtrans will vanish whenever the vibration does not induce a dipole

moment in the molecule. Vibrations such as the totally symmetric a1

C-H stretching motion in CH4 do not induce a dipole moment, and are thus infrared

inactive; non-totally-symmetric vibrations can also be inactive if they induce no dipole

moment.

As a result of the above considerations, the angular integrals

     <φir | µtrans | φfr> = ⌡⌠(Y*L,M (θ,φ)  µtrans YL',M' (θ,φ) sinθ dθ dφ) 
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and

     <φir | µtrans | φfr> = ⌡⌠(DL,M,K (θ,φ,χ)  µtrans D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) 

that determine the rotational selection rules appropriate to vibrational transitions produce

similar, but not identical, results as in the purely rotational transition case.

The derivation of these selection rules proceeds as before, with the following

additional considerations. The transition dipole moment's µtrans components along the lab-

fixed axes must be related to its molecule-fixed coordinates (that are determined by the

nature of the vibrational transition as discussed above). This transformation, as given in

Zare's text, reads as follows:

(µtrans)m = Σk D*1,m,k (θ,φ,χ) (µtrans)k

where (µtrans)m with m = 1, 0, -1 refer to the components along the lab-fixed (X, Y, Z)

axes and (µtrans)k with k = 1, 0, -1 refer to the components along the molecule- fixed (a, b,

c) axes.

This relationship, when used, for example, in the symmetric or spherical top E1

integral:

 <φir | µtrans | φfr> = ⌡⌠(DL,M,K (θ,φ,χ)  µtrans D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) 

gives rise to products of 3-j symbols of the form:

 




L '   1   L

M' m -M  




L '   1   L

K'  k  -K   .

The product of these 3-j symbols is nonvanishing only under certain conditions that

provide the rotational selection rules applicable to vibrational lines of symmetric and

spherical top molecules.

Both 3-j symbols will vanish unless

L = L' +1, L', or L'-1.
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In the special case in which L = L' =0 (and hence with M = M' =0 = K = K', which means

that m = 0 = k), these3-j symbols again vanish. Therefore, transitions with

L = L' =0 

are again forbidden. As usual, the fact that the lab-fixed quantum number m can range

over m = 1, 0, -1, requires that

M = M' + 1, M', M'-1.

The selection rules for ∆K depend on the nature of the vibrational transition, in

particular, on the component of µtrans along the molecule-fixed axes. For the second 3-j

symbol to not vanish, one must have

K = K' + k,

where k = 0, 1, and -1 refer to these molecule-fixed components of the transition dipole.

Depending on the nature of the transition, various k values contribute.

1. Symmetric Tops

In a symmetric top molecule such as NH3, if the transition dipole lies along the

molecule's symmetry axis, only k = 0 contributes. Such vibrations preserve the molecule's

symmetry relative to this symmetry axis (e.g. the totally symmetric N-H stretching mode in

NH3). The additional selection rule ∆K = 0

is thus obtained. Moreover, for K = K' = 0, all transitions with ∆L = 0 vanish because the

second 3-j symbol vanishes. In summary, one has:

∆K = 0; ∆M = ±1 ,0; ∆L = ±1 ,0 (but L = L' =0 is forbidden and all ∆L = 0 

are forbidden for K = K' = 0)

for symmetric tops with vibrations whose transition dipole lies along the symmetry axis.

If the transition dipole lies perpendicular to the symmetry axis, only

k = ±1 contribute. In this case, one finds

∆K = ±1; ∆M = ±1 ,0; ∆L = ±1 ,0 (neither L = L' =0 nor K = K' = 0 can occur

for such transitions, so there are no additional constraints).



33

2. Linear Molecules

When the above analysis is applied to a diatomic species such as HCl, only k = 0 is

present since the only vibration present in such a molecule is the bond stretching vibration,

which has σ symmetry. Moreover, the rotational functions are spherical harmonics (which

can be viewed as D*L',M',K' (θ,φ,χ) functions with K' = 0), so the K and K' quantum

numbers are identically zero. As a result, the product of 3-j symbols

 




L '   1   L

M' m -M  




L '   1   L

K'  k  -K   

reduces to

 




L '   1   L

M' m -M  




L'  1  L

0 0 0   ,

which will vanish unless

L = L' +1, L'-1,

but     not    L = L' (since parity then causes the second 3-j symbol to vanish), and

M = M' + 1, M', M'-1.

The L = L' +1 transitions are termed R-branch absorptions and those obeying L = L' -1

are called P-branch transitions. Hence, the selection rules

∆M = ±1,0; ∆L = ±1

are identical to those for purely rotational transitions.

When applied to linear polyatomic molecules, these same selection rules result if the

vibration is of σ symmetry (i.e., has k = 0). If, on the other hand, the transition is of π
symmetry (i.e., has k = ±1), so the transition dipole lies perpendicular to the molecule's

axis, one obtains:

∆M = ±1,0; ∆L = ±1, 0.
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These selection rules are derived by realizing that in addition to k = ±1, one has:

(i) a linear-molecule rotational wavefunction that in the v = 0 vibrational level is described

in terms of a rotation matrix DL',M',0 (θ,φ,χ) with no angular momentum along the

molecular axis, K' = 0 ; (ii) a v = 1 molecule whose rotational wavefunction must be given

by a rotation matrix DL,M,1 (θ,φ,χ) with one unit of angular momentum about the

molecule's axis, K = 1. In the latter case, the angular momentum is produced by the

degenerate π vibration itself. As a result, the selection rules above derive from the

following product of 3-j symbols:

  




L '   1   L

M' m -M  




L '   1   L

0 1 -1   .

Because ∆L = 0 transitions are allowed for π vibrations, one says that π vibrations possess

Q- branches in addition to their R- and P- branches (with ∆L = 1 and -1, respectively).

In the figure shown below, the v = 0 ==> v = 1 (fundamental) vibrational

absorption spectrum of HCl is shown. Here the peaks at lower energy (to the right of the

figure) belong to P-branch transitions and occur at energies given approximately by:

E = h ωstretch + (h2/8π2I) ((L-1)L - L(L+1))

= h ωstretch -2 (h2/8π2I) L.

The R-branch transitions occur at higher energies given approximately by:

E = h ωstretch + (h2/8π2I) ((L+1)(L+2) - L(L+1))

= h ωstretch +2 (h2/8π2I) (L+1).

The absorption that is "missing" from the figure below lying slightly below 2900 cm-1 is

the Q-branch transition for which L = L'; it is absent because the selection rules forbid it.
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It should be noted that the spacings between the experimentally observed peaks in

HCl are not constant as would be expected based on the above P- and R- branch formulas.

This is because the moment of inertia appropriate for the v = 1 vibrational level is different

than that of the v = 0 level. These effects of vibration-rotation coupling can be modeled by

allowing the v = 0 and v = 1 levels to  have rotational energies written as

E = h ωstretch (v + 1/2) + (h2/8π2Iv) (L (L+1))

where v and L are the vibrational and rotational quantum numbers. The P- and R- branch

transition energies that pertain to these energy levels can then be written as:

EP = h ωstretch  - [ (h2/8π2I1) + (h2/8π2I0) ] L + [ (h2/8π2I1) - (h2/8π2I0) ] L2

ER = h ωstretch  + 2 (h2/8π2I1)

+ [ 3(h2/8π2I1) - (h2/8π2I0) ] L + [ (h2/8π2I1) - (h2/8π2I0) ] L2 .

Clearly, these formulas reduce to those shown earlier in the I1 = I0 limit.

If the vibrationally averaged bond length is longer in the v = 1 state than in the v = 0

state, which is to be expected, I1 will be larger than I0, and therefore [ (h2/8π2I1) -

(h2/8π2I0) ] will be negative. In this case, the    spacing     between neighboring P-branch lines

will increase as shown above for HCl. In contrast, the fact that  [ (h2/8π2I1) - (h2/8π2I0) ]

is negative causes the    spacing     between neighboring R- branch lines to decrease, again as

shown for HCl.

III. Electronic-Vibration-Rotation Transitions
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When electronic transitions are involved, the initial and final states generally differ

in their electronic, vibrational, and rotational energies. Electronic transitions usually require

light in the 5000 cm-1 to 100,000 cm-1 regime, so their study lies within the domain of

visible and ultraviolet spectroscopy. Excitations of inner-shell and core orbital electrons

may require even higher energy photons, and under these conditions, E2 and M1

transitions may become more important because of the short wavelength of the light

involved.

A. The Electronic Transition Dipole and Use of Point Group Symmetry

Returning to the expression

Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2

for the rate of photon absorption, we realize that the electronic integral now involves

<ψef | µ | ψei> = µf,i (R),

a transition dipole matrix element between the initial ψei and final ψef electronic

wavefunctions. This element is a function of the internal vibrational coordinates of the

molecule, and again is a vector locked to the molecule's internal axis frame.

Molecular point-group symmetry can often be used to determine whether a

particular transition's dipole matrix element will vanish and, as a result, the electronic

transition will be "forbidden" and thus predicted to have zero intensity. If the direct product

of the symmetries of the initial and final electronic states ψei and ψef do not match the

symmetry of the electric dipole operator (which has the symmetry of its x, y, and z

components; these symmetries can be read off the right most column of the character tables

given in Appendix E), the matrix element will vanish.

For example, the formaldehyde molecule H2CO has a ground electronic state (see

Chapter 11) that has 1A1 symmetry in the C2v point group. Its π ==> π* singlet excited

state also has 1A1 symmetry because both the π and π* orbitals are of b1 symmetry. In

contrast, the lowest n ==> π* singlet excited state is of 1A2 symmetry because the highest

energy oxygen centered n orbital is of b2 symmetry and the π* orbital is of b1 symmetry,

so the Slater determinant in which both the n and π* orbitals are singly occupied has its

symmetry dictated by the b2 x b1 direct product, which is A2.
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The π ==> π* transition thus involves ground (1A1) and excited (1A1) states whose

direct product (A1 x A1) is of A1 symmetry. This transition thus requires that the electric

dipole operator possess a component of A1 symmetry. A glance at the C2v point group's

character table shows that the molecular z-axis is of A1 symmetry. Thus, if the light's

electric field has a non-zero component along the C2 symmetry axis (the molecule's z-axis),

the π ==> π* transition is predicted to be allowed. Light polarized along either of the

molecule's other two axes cannot induce this transition.

In contrast, the n ==> π* transition has a ground-excited state direct product of B2

x B1 = A2 symmetry. The C2v 's point group character table clearly shows that the electric

dipole operator (i.e., its x, y, and z components in the molecule-fixed frame) has no

component of A2 symmetry; thus, light of no electric field orientation can induce this n ==>

π* transition. We thus say that the n ==> π* transition is E1 forbidden (although it is M1

allowed).

Beyond such electronic symmetry analysis, it is also possible to derive vibrational

and rotational selection rules for electronic transitions that are E1 allowed. As was done in

the vibrational spectroscopy case, it is conventional to expand  µf,i (R) in a power series

about the equilibrium geometry of the initial electronic state (since this geometry is more

characteristic of the molecular structure prior to photon absorption):

µf,i(R) = µf,i(Re) + Σa ∂µf,i/∂Ra (Ra - Ra,e) + ....

B. The Franck-Condon Factors

The first term in this expansion, when substituted into the integral over the

vibrational coordinates, gives  µf,i(Re) <χvf | χvi> , which has the form of the electronic

transition dipole multiplied by the "overlap integral" between the initial and final vibrational

wavefunctions. The  µf,i(Re) factor was discussed above; it is the electronic E1 transition

integral evaluated at the equilibrium geometry of the absorbing state. Symmetry can often

be used to determine whether this integral vanishes, as a result of which the E1 transition

will be "forbidden".

Unlike the vibration-rotation case, the vibrational overlap integrals

<χvf | χvi> do not necessarily vanish because χvf and  χvi are no longer eigenfunctions of

the same vibrational Hamiltonian. χvf is an eigenfunction whose potential energy is the

   final    electronic state's energy surface; χvi has the    initial    electronic state's energy surface as

its potential. The squares of these <χvf | χvi> integrals, which are what eventually enter

into the transition rate expression Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2, are called
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"Franck-Condon factors". Their relative magnitudes play strong roles in determining

the relative intensities of various vibrational "bands" (i.e., peaks) within a particular

electronic transition's spectrum.

Whenever an electronic transition causes a large change in the geometry (bond

lengths or angles) of the molecule, the Franck-Condon factors tend to display the

characteristic "broad progression" shown below when considered for one initial-state

vibrational level vi and various final-state vibrational levels vf:

vf=   0    1   2   3   4  5  6

|<χi|χf>|2

Final state vibrational Energy (Evf)

Notice that as one moves to higher vf values, the energy spacing between the states (Evf -

Evf-1) decreases; this, of course, reflects the anharmonicity in the excited state vibrational

potential. For the above example, the transition to the vf = 2 state has the largest Franck-

Condon factor. This means that the overlap of the initial state's vibrational wavefunction

χvi is largest for the final state's χvf function with vf = 2.

As a qualitative rule of thumb, the larger the geometry difference between the initial

and final state potentials, the broader will be the Franck-Condon profile (as shown above)

and the larger the vf value for which this profile peaks. Differences in harmonic frequencies

between the two states can also broaden the Franck-Condon profile, although not as

significantly as do geometry differences.
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For example, if the initial and final states have very similar geometries and

frequencies along the mode that is excited when the particular electronic excitation is

realized, the following type of Franck-Condon profile may result:

vf=   0    1   2   3   4  5  6

|<χi|χf>|2

Final state vibrational Energy (Evf)

In contrast, if the initial and final electronic states have very different geometries and/or

vibrational frequencies along some mode, a very broad Franck-Condon envelope peaked at

high-vf will result as shown below:

Final state vibrational Energy (Evf)

|<χi|χf>|
2

vf=   0    1   2   3   4  5  6
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C. Vibronic Effects

The second term in the above expansion of the transition dipole matrix element Σa

∂µf,i/∂Ra (Ra - Ra,e) can become important to analyze when the first term µfi(Re) vanishes

(e.g.,  for reasons of symmetry). This dipole derivative term, when substituted into the

integral over vibrational coordinates gives

Σa ∂µf,i/∂Ra <χvf | (Ra - Ra,e)| χvi>. Transitions for which µf,i(Re) vanishes but for which

∂µf,i/∂Ra does not for the ath vibrational mode are said to derive intensity through "vibronic

coupling" with that mode. The intensities of such modes are dependent on how strongly the

electronic dipole integral varies along the mode (i.e, on ∂µf,i/∂Ra ) as well as on the

magnitude of the vibrational integral

<χvf | (Ra - Ra,e)| χvi>.

An example of an E1 forbidden but "vibronically allowed" transition is provided by

the singlet n ==> π* transition of H2CO that was discussed earlier in this section. As

detailed there, the ground electronic state has 1A1 symmetry, and the n ==> π* state is of
1A2 symmetry, so the E1 transition integral

<ψef | µ | ψei> vanishes for all three (x, y, z) components of the electric dipole operator µ .

However, vibrations that are of b2 symmetry (e.g., the H-C-H asymmetric stretch

vibration) can induce intensity in the n ==> π* transition as follows:

(i) For such vibrations, the b2 mode's vi = 0 to vf = 1 vibronic integral

<χvf | (Ra - Ra,e)| χvi> will be non-zero and probably quite substantial (because, for

harmonic oscillator functions these "fundamental" transition integrals are dominant- see

earlier);

(ii) Along these same b2 modes, the electronic transition dipole integral     derivative    ∂µf,i/∂Ra

will be non-zero, even though the integral itself µf,i (Re) vanishes when evaluated at the

initial state's equilibrium geometry.

To understand why the derivative ∂µf,i/∂Ra  can be non-zero for distortions

(denoted Ra) of b2 symmetry, consider this quantity in greater detail:

∂µf,i/∂Ra  = ∂<ψef | µ | ψei>/∂Ra

= <∂ψef/∂Ra | µ | ψei> + <ψef | µ | ∂ψei/∂Ra> + <ψef | ∂µ/∂Ra | ψei>.

The third integral vanishes because the derivative of the dipole operator itself

µ = Σ i  e  rj  + Σa  Za e   Ra with respect to the coordinates of atomic centers, yields an

operator that contains only a sum of scalar quantities (the elementary charge e and the
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magnitudes of various atomic charges Za); as a result and because the integral over the

electronic wavefunctions <ψef | ψei> vanishes, this contribution yields zero. The first and

second integrals need not vanish by symmetry because the wavefunction derivatives

∂ψef/∂Ra and ∂ψei/∂Ra do     not    possess the same symmetry as their respective

wavefunctions ψef and ψei. In fact, it can be shown that the symmetry of such a derivative

is given by the direct product of the symmetries of its wavefunction and the symmetry of

the vibrational mode that gives rise to the ∂/∂Ra. For the H2CO case at hand, the b2 mode

vibration can induce in the excited 1A2 state a derivative component (i.e., ∂ψef/∂Ra ) that is

of 1B1 symmetry) and this same vibration can induce in the 1A1 ground state a derivative

component of 1B2 symmetry.

As a result, the contribution <∂ψef/∂Ra | µ | ψei> to ∂µf,i/∂Ra  arising from vibronic

coupling within the    excited     electronic state can be expected to be non-zero for components

of the dipole operator µ that are of (∂ψef/∂Ra  x ψei) = (B1 x A1) = B1 symmetry. Light

polarized along the molecule's x-axis gives such a b1 component to µ (see the C2v character

table in Appendix E). The second contribution  <ψef | µ | ∂ψei/∂Ra> can be non-zero for

components of µ that are of ( ψef x ∂ψei/∂Ra) = (A2 x B2) = B1 symmetry; again, light of

x-axis polarization can induce such a transition.

In summary, electronic transitions that are E1 forbidden by symmetry can derive

significant (e.g., in H2CO the singlet n ==> π* transition is rather intense) intensity

through vibronic coupling. In such coupling, one or more vibrations (either in the initial or

the final state) cause the respective electronic wavefunction to acquire (through ∂ψ/∂Ra) a

symmetry component that is different than that of ψ itself. The symmetry of ∂ψ/∂Ra, which

is given as the direct product of the symmetry of ψ and that of the vibration, can then cause

the electric dipole integral <ψ' |µ|∂ψ/∂Ra> to be non-zero even when <ψ' |µ|ψ> is zero.

Such vibronically allowed transitions are said to derive their intensity through vibronic

borrowing.

D. Rotational Selection Rules for Electronic Transitions

Each vibrational peak within an electronic transition can also display rotational

structure (depending on the spacing of the rotational lines, the resolution of the

spectrometer, and the presence or absence of substantial line broadening effects such as
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those discussed later in this Chapter). The selection rules for such transitions are derived in

a fashion that parallels that given above for the vibration-rotation case. The major difference

between this electronic case and the earlier situation is that the vibrational transition dipole

moment µtrans appropriate to the former is replaced by µf,i(Re) for conventional (i.e., non-

vibronic) transitions or ∂µf,i/∂Ra (for vibronic transitions).

As before, when µf,i(Re) (or ∂µf,i/∂Ra) lies along the molecular axis of a linear

molecule, the transition is denoted σ and k = 0 applies; when this vector lies perpendicular

to the axis it is called π and k = ±1 pertains. The resultant linear-molecule rotational

selection rules are the same as in the vibration-rotation case:

∆ L = ± 1, and ∆ M = ± 1,0 (for σ transitions).

∆ L = ± 1,0  and ∆ M = ±1,0 (for π transitions).

In the latter case, the L = L' = 0 situation does not arise because a π transition has one unit

of angular momentum along the molecular axis which would preclude both L and L'

vanishing.

For non-linear molecules of the spherical or symmetric top variety, µf,i(Re) (or

∂µf,i/∂Ra) may be aligned along or perdendicular to a symmetry axis of the molecule. The

selection rules that result are

∆ L = ± 1,0; ∆ M = ± 1,0; and ∆K = 0 (L = L' = 0 is not allowed and all ∆L = 

0 are forbidden when K = K' = 0)

which applies when  µf,i(Re) or ∂µf,i/∂Ra lies along the symmetry axis, and

∆ L = ± 1,0; ∆ M = ± 1,0; and ∆K = ± 1 (L = L' = 0 is not allowed)

which applies when  µf,i(Re) or ∂µf,i/∂Ra lies perpendicular to the symmetry axis.

IV. Time Correlation Function Expressions for Transition Rates

The first-order E1 "golden-rule" expression for the rates of photon-induced

transitions can be recast into a form in which certain specific physical models are easily

introduced and insights are easily gained. Moreover, by using so-called equilibrium

averaged time correlation functions, it is possible to obtain rate expressions appropriate to a
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large number of molecules that exist in a distribution of initial states (e.g., for molecules

that occupy many possible rotational and perhaps several vibrational levels at room

temperature).

A. State-to-State Rate of Energy Absorption or Emission

To begin, the expression obtained earlier

Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2 ,

that is appropriate to transitions between a particular initial state Φi and a specific final state

Φf, is rewritten as

Ri,f  = (2π/h2) ⌡⌠
 

g(ω)  |  E0  • < Φf |  µ |  Φi> |2 δ(ωf,i -  ω) dω .

Here, the δ(ωf,i - ω) function is used to specifically enforce the "resonance condition" that

resulted in the time-dependent perturbation treatment given in Chapter 14; it states that the

photons' frequency ω must be resonant with the transition frequency ωf,i . It should be

noted that by allowing ω to run over positive and negative values, the photon absorption

(with ωf,i positive and hence ω positive) and the stimulated emission case (with ωf,i

negative and hence ω negative) are both included in this expression (as long as g(ω) is

defined as g(|ω|) so that the negative-ω contributions are multiplied by the light source

intensity at the corresponding positive ω value).

The following integral identity can be used to replace the δ-function:

δ(ωf,i - ω) = 
1

2π
  ⌡⌠

-∞

∞

exp[i(ωf,i -  ω)t] dt 

by a form that is more amenable to further development. Then, the state-to-state rate of

transition becomes:
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Ri,f = (1/h2) 
⌡

⌠

 

g(ω)  |  E0  • < Φf |  µ |  Φi>|2 ⌡⌠

-∞

∞

exp[i(ωf,i -  ω)t] dt dω .

B. Averaging Over Equilibrium Boltzmann Population of Initial States

If this expression is then multiplied by the equilibrium probability ρi   that the

molecule is found in the state Φi and summed over all such initial states and summed over

all final states Φf that can be reached from Φi with photons of energy h ω, the    equilibrium

   averaged rate of photon absorption     by the molecular sample is obtained:

Req.ave. = (1/h2) Σi, f  ρi

⌡

⌠

 

g(ω)  |  E0  • < Φf |  µ |  Φi>|2 ⌡⌠

-∞

∞

exp[i(ωf,i -  ω)t] dt dω .

This expression is appropriate for an ensemble of molecules that can be in various initial

states Φi with probabilities ρi. The corresponding result for transitions that originate in a

particular state (Φi) but end up in any of the "allowed" (by energy and selection rules) final

states reads:

Rstate i. = (1/h2) Σf ⌡⌠g(ω)  |  E0  • < Φf |  µ |  Φi>|2  

⌡⌠

-∞

∞

exp[i(ωf,i -  ω)t] dtdω .

For a canonical ensemble, in which the number of molecules, the temperature, and the

system volume are specified, ρi takes the form:

ρi  = 
gi  exp(- Ei0/kT)

Q  
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where Q is the canonical partition function of the molecules and gi is the degeneracy of the

state Φi whose energy is Ei0.

In the above expression for Req.ave., a double sum occurs. Writing out the elements

that appear in this sum in detail, one finds:

Σi, f  ρi E0 • <Φi | µ | Φf> E0 • <Φf | µ | Φi> expi(ωf,i)t.

In situations in which one is interested in developing an expression for the intensity arising

from transitions to    all    allowed final states, the sum over these final states can be carried out

explicitly by first writing

 <Φf | µ | Φi> expi(ωf,i)t = <Φf |exp(iHt/h) µ exp(-iHt/h)| Φi>

and then using the fact that the set of states {Φk} are complete and hence obey

Σk |Φk><Φk| = 1.

The result of using these identities as well as the Heisenberg definition of the time-

dependence of the dipole operator

µ(t) = exp(iHt/h) µ exp(-iHt/h),

is:

Σi ρi  <Φi | E0 • µ  E0 • µ (t) | Φi> .

In this form, one says that the time dependence has been reduce to that of an equilibrium

averaged (n.b., the Σi ρi <Φi |   | Φi>) time correlation function involving the

component of the dipole operator along the external electric field at t = 0 ( E0 • µ ) and this

component at a different time t  (E0 • µ (t)).

C. Photon Emission and Absorption
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If ωf,i is positive (i.e., in the photon absorption case), the above expression will

yield a non-zero contribution when multiplied by exp(-i ωt) and integrated over positive ω-

values. If ωf,i is negative (as for stimulated photon emission), this expression will

contribute, again  when multiplied by exp(-i ωt), for negative ω-values. In the latter

situation, ρi is the equilibrium probability of finding the molecule in the (excited) state from

which emission will occur; this probability can be related to that of the lower state ρf by

ρexcited = ρlower exp[ - (E0excited  - E0lower)/kT ]

= ρlower exp[ - hω/kT ].

In this form, it is important to realize that the excited and lower states are treated as

individual    states   , not as levels that might contain a degenerate set of states.

The absorption and emission cases can be combined into a single     net    expression for

the rate of photon absorption  by recognizing that the latter process leads to photon

production, and thus must be entered with a negative sign. The resultant expression for the

    net rate of decrease of photons    is:

Req.ave.net = (1/h2) Σi  ρi (1 - exp(- h ω/kT) )

    ⌡
⌠

⌡⌠g(ω)  <Φi |  (E0  • µ )  E0  • µ ( t )  |  Φi>  exp(-iωt) dω dt.

D. The Line Shape and Time Correlation Functions

Now, it is convention to introduce the so-called "line shape" function I (ω):

I (ω) =  Σi  ρi ⌡⌠ < Φi |  (E0  • µ )  E0  • µ ( t )  |  Φi>  exp(-iωt) dt

in terms of which the net photon absorption rate is
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 Req.ave.net  = (1/h2) (1 - exp(- h ω/kT) ) ⌡⌠ g(ω)  I  (ω) dω .

As stated above, the function

 C (t) = Σi  ρi  <Φi | (E0 • µ ) E0 • µ (t) | Φi>

is called the equilibrium averaged time correlation function of the component of the

electric dipole operator along the direction of the external electric field E0. Its Fourier

transform is I (ω), the spectral line shape function. The convolution of I (ω) with the

light source's g (ω) function, multiplied by

(1 - exp(-h ω/kT) ), the correction for stimulated photon emission, gives the net rate of

photon absorption.

E. Rotational, Translational, and Vibrational Contributions to the Correlation Function

To apply the time correlation function machinery to each particular kind of

spectroscopic transition, one proceeds as follows:

1. For purely rotational transitions, the initial and final electronic and vibrational states

are the same. Moreover, the electronic and vibrational states are not summed over in the

analog of the above development because one is interested in obtaining an expression for a

particular χiv ψie ==> χfv ψfe electronic-vibrational transition's lineshape. As a result, the

sum over final states contained in the expression (see earlier) Σi, f  ρi E0 • <Φi | µ | Φf>

E0 • <Φf | µ (t) | Φi> expi(ωf,i)t applies only to summing over final rotational states. In

more detail, this can be shown as follows:

Σi, f  ρi E0 • <Φi | µ | Φf> E0 • <Φf | µ (t) | Φi>

= Σi, f  ρi E0 • <φir χiv ψie| µ | φfr χiv ψie> E0 • <φfr χiv ψie | µ (t) | φir χiv ψie>

= Σi, f  ρir ρiv ρie E0 • <φir χiv | µ(R) | φfr χiv > E0 • <φfr χiv  | µ (R,t) | φir χiv >

= Σi, f  ρir ρiv ρie E0 • <φir | µave.iv | φfr > E0 • <φfr  | µave.iv (t) | φir >
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= Σi  ρir ρiv ρie E0 • <φir | µave.iv  E0 •  µave.iv (t) | φir >.

In moving from the second to the third lines of this derivation, the following identity was

used:

<φfr χiv ψie | µ (t) | φir χiv ψie> = <φfr χiv ψie | exp(iHt/h)

µ exp(-iHt/h) | φir χiv ψie>

= <φfr χiv ψie | exp(iHv,rt/h) µ(R) exp(-iHv,rt/h) | φir χiv ψie>,

where H is the full (electronic plus vibrational plus rotational) Hamiltonian and Hv,r is the

vibrational and rotational Hamiltonian for motion on the electronic surface of the state ψie

whose dipole moment is µ(R). From the third line to the fourth, the (approximate)

separation of rotational and vibrational motions in Hv,r

Hv,r = Hv + Hr

has been used along with the fact that χiv is an eigenfunction of Hv:

Hv χiv  = Eiv  χiv

to write

<χiv  | µ (R,t) |χiv >  = exp(i Hr t/h) <χiv  | exp( iHv t/h)

µ (R) exp(- iHv t/h) | χiv > exp(- iHr t/h)

= exp(i Hr t/h) <χiv  | exp( iEiv t/h)

µ (R) exp(- iEiv t/h) | χiv > exp(- iHr t/h)

= exp(i Hr t/h) <χiv  | µ (R)| χiv > exp(- iHr t/h)



49

= µave.iv (t).

In effect, µ is replaced by the vibrationally averaged electronic dipole moment  µave,iv for

each initial vibrational state that can be involved, and the time correlation function thus

becomes:

 C (t) = Σi  ρir ρiv  ρie <φir | (E0 • µave,iv ) E0 • µave,iv (t) | φir> ,

where µave,iv (t) is the averaged dipole moment for the vibrational state χiv at time t, given

that it was µave,iv at time t = 0. The time dependence of µave,iv (t) is induced by the

rotational Hamiltonian Hr, as shown clearly in the steps detailed above:

µave,iv (t) = exp(i Hr t/h) <χiv  | µ (R)| χiv > exp(- iHr t/h).

In this particular case, the equilibrium average is taken over the initial rotational states

whose probabilities are denoted ρir , any initial vibrational states that may be populated,

with probabilities ρiv, and any populated electronic states, with probabilities ρie.

2. For vibration-rotation transitions within a single electronic state, the initial and

final electronic states are the same, but the initial and final vibrational and rotational states

differ. As a result, the sum over final states contained in the expression Σi, f  ρi E0 • <Φi |

µ | Φf> E0 • <Φf | µ | Φi> expi(ωf,i)t applies only to summing over final vibrational and

rotational states. Paralleling the development made in the pure rotation case given above,

this can be shown as follows:

Σi, f  ρi E0 • <Φi | µ | Φf> E0 • <Φf | µ (t) | Φi>

= Σi, f  ρi E0 • <φir χiv ψie| µ | φfr χfv ψie> E0 • <φfr χfv ψie | µ (t) | φir χiv ψie>

= Σi, f  ρir ρiv ρie E0 • <φir χiv | µ (R)| φfr χfv > E0 • <φfr χfv  | µ (R,t) | φir χiv >

= Σi, f  ρir ρiv ρie E0 • <φir χiv| µ(Re) + Σa (Ra - Ra,eq)∂µ/∂Ra | φfr χfv>
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E0 • <φfr χfv|exp(iHrt/h)(µ(Re) + Σa (Ra - Ra,eq)∂µ/∂Ra)

exp(-iHrt/h)| φirχiv > exp(iωfv,ivt)

= Σir, iv, ie ρir ρiv ρie Σfv,fr Σa <χiv|(Ra - Ra,eq)|χfv>

Σa' <χfv|(Ra' - Ra',eq)|χiv>exp(iωfv,ivt)

E0 • <φir | ∂µ/∂Ra  E0 • exp(iHrt/h)∂µ/∂Ra' exp(-iHrt/h)| φir >

= Σir, iv, ie ρir ρiv ρie Σfv,fr  exp(iωfv,ivt)

 <φir | (E0 • µtrans) E0 • exp(iHrt/h) µtrans exp(-iHrt/h)| φir >,

where the vibrational transition dipole matrix element is defined as before

µtrans = Σa <χiv|(Ra - Ra,eq)|χfv> ∂µ/∂Ra ,

and derives its time dependence above from the rotational Hamiltonian:

µtrans (t) = exp(iHrt/h) µtrans exp(-iHrt/h).

The corresponding final expression for the time correlation function C(t) becomes:

 C (t) = Σi  ρir ρiv  ρie <φir | (E0 • µtrans ) E0 • µtrans (t) | φir>  exp(iωfv,ivt).

The net rate of photon absorption remains:

 Req.ave.net  = (1/h2) (1 - exp(- h ω) ) ⌡⌠ g(ω)  I  (ω) dω ,

where I(ω) is the Fourier transform of C(t).

The expression for C(t) clearly contains two types of time dependences: (i) the

exp(iωfv,ivt), upon Fourier transforming to obtain I(ω), produces δ-function "spikes" at
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frequencies ω = ωfv,iv equal to the spacings between the initial and final vibrational states,

and (ii) rotational motion time dependence that causes µtrans (t) to change with time. The

latter appears in the form of a correlation function for the component of µtrans along E0 at

time t = 0 and this component at another time t. The convolution of both these time

dependences determines the from of I(ω).

3. For electronic-vibration-rotation transitions, the initial and final electronic states

are different as are the initial and final vibrational and rotational states. As a result, the sum

over final states contained in the expression Σi, f  ρi E0 • <Φi | µ | Φf> E0 • <Φf | µ | Φi>

expi(ωf,i)t applies to summing over final electronic, vibrational, and rotational states.

Paralleling the development made in the pure rotation case given above, this can be shown

as follows:

Σi, f  ρi E0 • <Φi | µ | Φf> E0 • <Φf | µ (t) | Φi>

= Σi, f  ρi E0 • <φir χiv ψie| µ | φfr χfv ψfe> E0 • <φfr χfv ψfe | µ (t) | φir χiv ψie>

= Σi, f  ρir ρiv ρie E0 • <φir χiv | µi,f(R)| φfr χfv > E0 • <φfr χfv  | µi,f(R,t) | φir χiv

>

= Σi, f  ρir ρiv ρie E0 • <φir | µi,f(Re)| φfr > |<χiv | χfv>|2

E0 • <φfr |exp(iHrt/h) µi,f(Re) exp(-iHrt/h)| φir> exp(iωfv,ivt + i∆Ei,ft/h)

= Σi, f  ρir ρiv ρie  <φir | E0 • µi,f(Re) E0 • µi,f(Re,t) |φir> |<χiv | χfv>|2

 exp(iωfv,ivt + i∆Ei,ft/h),

where

µi,f(Re,t) = exp(iHrt/h) µi,f(Re) exp(-iHrt/h)
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is the electronic transition dipole matrix element, evaluated at the equilibrium geometry of

the absorbing state, that derives its time dependence from the rotational Hamiltonian Hr as

in the time correlation functions treated earlier.

This development thus leads to the following definition of C(t) for the electronic,

vibration, and rotation case:

C(t) =  Σi, f  ρir ρiv ρie  <φir | E0 • µi,f(Re) E0 • µi,f(Re,t) |φir> |<χiv | χfv>|2

 exp(iωfv,ivt + i∆Ei,ft/h)

but the net rate of photon absorption remains:

 Req.ave.net  = (1/h2) (1 - exp(- h ω/kT) ) ⌡⌠ g(ω)  I  (ω) dω .

Here, I(ω) is the Fourier transform of the above C(t) and ∆Ei,f is the adiabatic electronic

energy difference (i.e., the energy difference between the v = 0 level in the final electronic

state and the v = 0 level in the initial electronic state) for the electronic transition of interest.

The above C(t) clearly contains Franck-Condon factors as well as time dependence

exp(iωfv,ivt + i∆Ei,ft/h) that produces δ-function spikes at each electronic-vibrational

transition frequency and rotational time dependence contained in the time correlation

function quantity <φir | E0 • µi,f(Re) E0 • µi,f(Re,t) |φir>.

To summarize, the line shape function I(ω) produces the net rate of photon

absorption

 Req.ave.net  = (1/h2) (1 - exp(- h ω/kT) ) ⌡⌠ g(ω)  I  (ω) dω 

in all of the above cases, and I(ω) is the Fourier transform of a corresponding time-

dependent C(t) function in all cases. However, the pure rotation, vibration-rotation, and

electronic-vibration-rotation cases differ in the form of their respective C(t)'s. Specifically,

C (t) = Σi  ρir ρiv  ρie <φir | (E0 • µave,iv ) E0 • µave,iv (t) | φir>

in the pure rotational case,
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 C (t) = Σi  ρir ρiv  ρie <φir | (E0 • µtrans ) E0 • µtrans (t) | φir>  exp(iωfv,ivt)

in the vibration-rotation case, and

C(t) =  Σi, f  ρir ρiv ρie  <φir | E0 • µi,f(Re) E0 • µi,f(Re,t) |φir> |<χiv | χfv>|2

 exp(iωfv,ivt + ∆Ei,ft/h)

in the electronic-vibration-rotation case.

All of these time correlation functions contain time dependences that arise from

rotational motion of a dipole-related vector (i.e., the vibrationally averaged dipole µave,iv

(t), the vibrational transition dipole µtrans (t), or the electronic transition dipole µi,f(Re,t))

and the latter two also contain oscillatory time dependences (i.e., exp(iωfv,ivt) or

exp(iωfv,ivt + i∆Ei,ft/h)) that arise from vibrational or electronic-vibrational energy level

differences. In the treatments of the following sections, consideration is given to the

rotational contributions under circumstances that characterize, for example, dilute gaseous

samples where the collision frequency is low and liquid-phase samples where rotational

motion is better described in terms of diffusional motion.

F. Line Broadening Mechanisms

If the rotational motion of the molecules is assumed to be entirely unhindered (e.g.,

by any environment or by collisions with other molecules), it is appropriate to express the

time dependence of each of the dipole time correlation functions listed above in terms of a

"free rotation" model. For example, when dealing with diatomic molecules, the electronic-

vibrational-rotational C(t) appropriate to a specific electronic-vibrational transition becomes:

C(t) =  (qr qv qe qt)-1 ΣJ  (2J+1) exp(- h2J(J+1)/(8π2IkT)) exp(- hνvibvi /kT)

gie  <φJ | E0 • µi,f(Re) E0 • µi,f(Re,t) |φJ> |<χiv | χfv>|2

exp(i [hνvib] t + i∆Ei,f t/h).

Here,
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qr = (8π2IkT/h2)

is the rotational partition function (I being the molecule's moment of inertia

I = µRe2, and h2J(J+1)/(8π2I) the molecule's rotational energy for the state with quantum

number J and degeneracy 2J+1)

qv = exp(-hνvib/2kT) (1-exp(-hνvib/kT))-1

is the vibrational partition function (νvib being the vibrational frequency), gie is the

degeneracy of the initial electronic state,

qt = (2πmkT/h2)3/2 V

is the translational partition function for the molecules of mass m moving in volume V, and

∆Ei,f is the adiabatic electronic energy spacing.

The functions <φJ | E0 • µi,f(Re) E0 • µi,f(Re,t) |φJ> describe the time evolution of

the dipole-related vector (the electronic transition dipole in this case) for the rotational state

J. In a "free-rotation" model, this function is taken to be of the form:

<φJ | E0 • µi,f(Re) E0 • µi,f(Re,t) |φJ>

= <φJ | E0 • µi,f(Re) E0 • µi,f(Re,0) |φJ> Cos
h J(J+1) t

4πI
  ,

where

h J(J+1)

4πI
  = ωJ

is the rotational frequency (in cycles per second) for rotation of the molecule in the state

labeled by J. This oscillatory time dependence, combined with the exp(iωfv,ivt + i∆Ei,ft/h)

time dependence arising from the electronic and vibrational factors, produce, when this C(t)

function is Fourier transformed to generate I(ω) a series of δ-function "peaks" whenever

ω = ωfv,iv + ∆Ei,f/h ± ωJ .
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The intensities of these peaks are governed by the

(qr qv qe qt)-1 ΣJ  (2J+1) exp(- h2J(J+1)/(8π2IkT)) exp(- hνvibvi /kT) gie

Boltzmann population factors as well as by the |<χiv | χfv>|2 Franck-Condon factors and

the <φJ | E0 • µi,f(Re) E0 • µi,f(Re,0) |φJ> terms.

This same analysis can be applied to the pure rotation and vibration-rotation C(t)

time dependences with analogous results. In the former, δ-function peaks are predicted to

occur at

ω = ± ωJ

and in the latter at

ω = ωfv,iv  ± ωJ ;

with the intensities governed by the time independent factors in the corresponding

expressions for C(t).

In experimental measurements, such sharp δ-function peaks are, of course, not

observed. Even when very narrow band width laser light sources are used (i.e., for which

g(ω) is an extremely narrowly peaked function), spectral lines are found to possess finite

widths. Let us now discuss several sources of line broadening, some of which will relate to

deviations from the "unhindered" rotational motion model introduced above.

1. Doppler Broadening

In the above expressions for C(t), the averaging over initial rotational, vibrational,

and electronic states is explicitly shown. There is also an average over the translational

motion implicit in all of these expressions. Its role has not (yet) been emphasized because

the molecular energy levels, whose spacings yield the characteristic frequencies at which

light can be absorbed or emitted, do not depend on translational motion. However, the

frequency of the electromagnetic field experienced by moving molecules does depend on

the velocities of the molecules, so this issue must now be addressed.

Elementary physics classes express the so-called Doppler shift of a wave's

frequency induced by movement either of the light source or of the molecule (Einstein tells

us these two points of view must give identical results) as follows:
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ωobserved = ωnominal (1 + vz/c)-1 ≈ ωnominal (1 - vz/c + ...).

Here, ωnominal is the frequency of the unmoving light source seen by unmoving molecules,

vz is the velocity of relative motion of the light source and molecules, c is the speed of

light, and ωobserved is the Doppler shifted frequency (i.e., the frequency seen by the

molecules). The second identity is obtained by expanding, in a power series, the (1 + vz/c)-

1 factor, and is valid in truncated form when the molecules are moving with speeds

significantly below the speed of light.

For all of the cases considered earlier, a C(t) function is subjected to Fourier

transformation to obtain a spectral lineshape function I(ω), which then  provides the

essential ingredient for computing the net rate of photon absorption. In this Fourier

transform process, the variable ω is assumed to be the frequency of the electromagnetic

field    experienced by the molecules   . The above considerations of Doppler shifting then leads

one to realize that the correct functional form to use in converting C(t) to I(ω) is:

I(ω) = ⌡⌠C(t) exp(-itω(1-vz/c)) dt ,

where ω is the nominal frequency of the light source.

As stated earlier, within C(t) there is also an equilibrium average over translational

motion of the molecules. For a gas-phase sample undergoing random collisions and at

thermal equilibrium, this average is characterized by the well known Maxwell-Boltzmann

velocity distribution:

(m/2πkT)3/2 exp(-m (vx2+vy2+vz2)/2kT) dvx dvy dvz.

Here m is the mass of the molecules and vx, vy, and vz label the velocities along the lab-

fixed cartesian coordinates.

Defining the z-axis as the direction of propagation of the light's photons and

carrying out the averaging of the Doppler factor over such a velocity distribution, one

obtains:

⌡⌠

-∞

∞

exp(-itω(1-vz/c)) (m/2πkT)3/2 exp(-m (vx2+vy2+vz2)/2kT) dvx  dvy dvz 
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= exp(-iωt) ⌡⌠

-∞

∞

(m/2πkT)1/2 exp(iωtvz/c) exp(-mvz2/2kT) dvz  

= exp(-iωt) exp(- ω2t2kT/(2mc2)).

This result, when substituted into the expressions for C(t), yields expressions identical to

those given for the three cases treated above     but    with one modification. The translational

motion average need no longer be considered in each C(t); instead, the earlier expressions

for C(t) must each be multiplied by a factor exp(- ω2t2kT/(2mc2)) that embodies the

translationally averaged Doppler shift. The spectral line shape function I(ω) can then be

obtained for each C(t) by simply Fourier transforming:

I(ω) = ⌡⌠

-∞

∞

exp(-iωt) C(t) dt .

When applied to the rotation, vibration-rotation, or electronic-vibration-rotation

cases within the "unhindered" rotation model treated earlier, the Fourier transform involves

integrals of the form:

I(ω) = ⌡⌠

-∞

∞

exp(-iωt) exp(- ω2t2kT/(2mc2))exp(i(ωfv,iv +  ∆Ei,f/h ± ωJ)t) dt .

This integral would arise in the electronic-vibration-rotation case; the other two cases would

involve integrals of the same form but with the ∆Ei,f/h absent in the vibration-rotation

situation and with ωfv,iv + ∆Ei,f/h missing for pure rotation transitions. All such integrals

can be carried out analytically and yield:

I(ω) = 
2mc2π
ω2kT

  exp[ -(ω-ωfv,iv - ∆Ei,f/h ± ωJ)2 mc2/(2ω2kT)].

The result is a series of Gaussian "peaks" in ω-space, centered at:
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ω = ωfv,iv + ∆Ei,f/h ± ωJ

with widths (σ) determined by

σ2 = ω2kT/(mc2),

given the temperature T and the mass of the molecules m. The hotter the sample, the faster

the molecules are moving on average, and the broader is the distribution of Doppler shifted

frequencies experienced by these molecules. The net result then of the Doppler effect is to

produce a line shape function that is similar to the "unhindered" rotation model's series of

δ-functions but with each δ-function peak broadened into a Gaussian shape.

2. Pressure Broadening

To include the effects of collisions on the rotational motion part of any of the above

C(t) functions, one must introduce a model for how such collisions change the dipole-

related vectors that enter into C(t). The most elementary model used to address collisions

applies to gaseous samples which are assumed to undergo unhindered rotational motion

until struck by another molecule at which time a randomizing "kick" is applied to the dipole

vector and after which the molecule returns to its unhindered rotational movement.

The effects of such collisionally induced kicks are treated within the so-called

pressure broadening (sometimes called collisional broadening) model by modifying the

free-rotation correlation function through the introduction of an exponential damping factor

exp( -|t|/τ):

<φJ | E0 • µi,f(Re) E0 • µi,f(Re,0) |φJ> Cos 
h J(J+1) t

4πI
   

⇒ <φJ | E0 • µi,f(Re) E0 • µi,f(Re,0) |φJ> Cos 
h J(J+1) t

4πI
   exp( -|t|/τ).

This damping function's time scale parameter τ is assumed to characterize the average time

between collisions and thus should be inversely proportional to the collision frequency. Its

magnitude is also related to the effectiveness with which collisions cause the dipole

function to deviate from its unhindered rotational motion (i.e., related to the collision

strength). In effect, the exponential damping causes the time correlation function <φJ | E0 •
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µi,f(Re) E0 • µi,f(Re,t) |φJ> to "lose its memory" and to decay to zero; this "memory" point

of view is based on viewing <φJ | E0 • µi,f(Re) E0 • µi,f(Re,t) |φJ> as the projection of E0

• µi,f(Re,t) along its t = 0 value E0 • µi,f(Re,0) as a function of time t.

Introducing this additional exp( -|t|/τ) time dependence into C(t) produces, when

C(t) is Fourier transformed to generate I(ω),

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-|t|/τ)exp(-ω2t2kT/(2mc2))exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt .

In the limit of very small Doppler broadening, the (ω2t2kT/(2mc2)) factor can be ignored

(i.e., exp(-ω2t2kT/(2mc2)) set equal to unity), and

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-|t|/τ)exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt 

results. This integral can be performed analytically and generates:

I(ω) =
1

4π
  { 

1/τ
(1/τ)2+ (ω-ωfv,iv-∆Ei,f/h ± ωJ)2

  +  
1/τ

(1/τ)2+ (ω+ωfv,iv+∆Ei,f/h ± ωJ)2
  },

a pair of Lorentzian peaks in ω-space centered again at

ω = ± [ωfv,iv+∆Ei,f/h ± ωJ].

The full width at half height of these Lorentzian peaks is 2/τ. One says that the individual

peaks have been pressure or collisionally broadened.

When the Doppler broadening can not be neglected relative to the collisional

broadening, the above integral

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-|t|/τ)exp(-ω2t2kT/(2mc2))exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt 
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is more difficult to perform. Nevertheless, it can be carried out and again produces a series

of peaks centered at

ω = ωfv,iv+∆Ei,f/h ± ωJ

but whose widths are determined both by Doppler and pressure broadening effects. The

resultant line shapes are thus no longer purely Lorentzian nor Gaussian (which are

compared in the figure below for both functions having the same full width at half height

and the same integrated area), but have a shape that is called a Voight shape.

In
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ω

Gaussian
(Doppler)

Lorentzian

3. Rotational Diffusion Broadening

Molecules in liquids and very dense gases undergo frequent collisions with the

other molecules; that is, the mean time between collisions is short compared to the

rotational period for their unhindered rotation. As a result, the time dependence of the

dipole related correlation function can no longer be modeled in terms of free rotation that is

interrupted by (infrequent) collisions and Dopler shifted. Instead, a model that describes the

incessant buffeting of the molecule's dipole by surrounding molecules becomes

appropriate. For liquid samples in which these frequent collisions cause the molecule's

dipole to undergo angular motions that cover all angles (i.e., in contrast to a frozen glass or
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solid in which the molecule's dipole would undergo strongly perturbed pendular motion

about some favored orientation), the so-called rotational diffusion model is often used.

In this picture, the rotation-dependent part of C(t) is expressed as:

<φJ | E0 • µi,f(Re) E0 • µi,f(Re,t) |φJ>

= <φJ | E0 • µi,f(Re) E0 • µi,f(Re,0) |φJ>  exp( -2Drot|t|),

where Drot is the    rotational diffusion constant    whose magnitude details the time

decay in the averaged value of E0 • µi,f(Re,t) at time t with respect to its value at time t = 0;

the larger Drot, the faster is this decay.

As with pressure broadening, this exponential time dependence, when subjected to

Fourier transformation, yields:

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-2Drot|t|)exp(-ω2t2kT/(2mc2))exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt .

Again, in the limit of very small Doppler broadening, the (ω2t2kT/(2mc2)) factor can be

ignored (i.e., exp(-ω2t2kT/(2mc2)) set equal to unity), and

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-2Drot|t|)exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt 

results. This integral can be evaluated analytically and generates:

I(ω) =
1

4π
  { 

2Drot

(2Drot)2+ (ω-ωfv,iv-∆Ei,f/h ± ωJ)2
  

+  
2Drot

(2Drot)2+ (ω+ωfv,iv+∆Ei,f/h ± ωJ)2
  },

a pair of Lorentzian peaks in ω-space centered again at

ω = ±[ωfv,iv+∆Ei,f/h ± ωJ].
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The full width at half height of these Lorentzian peaks is 4Drot. In this case, one says that

the individual peaks have been broadened via rotational diffusion. When the Doppler

broadening can not be neglected relative to the collisional broadening, the above integral

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-2Drot|t|)exp(-ω2t2kT/(2mc2))exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt .

is more difficult to perform. Nevertheless, it can be carried out and again produces a series

of peaks centered at

ω = ±[ωfv,iv+∆Ei,f/h ± ωJ]

but whose widths are determined both by Doppler and rotational diffusion effects.

4. Lifetime or Heisenberg Homogeneous Broadening

Whenever the absorbing species undergoes one or more  processes that depletes its

numbers, we say that it has a finite lifetime. For example, a species that undergoes

unimolecular dissociation has a finite lifetime, as does an excited state of a molecule that

decays by spontaneous emission of a photon. Any process that depletes the absorbing

species contributes another source of time dependence for the dipole time correlation

functions C(t) discussed above. This time dependence is usually modeled by appending, in

a multiplicative manner, a factor exp(-|t|/τ). This, in turn modifies the line shape function

I(ω) in a manner much like that discussed when treating the rotational diffusion case:

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-|t|/τ)exp(-ω2t2kT/(2mc2))exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt .

Not surprisingly, when the Doppler contribution is small, one obtains:

I(ω) =
1

4π
  { 

1/τ
(1/τ)2+ (ω-ωfv,iv-∆Ei,f/h ± ωJ)2

  

+  
1/τ

(1/τ)2+ (ω+ωfv,iv+∆Ei,f/h ± ωJ)2
  }.
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In these Lorentzian lines, the parameter τ describes the kinetic decay lifetime of the

molecule. One says that the spectral lines have been lifetime or Heisenberg
broadened by an amount proportional to 1/τ. The latter terminology arises because the

finite lifetime of the molecular states can be viewed as producing, via the Heisenberg

uncertainty relation ∆E∆t > h, states whose energy is "uncertain" to within an amount ∆E.

5. Site Inhomogeneous Broadening

Among the above line broadening mechanisms, the pressure, rotational diffusion,

and lifetime broadenings are all of the homogeneous variety. This means that each

molecule in the sample is affected in exactly the same manner by the broadening process.

For example, one does not find some molecules with short lifetimes and others with long

lifetimes, in the Heisenberg case; the entire ensemble of molecules is characterized by a

single lifetime.

In contrast, Doppler broadening is inhomogeneous in nature because each

molecule experiences a broadening that is characteristic of its particular nature (velocity vz

in this case). That is, the fast molecules have their lines broadened more than do the slower

molecules. Another important example of inhomogeneous broadening is provided by so-

called site broadening. Molecules imbedded in a liquid, solid, or glass do not, at the

instant of photon absorption, all experience exactly the same interactions with their

surroundings. The distribution of instantaneous "solvation" environments may be rather

"narrow" (e.g., in a highly ordered solid matrix) or quite "broad" (e.g., in a liquid at high

temperature). Different environments produce different energy level splittings  ω =

ωfv,iv+∆Ei,f/h ± ωJ (because the initial and final states are "solvated" differently by the

surroundings) and thus different frequencies at which photon absorption can occur. The

distribution of energy level splittings causes the sample to absorb at a range of frequencies

as illustrated in the figure below where homogeneous and inhomogeneous line shapes are

compared.
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(a)                                                   (b)

Homogeneous (a) and inhomogeneous (b) band shapes having 
inhomogeneous width ∆ν     , and homogeneous width ∆ν   .INH H

The spectral line shape function I(ω) is further broadened when site inhomogeneity

is present and significant. These effects can be modeled by convolving the kind of I(ω)

function that results from Doppler, lifetime, rotational diffusion, and pressure broadening

with a Gaussian distribution P(∆E) that describes the inhomogeneous distribution of

energy level splittings:

I(ω) = ⌡⌠I0(ω;∆E) P(∆E) d∆E .

Here I0(ω;∆E) is a line shape function such as those described earlier each of which

contains a set of frequencies (e.g., ω = ωfv,iv+∆Ei,f/h ± ωJ = ω + ∆E/h) at which

absorption or emission occurs.

A common experimental test for inhomogeneous broadening involves hole

burning. In such experiments, an intense light source (often a laser) is tuned to a

frequency ωburn that lies within the spectral line being probed for inhomogeneous

broadening. Then, a second tunable light source is used to scan through the profile of the

spectral line, and, for example, an absorption spectrum is recorded. Given an absorption

profile as shown below in the absence of the intense burning light source:
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one expects to see a profile such as that shown below:
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if inhomogeneous broadening is operative.

The interpretation of the change in the absorption profile caused by the bright light

source proceeds as follows:

(i) In the ensemble of molecules contained in the sample, some molecules will absorb at or

near the frequency of the bright light source ωburn; other molecules (those whose

environments do not produce energy level splittings that match ωburn) will not absorb at

this frequency.

(ii) Those molecules that do absorb at ωburn will have their transition saturated by the

   intense    light source, thereby rendering this frequency region of the line profile transparent

to    further    absorption.

(iii) When the "probe" light source is scanned over the line profile, it will induce

absorptions for those molecules whose local environments did not allow them to be

saturated by the ωburn light. The absorption profile recorded by this probe light source's

detector thus will match that of the original line profile,     until   
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(iv)  the probe light source's frequency matches ωburn, upon which no absorption of the

probe source's photons will be recorded because molecules that absorb in this frequency

regime have had their transition saturated.

(v) Hence, a "hole" will appear in the spectrum recorded by the probe light source's

detector in the region of ωburn.

Unfortunately, the technique of hole burning does not provide a fully reliable

method for identifying inhomogeneously broadened lines. If a hole is observed in such a

burning experiment, this provides ample evidence, but if one is not seen, the result is not

definitive. In the latter case, the transition may not be strong enough (i.e., may not have a

large enough "rate of photon absorption" ) for the intense light source to saturate the

transition to the extent needed to form a hole.

This completes our introduction to the subject of molecular spectroscopy. More

advanced treatments of many of the subjects treated here as well as many aspects of modern

experimental spectroscopy can be found in the text by Zare on angular momentum as well

as in Steinfeld's text      Molecules and Radiation    , 2nd Edition, by J. I. Steinfeld, MIT Press

(1985).
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Chapter 16

Collisions among molecules can also be viewed as a problem in time-dependent quantum

mechanics. The perturbation is the "interaction potential", and the time dependence arises

from the movement of the nuclear positions.

The simplest and most widely studied problems in chemical reaction dynamics

involve describing the unimolecular motion or bimolecular collision of a system in a well

characterized electronic state. Referring back to the discussion of Chapter 3, we recall that

the motion of the nuclei are governed by a Schrödinger equation

[ Ej(R)  Ξj0 (R) + T Ξj0(R) ] = E Ξj0 (R)

in which the electronic energy Ej (R) assumes the role of the potential upon which

movement occurs. This treatment of the nuclear motion is based on the Born-Oppenheimer

approximation (see Chapter 3 for details) which assumes that coupling to nearby electronic

states can be ignored. These assumptions are valid only when the energy surface of interest

Ej(R) is not crossed or closely approached by another electronic energy surface Ek(R).

When the electronic states are so widely spaced, it is proper to speak of the movement of

the molecule(s) on the electronic surface Ej(R), and to use either classical or quantum

mechanical methods to follow such movements.

To simplify the notation throughout this Chapter, the above Schrödinger equation

appropriate to movement on a single electronic energy surface will be written as follows:

[ T + V(R) ] Ξ (R) = E Ξ (R),

where T denotes the kinetic energy operator for    all    3N of the geometrical coordinates

(collectively denoted R) needed to specify the location of the N nuclei, V(R) is the

electronic energy as a function of these coordinates, and

Ξ (R) is the nuclear-motion wavefunction.

For example, when diatomic species are considered, V is a function of the radial

coordinate describing the distance between the two nuclei, T contains derivatives with

respect to radial as well as two angular coordinates (those pertaining to rotation or relative

angular motion of the two nuclei), and R refers to these radial and angular coordinates. For

a triatomic species such as H2O, V is a function of two O-H bond lengths and the H-O-H

angle, and R refers to these three internal coordinates as well as the three angle coordinates

needed to specify the orientation of the H2O molecule in space relative to a space-fixed
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coordinate system (e.g., three Euler angles used in Chapter 3 to treat rotation of spherical

and symmetric top molecules).

In Chapters 1 and 3 and in all of Section 4, such nuclear-motion Schrödinger

equations were used to treat the     bound     vibrational motions of molecules (i.e., the

movement of the nuclei when the energy available is not adequate to rupture one or more of

the bonds in the molecule). These same Schrödinger equations also apply to the scattering

of the constituent nuclei (e.g., the vibration-rotation motion of HCl is treated by the same

Schrödinger equation as the scattering of an H atom and a Cl atom). The primary difference

between these two situations lies in the total energy (E) available: in the former, E lies

below the dissociation asymptote of the ground-state HCl electronic potential energy; in the

latter E is higher than this asymptote (e.g., see the potential curve shown below with some

of its bound state energies and a state in the continuum).
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The different energies appropriate to bound-state and scattering situations affect the

boundary conditions appropriate to the nuclear-motion wavefunctions in the large

internuclear distance region. For the HCl example at hand, the bound-state vibrational

wavefunctions Ξ (R,θ,φ) decay exponentially (see Chapter 1) for large R because such R-

values lie in the classically forbidden region of R-space where E - V(R) is negative. In

contrast, the scattering wavefunctions for this same V(R) potential and the same HCl

molecule need not decay in the large-E region. As illustrated explicitly below for a model

problem, this difference in large-R boundary conditions causes major differences in the

eigenvalue spectrum of the Hamiltonian in these two cases. In particular, the bound-state
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energy levels of HCl are discrete (i.e., quantized) but the scattering states are not (i.e., an

H atom and a Cl atom may collide with arbitrary relative translational energy).

Let us now examine how the Schrödinger equation is solved for cases in which E

lies above the dissociation energy of V(R) by considering a few simple model problems

that can be solved exactly.

I. One Dimensional Scattering

Atom-atom scattering on a single Born-Oppenheimer energy surface can be reduced

to a one-dimensional Schrödinger equation by separating the radial and angular parts of the

three-dimensional Schrödinger equation in the same fashion as used for the Hydrogen atom

in Chapter 1. The resultant equation for the radial part ψ(R) of the wavefunction can be

written as:

- (h2/2µ) R-2 ∂/∂R (R2∂ψ/∂R) + L (L+1)h2/(2µR2) ψ + V(R) ψ = E ψ,

where L is the quantum number that labels the angular momentum of the colliding particles

whose reduced mass is µ.

Defining Ψ(R) = R ψ(R) and substituting into the above equation gives the

following equation for Ψ:

- (h2/2µ) ∂2Ψ/∂R2 + L (L+1)h2/(2µR2) Ψ + V(R) Ψ = E Ψ.

The combination of the "centrifugal potential" L (L+1)h2/(2µR2) and the electronic potential

V(R) thus produce a total "effective potential" for describing the radial motion of the

system.

The simplest reasonable model for such an effective potential is provided by the

"square well" potential illustrated below. This model V(R) could, for example, be applied

to the L = 0 scattering of two atoms whose bond dissociation energy is De and whose

equilibrium bond length for this electronic surface lies somewhere between R = 0 and R =

Rmax.
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The piecewise constant nature of this particular V(R) allows exact solutions to be written

both for bound and scattering states because the Schrödinger equation

- (h2/2µ) d2Ψ/dR2  = E Ψ ( for 0 ≤ R ≤ Rmax)

- (h2/2µ) d2Ψ/dR2 + De Ψ = E Ψ ( Rmax ≤ R < ∞)

admits simple sinusoidal solutions.

A. Bound States

The bound states are characterized by having E < De. For the inner region, the

two solutions to the above equation are

Ψ1(R) = A sin(kR)

and
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Ψ2(R) = B cos(kR)

where

k = 2µE/h2 

is termed the "local wave number" because it is related to the momentum values for the

exp(± i k R) components of such a function:

- i h ∂exp(± i k R)/∂R = h k exp(± i k R).

The cos(kR) solution must be excluded (i.e., its amplitude B in the general solution of the

Schrödinger equation must be chosen equal to 0.0) because this function does not vanish at

R = 0, where the potential moves to infinity and thus the wavefunction must vanish. This

means that only the

Ψ = A sin(kR)

term remains for this inner region.

Within the asymptotic region (R > Rmax) there are also two solutions to the

Schrödinger equation:

Ψ3 = C exp(-κR)

and

Ψ4  = D exp(κ R)

where

κ =  2µ(De - E)/h2  .

Clearly, one of these functions is a decaying function of R for large R and the other Ψ4

grows exponentially for large R. The latter's amplitude D must be set to zero because this
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function generates a probability density that grows larger and larger as R penetrates deeper

and deeper into the classically forbidden region (where E < V(R)).

To connect Ψ1 in the inner region to Ψ3 in the outer region, we use the fact that Ψ
and dΨ/dR must be continuous except at points R where V(R) undergoes an infinite

discontinuity (see Chapter 1). Continuity of Ψ  at Rmax gives:

 A sin(kRmax) = C exp(-κRmax),

and continuity of dΨ/dR at Rmax yields

A k cos(kRmax) = - κC exp(-κRmax).

These two equations allow the ratio C/A as well as the energy E (which appears in κ and in

k) to be determined:

A/C   = - κ/k exp(-κRmax)/cos(kRmax).

The condition that determines E is based on the well known requirement that the

determinant of coefficients must vanish for homogeneous linear equations to have no-trivial

solutions  (i.e., not A = C = 0):

det 






sin(kRmax)  - exp(-κRmax)

kcos(kRmax) κexp(-κRmax)
  = 0

The vanishing of this determinant can be rewritten as

κ sin(kRmax) exp(-κRmax) + k cos(kRmax) exp(-κRmax) = 0

or

 tan(kRmax)  = - k/κ  .

When employed in the expression for A/C, this result gives

A/C   = exp(-κRmax)/sin(kRmax).
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For very large De compared to E, the above equation for E reduces to the familiar

"particle in a box" energy level result since k/κ vanishes in this limit, and thus tan(kRmax)

= 0, which is equivalent to sin(kRmax) = 0, which yields the familiar E = n2h2/(8µR2max)

and C/A = 0, so Ψ = A sin(kR).

When De is not large compared to E, the full transcendental equation tan(kRmax)  =

- k/κ must be solved numerically or graphically for the eigenvalues En, n = 1, 2, 3, ... .

These energy levels, when substituted into the definitions for k and κ give the

wavefunctions:

Ψ = A sin(kR) (for 0 ≤ R ≤ Rmax)

Ψ = A sin(kRmax) exp(κRmax) exp(-κR) (for Rmax ≤ R < ∞ ).

The one remaining unknown A can be determined by requiring that the modulus

squared of the wavefunction describe a probability density that is normalized to unity when

integrated over all space:

⌡⌠
0

∞

|Ψ|2 dR  = 1.

Note that this condition is equivalent to

⌡⌠
0

∞

|ψ|2 R 2dR  = 1

which would pertain to the original radial wavefunction. In the case of an infinitely deep

potential well, this normalization condition reduces to

⌡⌠
0

Rmax

A2sin2(kR)dR  = 1

which produces
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A = 
2

Rmax
  .

B. Scattering States

The scattering states are treated in much the same manner. The functions Ψ1 and

Ψ2 arise as above, and the amplitude of Ψ2 must again be chosen to vanish because Ψ
must vanish at R = 0 where the potential moves to infinity. However, in the exterior region

(R> Rmax), the two solutions are now written as:

Ψ3 = C exp(ik'R)

Ψ4 = D exp(-ik'R)

where the large-R local wavenumber

k' =  2µ(E - De)/h2 

arises because E > De for scattering states.

The conditions that Ψ and dΨ/dR be continuous at Rmax still apply:

A sin(kRmax) = C exp(i k'Rmax) + D exp(-i k'Rmax)

and

k A cos(kRmax) = i k'C exp(i k'Rmax) - ik' D exp(-i k'Rmax).

However, these two equations (in    three    unknowns A, C, and D) can no longer be solved to

generate eigenvalues E and amplitude ratios. There are now three amplitudes as well as the

E value but only these two equations plus a normalization condition to be used. The result

is that the energy no longer is specified by a boundary condition; it can take on any value.

We thus speak of scattering states as being "in the continuum" because the allowed values

of E form a continuum beginning at E = De (since the zero of energy is defined in this

example as at the bottom of the potential well).

The R > Rmax  components of Ψ are commonly referred to as "incoming"
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Ψin = D exp(-ik'R)

and "outgoing"

Ψout = C exp(ik'R)

because their radial momentum eigenvalues are -h k' and h k', respectively. It is a common

convention to define the amplitude D so that the flux of incoming particles is unity.

Choosing

D = 
µ

h k '  

produces an incoming wavefunction whose current density is:

S(R) = -ih/2µ [Ψin* (d/dR Ψin) - (dΨin/dR)* Ψin]

=  |D|2 (-ih/2µ) [-2ik']

= - 1.

This means that there is one unit of current density moving inward (this produces the minus

sign) for all values of R at which Ψin is an appropriate wavefunction (i.e., R > Rmax). This

condition takes the place of the probability normalization condition specified in the bound-

state case when the modulus squared of the total wavefunction is required to be normalized

to unity over all space. Scattering wavefunctions can not be so normalized because they do

not decay at large R; for this reason, the flux normalization condition is usually employed.

The magnitudes of the outgoing (C) and short range (A) wavefunctions relative to that of

the incoming function (D) then provide information about the scattering and "trapping" of

incident flux by the interaction potential.

Once D is so specified, the above two boundary matching equations are written as a

set of two inhomogeneous linear equations in two unknowns (A and C):

A sin(kRmax) - C exp(i k'Rmax) = D exp(-i k'Rmax)
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and

k A cos(kRmax) - i k'C exp(i k'Rmax) = - ik' D exp(-i k'Rmax)

or





sin(kRmax) -exp(i k'Rmax)

kcos(kRmax) -i k'exp(i k'Rmax)   
A
C   = 



D exp(-i k'Rmax)

- ik' D exp(-i k'Rmax)  .

Non-trivial solutions for A and C will exist except when the determinant of the matrix on

the left side vanishes:

-i k' sin(kRmax) + k cos(kRmax) = 0,

which can be true only if

tan(kRmax) = ik'/k.

This equation is not obeyed for any (real) value of the energy E, so solutions for A and C

in terms of the specified D can always be found.

In summary, specification of unit incident flux is made by choosing D as indicated

above. For any collision energy E > De, the 2x1 array on the right hand side of the set of

linear equations written above can be formed, as can the 2x2 matrix on the left side. These

linear equations can then be solved for A and C. The overall wavefunction for this E is then

given by:

Ψ = A sin(kR) (for 0 ≤ R ≤ Rmax)

Ψ = C exp(ik'R) + D exp(-ik'R) (for Rmax ≤ R < ∞).

C. Shape Resonance States

If the angular momentum quantum number L in the effective potential introduced

earlier is non-zero, this potential has a repulsive component at large R. This repulsion can

combine with short-range attractive interactions due, for example, to chemical bond forces,
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to produce an effective potential that one can model in terms of simple piecewise functions

shown below.

δV

Rmax  + δRmax

Interatomic Distance R

De

0.0

V(R)

Again, the piecewise nature of the potential allows the one-dimensional Schrödinger

equation to be solved analytically. For energies below De, one again finds bound states in

much the same way as illustrated above (but with the exponentially decaying function exp(-

κ'R) used in the region Rmax ≤ R ≤ Rmax + δ, with κ' =  2µ(De + δV - E)/h2  ).

For energies lying above De + δV, scattering states occur and the four amplitudes of

the functions (sin(kR), exp(±i k'''R) with k''' = 2µ(-De - δV + E)/h2  , and exp(i k'R))

appropriate to each R-region are determined in terms of the amplitude of the incoming

asymptotic function D exp(-ik'R) from the four equations obtained by matching Ψ and

dΨ/dR at Rmax  and at Rmax + δ .

For energies lying in the range De < E < De +δV, a qualitatively different class of

scattering function exists. These so-called shape resonance states occur at energies that

are determined by the condition that the amplitude of the wavefunction within the barrier

(i.e., for 0 ≤ R ≤ Rmax ) be large so that incident flux successfully tunnels through the
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barrier and builds up, through constructive interference, large probability amplitude there.

Let us now turn our attention to this specific energy regime.

The piecewise solutions to the Schrödinger equation appropriate to the shape-

resonance case are easily written down:

Ψ = Asin(kR) (for 0 ≤ R ≤ Rmax )

Ψ = B+ exp(κ'R) + B- exp(-κ'R) (for Rmax ≤ R ≤ Rmax +δ)

Ψ = C exp(ik'R) + D exp(-ik'R) (for Rmax +δ ≤ R < ∞).

Note that both exponentially growing and decaying functions are acceptable in the Rmax ≤
R ≤ Rmax +δ region because this region does not extend to R = ∞.  There are four

amplitudes (A, B+, B-, and C) that must be expressed in terms of the specified amplitude D

of the incoming flux. Four equations that can be used to achieve this goal result when Ψ
and dΨ/dR are matched at Rmax and at Rmax + δ:

Asin(kRmax) = B+ exp(κ'Rmax) + B- exp(-κ'Rmax),

 Akcos(kRmax) = κ'B+ exp(κ'Rmax) - κ'B- exp(-κ'Rmax),

B+ exp(κ'(Rmax + δ)) + B- exp(-κ'(Rmax + δ))

= C exp(ik'(Rmax + δ))  + D exp(-ik'(Rmax + δ)),

κ'B+ exp(κ'(Rmax + δ)) - κ'B- exp(-κ'(Rmax + δ))

= ik'C exp(ik'(Rmax + δ))  -ik' D exp(-ik'(Rmax + δ)).

It is especially instructive to consider the value of A/D that results from solving this set of

four equations in four unknowns because the modulus of this ratio provides information

about the relative amount of amplitude that exists inside the centrifugal barrier in the

attractive region of the potential compared to that existing in the asymptotic region as

incoming flux.

The result of solving for A/D is:
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A/D = 4 κ'exp(-ik'(Rmax+δ))

{exp(κ' δ)(ik'-κ')(κ'sin(kRmax)+kcos(kRmax))/ik'

+ exp(-κ' δ)(ik'+κ')(κ'sin(kRmax)-kcos(kRmax))/ik' }-1.

Further, it is instructive to consider this result under conditions of a high (large De + δV -

E) and thick (large δ) barrier. In such a case, the "tunnelling factor" exp(-κ' δ) will be very

small compared to its counterpart exp(κ' δ), and so

A/D = 4 
ik'κ'

ik'-κ'
 exp(-ik'(Rmax+δ)) exp(-κ' δ) {κ'sin(kRmax)+kcos(kRmax) }-1.

The exp(-κ' δ) factor in A/D causes the magnitude of the wavefunction inside the barrier to

be small in most circumstances; we say that incident flux must tunnel through the barrier to

reach the inner region and that exp(-κ' δ) gives the probability of this tunnelling. The

magnitude of the A/D factor could become large if the collision energy E is such that

κ'sin(kRmax)+kcos(kRmax)

is small. In fact, if

tan(kRmax) = - k/κ'

this denominator factor in A/D will vanish and A/D will become infinite. Note that the

above condition is similar to the energy quantization condition

tan(kRmax) = - k/κ

that arose when bound states of a finite potential well were examined earlier in this Chapter.

There is, however, an important difference. In  the bound-state situation

k = 2µE/h2 

and
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κ =  2µ(De - E)/h2  ;

in this shape-resonance case, k is the same, but

κ' =  2µ(De + δV - E)/h2  )

rather than κ occurs, so the two tan(kRmax) equations are not identical.

However, in the case of a very high barrier (so that κ' is much larger than k), the

denominator

κ'sin(kRmax)+kcos(kRmax) ≅ κ ' sin(kRmax)

in A/D can become small if

sin(kRmax) ≅ 0.

This condition is nothing but the energy quantization condition that would occur for the

particle-in-a-box potential shown below.
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Interatomic Distance R
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0.0
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This potential is identical to the true effective potential for 0 ≤ R ≤ Rmax , but extends to

infinity beyond Rmax ; the barrier and the dissociation asymptote displayed by the true

potential are absent.

In summary, when a barrier is present on a potential energy surface, at energies

above the dissociation asymptote De but below the top of the barrier (De + δV here), one

can expect shape-resonance states to occur at "special" scattering energies E. These so-

called resonance energies can often be approximated by the bound-state energies of a

potential that is identical to the potential of interest in the inner region (0 ≤ R ≤ Rmax  here)

but that extends to infinity beyond the top of the barrier (i.e., beyond the barrier, it does not

fall back to values below E).

The chemical significance of shape resonances is great. Highly rotationally excited

molecules may have more than enough total energy to dissociate (De), but this energy may

be "stored" in the rotational motion, and the vibrational energy may be less than De. In

terms of the above model, high angular momentum may produce a significant barrier in the

effective potential, but the system's vibrational energy may lie significantly below De. In

such a case, and when viewed in terms of motion on an angular momentum modified

effective potential, the lifetime of the molecule with respect to dissociation is determined by

the rate of tunnelling through the barrier.
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For the case at hand, one speaks of "rotational predissociation" of the molecule.

The lifetime τ can be estimated by computing the frequency ν at which flux existing inside

Rmax strikes the barrier at Rmax

ν = 
hk

2µRmax
 (sec-1)

and then multiplying by the probability P that flux tunnels through the barrier from Rmax to

Rmax + δ:

P = exp(-2κ' δ).

The result is that

τ -1=  
hk

2µRmax
  exp(-2κ' δ)

with the energy E entering into k and κ' being determined by the resonance condition:

(κ'sin(kRmax)+kcos(kRmax)) = minimum.

Although the examples treated above involved piecewise constant potentials (so the

Schrödinger equation and the boundary matching conditions could be solved exactly),

many of the characteristics observed carry over to more chemically realistic situations. As

discussed, for example, in     Energetic Principles of Chemical Reactions   , J. Simons, Jones

and Bartlett, Portola Valley, Calif. (1983), one can often model chemical reaction processes

in terms of:

(i) motion along a "reaction coordinate" (s) from a region characteristic of reactant

materials where the potential surface is positively curved in all direction and all forces (i.e.,

gradients of the potential along all internal coordinates) vanish,

(ii) to a transition state at which the potential surface's curvature along s is negative

while all other curvatures are positive and all forces vanish,

(iii) onward to product materials where again all curvatures are positive and all

forces vanish.
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Within such a "reaction path" point of view, motion transverse to the reaction coordinate s

is often modelled in terms of local harmonic motion although more sophisticated treatments

of the dynamics is possible. In any event, this picture leads one to consider motion along a

single degree of freedom (s), with respect to which much of the above treatment can be

carried over, coupled to transverse motion along all other internal degrees of freedom

taking place under an entirely positively curved potential (which therefore produces

restoring forces to movement away from the "streambed" traced out by the reaction path s).

II. Multichannel Problems

When excited electronic states are involved, couplings between two or more

electronic surfaces may arise. Dynamics occuring on an excited-state surface may evolve in

a way that produces flux on another surface. For example, collisions between an

electronically excited 1s2s (3S) He atom and a ground-state 1s2 (1S) He atom occur on a

potential energy surface that is repulsive at large R (due to the repulsive interaction between

the closed-shell 1s2 He and the large 2s orbital) but attractive at smaller R (due to the σ2σ*1

orbital occupancy arising from the three 1s-derived electrons). The ground-state potential

energy surface for this system (pertaining to two 1s2 (1S) He atoms is repulsive at small R

values (because of the σ2σ*2 nature of the electronic state). In this case, there are two

Born-Oppenheimer electronic-nuclear motion states that are degenerate and thus need to be

combined to achieve a proper description of the dynamics:

Ψ1 = |σ2σ*2| Ψgrnd.(R,θ,φ)

pertaining to the ground electronic state and the scattering state Ψgrnd. on this energy

surface, and

Ψ2 = |σ2σ*12σ1| Ψex.(R,θ,φ)

pertaining to the excited electronic state and the nuclear-motion state Ψex. on this energy

surface. Both of these wavefunctions can have the same energy E; the former has high

nuclear-motion energy and low electronic energy, while the latter has higher electronic

energy and lower nuclear-motion energy.
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A simple model that can be used to illustrate the two-state couplings that arise in

such cases is introduced through the two one-dimensional piecewise potential surfaces

shown below.

-∆

V(R)
0.0

De

Rmax

Interatomic Distance R

The dashed energy surface

V(R) = - ∆ (for 0 ≤ R < ∞)

provides a simple representation of a repulsive lower-energy surface, and the solid-line plot

represents the excited-state surface that has a well of depth De and whose well lies ∆ above

the ground-state surface.

In this case, and for energies lying above zero (for E < 0, only nuclear motion on

the lower energy dashed surface is "open" (i.e., accessible)) yet below De, the nuclear-
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motion wavefunction can have amplitudes belonging to both surfaces. That is, the total

(electronic and nuclear) wavefunction consists of two portions that can be written as:

Ψ = A φ sin(kR) + φ'' A'' sin(k''R) (for 0 ≤ R ≤ Rmax)

and

Ψ = A φ sin(kRmax) exp(κRmax) exp(-κR) + φ'' A'' sin(k''R)

(for Rmax ≤ R < ∞ ),

where φ and φ'' denote the electronic functions belonging to the upper and lower energy

surfaces, respectively. The wavenumbers k and k'' are defined as:

k = 2µE/h2 

k'' = 2µ(E +  ∆)/h2  

and κ is as before

κ =  2µ(De - E)/h2  .

For the lower-energy surface, only the sin(k''R) function is allowed because the cos(k''R)

function does not vanish at R = 0.

A. The Coupled Channel Equations

In such cases, the relative amplitudes (A and A'') of the nuclear motion

wavefunctions on each surface must be determined by substituting the above "two-channel"

wavefunction ( the word channel is used to denote separate asymptotic states of the system;

in this case, the φ and φ'' electronic states) into the full Schrödinger equation. In Chapter 3,
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the couplings among Born-Oppenheimer states were so treated and resulted in the

following equation:

 [ (Ej(R) - E) Ξj (R) + T Ξj(R) ] = - Σ i { < Ψj | T | Ψi > (R) Ξi(R)

+ Σa=1,M ( - h2/ma ) < Ψj | ∇a | Ψi >(R) .  ∇a Ξi(R)  }

where Ej(R) and Ξj(R) denote the electronic energy surfaces and nuclear-motion

wavefunctions, Ψj denote the corresponding electronic wavefunctions, and the ∇a

represent derivatives with respect to the various coordinates of the nuclei. Changing to

the notation used in the one-dimensional model problem introduced above, these so-called

coupled-channel equations read:

[(-∆ - E) - h2/2µ d2/dR2 ] A''sin(k''R)

= - {<φ''| - h2/2µ d2/dR2|φ' '> A''sin(k''R)

+ ( - h2/µ) <φ''|d/dR|φ> d/dR A sin(kR) } (for 0 ≤ R ≤ Rmax),

[(-∆ - E) - h2/2µ d2/dR2 ] A''sin(k''R)

 = - {<φ''|- h2/2µ d2/dR2|φ' '> A''sin(k''R)

+ ( - h2/µ) <φ''|d/dR|φ> d/dR A φ sin(kRmax) exp(κRmax) exp(-κR) }

(for Rmax ≤ R < ∞ );

when the index j refers to the ground-state surface (V(R) = -∆,  for 0 < R  < ∞), and

[(0 - E) - h2/2µ d2/dR2 ] Asin(kR) = - {<φ| - h2/2µ d2/dR2|φ> Asin(kR)

+ ( - h2/µ) <φ|d/dR|φ''> d/dR A'' sin(k''R) }(for 0 ≤ R ≤ Rmax),

[(De - E) - h2/2µ d2/dR2 ] Asin(kRmax) exp(κRmax) exp(-κR)



87

 = - {<φ|- h2/2µ d2/dR2|φ> Asin(kRmax) exp(κRmax) exp(-κR)

+ ( - h2/µ) <φ|d/dR|φ''> d/dR A''sin(k''R) } (for Rmax ≤ R < ∞ )

when the index j refers to the excited-state surface (where V(R) = 0, for 0 < R  ≤ Rmax and

V(R) = De for Rmax ≤ R < ∞ ).

Clearly, if the right-hand sides of the above equations are ignored, one simply

recaptures the Schrödinger equations describing motion on the separate potential energy

surfaces:

[(-∆ - E) - h2/2µ d2/dR2 ] A''sin(k''R) = 0 (for 0 ≤ R ≤ Rmax),

[(-∆ - E) - h2/2µ d2/dR2 ] A''sin(k''R) = 0 (for Rmax ≤ R < ∞ );

that describe motion on the lower-energy surface, and

[(0 - E) - h2/2µ d2/dR2 ] Asin(kR) = 0 (for 0 ≤ R ≤ Rmax),

[(De - E) - h2/2µ d2/dR2 ] Asin(kRmax) exp(κRmax) exp(-κR) = 0

(for Rmax ≤ R < ∞ )

describing motion on the upper surface on which the bonding interaction occurs. The terms

on the right-hand sides provide the couplings that cause the true solutions to the

Schrödinger equation to be combinations of solutions for the two separate surfaces.

In applications of the coupled-channel approach illustrated above, coupled sets of

second order differential equations (two in the above example) are solved by starting with a

specified flux in one of the channels and a chosen energy E. For example, one might

specify the amplitude A to be unity to represent preparation of the system in a bound

vibrational level (with E < De) of the excited electronic-state potential. One would then

choose E to be one of the eigenenergies of that potential. Propagation methods could be

used to solve the coupled differential equations subject to these choices of E and A. The
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result would be the determination of the amplitude A' of the wavefunction on the ground-

state surface. The ratio A'/A provides a measure of the strength of coupling between the

two Born-Oppenheimer states.

B. Perturbative Treatment

Alternatively, one can treat the coupling between the two states via time dependent

perturbation theory. For example, by taking A = 1.0 and choosing E to be one of the

eigenenergies of the excited-state potential, one is specifying that the system is initially (just

prior to t = 0) prepared in a state whose wavefunction is:

Ψ0ex = φ sin(kR) (for 0 ≤ R ≤ Rmax)

Ψ0ex = φ sin(kRmax) exp(κRmax) exp(-κR) (for Rmax ≤ R < ∞ ).

From t = 0 on, the coupling to the other state

Ψ0grnd = φ' sin(k'R) (for 0 ≤ R < ∞)

is induced by the "perturbation" embodied in the terms on the right-hand side of the

coupled-channel equations.

Within this time dependent perturbation theory framework, the rate of transition of

probability amplitude from the initially prepared state (on the excited state surface) to the

ground-state surface is proportional to the square of the perturbation matrix elements

between these two states:

Rate α | ⌡⌠
0

Rmax

sin(kR) <φ|d/dR|φ''> (d/dRsin(k''R))dR  

+ ⌡⌠
Rmax

∞

sin(kRmax) exp(κRmax) exp(-κR) <φ|d/dR|φ''>(d/dR sin(k''R))dR  |2

The matrix elements occurring here contain two distinct parts:
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<φ|d/dR|φ' '>

has to do with the electronic state couplings that are induced by radial movement of the

nuclei; and both

sin(kR)  d/dRsin(k''R)

and

sin(kRmax) exp(κRmax) exp(-κR) d/dR sin(k''R)

relate to couplings between the two nuclear-motion wavefunctions induced by these same

radial motions. For a transition to occur, both the electronic and nuclear-motion states must

undergo changes. The initially prepared state (the bound state on the upper electronic

surface) has high electronic and low nuclear-motion energy, while the state to which

transitions may occur (the scattering state on the lower electronic surface) has low electronic

energy and higher nuclear-motion energy.

Of course, in the above example, the integrals over R can be carried out if the

electronic matrix elements <φ|d/dR|φ''> can be handled. In practical chemical applications

(for an introductory treatment see     Energetic Principles of Chemical Reactions   , J. Simons,

Jones and Bartlett, Portola Valley, Calif. (1983)), the evaluation of these electronic matrix

elements is a formidable task that often requires computation intensive techniques such as

those discussed in Section 6.

Even when the electronic coupling elements are available (or are modelled or

parameterized in some reasonable manner), the solution of the coupled-channel equations

that govern the nuclear motion is a demanding task. For the purposes of this text, it suffices

to note that:

(i) couplings between motion on two or more electronic states can and do occur;

(ii) these couplings are essential to treat whenever the electronic energy difference

(i.e., the spacing between pairs of Born-Oppenheimer potential surfaces) is small (i.e.,

comparable to vibrational or rotational energy level spacings);

(iii) there exists a rigorous theoretical framework in terms of which one can evaluate

the rates of so-called radiationless transitions between pairs of such electronic,
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vibrational, rotational states. Expressions for such transitions involve (a) electronic matrix

elements <φ|d/dR|φ''> that depend on how strongly the electronic states are modulated by

movement (hence the d/dR) of the nuclei, and (b) nuclear-motion integrals connecting the

initial and final nuclear-motion wavefunctions, which also contain d/dR because they

describe the "recoil" of the nuclei induced by the electronic transition.

C. Chemical Relevance

As presented above, the most obvious situation of multichannel dynamics arises

when electronically excited molecules undergo radiationless relaxation (e.g., internal

conversion when the spin symmetry of the two states is the same or intersystem crossing

when the two states differ in spin symmetry). These subjects are treated in some detail in the

text     Energetic Principles of Chemical Reactions   , J. Simons, Jones and Bartlett, Portola

Valley, Calif. (1983)) where radiationless transitions arising in photochemistry and

polyatomic molecule reactivity are discussed.

Let us consider an example involving the chemical reactivity of electronically

excited alkaline earth or d10s2 transition metal atoms with H2 molecules. The particular case

for Cd* + H2 → CdH + H has been studied experimentally and theoretically. In such

systems, the potential energy surface connecting to ground-state Cd (1S) + H2 becomes

highly repulsive as the collision partners approach (see the depiction provided in the Figure

shown below). The three surfaces that correlate with the Cd (1P) + H2 species prepared by

photo-excitation of Cd (1S) behave quite differently as functions of the Cd-to-H2 distance

because in each the singly occupied 6p orbital assumes a different orientation relative to the

H2 molecule's bond axis. For (near) C2v orientations, these states are labeled 1B2 , 1B1 ,

and 1A1; they have the 6p orbital directed as shown in the second Figure, respectively. The

corresponding triplet surfaces that derive from Cd (3P) + H2 behave, as functions of the

Cd-to-H2 distance (R) in similar manner, except they are shifted to lower energy because

Cd (3P) lies below Cd (1P) by ca. 37 kcal/mol.

Collisions between Cd (1P) and H2 can occur on any of the three surfaces

mentioned above. Flus on the 1A1 surface is primarily reflected (at low collision energies

characteristic of the thermal experiments) because this surface is quite repulsive at large R.

Flux on the 1B1 surface can proceed in to quite small R (ca. 2.4 Å ) before repulsive forces

on this surface reflect it. At geometries near R = 2.0Å and rHH = 0.88 Å, the highly

repulsive 3A1 surface intersects this 1B1 surface from below. At and near this intersection,

a combination of spin-orbit coupling (which is large for Cd) and non-adiabatic coupling
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may induce flux to evolve onto the 3A1 surface, after which fragmentation to Cd (3P) + H2

could occur.

In contrast, flux on the 1B2 surface propogates inward under attractive forces to R

= 2.25 Å and rHH = 0.79 Å where it may evolve onto the 3A1 surface which intersects from

below. At and near this intersection, a combination of spin-orbit coupling (which is large

for Cd) and non-adiabatic coupling may induce flux to evolve onto the 3A1 surface, after

which fragmentation to Cd (3P) + H2 could occur. Flux that continues to propogate inward

to smaller R values experiences even stronger attractive forces that lead, near R = 1.69 Å

and rHH = 1.54 Å, to an intersection with the 1A1 surface that connects to Cd (1S) + H2.

Here, non-adiabatic couplings may cause flux to evolve onto the 1A1 surface which may

then lead to formation of ground state Cd (1S) + H2 or Cd (1S) + H + H, both of which are

energetically possible. Processes in which electronically excited atoms produce ground-

state atoms through such collisions and surface hopping are termed "electronic quenching".

The nature of the non-adiabatic couplings that arise in the two examples given

above are quite different. In the former case, when the 1B1 and 3A1 surfaces are in close

proximity to one another, the first-order coupling element:

<Ψ (1B1) | ∇j |Ψ (3A1)>

is non-zero only for nuclear motions (i.e., ∇j ) of b1xa1 = b1 symmetry. For the CdH2

collision complex being considered in (or near) C2v symmetry, such a motion corresponds

to rotational motion of the nuclei about an axis lying parallel to the H-H bond axis. In

contrast, to couple the 3A1 and 1B2 electronic states through an element of the form

<Ψ (1B2) | ∇j |Ψ (3A1)> ,

the motion must be of b2xa1 = b2 symmetry. This movement corresponds to asymmetric

vibrational motion of the two Cd-H interatomic coordinates.

The implications of these observations are clear. For example, in so-called half-

collision experiments in which a van der Waals CdH2 complex is probed, internal rotational

motion would be expected to enhance 1B1  → 3A1 quenching, whereas asymmetric

vibrational motion should enhance the 1B2  → 3A1 process.

Moreover, the production of ground-state Cd (1S) +H2 via 1B2  → 1A1 surface

hopping (near R = 1.69 Å and rHH = 1.54 Å) should also be enhanced by asymmetric

vibrational excitation. The 1B2 and 1A1 surfaces also provide, through their non-adiabatic

couplings, a "gateway" to formation of the asymmetric bond cleavage products CdH (2Σ) +
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H. It can be shown that the curvature (i.e., second energy derivative) of a potential energy

surface consists of two parts: (i) one part that in always positive, and (ii) a second that can

be represented in terms of the non-adiabatic coupling elements between the two surfaces

and the energy gap ∆E between the two surfaces. Applied to the two states at hand, this

second contributor to the curvature of the 1B2 surface is:

|<Ψ(1B2)  |  ∇j |Ψ(1A1)> |2

E(1B2) - E(1A1)  
  .

Clearly, when the 1A1 state is higher in energy but strongly non-adiabatically coupled to the
1B2 state, negative curvature along the asymmetric b2 vibrational mode is expected for the
1B2 state. When the 1A1 state is lower in energy, negative curvature along the b2

vibrational mode is expected for the 1A1 state (because the above expression also expresses

the curvature of the 1A1 state).

Therefore, in the region of close-approach of these two states, state-to-state surface

hopping can be facile. Moreover, one of the two states (the lower lying at each geometry)

will likely possess negative curvature along the b2 vibrational mode. It is this negative

curvature that causes movement away from C2v symmetry to occur spontaneously, thus

leading to the CdH (2Σ) + H reaction products.
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Coupled-state dynamics can also be used to describe situations in which vibrational

rather than electronic-state transitions occur. For example, when van der Waals complexes

such as HCl...Ar undergo so-called vibrational predissociation, one thinks in terms of

movement of the Ar atom relative to the center of mass of the HCl molecule playing the role

of the R coordinate above, and the vibrational state of HCl as playing the role of the

quantized (electronic) state in the above example.
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In such cases, a vibrationally excited HCl molecule (e.g., in v = 1) to which an Ar

atom is attached via weak van der Waals attraction transfers its vibrational energy to the Ar

atom, subsequently dropping to a lower (e.g., v = 0) vibrational level. Within the two-

coupled-state model introduced above, the upper energy surface pertains to Ar in a bound

vibrational level (having dissociation energy De) with HCl in an excited vibrational state (∆
being the v = 0 to v = 1 vibrational energy gap), and the lower surface describes an Ar atom

that is free from the HCl molecule that is itself in its v = 0 vibrational state. In this case, the

coordinate R is the Ar-to-HCl distance.

In analogy with the electronic-nuclear coupling example discussed earlier, the rate of

transition from HCl (v=1) bound to Ar to HCl(v=0) plus a free Ar atom depends on the

strength of coupling between the Ar...HCl relative motion coordinate (R) and the HCl

internal vibrational coordinate. The <φ|d/dR|φ''> coupling elements in this case are integrals

over the HCl vibrational coordinate x involving the v = 0 (φ) and v = 1 (φ'') vibrational

functions. The integrals over the R coordinate in the earlier expression for the rate of

radiationless transitions now involve integration over the distance R between the Ar atom

and the center of mass of the HCl molecule.

This completes our discussion of dynamical processes in which more than one

Born-Oppenheimer state is involved. There are many situations in molecular spectroscopy

and chemical dynamics where consideration of such coupled-state dynamics is essential.

These cases are characterized by

(i) total energies E which may be partitioned in two or more ways among the internal

degrees of freedom (e.g., electronic and nuclear motion or vibrational and ad-atom in the

above examples),

(ii) Born-Oppenheimer potentials that differ in energy by a small amount (so that

energy transfer from the other degree(s) of freedom is facile).

III. Classical Treatment of Nuclear Motion

For all but very elementary chemical reactions (e.g., D + HH → HD + H or F +

HH → FH + H) or scattering processes (e.g., CO (v,J) + He → CO (v',J') + He), the
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above fully quantal coupled channel equations simply can not be solved even when modern

supercomputers are employed. Fortunately, the Schrödinger equation can be replaced by a

simple classical mechanics treatment of nuclear motions under certain circumstances.

For motion of a particle of mass µ along a direction R, the primary condition under

which a classical treatment of nuclear motion is valid

λ
4π

 
1
p  |dp

dR | << 1

relates to the fractional change in the    local momentum      defined as:

p = 2µ(E - E j(R)) 

along R within the 3N - 5 or 3N - 6 dimensional internal coordinate space of the molecule,

as well as to the    local de Broglie wavelength    

λ = 
2πh
|p|   .

The inverse of the quantity  
1
p  |dp

dR | can be thought of as the length over which the

momentum changes by 100%. The above condition then states that the local de Broglie

wavelength must be short with  respect to the distance over which the potential changes

appreciably. Clearly, whenever one is dealing with heavy nuclei that are moving fast (so |p|

is large), one should anticipate that the local de Broglie wavelength of those particles may

be short enough to meet the above criteria for classical treatment.

It has been determined that for potentials characteristic of typical chemical bonding

(whose depths and dynamic range of interatomic distances are well known), and for all but

low-energy motions (e.g., zero-point vibrations) of light particles such as Hydrogen and

Deuterium nuclei or electrons, the local de Broglie wavelengths are often short enough for

the above condition to be met (because of the large masses µ of non-Hydrogenic species)

except when their velocities approach zero (e.g., near classical turning points). It is

therefore common to treat the nuclear-motion dynamics of molecules that do not contain H

or D atoms in a purely classical manner, and to apply so-called semi-classical corrections
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near classical turning points. The motions of H and D atomic centers usually require

quantal treatment except when their kinetic energies are quite high.

A. Classical Trajectories

To apply classical mechanics to the treatment of nuclear-motion dynamics, one

solves Newtonian equations

mk 
d2 X k

dt2
  = - 

dEj
dXk

 

where Xk denotes one of the 3N cartesian coordinates of the atomic centers in the molecule,

mk is the mass of the atom associated with this coordinate, and 
dEj
dXk

  is the derivative of the

potential, which is the electronic energy Ej(R), along the kth coordinate's direction. Starting

with coordinates {Xk(0)} and corresponding momenta {Pk(0)} at some initial time t = 0,

and given the ability to compute the force - 
dEj
dXk

   at any location of the nuclei, the Newton

equations can be solved (usually on a computer) using finite-difference methods:

Xk(t+δt) = Xk(t) + Pk(t) δt/mk

Pk(t+δt) = Pk(t) - 
dEj
dXk

 (t)  δt.

In so doing, one generates a sequence of coordinates {Xk(tn)} and momenta

{Pk(tn)}, one for each "time step" tn. The histories of these coordinates and momenta as

functions of time are called "classical trajectories". Following them from early times,

characteristic of the molecule(s) at "reactant" geometries, through to late times, perhaps

characteristic of "product" geometries, allows one to monitor and predict the fate of the time

evolution of the nuclear dynamics. Even for large molecules with many atomic centers,

propagation of such classical trajectories is feasible on modern computers    if    the forces -
dEj
dXk

  can be computed in a manner that does not consume inordinate amounts of computer

time.

In Section 6, methods by which such force calculations are performed using first-

principles quantum mechanical methods (i.e., so-called    ab initio     methods) are discussed.

Suffice it to say that these calculations are often the rate limiting step in carrying out
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classical trajectory simulations of molecular dynamics. The large effort involved in the    ab

   initio     determination of electronic energies and their gradients - 
dEj
dXk

  motivate one to

consider using empirical "force field" functions Vj(R) in place of the    ab initio     electronic

energy Ej(R). Such model potentials Vj(R), are usually constructed in terms of easy to

compute and to differentiate functions of the interatomic distances and valence angles that

appear in the molecule. The parameters that appear in the attractive and repulsive parts of

these potentials are usually chosen so the potential is consistent with certain experimental

data (e.g., bond dissociation energies, bond lengths, vibrational energies, torsion energy

barriers).

For a large polyatomic molecule, the potential function V usually contains several

distinct contributions:

V = Vbond + Vbend + VvanderWaals + Vtorsion + Velectrostatic.

Here Vbond gives the dependence of V on stretching displacements of the bonds

(i.e., interatomic distances between pairs of bonded atoms) and is usually modeled as a

harmonic or Morse function for each bond in the molecule:

Vbond  = ΣJ 1/2 kJ (RJ -Req,J)2

or

Vbond = ΣJ De,J (1-exp(-aJ(RJ -Req,J)))2

where the index J labels the bonds and the kJ, aJ and Req,J are the force constant and

equilibrium bond length parameters for the Jth bond.

Vbend describes the bending potentials for each triplet of atoms (ABC) that are

bonded in a A-B-C manner; it is usually modeled in terms of a harmonic potential for each

such bend:

Vbend  = ΣJ 1/2 kθJ (θJ -θeq,J)2 .

The θeq,J and kθJ are the equilibrium angles and force constants for the Jth angle.
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VvanderWaals represents the van der Waals interactions between all pairs of atoms

that are not bonded to one another. It is usually written as a sum over all pairs of such

atoms (labeled J and K) of a Lennard-Jones 6,12 potential:

VvanderWaals = ΣJ<K [aJ,K (RJ,K)-12 - bJ,K (RJ,K)-6 ]

where aJ,K and bJ,K are parameters relating to the repulsive and dispersion attraction forces,

respectively for the Jth and Kth atoms.

 Vtorsion  contributions describe the dependence of V on angles of rotation about

single bonds. For example, rotation of a CH3 group around the single bond connecting the

carbon atom to another group may have an angle dependence of the form:

 Vtorsion = V0 (1 - cos(3θ))

where θ is the torsion rotation angle, and V0 is the magnitude of the interaction between the

C-H bonds and the group on the atom bonded to carbon.

Velectrostatic contains the interactions among polar bonds or other polar groups

(including any charged groups). It is usually written as a sum over pairs of atomic centers

(J and K) of Coulombic interactions between fractional charges {QJ} (chosen to represent

the bond polarity) on these atoms:

Velectrostatic = ΣJ<K QJQK/RJ,K

Although the total potential V as written above contains many components, each is a

relatively simple function of the Cartesian positions of the atomic centers. Therefore, it is

relatively straightforward to evaluate V and its gradient along all 3N Cartesian directions in

a computationally efficient manner. For this reason, the use of such empirical force fields in

so-called molecular mechanics simulations of classical dynamics is widely used for

treating large organic and biological molecules.

B. Initial Conditions

No single trajectory can be used to simulate chemical reaction or collisions that

relate to realistic experiments. To generate classical trajectories that are characteristic of

particular experiments, one must choose many initial conditions (coordinates and momenta)
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the    collection     of which is representative of the experiment. For example, to use an

ensemble of trajectories to simulate a molecular beam collision between H and Cl atoms at

a collision energy E, one must follow many classical trajectories that have a range of

"impact parameters" (b) from zero up to some maximum value bmax beyond which the

H ....Cl interaction potential vanishes. The figure shown below describes the impact

parameter as the distance of closest approach that a trajectory would have if no attractive or

repulsive forces were operative.

impact 
parameter

b
initial momentum
vector

H atom

Cl atom

Moreover, if the energy resolution of the experiment makes it impossible to fix the collision

energy closer than an amount δE, one must run collections of trajectories for values of E

lying within this range.

If, in contrast, one wishes to simulate thermal reaction rates, one needs to follow

trajectories with various E values and various impact parameters b from initiation at t = 0 to

their conclusion (at which time the chemical outcome is interrogated). Each of these

trajectories must have their outcome weighted by an amount proportional to a Boltzmann

factor exp(-E/RT), where R is the ideal gas constant and T is the temperature because this

factor specifies the probability that a collision occurs with kinetic energy E.

As the complexity of the molecule under study increases, the number of parameters

needed to specify the initial conditions also grows. For example, classical trajectories that

relate to F + H2 → HF + H need to be specified by providing (i) an impact parameter for

the F to the center of mass of H2, (ii) the relative translational energy of the F and H2, (iii)
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the radial momentum and coordinate of the H2 molecule's bond length, and (iv) the angular

momentum of the H2 molecule as well as the angle of the H-H bond axis relative to the line

connecting the F atom to the center of mass of the H2 molecule. Many such sets of initial

conditions must be chosen and the resultant classical trajectories followed to generate an

ensemble of trajectories pertinent to an experimental situation.

It should be clear that even the classical mechanical simulation of chemical

experiments involves considerable effort because no single trajectory can represent the

experimental situation. Many trajectories, each with different initial conditions selected so

they represent, as an ensemble, the experimental conditions, must be followed and the

outcome of all such trajectories must be averaged over the probability of realizing each

specific initial condition.

C. Analyzing Final Conditions

Even after classical trajectories have been followed from t = 0 until the outcomes of

the collisions are clear, one needs to properly relate the fate of each trajectory to the

experimental situation. For the F + H2 → HF + H example used above, one needs to

examine each trajectory to determine, for example, (i) whether HF + H products are formed

or non-reactive collision to produce F + H2 has occurred, (ii) the amount of rotational

energy and angular momentum that is contained in the HF product molecule, (iii) the

amount of relative translational energy that remains in the H + FH products, and (iv) the

amount of vibrational energy that ends up in the HF product molecule.

Because classical rather than quantum mechanical equations are used to follow the

time evolution of the molecular system, there is no guarantee that the amount of energy or

angular momentum found in degrees of freedom for which these quantities should be

quantized will be so. For example,  F + H2 → HF + H trajectories may produce HF

molecules with internal vibrational energy that is not a half integral multiple of the

fundamental vibrational frequency ω of the HF bond. Also, the rotational angular

momentum of the HF molecule may not fit the formula J (J+1) h2/(8π2I), where I is HF's

moment of inertia.

To connect such purely classical mechanical results more closely to the world of

quantized energy levels, a method know as "binning" is often used. In this technique, one

assigns the outcome of a classical trajectory to the particular quantum state (e.g., to a

vibrational state v or a rotational state J of the HF molecule in the above example) whose

quantum energy is closest to the classically determined energy. For the HF example at
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hand, the classical vibrational energy Ecl.vib is simply used to define, as the closest integer,

a vibrational quantum number v according to:

v = 
(Ecl,vib)

hω
   - 1/2.

Likewise, a rotational quantum number J can be assigned as the closest integer to that

determined by using the classical rotational energy Ecl,rot in the formula:

J =1/2 { (1+32π2IEcl,rot/h2)1/2 -1}

which is the solution of the quadratic equation J (J+1) h2/8π2I = Ecl,rot. By following

many trajectories and assigning vibrational and rotational quantum numbers to the product

molecules formed in each trajectory, one can generate histograms giving the frequency with

which each product molecule quantum state is observed for the ensemble of trajectories

used to simulate the experiment of interest. In this way, one can approximately extract

product-channel quantum state distributions from classical trajectory simulations.

IV. Wavepackets

In an attempt to combine the attributes and stregths of classical trajectories, which

allow us to "watch" the motions that molecules undergo, and quantum mechanical

wavefunctions, which are needed if interference phenomena are to be treated, a hybrid

approach is sometimes used. A popular and rather successful such point of view is

provided by so called coherent state wavepackets.

A quantum mechanical wavefunction ψ(x | X , P) that is a function of all pertinent

degrees of freedom (denoted collectively by x) and that depends on two sets of parameters

(denoted X  and P, respectively) is defined as follows:

ψ(x | X , P) = ∏
k=1

N
(2π<∆xk>2)-1/2exp{iPkxk/h  -  ( x k-Xk)2/(4<∆xk>2)} .

Here, <∆xk>2 is the uncertainty

<∆xk>2 = ⌡⌠|ψ|2(xk-Xk)2dx  
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along the kth degree of freedom for this wavefunction, defined as the mean squared

displacement away from the average coordinate

⌡⌠|ψ|2xkdx   = Xk.

So, the parameter Xk specifies the    average value    of the coordiate xk. In like fashion, it can

be shown that the parameter Pk is equal to the    average value    of the momentum along the kth

coordinate:

⌡⌠ψ*(-ih∂/∂xkψ)dx   = Pk.

The uncertainty in the momentum along each coordinate:

<∆pk>2 = ⌡⌠ψ*(-ih∂/∂xk-Pk)2ψdx  

is given, for functions of the coherent state form, in terms of the coordinate uncertainty as

<∆pk>2 <∆xk>2 =  h2/4.

Of course, the general Heisenberg uncertainty condition

<∆pk>2 <∆xk>2 ≥  h2/4

limits the coordinate and momentum uncertainty products for arbitrary wavefunctions. The

coherent state wave packet functions are those for which this     uncertainty     product    is

     minimum     . In this sense, coherent state wave packets are seen to be as close to classical as

possible since in classical mechanics there are no limits placed on the resolution with which

one can observe coordinates and momenta.

These wavepacket functions are employed as follows in the most straightforward

treatements of combined quantal/classical mechanics:

1. Classical trajectories are used, as discribed in greater detail above, to generate a

series of coordinates Xk(tn) and momenta Pk(tn) at a sequence of times denoted {tn}.
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2. These classical coordinates and momenta are used to     define    a wavepacket

function as written above, whose Xk and Pk parameters are taken to be the coordinates and

momenta of the classical trajectory. In effect, the wavepacket  moves around "riding" the

classical trajectory's coordiates and momenta as time evolves.

3. At any time tn, the quantum mechanical properties of the system are computed by

forming the expectation values of the corresponding quantum operators for a wavepacket

wavefunction of the form given above with Xk and Pk given by the classical coordinates

and momenta at that time tn.

Such wavepackets are, of course, simple approximations to the true quantum

mechanical functions of the system because they do not obey the Schrödinger equation

appropriate to the system. The should be expected to provide accurate representations to the

true wavefunctions for systems that are more classical in nature (i.e., when the local de

Broglie wave lengths are short compared to the range over which the potentials vary

appreciably). For species containing light particles (e.g., electrons or H atoms) or for low

kinetic energies, the local de Broglie wave lengths will not satisfy such criteria, and these

approaches can be expected to be less reliable. For further information about the use of

coherent state wavepackets in molecular dynamics and molecular spectroscopy, see E. J.

Heller, Acc. Chem. Res.     14    , 368 (1981).

This completes our treatment of the subjects of molecular dynamics and molecular

collisions. Neither its depth not its level was at the research level; rather, we intended to

provide the reader with an introduction to many of the theoretical concepts and methods that

arise when applying either the quantum Schrödinger equation or classical Newtonian

mechanics to chemical reaction dynamics. Essentially none of the experimental aspects of

this subject (e.g., molecular beam methods for preparing "cold" molecules, laser pump-

probe methods for preparing reagents in specified quantum states and observing products

in such states) have been discussed. An excellent introduction to both the experimental and

theoretical foundations of modern chemical and collision dynamics is provided by the text

     Molecular Reaction Dynamics and Chemical Reactivity     by R. D. Levine and R. B.

Bernstein, Oxford Univ. Press (1987).


