Section 3 Electronic Configurations, Term Symbols, and
States

Introductory Remar ks- The Orbital, Configuration, and State Pictures of Electronic
Structure

One of the goals of quantum chemistry isto allow practicing chemists to use
knowl edge of the electronic states of fragments (atoms, radicals, ions, or molecules) to
predict and understand the behavior (i.e., electronic energy levels, geometries, and
reactivities) of larger molecules. In the preceding Section, orbital correlation diagrams were
introduced to connect the orbitals of the fragments along a 'reaction path’ leading to the
orbitals of the products. In this Section, analogous connections are made among the
fragment and product electronic states, again labeled by appropriate symmetries. To realize
such connections, one must first write down N-electron wavefunctions that possess the
appropriate symmetry; this task requires combining symmetries of the occupied orbitals to
obtain the symmetries of the resulting states.

Chapter 8

Electrons are Placed into Orbitals to Form Configurations, Each of Which Can be Labeled
by its Symmetry. The Configurations May "Interact” Strongly if They Have Smilar
Energies.

I. Orbitals Do Not Provide the Complete Picture; Their Occupancy By the N Electrons
Must Be Specified

Knowing the orbitals of a particular species provides one information about the
sizes, shapes, directions, symmetries, and energies of those regions of space that are
available to the electrons (i.e., the complete set of orbitals that are available). This
knowledge does not determine into which orbital s the electrons are placed. It is by
describing the electronic configurations (i.e., orbital occupancies such as 1s22s22p2 or
1s22522p13sl) appropriate to the energy range under study that one focuses on how the
electrons occupy the orbitals. Moreover, a given configuration may give rise to several
energy levels whose energies differ by chemically important amounts. for example, the
1s22s522p2 configuration of the Carbon atom produces nine degenerate 3P states, five
degenerate 1D states, and asingle 1S state. These three energy levels differ in energy by
1.5eV and 1.2 eV, respectively.



[1. Even N-Electron Configurations Are Not Mother Nature's True Energy States

Moreover, even single-configuration descriptions of atomic and molecular structure
(e.g., 1s22s22p? for the Oxygen atom) do not provide fully correct or highly accurate
representations of the respective el ectronic wavefunctions. Aswill be shown in this
Section and in more detail in Section 6, the picture of N electrons occupying orbitals to
form aconfiguration is based on a so-called "mean field" description of the coulomb
interactions among electrons. In such models, an electron at r is viewed as interacting with
an "averaged" charge density arising from the N-1 remaining electrons:

Vimean fied = 81 _4(r") €2/f-r'| dr’ .

Herer ') represents the probability density for finding electronsat r', and e2/[r-r'| is

n-1(
the mutual coulomb repulsion between electron density at r and r'. Analogous mean-field
models arise in many areas of chemistry and physics, including electrolyte theory (e.g., the
Debye-Huickel theory), statistical mechanics of dense gases (e.g., where the Mayer-Mayer
cluster expansion is used to improve the ideal-gas mean field model), and chemical
dynamics (e.g., the vibrationally averaged potential of interaction).

In each case, the mean-field model forms only a starting point from which one
attempts to build afully correct theory by effecting systematic corrections (e.g., using
perturbation theory) to the mean-field model. The ultimate value of any particular mean-
field model isrelated to its accuracy in describing experimental phenomena. If predictions
of the mean-field model are far from the experimental observations, then higher-order
corrections (which are usually difficult to implement) must be employed to improve its
predictions. In such a case, oneis motivated to search for a better model to use as a starting
point so that lower-order perturbative (or other) corrections can be used to achieve chemical
accuracy (e.g., = 1 kcal/mole).

In electronic structure theory, the single-configuration picture (e.g., the 1s22s22p#
description of the Oxygen atom) forms the mean-field starting point; the configuration
interaction (CI) or perturbation theory techniques are then used to systematically improve
thislevel of description.

The single-configuration mean-field theories of electronic structure neglect
correlations among the electrons. That is, in expressing the interaction of an electron at r



with the N-1 other electrons, they use a probability density r N_1(r ") that isindependent of

the fact that another electronresidesat r. In fact, the so-called conditional probability
density for finding one of N-1 electronsat r', given that an electronisat r certainly
dependsonr. Asaresult, the mean-field coulomb potential felt by a 2py orbital's electron
inthe 1522522px2py single-configuration description of the Carbon atomis:

Vimean fidd = 28 [1(r )R €/fr-r'| dr’
+2812(r )R e/f-r'| dr’

+82p,(r)P /r-r'| dr' .

In this example, the density r ") isthe sum of the charge densities of the orbitals

N-1("
occupied by the five other electrons
2|1s(r")2 + 2 25(r ") + [2py(r )2, and is not dependent on the fact that an electron

residesatr.

[Il. Mean-Field Models

The Mean-Field Modédl, Which Forms the Basis of Chemists' Pictures of Electronic
Sructure of Molecules, Is Not Very Accurate

The magnitude and "shape” of such amean-field potential is shown below for the
Beryllium atom. In thisfigure, the nucleusis at the origin, and one electron is placed at a
distance from the nucleus equal to the maximum of the 1s orbital's radial probability
density (near 0.13 A). Theradial coordinate of the second is plotted as the abscissa; this
second electron is arbitrarily constrained to lie on the line connecting the nucleus and the
first electron (along this direction, the inter-electronic interactions are largest). On the
ordinate, there are two quantities plotted: (i) the Self-Consistent Field (SCF) mean-field

potential é|1s(r')|2 e/r-r'| dr' , and (ii) the so-called Fluctuation potential (F), whichis
the true coulombic e2/[r-r' | interaction potential minus the SCF potential .
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Asafunction of the inter-electron distance, the fluctuation potential decaysto zero
more rapidly than does the SCF potential. For this reason, approachesin which F is treated
as a perturbation and corrections to the mean-field picture are computed perturbatively
might be expected to be rapidly convergent (whenever perturbations describing long-range

interactions arise, convergence of perturbation theory is expected to be slow or not

successful). However, the magnitude of F is quite large and remains so over an appreciable
range of inter-electron distances.
The resultant corrections to the SCF picture are therefore quite large when measured
in kcal/mole. For example, the differences DE between the true (state-of-the-art quantum
chemical calculation) energies of interaction among the four electronsin Be and the SCF
mean-field estimates of these interactions are given in the table shown below in eV (recall
that 1 eV = 23.06 kcal/mole).

Orb. Pair

1salsb

1sa?sa

1sa2sb

1sh2sa

1sb2sb

2sa2sb

DEineV

1.126

0.022

0.058

0.058

0.022

1.234

To provide further insight why the SCF mean-field model in electronic structure
theory is of limited accuracy, it can be noted that the average value of the kinetic energy
plus the attraction to the Be nucleus plus the SCF interaction potentia for one of the 2s
orbitals of Be with the three remaining electrons in the 1s22s2 configuration is:

< 29 -h22me N2 - 4€2/r + Vscop 25> = -15.4 €V;




the anal ogous quantity for the 2p orbital in the 1522s2p configuration is:
< 2p| -h212me N2 - 4€2ir + V'scF [2p> = -12.28 €V

the corresponding value for the 1s orbital is (negative and) of even larger magnitude. The
SCF average coulomb interaction between the two 2s orbitals of 1s22s? Beis:

BJ2s(r) |2s(r )R e2/r-r'| dr dr' =5.95¢eV.

This data clearly shows that corrections to the SCF model (see the above table)
represent significant fractions of the inter-electron interaction energies (e.g., 1.234 eV
compared to 5.95- 1.234 = 4.72 eV for the two 2s electrons of Be), and that the inter-
electron interaction energies, in turn, constitute significant fractions of the total energy of
each orbital (e.g., 5.95-1.234 eV = 4.72 €V out of -15.4 eV for a 2s orbital of Be).

Thetask of describing the electronic states of atoms and molecules from first
principles and in achemically accurate manner (£ 1 kcal/mole) is clearly quite formidable.
The orbital picture and its accompanying SCF potential take care of "most” of the
interactions among the N electrons (which interact vialong-range coulomb forces and
whose dynamics requires the application of quantum physics and permutational symmetry).
However, the residual fluctuation potential, although of shorter range than the bare
coulomb potential, islarge enough to cause significant corrections to the mean-field picture.
This, in turn, necessitates the use of more sophisticated and computationally taxing
techniques (e.g., high order perturbation theory or large variational expansion spaces) to
reach the desired chemical accuracy.

Mean-field models are obvioudly approximations whose accuracy must be
determined so scientists can know to what degree they can be "trusted". For electronic
structures of atoms and molecules, they require quite substantia corrections to bring them
into line with experimental fact. Electrons in atoms and molecules undergo dynamical
motions in which their coulomb repulsions cause them to "avoid” one another at every
instant of time, not only in the average-repulsion manner that the mean-field models
embody. The inclusion of instantaneous spatial correlations among electronsis necessary to
achieve amore accurate description of atomic and molecular electronic structure.

IV. Configuration Interaction (Cl) Describes the Correct Electronic States



The most commonly employed tool for introducing such spatia correlations into
electronic wavefunctions is called configuration interaction (Cl); this approach is described
briefly later in this Section and in considerable detail in Section 6.

Briefly, one employs the (in principle, complete as shown by P. O. Loéwdin, Rev.
Mod. Phys. 32, 328 (1960)) set of N-electron configurationsthat (i) can be formed by
placing the N electrons into orbitals of the atom or molecule under study, and that (ii)
possess the spatial, spin, and angular momentum symmetry of the electronic state of
interest. This set of functionsisthen used, in alinear variationa function, to achieve, via
the CI technique, a more accurate and dynamically correct description of the electronic
structure of that state. For example, to describe the ground 1S state of the Be atom, the
1s22s2 configuration (which yields the mean-field description) is augmented by including
other configurations such as 1s23s2 , 1s22p2, 1s23p2, 1522s3s, 352252, 2p22s? , etc., all
of which have overall 1S spin and angular momentum symmetry. The excited 1S states are
also combinations of all such configurations. Of course, the ground-state wavefunction is
dominated by the |1s22s?| and excited states contain dominant contributions from |1s?2s3s|,
etc. configurations. The resultant Cl wavefunctions are formed as shown in Section 6 as
linear combinations of all such configurations.

To clarify the physical significance of mixing such configurations, it is useful to
consider what are found to be the two most important such configurations for the ground
1S state of the Be atom:

Y @Cq [1s%25?] - Cy [|1522py?| +]1522py2?| +172pA ).
As proven in Chapter 13.111, this two-configuration description of Be's electronic structure

is equivalent to a description is which two electrons reside in the 1s orbital (with opposite,
a and b spins) while the other pair reside in 2s-2p hybrid orbitals (more correctly,

polarized orbitals) in amanner that instantaneously correlates their motions:

Y @L/6 Cy |1sX{[(2s-a2py)a (2s+a2px)b - (2s-a2px)b(2s+a2py)a]
+[(2s-a2py)a(2s+a2py)b - (2s-a2py)b(2s+a2py)a]

+[(2s-a2pz)a(2st+a2py)b - (2s-a2pz)b(2s+a2pz)al}],



where a=4/3C,/C; . The so-called polarized orbital pairs

(2s = a2pyy, or z) areformed by mixing into the 2s orbital an amount of the 2py v, or 2
orbital, with the mixing amplitude determined by theratio of C, to C1 . Aswill be detailed
in Section 6, thisratio is proportional to the magnitude of the coupling <|1s22s2
|H|1s22p2| > between the two configurations and inversely proportional to the energy
difference [<|1s22s2|H|1s22s2> - <|1s22p?|H|1s22p2|>] for these configurations. So, in
genera, configurations that have similar energies (Hamiltonian expectation values) and
couple strongly give rise to strongly mixed polarized orbital pairs. The result of forming
such polarized orbital pairs are described pictorially below.

/? 2s - a 2p,
: : : : \ 25+ 2 2p,
2s and 2p,

Polarized Orbital 2s and 2p , Pairs

In each of the three equivalent termsin this wavefunction, one of the valence
electrons movesin a 2s+a2p orhital polarized in one direction while the other valence
electron movesin the 2s-a2p orbital polarized in the opposite direction. For example, the
first term [(2s-a2py)a (2st+a2py)b - (2s-a2px)b(2s+a2py)a] describes one electron
occupying a2s-a2pyx polarized orbital while the other electron occupies the 2s+a2py
orbital. In this picture, the electrons reduce their mutual coulomb repulsion by occupying
different regions of space; in the SCF mean-field picture, both electrons reside in the same
2s region of space. In this particular example, the electrons undergo angular correlation to
"avoid" one another. The fact that equal amounts of X, y, and z orbital polarization appear
inY iswhat preserves the 1S symmetry of the wavefunction.

The fact that the CI wavefunction




Y @Cy [152257 - Cp [|1522px? [+[1522py?] +|1572p2 ]

mixes its two configurations with opposite signis of significance. Aswill be seen later in
Section 6, solution of the Schrodinger equation using the ClI method in which two
configurations (e.g., |1s?2s?| and |12p?|) are employed gives rise to two solutions. One
approximates the ground state wave function; the other approximates an excited state. The
former is the one that mixes the two configurations with opposite sign.

To understand why the latter is of higher energy, it suffices to analyze afunction of
the form

Y' @Cy [1229] + Cp [|1522py?| +|1522py?| +|1572p| ]
in amanner analogous to above. In this case, it can be shown that
Y' @1/6 Cy |14 [(2s-1a2py)a(2s+ia2py)b - (2s-ia2py)b(2s+ia2py)a]
+[(2s-ia2py)a (2s+ia2py)b - (2s-ia2py)b(2s+ia2py)a]
+[(2s-ia2pya(2stiazp,)b - (2s-ia2py)b(2stia2pz)all}.

Thereisafundamenta difference, however, between the polarized orbital pairsintroduced
earlier f 4 = (2s £ a2py y or z) and the corresponding functionsf ', = (2s + ia2py y or 2)

appearing here. The probability densities embodied in the former

[f 42 = [2s2 + &2 12px.y,or 2% + 2a(2s 2Px.y,or 2)

describe constructive (for the + case) and destructive (for the - case) superposition of the
probabilities of the 2s and 2p orbitals. The probability densitiesof f' . are

[ 42 = (25 % i82pyy,or 2)" (25 * i82Px.y,or 2)

=252 + &2 |20y, or 2.



These densities are identical to one another and do not describe polarized orbital densities.

Therefore, the Cl wavefunction which mixes the two configurations with like sign, when
analyzed in terms of orbital pairs, placesthe electronsinto orbitalsf' . =(2s + ia2py y or z)

whose densities do not permit the electrons to avoid one another. Rather, both orbitals have
the same spatial density [25]2 + &2
12Px.y,or 2|2 , which gives rise to higher coulombic interaction energy for this state.

V. Summary

In summary, the dynamical interactions among electrons give rise to instantaneous
gpatial correlations that must be handled to arrive at an accurate picture of atomic and
molecular structure. The simple, single-configuration picture provided by the mean-field
model isauseful starting point, but improvements are often needed.

In Section 6, methods for treating electron correlation will be discussed in greater detail.

For the remainder of this Section, the primary focus is placed on forming proper N-
electron wavefunctions by occupying the orbitals available to the system in a manner that
guarantees that the resultant N-electron function is an eigenfunction of those operators that
commute with the N-electron Hamiltonian.

For polyatomic molecules, these operators include point-group symmetry operators
(which act on al N electrons) and the spin angular momentum (S2 and S,) of al of the
electrons taken as awhole (thisis true in the absence of spin-orbit coupling which istreated
later as a perturbation). For linear molecules, the point group symmetry operations involve
rotations R, of al N electrons about the principal axis, as aresult of which the total angular
momentum L, of the N electrons (taken as awhole) about this axis commutes with the
Hamiltonian, H. Rotation of all N electrons about the x and y axes does not leave the total
coulombic potential energy unchanged, so Ly and Ly do not commute with H. Hence for a
linear molecule, L, , S2, and S, are the operators that commute with H. For atoms, the
corresponding operatorsare L2, L, S2, and S, (again, in the absence of spin-orbit
coupling) where each operator pertainsto the total orbital or spin angular momentum of the
N electrons.

To construct N-electron functions that are eigenfunctions of the spatial symmetry or
orbital angular momentum operators as well as the spin angular momentum operators, one
hasto "coupl€e" the symmetry or angular momentum properties of the individual spin-
orbitals used to construct the N-electrons functions. This coupling involves forming direct
product symmetries in the case of polyatomic molecules that belong to finite point groups,



it involves vector coupling orbital and spin angular momentain the case of atoms, and it
involves vector coupling spin angular momenta and axis coupling orbital angular momenta
when treating linear molecules. Much of this Section is devoted to developing the tools
needed to carry out these couplings.

Chapter 9
Electronic Wavefuntions Must be Constructed to Have Permutational Antisymmetry
Because the N Electrons are Indistinguishable Fermions

|. Electronic Configurations

Atoms, linear molecules, and non-linear molecules have orbitals which can be
labeled either according to the symmetry appropriate for that isolated species or for the
speciesin an environment which produces lower symmetry. These orbitals should be
viewed as regions of space in which electrons can move, with, of course, at most two
electrons (of opposite spin) in each orbital. Specification of a particular occupancy of the
set of orbitals available to the system gives an eectronic configuration. For example,
1s22s22p# is an electronic configuration for the Oxygen atom (and for the F*1 ion and the
N-Lion); 1s22s22p33pl is another configuration for O, F*1, or N-1. These configurations
represent situations in which the electrons occupy low-energy orbitals of the system and, as
such, are likely to contribute strongly to the true ground and low-lying excited states and to
the low-energy states of molecules formed from these atoms or ions.

Specification of an electronic configuration does not, however, specify a particular
electronic state of the system. In the above 1s22s22p# example, there are many way's
(fifteen, to be precise) in which the 2p orbitals can be occupied by the four electrons. Asa
result, there are atotal of fifteen states which cluster into three energetically distinct levels
lying within this single configuration. The 1s22s22p33p? configuration contains thirty-six
states which group into six distinct energy levels (the word level is used to denote one or
more state with the same energy). Not all states which arise from agiven electronic
configuration have the same energy because various states occupy the degenerate (e.g., 2p
and 3p in the above examples) orbitals differently. That is, some states have orbital




occupancies of the form 2p212pp2pl.1 while others have 2p212p2p2pP.1; as aresult, the
states can have quite different coulombic repulsions among the e ectrons (the state with two
doubly occupied orbitals would lie higher in energy than that with two singly occupied
orbitals). Later in this Section and in Appendix G techniques for constructing
wavefunctions for each state contained within a particular configuration are given in detail.
Mastering these tools is an important aspect of learning the material in this text.

In summary, an atom or molecule has many orbitals (core, bonding, non-bonding,
Rydberg, and antibonding) availableto it; occupancy of these orbitalsin a particular manner
givesriseto aconfiguration. If some orbitals are partially occupied in this configuration,
more than one state will arise; these states can differ in energy due to differencesin how the
orbitals are occupied. In particular, if degenerate orbitals are partially occupied, many states
can arise and have energies which differ substantially because of differencesin electron
repulsions arising in these states. Systematic procedures for extracting all states from a
given configuration, for labeling the states according to the appropriate symmetry group,
for writing the wavefunctions corresponding to each state and for evaluating the energies
corresponding to these wavefunctions are needed. Much of Chapters 10 and 11 are
devoted to developing and illustrating these tools.

I1. Antisymmetric Wavefunctions
A. General Concepts
Thetotal e ectronic Hamiltonian
H =S (- h22me Ni2 -S3 Z4 €2/1i5) +Sisj €2/tij +Sash Za Zn€/rab,

wherei and j label electronsand aand b label the nuclel (whose charges are denoted Z),
commutes with the operators Pjj which permute the names of the electronsi and j. This, in
turn, requires eigenfunctions of H to be eigenfunctions of P;j. In fact, the set of such
permutation operators form agroup called the symmetric group (a good referenceto this
subject is contained in Chapter 7 of Group Theory , M. Hamermesh, Addison-Wesley,
Reading, Mass. (1962)). In the present text, we will not exploit the full group theoretical
nature of these operators; we will focus on the smple fact that all wavefunctions must be
eigenfunctions of the Pjj (additional materia on this subject is contained in Chapter X1V of
Kemble).



Because Rj obeys Pjj = Pjj = 1, the eigenval ues of the Pj; operators must be +1 or -
1. Electrons are Fermions (i.e., they have half-integral spin), and they have wavefunctions
which are odd under permutation of any pair: Pj Y =-Y . Bosons such as photons or
deuterium nuclei (i.e., species with integral spin quantum numbers) have wavefunctions
which obey Pj Y =+Y.

These permutational symmetries are not only characteristics of the exact
eigenfunctions of H belonging to any atom or molecule containing more than asingle
electron but they are also conditions which must be placed on any acceptable model or tria
wavefunction (e.g., in avariational sense) which one constructs.

In particular, within the orbital model of eectronic structure (which is developed
more systematically in Section 6), one can not construct trial wavefunctions which are
simple spin-orbital products (i.e., an orbital multiplied by an a or b spin function for each
electron) such as 1sa 1sbh2sa2sb2p;a2ppa. Such spin-orbital product functions must be
made permutationally antisymmetric if the N-electron trial function isto be properly
antisymmetric. This can be accomplished for any such product wavefunction by applying
the following antisymmetrizer operator:

A= (OUN)Spsp P,

where N is the number of electrons, P runs over all N! permutations, and spis+1or -1
depending on whether the permutation P contains an even or odd number of pairwise
permutations (e.g., 231 can be reached from 123 by two pairwise permutations-
123==>213==>231, so 231 would have s, =1). The permutation operator Pin A actson a
product wavefunction and permutes the ordering of the spin-orbitals. For example, A

f 1f of 3= (U/OB) [f 1f of 3 - 1f 3f o -f 3f of 1 -f of 1f 3 +f 3f 1 o +f of 3 1], where the
convention isthat electronic coordinatesr, ro, and r3 correspond to the orbitals as they
appear in the product (e.g., the term f 3f of 1 representst 3(rq)f 2(r2)f 1(r3)).

It turns out that the permutations P can be allowed either to act on the "names" or
labels of the electrons, keeping the order of the spin-orbitals fixed, or to act on the spin-
orbitals, keeping the order and identity of the electrons’ labels fixed. The resultant
wavefunction, which contains N! terms, is exactly the same regardless of how one alows
the permutations to act. Because we wish to use the above convention in which the order of
the electronic labelsremainsfixed as 1, 2, 3, ... N, we choose to think of the permutations
acting on the names of the spin-orbitals.

It should be noted that the effect of A on any spin-orbital product isto produce a
function that isasum of N! terms. In each of these terms the same spin-orbitals appear, but



the order in which they appear differs from term to term. Thus antisymmetrization does not
alter the overall orbital occupancy; it simply "scrambles® any knowledge of which electron
isin which spin-orbital.

The antisymmetrized orbital product A f 1f of 3 is represented by the short hand |
f 1f of 3 | and isreferred to as a Sater determinant. The origin of this notation can be made
clear by noting that (1/ON!) times the determinant of a matrix whose rows are labeled by
theindex i of the spin-orbital f; and whose columns are labeled by the index j of the
electron a rj isequal to the above function: A f 1f of 3= (U/CBY) det(f ; (rj)). The general
structure of such Slater determinantsisillustrated below:

(W/ND)Y? detff (rib=  (L/N)?

£ 2(N)F H(N)F o(N)..F i (N)..f (N)

The antisymmetry of many-electron spin-orbital products places constraints on any
acceptable model wavefunction, which give rise to important physical consequences. For
example, it is antisymmetry that makes afunction of theform | 1sal1sa | vanish (thereby
enforcing the Pauli exclusion principle) while | 1sa2sa | does not vanish, except at points
r1 and rp where 1s(r1) = 29(r»), and hence is acceptable. The Pauli principleis embodied
in the fact that if any two or more columns (or rows) of a determinant are identical, the
determinant vanishes. Antisymmetry also enforces indistinguishability of the electronsin
that |1salsb2sa2sb | =
- | 1sa1sb2sb2sa |. That is, two wavefunctions which differ smply by the ordering of
their spin-orbitals are equal to within asign (+/- 1); such an overall sign differencein a
wavefunction has no physical consequence because al physical properties depend on the
product Y * Y , which appears in any expectation value expression.

B. Physical Consequences of Antisymmetry

Once therules for evaluating energies of determinental wavefunctions and for
forming functions which have proper spin and spatial symmetries have been put forth (in
Chapter 11), it will be clear that antisymmetry and el ectron spin considerations, in addition
to orbital occupancies, play substantial roles in determining energies and that it is precisely




these aspects that are responsible for energy splittings among states arising from one
configuration. A single example may help illustrate this point. Consider the plp*1

configuration of ethylene (ignore the other orbitals and focus on the properties of these
two). Aswill be shown below when spin angular momentum istreated in full, the triplet
spin states of this configuration are:

|S=1, Ms=1> = |pap*a|,

|S=1, Ms=-1> = |pbp*Db|,

and
|S=1, Ms= 0> = 2-V2[ pap*b| + [pbp*al].

The singlet spin stateis:

S=0, Ms= 0> = 2-Y2[ |pap*b| - pbp*al].

To understand how the three triplet states have the same energy and why the singlet
state has a different energy, and an energy different than the Ms= 0 triplet even though
these two states are composed of the same two determinants, we proceed as follows:

1. We express the bonding p and antibonding p* orbitalsin terms of the atomic p-orbitals
from which they areformed: p=2-Y2[ L + R] andp* =2-V2[ L -R], whereRand L

denote the p-orbitals on the |eft and right carbon atoms, respectively.

2. We substitute these expressions into the Slater determinants that form the singlet and
triplet states and collect terms and throw out terms for which the determinants vanish.

3. Thisthen givesthe singlet and triplet states in terms of atomic-orbital occupancies where
it iseasier to see the energy equivalences and differences.

Let us begin with thetriplet states:
lpap*a|=21/2[|LaLa|- |RaRa|+ |RalLal- |LaRa]]

=|Rala];



2-V2[ |pap*b| + |pbp*a[] =22 1/2[ |LaLb]| - |RaRb| + |RaLb| -
|LaRb| + |LbLa|- |RbRa| + |RbLa|- |LbRa]|]
=2"V2[|RaLb| + |RoLal];

lpbp*b|=1/2[ |LbLb| - |RbRb| + |RbLb| - |[LbRb|]

= |RbLb].
The singlet state can be reduced in like fashion:

2-V2[ pap*b| - pbp*a|] = 2Y2 1/2[ |LaLb| - |RaRb]| + |RaLb| -
|LaRb|- |LbLa| + |RbRa|- |RbLa| + |LbRa]| ]
=2-V2[ |LaLb|- [RoRal].

Noticethat al threetriplet states involve atomic orbital occupancy in which one electronis
on one atom while the other is on the second carbon atom. In contrast, the singlet state
places both electrons on one carbon (it contains two terms; one with the two electrons on
the left carbon and the other with both electrons on the right carbon).

In a"valence bond" analysis of the physical content of the singlet and triplet plp*1
states, it is clear that the energy of the triplet states will lie below that of the singlet because
the singlet contains " zwitterion” components that can be denoted C*C- and C-C*, while the
three triplet states are purely "covalent”. This case provides an excellent example of how
the spin and permutational symmetries of a state "conspire” to qualitatively affect its energy
and even electronic character as represented in its atomic orbital occupancies.
Understanding this should provide ample motivation for |earning how to form proper
antisymmetric spin (and orbital) angular momentum eigenfunctions for atoms and
molecul es.



Chapter 10
Electronic Wavefunctions Must Also Possess Proper Symmetry. These Include Angular
Momentum and Point Group Symmetries

I. Angular Momentum Symmetry and Strategies for Angular Momentum Coupling

Because the total Hamiltonian of a many-electron atom or molecule forms a
mutually commutative set of operatorswith 2, S, , and A = (C')]JN!)Sp Sp P, the exact
eigenfunctions of H must be eigenfunctions of these operators. Being an eigenfunction of
A forces the eigenstates to be odd under al Pjj. Any acceptable model or trial wavefunction
should be constrained to also be an eigenfunction of these symmetry operators.

If the atom or molecule has additional symmetries (e.g., full rotation symmetry for
atoms, axial rotation symmetry for linear molecules and point group symmetry for non-
linear polyatomics), the trial wavefunctions should also conform to these spatial
symmetries. This Chapter addresses those operators that commute with H, Pjj, S2, and S,
and among one another for atoms, linear, and non-linear molecul es.

Astreated in detail in Appendix G, the full non-relativistic N-electron Hamiltonian
of an atom or molecule

H = Sj(- h2/2m sz - SaZanIrj,a) + Sj<k e2/rj,k
commutes with the following operators:

i. Theinversion operator i and the three components of the total orbital angular momentum
Lz = SjLAj), Ly, Lx, aswell asthe components of the total spin angular momentum S, S,
and S, for atoms (but not the individual electrons’ L(j) , S(j), etc). Hence, L2, L, S2,
S; are the operators we need to form eigenfunctionsof, and L, M, S, and Mg arethe
"good" quantum numbers.

il. Lz = SjLj), aswell asthe N-electron Sy, Sy, and S; for linear molecules (asoi, if
the molecule has a center of symmetry). Hence, Lz, S2, and S; are the operators we need to



form eigenfunctions of, and M|, S, and Mg are the "good" quantum numbers; L no longer
is!

iii. Sy, Sy, and Sy aswell asadl point group operationsfor non-linear polyatomic
molecules. Hence S2, S, and the point group operations are used to characterize the
functions we need to form. When we include spin-orbit coupling into H (this adds another
term to the potential that involves the spin and orbital angular momenta of the electrons),
L2, Lg S2, S; no longer commute with H. However, J,= S, + Ly and 2 = (L+S)2 now
do commute with H.

A. Electron Spin Angular Momentum

Individual electrons possessintrinsic spin characterized by angular momentum
guantum numbers s and mg ; for electrons, s = 1/2 and mg = 1/2, or -1/2. The mg=1/2 spin
state of the electron is represented by the symbol a and the mg = -1/2 state is represented by
b. These spin functionsobey: S2a = 1/2 (1/2 + 1)R? a,

S;a=12ha, 2b=1/2(1/2+ 1) kb, and S; b =-1/2hb. Thea and b spin functions
are connected vialowering S. and raising Sy operators, which are defined in terms of the x
and 'y components of S asfollows: Sy =S¢ +iSy, and S. = S« -iSy. In particular Sib =
ha, Sia =0, S.a =hb,

and S.b =0. These expressions are examples of the more general relations (these relations
are developed in detail in Appendix G) which al angular momentum operators and their
eigenstates obey:

2 [j,m> = j(+1)R? [j,m>,

Jz [i,m>=mh |j,m>,

I+ [j,m>=h {j(j+1)-m(m+1)}¥2 |j, m+1>, and

J.|j,m> =h {j({i+1)-m(m-1)} Y2 |j,m-1>.

In a many-electron system, one must combine the spin functions of the individual
electrons to generate eigenfunctions of the total S; =S; Sx(i) ( expressions for Sy =S; Sx(i)

and Sy =S;j Sy(i) also follow from the fact that the total angular momentum of a collection
of particlesisthe sum of the angular momenta, component-by-component, of the individual



angular momenta) and total S? operators because only these operators commute with the
full Hamiltonian, H, and with the permutation operators P;j. No longer are the individual
S2(i) and S(i) good quantum numbers; these operators do not commute with B;j.

Spin states which are eigenfunctions of the total S? and S; can be formed by using
angular momentum coupling methods or the explicit construction methods detailed in
Appendix (G). In the latter approach, one forms, consistent with the given electronic
configuration, the spin state having maximum S; eigenvalue (which is easy to identify as
shown below and which corresponds to a state with S equa to this maximum S
eigenvalue) and then generating states of lower S; values and lower S values using the
angular momentum raising and lowering operators (S. =S; S. (i) and
S+ =Sj S+ (i)).

Toillustrate, consider athree-electron example with the configuration 1s2s3s.
Starting with the determinant | 1sa 2sa 3sa |, which has the maximum Mg =3/2 and hence
has S=3/2 (this function is denoted [3/2, 3/2>), apply S. in the additive form S. =S; S.(i) to
generate the following combination of three determinants:

h[| 1sb2sa3sa |+ | 1sa2sb3sa | + | 1sa2sa3sb ||,

which, according to the above identities, must equal

h32(372+1)-32(3/2-1) -| 3/2, 1/2>.

So the state |3/2, 1/2> with S=3/2 and Mg =1/2 can be solved for in terms of the three
determinantsto give

13/2, 1/2> = 1/QF[ | 1sh2sa3sa | + | 1sa2sb3sa |+ | 1sa2sa3sb |].

The states with S=3/2 and Mg = -1/2 and -3/2 can be obtained by further application of S.to
|3/2, 1/2> (actually, the Ms= -3/2 can be identified as the "spin flipped" image of the state
with Mg =3/2 and the one with Mg =-1/2 can be formed by interchanging all a'sand b'sin
the Mg = 1/2 state).

Of the eight total spin states (each electron can take on either a or b spin and there
are three electrons, so the number of statesis 23), the above process has identified proper
combinations which yield the four states with S= 3/2. Doing so consumed the determinants
with Mg =3/2 and -3/2, one combination of the three determinants with Mg =1/2, and one
combination of the three determinants with Mg =-1/2. There still remain two combinations



of the Mg =1/2 and two combinations of the Mg =-1/2 determinants to deal with. These
functions correspond to two sets of S= 1/2 eigenfunctions having

Ms = 1/2 and -1/2. Combinations of the determinants must be used in forming the S= 1/2
functionsto keep the S = 1/2 eigenfunctions orthogonal to the above S = 3/2 functions
(which is required because S2 is a hermitian operator whose eigenfunctions belonging to
different eigenvalues must be orthogonal). The two independent S = 1/2, Mg = 1/2 states
can be formed by simply constructing combinations of the above three determinants with
Ms =1/2 which are orthogonal to the S = 3/2 combination given above and orthogonal to
each other. For example,

| 1/2, 1/2> = 1/CP[ | 1sb2sa3sa |- | 1sa2sb3sa |+ 0x | 1sa2sa3sb |],

| 1/2, 1/2> = 1/Oo[ | 1sb2sa3sa |+ | 1sa2sb3sa | -2x | 1sa2sa3sb | ]

are acceptable (as is any combination of these two functions generated by a unitary
transformation ). A pair of independent orthonormal states with S=1/2 and Mg =-1/2 can
be generated by applying S. to each of these two functions ( or by constructing apair of
orthonormal functions which are combinations of the three determinants with Mg = -1/2 and
which are orthogonal to the S=3/2, Mg = -1/2 function obtained as detailed above).

The above treatment of a three-electron case shows how to generate quartet (spin
states are named in terms of their spin degeneracies 25+1) and doubl et states for a
configuration of the form
1s2s3s. Not al three-electron configurations have both quartet and doublet states; for
example, the 12 2s configuration only supports one doublet state. The methods used
aboveto generate S= 3/2 and
S=1/2 statesare valid for any three-electron situation; however, some of the determinental
functions vanish if doubly occupied orbitals occur asfor 1s22s. In particular, the |
lsalsa2sa | and
| 1sb1sb2sb |[Mg=3/2, -3/2 and | 1salsa2sb | and | 1db1sb2sa |[Mg=1/2, -1/2
determinants vanish because they violate the Pauli principle; only | 1salsb2sa | and |
1sa1sb?2sb | do not vanish. These two remaining determinants form the S= 1/2, Mg = 1/2,
-1/2 doublet spin functions which pertain to the 1s22s configuration. It should be noted that
all closed-shell components of a configuration (e.g., the 12 part of 122s or the 152252 2p6
part of 152252 2p63s13pl ) must involve a and b spin functions for each doubly occupied
orbital and, as such, can contribute nothing to the total Mg value; only the open-shell



components need to be treated with the angular momentum operator toolsto arrive at proper
total-spin eigenstates.

In summary, proper spin eigenfunctions must be constructed from antisymmetric
(i.e., determinental) wavefunctions as demonstrated above because the total S2 and total S,
remain valid symmetry operators for many-electron systems. Doing so results in the spin-
adapted wavefunctions being expressed as combinations of determinants with coefficients
determined via spin angular momentum techniques as demonstrated above. In
configurations with closed-shell components, not all spin functions are possible because of
the antisymmetry of the wavefunction; in particular, any closed-shell parts must involve ab

spin pairings for each of the doubly occupied orbitals, and, as such, contribute zero to the
totd Ms.

B. Vector Coupling of Angular Momenta

Given two angular momenta (of any kind) L 1 and L 2, when one generates states
that are eigengtates of their vector sum L= L 1+L 5,
one can obtain L valuesof L1+Lo, L1+L2-1, ...|L1-L2|. Thiscan apply to two electrons for
which the total spin Scan be 1 or O asillustrated in detail above, or to ap and ad orbital for
which the total orbital angular momentum L can be 3, 2, or 1. Thus for apld! ectronic
configuration, 3F, 1F, 3D, 1D, 3P, and 1P energy levels (and corresponding
wavefunctions) arise. Here the term symbols are specified as the spin degeneracy (25+1)
and the | etter that is associated with the L-value. If spin-orbit coupling is present, the 3F
level further splitsinto J= 4, 3, and 2 levels which are denoted 3F4, 3F3, and 3F».

This simple "vector coupling” method applies to any angular momenta. However, if
the angular momenta are "equivalent” in the sense that they involve indistinguishable
particles that occupy the same orbital shell (e.g., 2p3 involves 3 equivalent electrons;
2p13pl4pl involves 3 non-equivalent electrons; 2p23pl involves 2 equivalent eectrons and
one non-equivalent electron), the Pauli principle eliminates some of the expected term
symbols (i.e., when the corresponding wavefunctions are formed, some vanish because
their Slater determinants vanish). Later in this section, techniques for dealing with the
equivalent-angular momenta case are introduced. These techniques involve using the above
toolsto obtain alist of candidate term symbols after which Pauli-violating term symbols are
eliminated.

C. Non-Vector Coupling of Angular Momenta



For linear molecules, one does not vector couple the orbital angular momenta of the
individual electrons (because only L, not L2 commutes with H), but one does vector couple
the electrons spin angular momenta. Coupling of the electrons orbital angular momenta
involves simply considering the various L ; eigenvalues that can arise from adding the L,
values of the individual electrons. For example, coupling two p orbitals (each of which can
have m =+1) cangive M =1+1, 1-1, -1+1, and -1-1, or 2, 0, O, and -2. The level with
My = x2iscalled aD state (much like an orbital with m =+2 iscalled ad orbital), and the
two stateswith M = O arecalled S states. States with L, eigenvaluesof M|_ and - M_ are
degenerate because the total energy isindependent of which direction the electrons are
moving about the linear molecul€e's axis (just ap+1 and p-1 orbitals are degenerate).

Again, if the two electrons are non-equivalent, al possible couplings arise (e.g., a
plp'l configuration yields 3D, 3S, 3S, 1D, 1S, and 1S states). In contrast, if the two
electrons are equivalent, certain of the term symbols are Pauli forbidden. Again, techniques
for dealing with such cases are treated later in this Chapter.

D. Direct Products for Non-Linear Molecules

For non-linear polyatomic molecules, one vector couples the electrons spin angular
momenta but their orbital angular momenta are not even considered. Instead, their point
group symmetries must be combined, by forming direct products, to determine the
symmetries of the resultant spin-orbital product states. For example, the by byl
configuration in Cp, Ssymmetry givesrise to 3A and 1A, term symbols. The ele'l
configuration in Cz, symmetry gives 3E, 3A,, 3A1, 1E, 1A,, and 1A; term symbols. For
two equivalent electrons such asin the €2 configuration, certain of the 3E, 3Ao, 3A1, 1E,
1A5, and 1A, term symbols are Pauli forbidden. Once again, the methods needed to
identify which term symbols arise in the equivalent-electron case are treated | ater.

One needsto learn how to tell which term symbols will be Pauli excluded, and to
learn how to write the spin-orbit product wavefunctions corresponding to each term symbol
and to evaluate the corresponding term symbols' energies.

I1. Atomic Term Symbols and Wavefunctions
A. Non-Equivaent Orbital Term Symbols

When coupling non-equivalent angular momenta (e.g., a spin and an orbital angular
momenta or two orbital angular momenta of non-equivalent electrons), one vector couples



using the fact that the coupled angular momenta range from the sum of the two individua
angular momenta to the absolute value of their difference. For example, when coupling the
spins of two electrons, the total spin S can be 1 or 0; when coupling ap and ad orbital, the
total orbital angular momentum can be 3, 2, or 1. Thus for a pld? electronic configuration,
3F, 1F, 3D, 1D, 3P, and 1P energy levels (and corresponding wavefunctions) arise. The
energy differences among these levels has to do with the different el ectron-electron
repulsions that occur in these levels; that is, their wavefunctionsinvolve different
occupancy of the p and d orbitals and hence different repulsion energies. If spin-orbit
coupling is present, the L and S angular momenta are further vector coupled. For example,
the 3F level splitsinto J= 4, 3, and 2 levels which are denoted 3F4, 3F3, and 3F». The
energy differences among these Jlevels are caused by spin-orbit interactions.

B. Equivalent Orbital Term Symbols

If equivalent angular momenta are coupled (e.g., to couple the orbital angular
momenta of ap? or d3 configuration), one must use the "box" method to determine which
of the term symbols, that would be expected to arise if the angular momenta were non-
equivalent, violate the Pauli principle. To carry out this step, one forms all possible unique
(determinental) product states with non-negative M| and Mg values and arranges them into
groups according to their M| and Mg values. For example, the boxes appropriate to the p?
orbital occupancy are shown below:



Ms 1 Ip1apoa Ip1ap-1a|
0 lp1ap1b| Ip1apabl, [poapib|  [p1ap-1bl,

|p-1api1b,

|poa pob|

There is no need to form the corresponding states with negative M or negative Mg values
because they are ssimply "mirror images' of those listed above. For example, the state with
M_=-1and Mg = -1 is|p.1bpgb|, which can be obtained fromthe M| =1, Mg =1 state
lp1apoa| by replacing a by b and replacing p1 by p-1.

Given the box entries, one can identify those term symbols that arise by applying
the following procedure over and over until all entries have been accounted for:

1. Oneidentifiesthe highest Mg value (this gives avalue of the total spin quantum number
that arises, S) in the box. For the above example, the answer isS= 1.

2. For al product states of this Mg value, one identifies the highest M value (thisgivesa
value of the total orbital angular momentum, L, that can arisefor this S). For the above
example, the highest M| within the Mg =1 statesisM = 1 (not M = 2), hence L=1.

3. Knowing an S, L combination, one knows the first term symbol that arises from this
configuration. In the p2 example, thisis3P.

4. Because the level with thisL and S quantum numbers contains (2L+1)(2S+1) states with
ML and Ms quantum numbers running from -L to L and from -Sto S, respectively, one
must remove from the original box this number of product states. To do so, one simply
erases from the box one entry with each such M. and Mg value. Actually, since the box
need only show those entries with non-negative M| and Mg values, only these entries need
be explicitly deleted. In the 3P example, this amounts to deleting nine product states with
M., Msvaluesof 1,1; 1,0; 1,-1; 0,1; 0,0; 0,-1; -1,1; -1,0; -1,-1.

5. After deleting these entries, one returns to step 1 and carries out the process again. For
the p? example, the box after deleting the first nine product states looks as follows (those
that appear in italics should be viewed as already cancelled in counting all of the 3P states):



Ms 1 Ip1apoal Imap-1a|

0 lp1ap1b| Iprapobl, [poapib|  |pap-1bl,
Ip-1ap1bl,
Ipoa pob|

It should be emphasized that the process of deleting or crossing off entriesin various M,
Ms boxes involves only counting how many states there are; by no means do we identify
the particular L,S,M_,M s wavefunctions when we cross out any particular entry in a box.
For example, when the |p1a pob| product is deleted from the M = 1, Ms=0 box in
accounting for the statesin the 3P level, we do not claim that |p1a pgb| itself is amember of
the 3P level; the |pga p1b| product state could just as well been eliminated when accounting
for the 3P states. Aswill be shown later, the3P state with M= 1, Ms=0 will be a
combination of |piapob| and |poa p1b.

Returning to the p2 example at hand, after the 3P term symbol's states have been
accounted for, the highest Mg value is O (hence there is an S=0 state), and withinthisMg
value, the highest M|_ valueis 2 (hence thereis an L=2 state). This meansthereisalD
level with five states having M| = 2,1,0,-1,-2. Deleting five appropriate entries from the
above box (again denoting deletions by italics) leaves the following box:



Ms 1 Ip1a poa | Iprap-1al
0 Ip1apib| Iprapobl, [poapib|  |pap-1bl,
lp.1apibl,
Ipoa pob|

The only remaining entry, which thus has the highest Ms and M| values, has Ms = 0 and
Mg = 0. Thusthereisaso alSleve inthe p2 configuration.

Thus, unlike the non-equivalent 2pl3pl case, in which 3P, 1P, 3D, 1D, 3S, and 1S
levels arise, only the 3P, 1D, and 1S arise in the p? situation. This "box method" is
necessary to carry out whenever one is dealing with equivalent angular momenta.

If one has mixed equivalent and non-equivalent angular momenta, one can
determine all possible couplings of the equivalent angular momenta using this method and
then use the smpler vector coupling method to add the non-equivalent angular momentato
each of these coupled angular momenta. For example, the p2d! configuration can be
handled by vector coupling (using the straightforward non-equivalent procedure) L=2 (the
d orbital) and S=1/2 (the third electron's spin) to each of 3P, 1D, and 1S. The result is 4F,
4D, 4P, 2F, 2D, 2P, 2G, 2F, 2D, 2P, 2S, and 2D.

C. Atomic Configuration Wavefunctions

To express, in terms of Slater determinants, the wavefunctions corresponding to
each of the states in each of the levels, one proceeds as follows:

1. For each Mg, M. combination for which one can write down only one product function
(i.e., in the non-equivaent angular momentum situation, for each case where only one
product function sits at a given box row and column point), that product function itself is
one of the desired states. For the p2 example, the [p1apoa| and |p1ap-1a| (aswell astheir
four other M and Ms "mirror images') are members of the 3P level (since they have Mg =
+1) and [prap1b| and its M mirror image are members of the 1D level (since they have M
=+2).



2. After identifying as many such states as possible by inspection, oneuses L+ and St to

generate states that bel ong to the same term symbols as those aready identified but which
have higher or lower M. and/or Mg values.

3. If, after applying the above process, there are term symbols for which states have not yet
been formed, one may have to construct such states by forming linear combinations that are
orthogonal to al those states that have thus far been found.

Toillustrate the use of raising and lowering operators to find the states that can not
be identified by inspection, |et us again focus on the p2 case. Beginning with three of the
3P states that are easy to recognize, [p1apoa|, |p1ap-1al, and |p-.1apoal, we apply S. to
obtain the Ms=0 functions:

S.3P(ML=1, Ms=1) = [S(1) + S(2)] lprapoal

= h(1(2)-1(0)Y2 3p(M_=1, Ms=0)

= h(1/2(3/2)-1/2(-1/2))Y2 |p1bpoa | +h(1)1/2 |pra pobl,
S0,

3P(ML=1, Ms=0) = 2-Y2 [|n1bpoa| + [p1a pobl].
The same process applied to |p1ap-1a| and [p-1apoa | gives
1/C2[|lprap-1b| + |pibp-1a[] and 1/C2[|Ip.1a pob| + [p-1bpoall,
respectively.

The3P(M_=1, Ms=0) = 2-Y2[|p1bpoa| + [prapob| function can be acted on with
L. to generate 3P(M| =0, M g=0):

L. 3P(ML=1, Ms=0) =[L.(2) + L(2)] 2V [|p1bpoa| + [p1a pobl]

=h(1(2)-1(0)Y2 3p(M_ =0, M s=0)

=h(1(2)-1(0))V2 2-Y2 [|ngbpoa | + [poapobl]

+h (1(2)-0(-1))V2 2-V2 [|p;bp.1a| + |prap-1b|],

SO,
3P(M_=0, Ms=0) = 2-V2[|psbp.1a| + |map-1b[].



The 1D term symbol is handled in like fashion. Beginning with the M| = 2 state
lp1ap1b|, one appliesL. to generatethe M. = 1 state:

L. ID(ML=2, Ms=0) = [L(1) + L(2)] [p1ap1b|
=h(2(3)-2(1))V2 ID(M_=1, Ms=0)
= h(1(2)-1(0)Y2 [Ipoap1b] + Ipra pobll,
S0,
IDM_=1, Mg=0) = 2-Y2[|pgap1b| + [P pob].
Applying L. once more generates the 1D(M_=0, M s=0) state:
L. ID(ML=1, Ms=0) = [L(1) + L(2)] 2°Y2[|ppap1b]| + |pra pobl]
=h(2(3)-1(0)V2 ID(M_=0, Ms=0)
=h(1(2)-0(-1))V2 2 Y2 [|p.1apab| + |p1ap-1b]]
+R(1(2)-1(0)Y2 2-V2[|poa pob| + [poapobl],
S0,

1D(M(=0, M s=0) = 6-V2[ 2|ppapob| + [p.12p1b| + [p1ap-1b]].

Notice that the M =0, M g=0 states of 3P and of 1D are given in terms of the three
determinants that appear in the "center" of the p2 box diagram:

1D(M_=0, Ms=0) = 6-Y7[ 2Jpoapob| + [p-1a p1b] + [p1ap-1bl],
3P(ML=0, Ms=0) = 2-V2 [|p1bp.1a| + [map-1b[]
=2-12[ -|p.1apsb| + [p1ap-1bl.
The only state that has eluded us thus far isthe 1S state, which also has M =0 and Mg=0.

To construct this state, which must also be some combination of the three determinants
with M_=0 and Ms=0, we use the fact that the 1S wavefunction must be orthogonal to the



3P and 1D functions because 1S, 3P, and 1D are eigenfunctions of the hermitian operator L2
having different eigenvalues. The state that is normalized and is a combination of ppa pgb|,
|p-1ap1b|, and |p1ap-1b| isgiven asfollows:

1S=3-VY2[ |pgapob| - [p-1ap1b| - [prap-1b].

The procedure used here to form the 1S state il lustrates point 3 in the above prescription for
determining wavefunctions. Additional examplesfor constructing wavefunctions for atoms
are provided later in this chapter and in Appendix G.

D. Inversion Symmetry

One more quantum number, that relating to the inversion (i) symmetry operator can
be used in atomic cases because the total potential energy V is unchanged when all of the
electrons have their position vectors subjected to inversion (i r = -r). This quantum number
is straightforward to determine. Becauseeach L, S, M, M s, H state discussed above
consist of afew (or, in the case of configuration interaction several) symmetry adapted
combinations of Slater determinant functions, the effect of the inversion operator on such a
wavefunction Y can be determined by:

(i) applying i to each orbital occupiedin'Y thereby generating a+ 1 factor for each
orbital (+1for s, d, g, i, etc orbitals; -1 for p, f, h, j, etc orbitals),

(i) multiplying these £+ 1 factors to produce an overall sign for the character of Y
under i.

When thisoverall signispositive, thefunction Y istermed "even" and itsterm symbol is
appended with an "€" superscript (e.g., the 3P level of the O atom, which has

1s22s22p# occupancy is labeled 3P€); if the signisnegative Y iscalled "odd" and the term
symbol is so amended (e.g., the 3P level of 122s12pl B+ ionislabeled 3P0).

E. Review of Atomic Cases

The orbitals of an atom are labeled by | and m quantum numbers; the orbitals
belonging to a given energy and | value are 2|+1- fold degenerate. The many-electron
Hamiltonian, H, of an atom and the antisymmetrizer operator A = ((")]JN!)Sp sp P
commute with total Ly =S; Lz (i) , asin the linear-molecule case. The additional symmetry
present in the spherical atom reflectsitself in the fact that L, and Ly now also commute
with H and A . However, since L, does not commute with Ly or Ly, new quantum



numbers can not be introduced as symmetry labels for these other components of L. A new
symmetry label doesarisewhen L2 = L2 + Ly2 + Ly2 isintroduced; L2 commutes with H,
A, and L 2, so proper eigenstates (and trial wavefunctions) can be labeled with L, M|, S,
Ms, and H quantum numbers.

To identify the states which arise from a given atomic configuration and to construct
properly symmetry-adapted determinental wave functions corresponding to these
symmetries, one must employ L and M. and S and Mg angular momentum tools. Onefirst
identifies those determinants with maximum Mg (this then defines the maximum S value
that occurs); within that set of determinants, one then identifies the determinant(s) with
maximum M__ (thisidentifies the highest L value). This determinant has Sand L equal to its
Ms and My values (this can be verified, for example for L, by acting on this determinant
with L2 in the form

L2=L.L++LA+AhL,

and redlizing that L+ acting on the state must vanish); other members of thisL,S energy
level can be constructed by sequential applicationof S and L. = S; L.(i) . Having
exhausted a set of (2L+1)(2S+1) combinations of the determinants belonging to the given
configuration, one proceeds to apply the same procedure to the remaining determinants (or
combinations thereof). One identifies the maximum Mg and, within it, the maximum

ML which thereby specifies another S, L label and a new "maximum" state. The
determinental functions corresponding to these L,S (and various M, M) values can be
constructed by applying S. and L. to this "maximum” state. This processis continued until
all of the states and their determinental wave functions are obtained.

Asillustrated above, any p2 configuration gives rise to 3P€, 1D€, and 1S€levels
which contain nine, five, and one state respectively. The use of L and S angular momentum
algebratools alows one to identify the wavefunctions corresponding to these states. As
shown in detail in Appendix G, in the event that spin-orbit coupling causes the
Hamiltonian, H, not to commute with L or with S but only with their vector sumJ=L +
S, then these L2 S2 L, S; eigenfunctions must be coupled (i.e., recombined) to generate 2
J; eigenstates. The steps needed to effect this coupling are developed and illustrated for the
above p? configuration casein Appendix G.

In the case of a pair of non-equivalent p orbitals (e.g., in a 2p13p! configuration),
even more states would arise. They can aso be found using the tools provided above.
Their symmetry labels can be obtained by vector coupling (see Appendix G) the spin and
orbital angular momenta of the two subsystems. The orbital angular momentum coupling



withl =1andl=1givesL =2, 1, and 0 or D, P, and S states. The spin angular
momentum coupling with s=1/2 and s= 1/2 givesS=1 and O, or triplet and singlet states.
So, vector coupling leads to the prediction that 3D€, 1De€, 3Pe, 1pe 3Se and 1Se gtates can
be formed from a pair of non-equivalent p orbitals. It is seen that more states arise when
non-equivaent orbitals are involved; for equivalent orbitals, some determinants vanish,
thereby decreasing the total number of states that arise.

[11. Linear Molecule Term Symbols and Wavefunctions
A. Non-Equivaent Orbital Term Symbols

Equivalent angular momenta arising in linear molecules also require use of
specialized angular momentum coupling. Their spin angular momenta are coupled exactly
as in the atomic case because both for atoms and linear molecules, S2 and S, commute with
H. However, unlike atoms, linear molecules no longer permit L2 to be used as an operator
that commutes with H; L still does, but L2 does not. As aresult, when coupling non-
equivaent linear molecule angular momenta, one vector couples the el ectron spins as
before. However, in place of vector coupling the individual orbital angular momenta, one
adds theindividual L, valuesto obtain the L, values of the coupled system. For example,
theplp'1 configuration givesrise to S=1 and S=0 spin states. The individual m; values of
the two pi-orbitals can be added to give M| = 1+1, 1-1, -1+1, and -1-1, or 2, O, O, and -2.
The M| =2 and -2 cases are degenerate (just asthe m= 2 and -2 d orbitals are and the m|=
1 and -1 p orbitals are) and are denoted by the term symbol D; there are two distinct M =0
States that are denoted S. Hence, the p1p' 1 configuration yields 3D, 3S, 3S, 1D, 1S, and
1S term symbols.

B. Equivaent-Orbital Term Symbols

To treat the equivalent-orbital case p2, one forms abox diagram as in the atom case:

Ms 1 lp1ap-1a|

0 lp1apib| lp1ap-1b|,



Ip-12p1b|

The processisvery smilar to that used for atoms. One first identifies the highest
Ms value (and hence an S vaue that occurs) and withinthat Mg, the highest My .
However, the highest M does not specify an L-value, because L isno longer a"good
quantum number" because L2 no longer commutes with H. Instead, we simply take the
highest M value (and minus this value) as specifying aS, P, D, F, G etc. term symbol.
In the above example, the highest Mg valueisMg = 1, so thereisan S= 1 level. Within
Mg = 1, the highest M = 0; hence, thereisa3S level.

After deleting from the box diagram entries corresponding to Mg values ranging
from -Sto Sand M valuesof M| and - M, one has (again using italics to denote the
deleted entries):

ML 2 1 0
Ms 1 lp1ap-1a|
0 lp1apib| lp1ap-1b|,
Ip-1ap1b|

Among the remaining entries, the highest Mg valueisMgs = 0, and within this Mg the
highest M_ isM|_ = 2. Thus, thereis a 1D state. Deleting entrieswith Mg =0 and M| = 2
and -2, one has |eft the following box diagram:

ML 2 1 0
Ms 1 lp1ap-1a|
0 lp1apib| lp1ap-1bl,
Ip-1ap1b|

There till remains an entry with Ms = 0 and My = 0; hence, thereisaso alS level.
Recall that the non-equivalent p1p' ! caseyielded 3D, 3S, 3S, 1D, 1S, and 1S term
symbols. The equivalent p2 caseyieldsonly 3S, 1D, and 1S term symbols. Again,



whenever oneis faced with equivalent angular momentain alinear-molecule case, one must
use the box method to determine the allowed term symbols. If one has a mixture of
equivaent and non-equivalent angular momenta, it is possible to treat the equivalent angular
momenta using boxes and to then add in the non-equivalent angular momenta using the
more straightforward technique. For example, the p2d! configuration can be treated by
coupling the p2 as above to generate 3S, 1D, and 1S and then vector coupling the spin of
the third electron and additively coupling them; = 2 and -2 of the third orbital. The
resulting term symbols are 4D, 2D, 2G, 2S, 2S, and 2D (e.g., for the 1D intermediate state,
adding the d orbital's m| values givestotal M valuesof M| = 2+2, 2-2, -2+2, and
-2-2,0r 4,0,0, and -4).

C. Linear-Molecule Configuration Wavefunctions

Procedures analogous to those used for atoms can be applied to linear molecules.
However, in this case only S: can be used; L+ no longer applies because L isno longer a
good guantum number. One begins asin the atom case by identifying determinental
functions for which M_ and Mg are unique. In the p2 example considered above, these
statesinclude [piap-1a|, [p1ap1b|, and their mirror images. These states are members of
the3S and 1D levels, respectively, because the first has Ms=1 and because the latter has
ML = 2.

Applying S to this3S state with Ms=1 produces the 3S state with Mg = 0:

S.3S(ML=0, Ms=1) =[S.(1) + S.(2)] [p1ap-12|
=h(1(2)-1(0))V235(M__=0, Ms=0)

=h ()Y2[|p1bp-1a| + p1ap-1b[l,
SO,

35(ML=0, Ms=0) = 2-12[|p1bp.1a| + [p1ap-1b]].
The only other state that can have M =0 and Ms=0 is the 1S state, which must itself be a
combination of the two determinants, [p1bp-1a|and |p1ap-1b|, with M| =0 and Ms=0.
Because the 1S state hasto be orthogonal to the 3S state, the combination must be

1S = 2-12[|psbp-1a| - p1ap-1b[).



Aswith the atomic systems, additional examples are provided later in this chapter and in
Appendix G.

D. Inversion Symmetry and s, Reflection Symmetry

For homonuclear molecules (e.g., Oy, N2, etc.) the inversion operator i (where
inversion of al electrons now takes place through the center of mass of the nuclei rather
than through an individual nucleus asin the atomic case) isaso avalid symmetry, so
wavefunctionsY may also be labeled as even or odd. The former functions are referred to
as ger ade (g) and the latter asunger ade (u) (derived from the German words for even
and odd). The g or u character of aterm symbol is straightforward to determine. Again one

(i) appliesi to each orbital occupiedin'Y thereby generating a+ 1 factor for each
orbital (+1for s, p*, d, f*, etc orbitals; -1 for s*, p, d*, f, etc orbitals),

(i) multiplying these £+ 1 factorsto produce an overall sign for the character of Y
under i.

When thisoverall signispositive, thefunction Y isgerade and itsterm symbol is
appended with a"g" subscript (e.g., the 3S level of the O, molecule, which has
pu*pg*2 occupancy islabeled 3Sy); if the signisnegative, Y isungerade and the term
symbol is so amended (e.g., the 3P level of the 1s 4215225 gl1p,! configuration of the
Li»> moleculeislabeled 3P ).

Finaly, for linear moleculesin S states, the wavefunctions can be labeled by one
additional quantum number that relatesto their symmetry under reflection of all electrons
through as,, plane passing through the molecule's Cy axis. If Y iseven, a+ signis
appended as a superscript to the term symbol; if Y isodd, a- sign is added.

To determinethe sy symmetry of Y, onefirst appliess,, to each orbital in'Y .
Doing so replaces the azimutha anglef of the electron in that orbital by 2p-f ; because
orbitals of linear molecules depend onf as exp(imf ), this changes the orbital into exp(im(-
f)) exp(2pim) = exp(-imf ). In effect, sy applied to Y changesthe signs of al of them
values of the orbitalsin Y . One then determines whether the resultant s Y isequal to or
oppositein sign from the original Y by inspection. For example, the 3Sg ground state of
Oo, which has a Sater determinant function

IS=1, Ms=1> = |p*1ap* 14|

=212 p*y(ry)as p*-a(rz)az - p*a(rz)az p*-a(ri)as .



Recognizing that sy p*1 = p*.1 and sy p*.1= p*1, then gives
Sy |S=1, Ms=1> = |p*1ap*.1a|
=212 p* 4(r1)az p*a(r2)az - p*-a(r2)az p*a(ri)as]
=(-1) 2V2[ p*y(r1)a1 p*-a(ra)az - p*a(rz)az p*-a(ri)as ],
so thiswavefunction is odd under sy which iswritten as 3Sg'.

E. Review of Linear Molecule Cases

Moleculeswith axial symmetry have orbitalsof s, p, d, f, etc symmetry; these
orbitals carry angular momentum about the z-axisin amounts (in units of k) 0, +1 and -1,
+2 and -2, +3 and -3, etc. The axial point-group symmetries of configurations formed by
occupying such orbitals can be obtained by adding, in al possible ways, the angular
momenta contributed by each orbital to arrive at a set of possible total angular momenta.
The eigenvalue of total L, = Sj L(i) isavalid quantum number because total L, commutes
with the Hamiltonian and with P;j; one obtains the eigenvalues of total L by adding the
individual spin-orbitals' m eigenval ues because of the additive form of the L, operator. L2
no longer commutes with the Hamiltonian, so it is no longer appropriate to construct N-
electron functions that are eigenfunctions of L2. Spin symmetry istreated as usual viathe
spin angular momentum methods described in the preceding sections and in Appendix G.
For molecules with centers of symmetry (e.g., for homonuclear diatomics or ABA linear
triatomics), the many-electron spin-orbital product inversion symmetry, which isequal to
the product of the individual spin-orbital inversion symmetries, provides another quantum
number with which the states can be labeled. Finally the s, symmetry of S states can be
determined by changing the m values of al orbitalsin'Y and then determining whether the
resultant functionisequal toY orto-Y.

If, instead of ap2 configuration like that treated above, one had a d2 configuration,
the above anaysiswould yield 1G, 1S and 3S symmetries (because the two d orbitals m
values could be combinedas2 + 2,2- 2, -2 + 2, and -2 -2); the wavefunctions would be
identical to those given above with the p1 orbitals replaced by dy orbitals and p-; replaced
by d.o. Likewise, f 2 givesrisetoll, 1S, and 3S symmetries.



For aplp'l configuration in which two non-equivalent p orbitals (i.e., orbitals
which are of p symmetry but which are not both members of the same degenerate set; an
example would bethe p and p* orbitalsin the B, molecule) are occupied, the above
analysis must be expanded by including determinants of the form: [p1ap’ia|,

Ip-1ap'-1al, [p1bp’ 1b], |p-1bp' -1b]. Such determinants were excluded inthep 2 case
because they violated the Pauli principle (i.e., they vanish identically when p' = p).
Determinants of the form [p*1ap-1a|, [p"1@p1bl, [p'-1ap-1b], [p* 1bp- 1b], [p"12p- 10|, and
Ip' 1bp-1a| are now distinct and must be included as must the determinants [piap'-1a|,
Ip1ap’ 1bl, [p-1a2p’-1b|, [p1bp’- 10|, [paap’- 1b|, and [p1bp’-1a|, which are analogous to
those used above. The result is that there are more possible determinants in the case of non-
equivalent orbitals. However, the techniques for identifying space-spin symmetries and
creating proper determinental wavefunctions are the same as in the equivalent-orbital case.

For any p2 configuration, one finds1D, 1S, and 3S wavefunctions as detailed
earlier; for theplp'l case, onefinds 3D, 1D, 3S, 1S, 3S, and 1S wavefunctions by
starting with the determinants with the maximum Mg value, identifying states by their M| |
values, and using spin angular momentum algebra and orthogonality to generate states with
lower Mg and, subsequently, lower S values. Because L2 is not an operator of relevancein
such cases, raising and lowering operators relating to L are not used to generate states with
lower L values. States with specific L values are formed by occupying the orbitalsin al
possible manners and ssmply computing L as the absolute value of the sum of the
individual orbitals m-values.

If acenter of symmetry is present, all of the states arising from p2 are gerade;
however, the states arising from plp'1 can be geradeif p and p' are both g or both u or
ungeradeif p and p' are of opposite inversion symmetry.

The state symmetries appropriate to the non-equivalent p1p' 1 case can,
alternatively, be identified by "coupling" the spin and L, angular momenta of two
"independent" subsystems-the p system which givesriseto 2P symmetry (with M| =1
and -1 and S=1/2) and the p' 1 system which also give 2P symmetry. The coupling gives
riseto triplet and singlet spins (whenever two full vector angular momenta | j,m> and |
j';m'> are coupled, one can obtain total angular momentum values of J=j+j', j+j'-1, j+j'-
2,... i-]']; see Appendix G for details) and to M|_ values of 1+1=2, -1-1=-2, 1-1=0 and -
1+1=0(i.e., to D, S, and S states). The L, angular momentum coupling is not carried out
in the full vector coupling scheme used for the electron spins because, unlike the spin case
where oneis forming eigenfunctions of total 2 and S, oneis only forming L, eigenstates

(i.e., L2isnot avalid quantum label). In the case of axial angular momentum coupling, the
various possible M| values of each subsystem are added to those of the other subsystem to



arrive a the total M value. This angular momentum coupling approach gives the same set
of symmetry labels (3D, 1D, 3S, 1S, 3S, and 1S) as are obtained by considering al of the
determinants of the composite system as treated above.

IV. Non-Linear Molecule Term Symbols and Wavefunctions
A. Term Symbols for Non-Degenerate Point Group Symmetries

The point group symmetry labels of the individual orbitals which are occupied in
any determinental wave function can be used to determine the overall spatia symmetry of
the determinant. When a point group symmetry operation is applied to adeterminant, it acts
on al of the electronsin the determinant; for example, sy [f 1f of 3| = |suf 1Suf 2S\f 3. If
each of the spin-orbitalsf; belong to non-degenerate representations of the point group,
svf i will yield the character cj(sy) appropriate to that spin-orbital multiplyingfi. Asa
result, sy |f 1f of 3| will equal the product of the three characters ( one for each spin-orbital)
Pi ci(sy) times|f 1f of 3|. This gives an example of how the symmetry of a spin-orbital
product (or an antisymmetrized product) is given as the direct product of the symmetries of
theindividua spin-orbitalsin the product; the point group symmetry operator, because of
its product nature, passes through or commutes with the antisymmetrizer. 1t should be
noted that any closed-shell parts of the determinant (e.g.,1a122a121b2 in the configuration
1a122a21b2 1b11) contribute unity to the direct product because the squares of the
characters of any non-degenerate point group for any group operation equals unity.
Therefore, only the open-shell parts need to be considered further in the symmetry
analysis. For abrief introduction to point group symmetry and the use of direct productsin
this context, see Appendix E.

An examplewill help illustrate these ideas. Consider the formal dehyde molecule
H2CO in Cyp, symmetry. The configuration which dominates the ground-state
wavefunction has doubly occupied O and C 1sorbitals, two CH bonds, aCO s bond, a
CO p bond, and two O-centered lone pairs; this configuration is described in terms of
symmetry adapted orbitals as follows: (1ag22a123a21by?
4an21b125:22y2) and is of 1A, symmetry becauseit is entirely closed-shell (note that
lower case |etters are used to denote the symmetries of orbitals and capital letters are used
for many-electron functions symmetries).

The lowest-lying n=>p* states correspond to a configuration (only those orbitals
whose occupancies differ from those of the ground state are listed) of the form 2by12b41,
which givesriseto 1A, and 3A; wavefunctions (the direct product of the open-shell spin



orbitalsis used to obtain the symmetry of the product wavefunction: Ao =bj x bp). The p
=> p” excited configuration 1b112b;1 gives 1A; and 3A; states because by x by = Ax.

The only angular momentum coupling that occursin non-linear moleculesinvolves
the electron spin angular momenta, which are treated in a vector coupling manner. For
example, in the lowest-energy state of formaldehyde, the orbitals are occupied in the
configuration 1a22a123a21bp24321b125322b,2. This configuration has only asingle
entry inits"box". Its highest Mg vaueisMs = 0, so thereisasinglet S= 0 state. The
gpatial symmetry of thissinglet stateis totally symmetric A1 because thisis aclosed-shell
configuration.

The lowest-energy np* excited configuration of formaldehyde has a
1aq22an 23812102481 210b125a122b»12b1 1 configuration, which has atotal of four entriesin
its "box" diagram:

Mg=1 |2byla 2byla|,
Ms=0 I2bpa 2by b,
Ms=0 2bplb2bytal,
Mg = -1 2b,1b2by D).

The highest Ms valueisMgs = 1, so thereisan S = 1 state. After deleting one entry each
withMs =1, 0, and -1, there is one entry left with Mg = 0. Thus, thereisan S = 0 state
also.

Asillustrated above, the spatial symmetries of thesefour S=1 and S= 0 states are
obtained by forming the direct product of the "open-shell” orbitals that appear in this
configuration: by x by = Ao.

All four states have this spatial symmetry. In summary, the above configuration yields 3A,
and 1A, term symbols. The plp*1 configuration 1a;22aq23a;21bp24an 21b1 152 22bp22b4 1
produces 3A; and 1A; term symbols (because by x by = Ay).

B. Wavefunctions for Non-Degenerate Non-Linear Point Molecules

The techniques used earlier for linear molecules extend easily to non-linear
molecules. One begins with those states that can be straightforwardly identified as unique
entries within the box diagram. For polyatomic molecules with no degenerate
representations, the spatial symmetry of each box entry isidentical and is given asthe direct
product of the open-shell orbitals. For the formal dehyde example considered earlier, the
spatial symmetries of the np* and pp* stateswere Ao and A1, respectively.



After the unique entries of the box have been identified, one uses S. operations to
find the other functions. For example, the wavefunctions of the 3A, and 1A, states of the
np* lay22a123a 21243211253 22by12b41 configuration of formal dehyde are formed by
first identifying the Ms = £1 components of the S = 1 state as |2bpa 2bja | and [2bob2b1b|
(@l of the closed-shell components of the determinants are not explicitly given). Then,
applying S to the Mg = 1 state, one obtains the Ms = 0 component (1/2)V2 [|2bsb2bia | +
|2bpa 2b1b| ]. The singlet state is then constructed as the combination of the two
determinants appearing inthe S= 1, Mg = 0 state that is orthogonal to thistriplet state. The
result is (1/2)Y2 [|2byb2ba | - [2bya2bib] ].

The results of applying these rulesto the np™ and pp* states are as follows:

3Ao (Ms= 1) =[1;alagb2aa2ab3xa3ablbya lbob4aadablbialbib
S5aga5ab2boa 2bial,
3Ao (Mg =0) = 1/Q2 [|2bpa 2b1b| + |2pb2bsal],

3A2 (Ms = -1) = [2bpb2bs b,
1A, = 1/¢2 [[20pa2b1b] - [2bpb2bsal].

The lowest pp* states of triplet and singlet spin involve the following:
3A1 (Ms=1) = [1bja2bsal,
1A; = 12 [|1bia2bib]| - [1gb2bsal]].

In summary, forming spatial- and spin- adapted determinental functions for
molecules whose point groups have no degenerate representations is straightforward. The
direct product of all of the open-shell spin orbitals gives the point-group symmetry of the
determinant. The spin symmetry is handled using the spin angular momentum methods
introduced and illustrated earlier.

C. Extension to Degenerate Representations for Non-Linear Molecules

Point groups in which degenerate orbital symmetries appear can betreated in like
fashion but require more analysis because a symmetry operation R acting on a degenerate



orbital generaly yields alinear combination of the degenerate orbitals rather than amultiple
of the original orbital (i.e., Rfj =cj(R) fj isnolonger valid). For example, when a pair of
degenerate orbitals (denoted e; and e ) are involved, one has

R =5j Rij g,

where Rjj isthe 2x2 matrix representation of the effect of R on the two orbitals. The effect
of R on aproduct of orbitals can be expressed as.

R &g =Sk, Rik Rjl &8 .

The matrix Rjj kI = Rik Rj| representsthe effect of R on the orbital products in the same
way Rjk represents the effect of R on the orbitals. One saysthat the orbital products also
form a basis for a representation of the point group. The character (i.e., the trace) of the
representation matrix Rjj kI appropriate to the orbital product basisis seen to equal the
product of the characters of the matrix Rjk appropriate to the orbital basis. cZ(R) =
cdR)c«R), whichis, of course, why the term "direct product” is used to describe this
relationship.

For point groups which contain no degenerate representations, the direct product of
one symmetry with another is equal to a unique symmetry; that is, the characters ¢ (R)
obtained as ¢ y(R)cp(R) belong to a pure symmetry and can be immediately identified in a
point-group character table. However, for point groups in which degenerate representations
occur, such is not the case. The direct product characters will, in general, not correspond to
the characters of a single representation; they will contain contributions from more than one
representation and these contributions will have to be sorted out using the tools provided
below.

A concrete example will help clarify these concepts. In Czy symmetry, thep
orbitals of the cyclopropenyl anion transform according to a; and e symmetries

e 1



and can be expressed as LCAO-MO'sin terms of theindividual pj orbitals as follows:
a =1/OB[ p1+p2 +p3], 1= V[ p1 - p3],
and

e2=1UC6[ 2 pz-p1-Pg]-
For the anion's lowest energy configuration, the orbital occupancy a;2e2 must be
considered, and hence the spatial and spin symmetries arising from the e2 configuration are
of interest. The character table shown below

allows one to compute the characters appropriate to the direct product (e x €) asc(E) = 2x2
=4, c(sy) = 0x0 =0, c(C3) = (-1)x(-1) =1.

This reducible representation (the occupancy of two e orbitalsin the anion givesrise to
more than one state, so the direct product e x e contains more than one symmetry
component) can be decomposed into pure symmetry components (labels Gare used to
denote the irreducible symmetries) by using the decomposition formula given in Appendix
E:

n(G =1/g Sg c(R)cR).



Here g isthe order of the group (the number of symmetry operationsin the group- 6 in this
case) and c(R) isthe character for the particular symmetry Gwhose component in the
direct product is being calculated.

For the case given above, onefinds n(ap) =1, n(az) = 1, and n(e) =1; so within the
configuration e2 there is one A1 wavefunction, one Ao wavefunction and a pair of E
wavefunctions (where the symmetry labels now refer to the symmetries of the
determinental wavefunctions). This analysistells one how many different wavefunctions of
various spatial symmetries are contained in a configuration in which degenerate orbitals are
fractionally occupied. Considerations of spin symmetry and the construction of proper
determinental wavefunctions, as developed earlier in this Section, still need to be applied to
each spatial symmetry case.

To generate the proper A1, A2, and E wavefunctions of singlet and triplet spin
symmetry (thusfar, it is not clear which spin can arise for each of the three above spatia
symmetries; however, only singlet and triplet spin functions can arise for this two-electron
example), one can apply the following (un-normalized) symmetry projection operators (see
Appendix E where these projectors are introduced) to al determinental wavefunctions
arising from the e2 configuration:

Pc=SrcagR)R .
Here, cqR) isthe character belonging to symmetry Gfor the symmetry operation R .
Applying this projector to a determinental function of the form [f f j| generates a sum of
determinants with coefficients determined by the matrix representations Rj:

Pglfifj| = Sr Ski caR) RikR;l fkfil.

For example, in the €2 case, one can apply the projector to the determinant with the
maximum Mg value to obtain

Pcleiaexa| = Sr cR) [R11R22 [e1aezal + Ri2R21 [eaesal]
= SR cdR) [R11R22 -R12R21 | [e1aezal,
or to the other two members of this triplet manifold, thereby obtaining

Pgleibeob| = Sk cqR) [R11R22 -R12R21 ] |erbenb|



and
Pc U/ [|lejaexb| +lebera[] = Sr cq(R) [R11R22 -R12R21 ]

1/C2[leraexb| +letbesal] .

The other (singlet) determinants can be symmetry analyzed in like fashion and result in the
following:

PG |eiaeib| = Sg cgR){ R11R11|e1aeib| +R12R12 |eaesb| +R11R12
[leraebl-lerbecall},

PG |exaeb| = Sr ca(R){ R22R22 |e2aezb| + R21R21|e1aerb| + R22R21
[lexaerbl|-leberal]},
and
P U(2[leaezb| - letbezal] = Sk cd(R) { 2 RuiRzleiaerb|
+(2 RooRyoleaeph| + ( R11R22 +R12R21) [|eraepb| -lerbeyal]} .

To make further progress, one needs to evaluate the Rjk matrix elementsfor the
particular orbitals given above and to then use these explicit values in the above equations.
The matrix representations for the two e orbitals can easily be formed and are as follows:

1 0 <-1 o> <-1/2 c'je/z>
0 0 1 o872 1/2

E Sy s’y

172 -CB/2 <-1/2 oe/2><-__1/2 -c‘je/2>
<-os/2 1/2> ~(8/2 -1/2) \B/2 -1/2
s" Cs C's

\"

Turning first to the three triplet functions, one notes that the effect of the symmetry
projector acting on each of these three was the following multiple of the respective function:
Sr cdR) [R11R22



-R12R21 ]. Evaluating this sum for each of the three symmetries G= A1, Ao, and E, one
obtainsvalues of 0, 2, and O, respectively. That is, the projection of the each of the
origina triplet determinants gives zero except for Az symmetry. Thisalows oneto
conclude that thereareno A or E triplet functionsin this case; the triplet functions are of
pure 3A, symmetry.

Using the explicit values for Rjx matrix e ements in the expressions given above for
the projection of each of the singlet determinental functions, one finds only the following
non-vanishing contributions:

(i) For Ay symmetry- P lejaerb| = 3] leaeb| + [aexbl] = P eaeb,

(i) For Ao symmetry- all projections vanish,

(iii) For E symmetry- P |gjaeib| = 3/2 [lejaelb| - |epaeob|] = -P |exaexb|
and PL/C2[leaezb| - [erbeyal] = 3 U2 le1aezb| - lebezall.

Remembering that the projection process does not |ead to a normalized function, although it
does generate a function of pure symmetry, one can finally write down the normalized
symmetry-adapted singlet functions as:

(i) *A1= VC2[leaenb| + [exaezbl],

(i) 1E = { VC2[leaeb| - [exaezbl], and Y[ leraezb| - fesbeall }.
The triplet functions given above are:

(iii) 3A2 = { leraezal, VC2[le1aezb| +lebezall, and lerbeb } .

In summary, whenever one has partially occupied degenerate orbitals, the
characters corresponding to the direct product of the open-shell orbitals (as always, closed-
shells contribute nothing to the symmetry analysis and can be ignored, although their
presence must, of course, be specified when one finally writes down complete symmetry-
adapted wavefunctions) must be reduced to identify the spatial symmetry components of
the configuration. Given knowledge of the various spatial symmetries, one must then form
determinental wavefunctions of each possible space and spin symmetry. In doing so, one



starts with the maximum Mg function and uses spin angular momentum algebra and
orthogonality to form proper spin eigenfunctions, and then employs point group projection
operators (which require the formation of the Rjk representation matrices). Antisymmetry,
as embodied in the determinants, causes some space-spin symmetry combinations to vanish
(e.g., 3A1 and 3E and 1A, in the above exampl€) thereby enforcing the Pauli principle. This
procedure, although tedious, is guaranteed to generate all space- and spin-symmetry
adapted determinants for any configuration involving degenerate orbitals. The results of
certain such combined spin and spatial symmetry analyses have been tabulated. For
example, in Appendix 11 of Atkins such information is given in the form of tables of direct
products for several common point groups.

For cases in which one has a non-equivalent set of degenerate orbitals (e.g., for a
configuration whose open-shell part is ele'l), the procedure is exactly the same as above
except that the determination of the possible space-spin symmetriesis more
straightforward. In this case, singlet and triplet functions exist for al three space
symmetries- A1, Ao, and E, because the Pauli principle does not exclude determinants of

theform |ejae'1a| or |exbe’ob|, whereas the equivalent determinants (Jeraeja| or |ecbexb|)
vanish when the degenerate orbitals belong to the same set (in which case, one says that the
orbitals are equivalent).

For al point, axial rotation, and full rotation group symmetries, this observation
holds: if the orbitals are equivalent, certain space-spin symmetry combinations will vanish
due to antisymmetry; if the orbitals are not equivalent, al space-spin symmetry
combinations consistent with the content of the direct product analysis are possible. In
either case, one must proceed through the construction of determinental wavefunctions as
outlined above.

V. Summary

The ability to identify all term symbols and to construct al determinental
wavefunctions that arise from a given electronic configuration isimportant. This
knowledge allows one to understand and predict the changes (i.e., physical couplings due
to external fields or due to collisions with other species and chemical couplings due to
interactions with orbitals and electrons of a'ligand’ or another species) that each state
experiences when the atom or molecule is subjected to some interaction. Such
understanding plays central roles in interpreting the results of experiments in spectroscopy
and chemical reaction dynamics.



The essence of this analysisinvolves being able to write each wavefunction asa
combination of determinants each of which involves occupancy of particular spin-orbitals.
Because different spin-orbitals interact differently with, for example, a colliding molecule,
the various determinants will interact differently. These differencesthus give rise to
different interaction potential energy surfaces.

For example, the Carbon-atom 3P(M| =1, Ms=0) = 2-V2 [|p1bpoa | + |prapgb]] and
3P(M =0, Ms=0) = 2-V2[|pibp.1a| + |pmap.1b]] statesinteract quite differently ina
collision with aclosed-shell Ne atom. The M| = 1 state's two determinants both have an
electron in an orbita directed toward the Ne atom (the 2pg orbital) aswell asan electronin
an orbital directed perpendicular to the C-Ne internuclear axis (the 2p; orbitd); theM_ =0
state's two determinants have both electronsin orbitals directed perpendicular to the C-Ne
axis. Because Ne is a closed-shell species, any electron density directed toward it will
produce a"repulsive” antibonding interaction. As aresult, we expect the M| = 1 state to
undergo a more repulsive interaction with the Ne atom than the M = 0 state.

Although one may be tempted to 'guess how the various 3P(M| ) states interact
with aNe atom by making an analogy between the three M| states within the 3P level and
the three orbitals that comprise a set of p-orbitals, such analogies are not generally valid.
The wavefunctions that correspond to term symbols are N-electron functions; they describe
how N spin-orbitals are occupied and, therefore, how N spin-orbitals will be affected by
interaction with an approaching 'ligand' such as a Ne atom. The net effect of the ligand will
depend on the occupancy of al N spin-orbitals.

Toillustrate this point, consider how the 1S state of Carbon would be expected to
interact with an approaching Ne atom. This term symbol's wavefunction 1S = 3-12
Ipoa pob| - [p1a pibl
- |p12p-1b[] contains three determinants, each with a 1/3 probability factor. The first,
lpoa pob|, produces a repulsive interaction with the closed-shell Ne; the second and third,
|p-1ap1b]| and |p1ap-1b|, produce attractive interactions because they allow the Carbon's
vacant pg orbital to servein aLewis acid capacity and accept electron density from Ne. The
net effect islikely to be an attractive interaction because of the equal weighting of these
three determinantsin the 1S wavefunction. This result could not have been 'guessed’ by
making making analogy with how an s-orbital interacts with a Ne atom; the 1S state and an
s-orbital are distinctly different in this respect.



Chapter 11

One Must be Able to Evaluate the Matrix Elements Among Properly Symmetry Adapted N-
Electron Configuration Functions for Any Operator, the Electronic Hamiltonian in
Particular. The Sater-Condon Rules Provide this Capability

|. CSFs Are Used to Express the Full N-Electron Wavefunction

It has been demonstrated that a given el ectronic configuration can yield several
space- and spin- adapted determinental wavefunctions; such functions are referred to as
configuration state functions (CSFs). These CSF wavefunctions are not the exact
eigenfunctions of the many-electron Hamiltonian, H; they are ssimply functions which
possess the space, spin, and permutational symmetry of the exact elgenstates. As such,
they comprise an acceptable set of functionsto usein, for example, alinear variationa
trestment of the true states.

In such variational treatments of electronic structure, the N-electron wavefunction
Y isexpanded as asum over all CSFs that possess the desired spatial and spin symmetry:

Y =53;C3F3.

Here, the F jrepresent the CSFsthat are of the correct symmetry, and the Cj are their
expansion coefficients to be determined in the variational calculation. If the spin-orbitals
used to form the determinants, that in turn form the CSFs {F 3}, are orthonormal one-
electron functions (i.e., <f i | fj> = d j), then the CSFs can be shown to be orthonormal
functions of N electrons

<Fj|Fk>=djk.

In fact, the Slater determinants themselves also are orthonormal functions of N electrons
whenever orthonormal spin-orbitals are used to form the determinants.

The above expansion of the full N-electron wavefunction istermed a
"configuration-interaction” (Cl) expansion. It is, in principle, amathematically rigorous
approach to expressing Y because the set of all determinants that can be formed from a
complete set of spin-orbitals can be shown to be complete. In practice, oneislimited to the
number of orbitalsthat can be used and in the number of CSFsthat can be included in the
Cl expansion. Nevertheless, the Cl expansion method forms the basis of the most
commonly used techniques in quantum chemistry.



In general, the optimal variational (or perturbative) wavefunction for any (i.e., the
ground or excited) state will include contributions from spin-and space-symmetry adapted
determinants derived from all possible configurations. For example, although the
determinant with L =1, S=1, M =1, Mg =1 arising from the 1s22s22p2 configuration
may contribute strongly to the true ground electronic state of the Carbon atom, there will be
contributions from all configurations which can providethese L, S, M, and Mg values
(e.g., the 1s22s22p13pl and 2s22p# configurations will also contribute, although the
1s22522p13s! and 1s22s12p23pt will not because the latter two configurations are odd
under inversion symmetry whereas the state under study is even).

The mixing of CSFsfrom many configurations to produce an optimal description of
the true electronic states is referred to as configuration interaction (Cl). Strong Cl (i.e.,
mixing of CSFswith large amplitudes appearing for more than one dominant CSF) can
occur, for example, when two CSFs from different electronic configurations have nearly
the same Hamiltonian expectation value. For example, the 1s22s2 and 1s?2p2 1S
configurations of Be and the analogous ns? and np2 configurations of al akaline earth
atoms are close in energy because the ns-np orbital energy splitting is small for these
elements; the p2 and p*2 configurations of ethylene become equal in energy, and thus
undergo strong Cl mixing, as the CCp bond is twisted by 90° in which case the p and p*
orbitals become degenerate.

Within avariationa treatment, the relative contributions of the spin-and space-
symmetry adapted CSFs are determined by solving a secular problem for the eigenvalues
(Ej) and eigenvectors (Cj) of the matrix representation H of the full many-electron
Hamiltonian H within this CSF basis:

SLHk,L GiL=E Cik.
The eigenvalue E; givesthe variational estimate for the energy of the ith state, and the
entriesin the corresponding eigenvector C; k give the contribution of the Kth CSF to the ith
wavefunction Y j in the sense that

Yi=Sk Cik Fk,

whereF g isthe Kth CSF.

[1. The Slater-Condon Rules Give Expressions for the Operator Matrix Elements Among
the CSFs



To form the Hk | matrix, one uses the so-called Slater-Condon rules which express

all non-vanishing determinental matrix elements involving either one- or two- electron
operators (one-electron operators are additive and appear as

F=Si f(i);
two-€electron operators are pairwise additive and appear as
G = Sjj 9(i.j))-

Because the CSFs are smple linear combinations of determinants with coefficients
determined by space and spin symmetry, the H; y matrix in terms of determinants can be
used to generate the Hk | matrix over CSFs.

The Sater-Condon rules give the matrix elements between two determinants

|>=1[f1f of 3... TN
and

|'>=|f"1f"of "3...T"N]|

for any quantum mechanical operator that isasum of one- and two- electron operators (F +
G). It expresses these matrix elementsin terms of one-and two-€lectron integralsinvolving
the spin-orbitals that appear in | > and | > and the operators f and g.

Asafirst step in applying these rules, one must examine | > and | "> and determine
by how many (if any) spin-orbitals| > and | > differ. In so doing, one may have to
reorder the spin-orbitalsin one of the determinants to achieve maximal coincidence with
those in the other determinant; it is essential to keep track of the number of permutations (
Np) that one makesin achieving maximal coincidence. The results of the Sater-Condon
rules given below are then multiplied by (-1)Np to obtain the matrix elements between the
origina | >and | ">. Thefina result does not depend on whether one chooses to permute |
>or | ">,

Once maximal coincidence has been achieved, the Slater-Condon (SC) rules
provide the following prescriptions for evaluating the matrix elements of any operator F +
G containing aone-electron part F = S; f(i) and atwo-€lectron part G = Sjj o(i,j) (the
Hamiltonian is, of course, a specific example of such an operator; the electric dipole



operator Sj erj and the electronic kinetic energy - h2/2meSjN;2 are examples of one-electron
operators (for which one takes g = 0); the electron-electron coulomb interaction Si>j €2/rjj
is atwo-electron operator (for which one takesf = 0)):



The Slater-Condon Rules

() If | >and | > areidentical, then
<|F+G|>=Sj<fj|f[fi>+Sj5 [<fifj|g|fifj>-<fifj|g|fjfi>],
where the sumsover i and j run over al spin-orbitalsin | >;

(ii) If | > and | "> differ by asingle spin-orbital mismatch (fp? f'p),
<|F+G|>=<fp|f[f'p>+Sj[<fpfj|g|f'pfj>-<fofjlglfjf'p>],
where the sum over j runsover all spin-orbitalsin | > except f ;

(i) If | > and | "> differ by two spin-orbitals (fp* f'pandfq? f'g),
<|F+G|>=<fpfqlg|f'pf'g>-<fpfqglg|f'qf'p>
(note that the F contribution vanishesin this case);

(iv) If | > and | > differ by three or more spin orbitals, then
<|F+G|'>=0;

(v) For the identity operator I, the matrix elements< |1 |"™>=0if | > and | "> differ by one
or more spin-orbitals (i.e., the Slater determinants are orthonormal if their spin-orbitals

are).

Recall that each of these results is subject to multiplication by afactor of (-1)Np to
account for possible ordering differencesin the spin-orbitalsin | > and | ">.
In these expressions,

<fi[f[fj>

is used to denote the one-electron integral
of "i(r) f(r) f;(r) dr

and

<fifj | g|f«f1> (orin short hand notation <i j| k | >)
represents the two-electron integral



of "i(r) £7(r") g(r,r") fk(nf(r') drdr".

The notation <i j | k I> introduced above gives the two-electron integrals for the
g(r,r") operator in the so-called Dirac notation, in which thei and k indices label the spin-
orbitals that refer to the coordinates r and the j and | indices label the spin-orbitals referring
to coordinatesr'. Ther and r' denoter,q,f,s and r',q",f",s' (with s and s’ being the a or
b spin functions). The fact that r and r* are integrated and hence represent ‘dummy’
variablesintroduces index permutational symmetry into thislist of integrals. For example,

<ijlkl>=<ji|lk>=<kl|ij>* =<Ik]|]i>*;

the final two equivalences are results of the Hermitian nature of g(r,r).
It is also common to represent these same two-electron integralsin anotation
referred to as Mulliken notation in which:

of "i(Nf*j(r) g(r,r) f()fi(r) drdr' = (i k [j I).

Here, theindicesi and k, which label the spin-orbital having variablesr are grouped
together, and j and |, which label spin-orbitals referring to the r' variables appear together.
The above permutational symmetries, when expressed in terms of the Mulliken integral list
read:

(k{i=0T1ik)=&il)=q0j1ki)*.

If the operators f and g do not contain any electron spin operators, then the spin
integrationsimplicit in theseintegrals (all of thef are spin-orbitals, so eachf is
accompanied by ana or b spin function and each f * involves the adjoint of one of thea or
b spin functions) can be carried out as<ala> =1, <alb> =0, <bja> =0, <bjp> =1,
thereby yielding integrals over spatial orbitals. These spin integration results follow
immediately from the general properties of angular momentum eigenfunctions detailed in
Appendix G; in particular, because a and b are eigenfunctions of S; with different
eigenvalues, they must be orthogonal <a |b> = <bfa> = 0.

The essentia results of the Sater-Condon rules are:



1. Thefull N! termsthat arise in the N-electron Slater determinants do not have to be
treated explicitly, nor do the N!(N! + 1)/2 Hamiltonian matrix elements among the N! terms
of one Slater determinant and the N! terms of the same or another Siater determinant.

2. All such matrix elements, for any one- and/or two-€lectron operator can be expressed in
terms of one- or two-electron integrals over the spin-orbitals that appear in the
determinants.

3. Theintegrals over orbitals are three or six dimensional integrals, regardless of how
many electrons N there are.

4. These integrals over mo's can, through the LCAO-MO expansion, ultimately be
expressed in terms of one- and two-electron integrals over the primitive atomic orbitals. It
isonly these ao-based integrals that can be evaluated explicitly (on high speed computers
for al but the smallest systems).

[11. Examples of Applying the Slater-Condon Rules

It iswiseto gain some experience using the SC rules, so let us consider afew
illustrative example problems.

1. What is the contribution to the total energy of the 3P level of Carbon made by the two 2p
orbitals alone? Of course, the two 1s and two 2s spin-orbitals contribute to the total energy,
but we artificially ignore al such contributions in this example to smplify the problem.

Because all nine of the 3P states have the same energy, we can calculate the energy
of any one of them; it istherefore prudent to choose an "easy" one

3P(ML=1Ms=1) = |mapoal .
The energy of thisstateis< |p1apoa| H |p1apoa| >. The SC rulestell usthis equals:

12p; + 12pg + <2P12po| 2p12p0> - <2p12po| 2po2p1>,
where the short hand notation |j = <j| f [j> isintroduced.

If the contributions from the two 1s and two 2s spin-orbitals are now taken into
account, one obtains atotal energy that also contains 2115 + 2l o5 + <1sls|1s1s> +
4<1829|182s> - 2 <1825|251s>+ <2529|2525> + 2<1S2p1|1s2p1> - <1s2p1|2p11s> +
2<1s2po|1s2po> - <1s2p|2ppls> + 2<2S2p1|252p1> - <2S2p1|2p12S> + 2<2S2p0|2S2p0> -
<2s2po|2po2s>.



2. Isthe energy of another 3P state equal to the above state's energy? Of course, but it may
prove informative to prove this.

Consider the Ms=0, M =1 state whose energy is:
2-Y2<[|papob| + [pibpoall| H [<[Ip1a pob| + [pibpoal]>2-12
=1/2{12p, + l2py + <2P12Pol 2P12p0> + I 2p; + 12py + <2P12P0| 2P12p0>}
+ 12 { - <2p12pol2po2p1> - <2p12po|2po2p1>}
= lopq + l2pg + <2p12po| 2p12po> - <2p12po| 2P02p1>.
Which is, indeed, the same as the other 3P energy obtained above.
3. What energy would the singlet state 2-Y/2<[|p1a pgb| - |pibpoa || have?

The 3P Ms=0 example can be used (changing the sign on the two determinants) to
give

E = l2p; + 12py + <2p12po| 2p12p0> + <2p12po| 2po2p1>.
Note, thisis the M =1 component of the 1D state; it is, of course, not a 1P state because no
such state exists for two equivalent p electrons.
4. What isthe Cl matrix element coupling |1s22s2| and |1s23s2|?
These two determinants differ by two spin-orbitals, so
<|1salsb2sa2sb| H |1salsb3sa3sh|> = <2s25|3s3s> = <2s35|3s25>
(note, thisis an exchange-typeintegral).

5. What isthe CI matrix element coupling [papb|and |p*ap*b|?

These two determinants differ by two spin-orbitals, so



<[papb| Hjp*ap*b|> = <pp|p*p*> = <pp*[p*p>
(note, again thisis an exchange-type integral).

6. What is the Hamiltonian matrix element coupling |papb| and
2°V2[ jpap*b| - pbp*a[]?

The first determinant differs from the p2 determinant by one spin-orbital, as does
the second (after it is placed into maximal coincidence by making one permutation), so

<|papb|H| 2Y2[ |pap*b| - pbp*al]>
= 2V2[<pffjp*> + <pp|p*p>] -(-1) 212 <plfjp*> + <pp|p*p>]

= 2V2[<plf|p*> + <pp|p*p>].
7. What is the dement coupling |papb| and 2V2[ jpap*b| + |pbp*a[]?

<lpapb|H| 2Y2[ jpap*b]| + pbp*a[>
= 212 <plfp*> + <pp|p*p>] +(-1) 2V <plfjp*> + <pp|p*p>] = 0.

This result should not surprise you because [papb| is an S=0 singlet state while 2-1/2 [
lpap*b| + |pbp*a|] isthe Ms=0 component of the S=1 triplet state.

8. What isther = Sjer;j electric dipole matrix €l ement between [piap1b| and 2V2[|mapgb|
+ |poap1b|]? Isthe second function asinglet or triplet? It isasinglet in disguise; by
interchanging the ppa and p1b and thus introducing a (-1), this function is clearly identified
as 2-V2[|prapgb| - |pibpoal] which isasinglet.

Thefirst determinant differs from the latter two by one spin orbital in each case, so

<|prapiblr[2V2[|pmapob| + |poapibl]> =

2-V2[<pq|r|po> + <p1lrlpo>] = 2V/2 <pq|r|po>.



9. What isthe electric dipole matrix elements between the
1D = |piap1b| state and the 1S = 2-V2[|pjap.1b| +|p-1ap1b[] state?

<2"V2[|p1ap-1b| +jp-1ap1b[] Ilp1apibl>
= 2-V2[<p_q|r|p1> + <p-1lr[p1>]
=212 <p_q|rjp1>.

10. As another example of the use of the SC rules, consider the configuration interaction
which occurs between the 12252 and 1s22p? 1S CSFsin the Be atom.

The CSFs corresponding to these two configurations are as follows:

F1=|1salsb2sa2sb|

and

Fo=1/G3[ |1sa1sb2pga2pgb| - |1sa 1sb2pia2p.1b|

- |1sa1sb2p.1a2p1b]].
The determinental Hamiltonian matrix el ements needed to evaluate the 2x2 Hy | matrix
appropriate to these two CSFs are evaluated via the SC rules. Thefirst such matrix element
is:

< |lsalsb2sa2sb|H |1salsb2sa2sb| >

= 2h1s + 2hps + J1s1s + A1s.2s + J2s.25 - 2K 1525,
where

hj = <fj |- h22me N2 -4e2/r [fi>

Ji,j :<fifj |e2/r12 rfifj> ,



and
Kij = <fifj | e/r1o ffifi>

arethe orbital-level one-electron, coulomb, and exchange integrals, respectively.

Coulomb integrals Jj describe the coulombic interaction of one charge density ( 2
above) with another charge density (f j2 above); exchange integrals Kij describe the
interaction of an overlap charge density (i.e., adensity of the form fif ;) with itself ( ff;
with fif; in the above).

The spin functionsa and b which accompany each orbital in |1sa1sb2sa2sb| have

been eliminated by carrying out the spin integrations as discussed above. Because H
contains no spin operators, this is straightforward and amounts to keeping integrals
<fj|f|fj>onlyiff;andf; areof the same spin and integrals
<fifj|glfkf|>onlyiff;jandfg areof thesame spinand f; and f| are of the same spin.
The physical content of the above energy (i.e., Hamiltonian expectation value) of the
|1sa 1sh2sa 2sb| determinant is clear: 2h;s + 2hys isthe sum of the expectation val ues of
the one-electron (i.e., kinetic energy and electron-nuclear coulomb interaction) part of the
Hamiltonian for the four occupied spin-orbitals; Jis 1s + 4J1s2s + J2s 25 - 2K 1525 contains
the coulombic repulsions among all pairs of occupied spin-orbitals minus the exchange
interactions among pairs of spin-orbitals with like spin.

The determinental matrix elementslinking F 1 and F » are asfollows:

<|1salsb2sa2sb| H |1salsb2ppa2pob| > = < 2s2s | 2po2po>,
< |1lsalsb2sa2sb|H |lsalsh2pia2p.1ib|> =< 2s2s| 2p12p-1>,
<|1salsb2sa2sb| H |1salsb2p.ja2pib| > = < 2s2s| 2p.12p;>,
where the Dirac convention has been introduced as a shorthand notation for the two-
electron integrals (e.g., < 2s2s | 2pp2po> represents 02s*(r1)2s" (r2) €2/r12 2po(r1) 2po(r2)
drq dro).

The three integrals shown above can be seen to be equal and to be of the exchange-
integral form by expressing the integrals in terms of integrals over cartesian functions and

recognizing identities due to the equiva ence of the 2py, 2py, and 2p; orbitals. For example,

< 2825 | 2p12p.1> = (1) < 2525 | [2py +i 2py] [2px -i 2py] >} =



12{<2S2S|XX>+<2s2S|yy>+i<2s2s|yXx>-i<2s2s|xy>} =

<2s2s|xx>=Kosx
(here the two imaginary terms cancel and the two remaining real integrals are equal);

<252s82pp2pp>=<282s|22>=<2525|XxX>=Kpsx

(thisis because Kosz = Kosx = Kosy);

<2s2s|2p.12p1 > = U2 {<2s2s|[2px -i 2py] [2px +i 2py] >} =
<2s2s|x X >= 02s"(r1) 25" (r2) €2/r12 2px(r1) 2px(r2) drq dro = Kosx.
These integrals are clearly of the exchange type because they involve the coulombic
interaction of the 2s 2py y or z Overlap charge density with itself.
Moving on, the matrix elements among the three determinantsin F , are given as
follows:
< |1sa1shb2ppa2pgb| H |1sa 1sb2pga 2pgb| >
= 2hys + 2hop + J1s1s + Jopz,2pz + A1s,2p - 2K1s2p
(J1s,2p and K15 2p are independent of whether the 2p orbital is 2py, 2py, or 2p);
< |1salsb2pia2p.1b| H |1salsb2pia2p.1b| >

= 2hys + 2hop + 1515 + A1s2p - 2K1s2p + <2P12p-112p12p-1>;

< |1salsb2p.i1a2pib| H |1salsb2p.ja2p;ib| >
2hys + 2hop + J1s1s + AJ1s2p - 2K1s2p + <2p-12P112p-12p1>;

< |1salsh2ppa2pgb| H [1salsb2pia2p.1b| > = < 2po2po | 2p12p-1 >



< |1salsh2ppa2pgb| H [1salsb2p.ja2pib| > = < 2po2po | 2p-12p1 >
< |1salsh2pia2p.1b| H |1salsb2p.ja2pib| > =< 2p12p.1 | 2p-12p1 >.

Certain of these integrals can be recast in terms of cartesian integrals for which
equivalences are easier to identify asfollows:

< 2po2p0 | 2P12p-1>=<2pp2Po | 2p-12p1>=<ZzZ| XX >=Kzx;

<2P12p.1]2p-12p1 > =<XX|yy >+ V2[<XX|XX>-<XYy|XYy>]
=Kxy +U2[ Jx - Iyl
<2p12p.12p12p.1> = <2p-12p1|2p-12p1> = V2(Ix x + Ixy)-

Finally, the 2x2 CI matrix corresponding to the CSFs F 1 and F 2 can be formed
from the above determinental matrix e ements; thisresultsin:

H11 = 2hgs+ 2hps + J1s1s + 4J15,25 + 25,25 - 2K 15,25 ;
H1o=-Kosx /OB
Hoo = 2h1s + 2hpp + J1g1s + AJ1s2p - 2K1s2p + 72 - 2/3 Ky x.

The lowest eigenvalue of this matrix provides this Cl calculation's estimate of the ground-
state 1S energy of Be; its eigenvector provides the Cl amplitudesfor F 1 and F 2 in this
ground-state wavefunction. The other root of the 2x2 secular problem gives an
approximation to another 1S state of higher energy, in particular, a state dominated by the
3V2[|1sa1sh2pga2pgb | - [1salsb2pia2p.ib |- |1salsb2p.ia2pib ]

CSF.

11. Asanother example, consider the matrix elements which arisein electric dipole
trangitions between two singlet electronic states:

<Y1 |EXS;er|Y 2> Here E- Sj erj isthe one-electron operator describing the interaction
of an electric field of magnitude and polarization E with the instantaneous dipole moment



of the electrons (the contribution to the dipole operator arising from the nuclear charges- Sz
Z£2 R does not contribute because, when placed between Y 1 and Y 2, this zero-electron
operator yields avanishing integral because Y 1 and Y 2 are orthogonal).

When the states Y 1 and Y 2 are described as linear combinations of CSFs as
introduced earlier (Y i = Sk CikF k), these matrix elements can be expressed in terms of
CSF-based matrix elements< F g | Sj erj |F L >. Thefact that the electric dipole operator is
aone-electron operator, in combination with the SC rules, guarantees that only states for
which the dominant determinants differ by at most a single spin-orbital (i.e., those which
are"singly excited") can be connected via electric dipole transitions through first order
(i.e., in aone-photon transition to which the <Y 1 |S; erj [Y 2 > matrix elements pertain). It
isfor thisreason that light with energy adequate to ionize or excite deep core electronsin
atoms or molecules usually causes such ionization or excitation rather than double
ionization or excitation of valence-level eectrons; the latter are two-electron events.

In, for example, thep => p* excitation of an olefin, the ground and excited states
are dominated by CSFs of the form (where all but the "active" p and p* orbitals are not
explicitly written) :

F1=] ...papb]|
and
Fo=1C2[| ..pap*b|-| ..pbp*al].

The electric dipole matrix element between these two CSFs can be found, using the SC
rules, to be

d@[<plrp*>+<p|rp”>]=Qe<p]|rp*>.

Notice that in evaluating the second determinental integral

<| ...papb|e | ..pbp*a|>, asignchange occurs when one puts the two determinants
into maximum coincidence; this sign change then makesthe minussignin F o yield a
positive sign in the final result.

V. Summary



In all of the above examples, the SC rules were used to reduce matrix elements of
one- or two- electron operators between determinental functionsto one- or two- electron
integrals over the orbitals which appear in the determinants. In any ab initio electronic
structure computer program there must exist the capability to form symmetry-adapted CSFs
and to evaluate, using these SC rules, the Hamiltonian and other operators matrix elements
among these CSFsin terms of integrals over the mos that appear in the CSFs. The SC rules
provide not only the tools to compute quantitative matrix elements; they allow oneto
understand in qualitative terms the strengths of interactions among CSFs. In the following
section, the SC rules are used to explain why chemical reactions in which the reactants and
products have dominant CSFsthat differ by two spin-orbital occupancies often display
activation energies that exceed the reaction endoergicity.

Chapter 12
Along "reaction paths’, configurations can be connected one-to-one according to their
symmetries and energies. Thisis another part of the Woodward-Hoffmann rules

I. Concepts of Configuration and State Energies



A. Plots of CSF Energies Give Configuration Correlation Diagrams

The energy of a particular el ectronic state of an atom or molecule has been
expressed in terms of Hamiltonian matrix elements, using the SC rules, over the various
spin-and spatialy-
adapted determinants or CSFs which enter into the state wavefunction.

E:S|,J< Fi |H|FJ>C| Cy.

The diagona matrix elements of H in the CSF basis multiplied by the appropriate CI
amplitudes<F| |H |F| > C| C; represent the energy of the Ith CSF weighted by the
strength ( G2) of that CSF in the wavefunction. The off-diagonal elements represent the
effects of mixing among the CSFs; mixing is strongest whenever two or more CSFs have
nearly thesameenergy (i.e,<F||H|F>@<Fj| H|F3>)

and thereis strong coupling (i.e,, < F||H |F 3> islarge). Whenever the

CSFs are widely separated in energy, each wavefunction is dominated by asingle CSF.

B. CSFsInteract and Couple to Produce States and State Correlation Diagrams
Just as orbital energies connected according to their symmetries and plotted as

functions of geometry constitute an orbital correlation diagram, plots of the diagonal CSF
energies connected according to symmetry, constitute a configuration correlation diagram (

CCD ). If, near regions where energies of CSFs of the same symmetry cross (according to
the direct product rule of group theory discussed in Appendix E, only CSFs of the same
symmetry mix because only they have non-vanishing < F| | H | F 3> matrix elements), Cl
mixing is allowed to couple the CSFsto giverise to "avoided crossings’, then the CCD is
converted into a so-called state correlation diagram ( SCD ).

C. CSFsthat Differ by Two Spin-Orbitals Interact Less Strongly than CSFsthat Differ by
One Spin-Orbital

The strengths of the couplings between pairs of CSFs whose energies cross are
evauated through the SC rules. CSFsthat differ by more than two spin-orbital occupancies
do not couple; the SC rules give vanishing Hamiltonian matrix elements for such pairs.
Pairsthat differ by two spin-orbitals (e.g. |.. fa... fp...] vS|.. f5... fp...]) have interaction
strengths determined by the two-electron integrals



<ab|ab' >-<ab|ba>. Parsthat differ by asingle spin-orbital (e.g. |.. fa.. ... | vs|..
fa......|) are coupled by the one- and two- electron partsof H: <a|f |b>+ Sj [< g | bj> -
<@g |jb>]. Usudly, couplings among CSFs that differ by two spin-orbitals are much
weaker than those among CSFsthat differ by one spin-orbital. In the latter case, the full
strength of H is brought to bear, whereas in the former, only the electron-electron coulomb
potential is operative.

D. State Correlation Diagrams

In the SCD, the energies are connected by symmetry but the configurational nature
as reflected in the C; coefficients changes as one passes through geometries where
crossingsin the CCD occur. The SCD isthe ultimate product of an orbital and
configuration symmetry and energy analysis and gives one the most useful information
about whether reactionswill or will not encounter barriers on the ground and excited state
surfaces.

As an example of the application of CCD's and SCD's, consider the disrotatory
closing of 1,3-butadiene to produce cyclobutene. The OCD given earlier for this proposed
reaction path is reproduced below.

S
/
e
S
Recall that the symmetry labels e and o refer to the symmetries of the orbitals under
reflection through the one Cy, plane that is preserved throughout the proposed disrotatory



closing. Low-energy configurations (assuming one is interested in the thermal or low-lying
photochemically excited-state reactivity of this system) for the reactant molecule and their
overall space and spin symmetry are as follows:

(i) p12p22 = 1€2102, 1Even

(i) p12p2lpst = 1e21012el, 30dd and 1Odd.

For the product molecule, on the other hand, the low-lying states are
(iii) s2p2 = 1e22e2, 1Even

(iv) s2plp*l=1e22el10!, 30dd, 1Odd.

Notice that although the lowest energy configuration at the reactant geometry p12p22 =
1e2102 and the lowest energy configuration at the product geometry s2p2 = 1e22¢e? are
both of 1Even symmetry, they are not the same configurations; they involve occupancy of
different symmetry orbitals.

In constructing the CCD, one must trace the energies of all four of the above CSFs
(actually there are more because the singlet and triplet excited CSFs must be treated
independently) along the proposed reaction path. In doing so, one must realize that the
12102 CSF has low energy on the reactant side of the CCD because it corresponds to
p12p22 orbital occupancy, but on the product side, it corresponds to s2p*2 orbital
occupancy and is thus of very high energy. Likewise, the 1e22e2 CSF has low energy on
the product side whereitiss2p2 but high energy on the reactant side where it corresponds
to p12p32 . The low-lying singly excited CSFs are 1e22el10! at both reactant and product
geometries; in the former case, they correspond to p12p2lp3l occupancy and at the latter to
s2p1p*1 occupancy. Plotting the energies of these CSFs along the disrotatory reaction path



results in the CCD shown below.

1e22e2

1e2102

2, 2
le 2e
If the two 1Even CSFs which cross are allowed to interact (the SC rules give their

interaction strength in terms of the exchange integral
<|1e210? | H | |1e22€2 | > = < 10l0 | 2e2e > = K 1 2¢ ) to produce states which are

combinations of the two 1Even CSFs, the following SCD resuilts:
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1e22e2

This SCD predicts that the thermal (i.e., on the ground electronic surface)
disrotatory rearrangement of 1,3-butadiene to produce cyclobutene will experience a
symmety-imposed barrier which arises because of the avoided crossing of the two 1Even
configurations; this avoidance occurs because the orbital occupancy pattern (i.e., the
configuration) which is best for the ground state of the reactant is not identical to that of the
product molecule. The SCD & so predicts that there should be no symmetry-imposed barrier
for the singlet or triplet excited-state rearrangement, athough the reaction leading from
excited 1,3-butadiene to excited cyclobutene may be endothermic on the grounds of bond
strengths alone.

It isaso possible to infer from the SCD that excitation of the lowest singlet pp*
state of 1,3-butadiene would involve alow quantum yield for producing cyclobutene and
would, in fact, produce ground-state butadiene. As the reaction proceeds along the singlet
pp” surface this1Odd state intersects the ground 1Even surface on the reactant side of the
diagram; internal conversion (i.e., quenching from the 10dd to the 1Even surfaces induced
by using a vibration of odd symmetry to "digest” the excess energy (much like vibronic
borrowing in spectroscopy) can lead to production of ground-state reactant molecul es.
Some fraction of such events will lead to the system remaining on the 10dd surface until,
further along the reaction path, the 10dd surface again intersects the 1Even surface on the
product sideat which time quenching to produce ground-state products can occur.




Although, in principle, it is possible for some fraction of the eventsto follow the 1Odd
surface beyond this second intersection and to thus lead to 10dd product molecules that
might fluoresce, quenching is known to be rapid in most polyatomic molecules; as a resullt,
reactions which are chemiluminescent are rare. An appropriate introduction to the use of
OCD's, CCD's, and SCD's as well as the radiationless processes that can occur in thermal
and photochemical reactionsis given in the text Energetic Principles of Chemical Reactions
, J. Simons, Jones and Bartlett, Boston (1983).

[1. Mixing of Covalent and lonic Configurations

As chemists, much of our intuition concerning chemical bondsis built on simple
models introduced in undergraduate chemistry courses. The detailed examination of the Ho
molecule via the valence bond and molecular orbital approaches formsthe basis of our
thinking about bonding when confronted with new systems. Let us examine this model
system in further detail to explore the electronic states that arise by occupying two orbitals
(derived from the two 1s orbitals on the two hydrogen atoms) with two electrons.

In total, there exist six eectronic states for all such two-orbital, two-electron
systems. The heterolytic fragments X +Y: and X: +Y producetwo singlet states; the
homolytic fragments X- + Y- produce one singlet state and a set of threetriplet states
having Ms =1, 0, and -1. Understanding the relative energies of these six states, their
bonding and antibonding characters, and which molecular state dissociates to which
asymptote are important.

Before proceeding, it isimportant to clarify the notation (e.g., X-, Y-, X, Y: ,
etc.), which is designed to be applicable to neutral aswell as charged species. In al cases
considered here, only two electrons play active rolesin the bond formation. These electrons
are represented by the dots. The symbols X and Y- are used to denote speciesin which a
single electron is attached to the respective fragment. By X: , we mean that both electrons
are attached to the X- fragment; Y means that neither electron resides on the Y - fragment.

L et us now examine the various bonding situations that can occur; these examples will help
illustrate and further clarify this notation.

A. The H Case in Which Homolytic Bond Cleavage is Favored

To consider why the two-orbital two-€electron single bond formation case can be
more complex than often thought, let us consider the H, system in more detail. Inthe
molecular orbital description of Hp, both bonding s g and antibonding s, mos appear.



There are two electrons that can both occupy the s g mo to yield the ground €lectronic state
Ho(1S4*, sg?); however, they can also occupy both orhitals to yield 3Sy*(s¢1s 1) and
ISy (sglsyd), or both can occupy the sy mo to givethe 1Sg*(s 2) state. As
demonstrated explicitly below, these latter two states dissociate heterolyticallyto X +Y @ =
H* + H-, and are sufficiently high in energy relativeto X + Ye = H + H that we ordinarily
can ignore them. However, their presence and character are important in the development

of afull treatment of the molecular orbital model for Ho and are essential to a proper
treatment of casesin which heterolytic bond cleavage is favored.

B. Casesin Which Heterolytic Bond Cleavage is Favored

For some systems one or both of the heterolytic bond dissociation asymptotes
(e.g., X+Y: orX: +Y)may belower in energy than the homolytic bond dissociation
asymptote. Thus, the states that are analogues of the 1S *(s¢1s 1) and 1S4*(s2) states of
H2 can no longer beignored in understanding the valence states of the XY molecules. This
situation arises quite naturally in systems involving transition metals, where interactions
between empty metal or metal ion orbitals and 2-electron donor ligands are ubiquitous.

Two classes of systems illustrate cases for which heterolytic bond dissociation lies
lower than the homolytic products. The first involves transition metal dimer cations, Mo*.
Especially for metals to the right side of the periodic table, such cations can be considered
to have ground-state el ectron configurations with s2d"d"*1 character, where the d electrons
are not heavily involved in the bonding and the s bond is formed primarily from the metal
atom sorbitals. If thes bond is homolytically broken, oneforms X- + Y. =M (sld"1)
+ M* (sldn). For most metals, this dissociation asymptote lies higher in energy than the
heterolytic products X: +Y =M (d") + M+ (s0dn+1), since the latter electron
configurations correspond to the ground states for the neutrals and ions, respectively. A
prototypical specieswhich fits this bonding picture is Nio*.

The second type of system in which heterolytic cleavage isfavored ariseswith a
metal-ligand complex having an atomic metal ion (with asd"*1 configuration) and atwo
electron donor, L : . A prototypeis(Ag CgHg)* which was observed to photodissociate
toform X- + Y- = Ag(4S, sld10) + CgHg*(2B1) rather than the lower energy
(heterolytically cleaved) dissociation limit Y + X: =
AgH(1S, sPd19) + CgHg (1A1).

C. Anaysis of Two-Electron, Two-Orbital, Single-Bond Formation



1. Orbitals, Configurations and States
Theresultant family of six electronic states can be described in terms of the six

configuration state functions (CSFs) that arise when one occupies the pair of bonding s
and antibonding s* molecular orbitals with two electrons. The CSFs are combinations of

Slater determinants formed to generate proper spin- and spatial symmetry- functions.

The spin- and spatial- symmetry adapted N-electron functions referred to as CSFs
can be formed from one or more Slater determinants. For example, to describe the singlet
CSF corresponding to the closed-shell s2 orbital occupancy, asingle Slater determinant

1S (0) = |sa sb| = (2)VY2{ sa(1)sb(2) - sb(l)sa(2) }
suffices. An analogous expression for the (s*)2 CSF is given by

1S*™ (0) = |s*as*b| = (2 V2{ s*a (1)s*b (2)-s*a (2) s*b (1) }.

Also, the Mg = 1 component of the triplet state having ss* orbital occupancy can be
written as asingle Slater determinant:

38" (1) = |sas*al = (2V2{ sa(l)s* a(2)- s* a(l)sa(?) },
ascan the Mg = -1 component of thetriplet state
3S*(-l) = |sbs*b| = (2)'Y2{ sb(1) s* b(2) - s* b(1)sb(2) }.

However, to describe the singlet CSF and Mg = O triplet CSF belonging to the ss*
occupancy, two Slater determinants are needed:

15* (0) = — [Vsas*bYs- Ysbs*alj

V2

isthe singlet CSF and

*
3S (0) = \/—1_2[1/5as*b1/2 + Ysbs*alj



isthetriplet CSF. In each case, the spin quantum number S, its z-axis projection Ms , and
theL quantum number are given in the conventional 2S+1L (Mg) notation.

2. Orbital, CSF, and State Correlation Diagrams

i. Orbital Diagrams
The two orbitas of the constituent atoms or functional groups (denoted s, and sy

for convenience and in anticipation of considering groups X and Y that possess valence s
orbitals) combine to form abonding s = sg molecular orbital and an antibonding s* = sy

molecular orbital (mo). Asthe distance R between the X and Y fragmentsis changed from
near its equilibrium value of Re and approaches infinity, the energies of thes and s*

orbitals vary in amanner well known to chemists as depicted below.

Energies of the bonding s and antibonding s* orbitals as functions of interfragment
distance; Re denotes a distance near the equilibrium bond length for XY'.

In the heteronuclear case, the sy and sy orhitals till combine to form abonding s
and an antibonding s* orbital, athough these orbitals no longer belong to g and u
symmetry. The energies of these orbitals, for R values ranging from near Reto R® ¥, are

depicted below.



J

Energies of the bonding s and antibonding s* orbitals as functions of internuclear distance.
Here, X ismore electronegativethan Y.

For the homonuclear case, as R approaches ¥, the energies of thesg and s
orbitals become degenerate. Moreover, asR ® 0, the orbital energies approach those of the
united atom. In the heteronuclear situation, as R approaches ¥, the energy of thes orbita
approaches the energy of the s, orbital, and the s* orbital convergesto the s, orbital
energy. Unlike the homonuclear case, thes and s* orbitals are not degenerate as R® ¥ .
The energy "gap" betweenthe s and s* orbitalsat R =¥ depends on the electronegativity
difference between the groups X and Y. If thisgapissmall, it is expected that the behavior
of this (dightly) heteronuclear system should approach that of the homonuclear X2 and Y2
systems. Such similarities are demonstrated in the next section.

ii. Configuration and State Diagrams

The energy variation in these orbital energies givesriseto variationsin the energies
of the six CSFs and of the six electronic states that arise as combinations of these CSFs.
The three singlet (1S (0),1S™ (0), and 1S™* (0) ) and threetriplet (3™ (1), 3S™ (0) and
35*(-1)) CSFsare, by no means, the true electronic eigenstates of the system; they are
simply spin and spatial angular momentum adapted antisymmetric spin-orbital products. In
principle, the set of CSFsF | of the same symmetry must be combined to form the proper
electronic eigenstates Y i of the system:



YK=|S CKF.

Within the approximation that the valence el ectronic states can be described adequately as
combinations of the above valence CSFs, thethree 1S, 1S* | and 1S** CSFs must be
combined to form the three lowest energy valence electronic states of 1S symmetry. For
the homonuclear case, the 1S™ CSF does not couple with the other two because it is of
ungerade symmetry, while the other CSFs 1S and1S** have gerade symmetry and do
combine.

The relative amplitudes C/K of the CSFs F | within each state Y k are determined by
solving the configuration-interaction (Cl) secular problem:

S éF|1/Hl/2FJﬁc'§ = Ex c‘f
J

for the state energies Ex  and state ClI coefficient vectors C'f . Here, H isthe electronic

Hamiltonian of the molecule.

To understand the extent to which the 1S and 1S** (and 1S* for heteronuclear
cases) CSFs couple, it is useful to examine the energies
& | YHYzF iof these CSFsfor the range of internuclear distances of interest Re<R<¥ .
Near Rg, Where the energy of the s orbital is substantially below that of the s* orbital, the
s21S CSF lies significantly below thess* 1S* CSF which, in turn lies below thes™*?
1S** CSF; the large energy splittings among these three CSFs simply reflecting the large
gap betweenthes ands™ orbitals. The3S* CSF generally lies below the corresponding
1S* CSF by an amount related to the exchange energy between thes ands™ orbitals.

AsSR® ¥, the CSF energies & | YHYF jfiare more difficult to "intuit" because the
s and s* orbitals become degenerate (in the homonuclear case) or nearly so. To pursue this
point and arrive at an energy ordering for the CSFsthat is appropriatetothe R® ¥ region,
itisuseful to express each of the above CSFsin terms of the atomic orbitals s; and sy that
comprises and s*. To do so, the LCAO-MO expressionsfor s and s*,

s=C[sx+zs)]
and
s*=C*[zsx - 5],



are substituted into the Slater determinant definitions of the CSFs. Here C and C* are the
normalization constants. The parameter z is 1.0 in the homonuclear case and deviates from
1.0inrelation to the s, and s, orbital energy difference (if s liesbelow s, then z < 1.0; if
sx liesabovesy, z > 1.0).

To smplify the analysis of the above CSFs, the familiar homonuclear case in which
z=1.0will be examined first. The process of substituting the above expressionsfor s and
s* into the Slater determinants that define the singlet and triplet CSFs can beillustrated as
follows:

1S(0) = ¥sa sh¥s= C2¥x(sy + sy) a(sx + sy) b'%
= C2[Ysy a sx b¥a+ Vsy a sy bYa+ Vs, a sy b+ sy a sy b'g

Thefirst two of these atomic-orbital-based Slater determinants (Ysx a sy b%2and sy a sy
b3 are denoted "ionic" because they describe atomic orbital occupancies, which are
appropriatetothe R® ¥ region, that correspondto X: +Y and X +Y : vaence bond
structures, while¥sy a sy b%2and ¥sy a sy b'zare called "covalent” because they
correspond to X- + Y- structures.

In similar fashion, the remaining five CSFs may be expressed in terms of atomic-
orbital-based Slater determinants. In so doing, use is made of the antisymmetry of the
Slater determinants
|f1fof3|= -|f1f3f2], whichimpliesthat any determinant in which two or more spin-
orbitalsareidentical vanishes|f1fofo|= -|f1f2f2|=0. Theresult of decomposing the
mo-based CSFsinto their atomic orbital componentsis as follows:

1S** (0) = V¥s*a s*bY
=C*2[ Ysy a s bYa+Ysya sy bz
- Y8ca sy b%- Ysya sy b'j
1S* (0) :\/—1_2[1/£a s*bY%- Ysb s*alj
= CC* V2 [Vsx a sx b¥s- Ysya sy b¥j

3S* (1) =VYsa s'a¥
=CC" 2¥sy a s als



3S* (0) = \/—1_2[1/£a s*bY%+ Ysb s*aq

=CC" 2 [¥5, a s b¥s- Ysca sy bYj

3S* (-1) =V¥sa s"al
= CC* 2Ysy b s¢ b¥s

These decompositions of the six valence CSFsinto atomic-orbital or valence bond
components allow the R =¥ energies of the CSFsto be specified. For example, the fact
that both 1S and 1S** contain 50% ionic and 50% covalent structuresimpliesthat, as R ®
¥ , both of their energies will approach the average of the covalent and ionic atomic
energies/2[E (X-) +E(Y:) +E(Y)+E(X: )]. The1S* CSF energy approachesthe
purely ionicvalue E (Y)+ E (X: ) asR® ¥. Theenergiesof 3S*(0), 35*(1) and 3S*(-1)
all approach the purely covalent valueE (X-) + E(Y-) asR® ¥.

The behaviors of the energies of the six valence CSFs as R varies are depicted
below for situations in which the homolytic bond cleavage is energetically favored (i.e., for
which E(X-)+E(Y-) < E(Y)+tE(X:)).



E(Y) +E(X)

U2 [E(Xs) +E(Ye) + E(Y) +E(X3)]

E(Xe) +E(Ye)

Configuration correlation diagram for homonuclear case in which homolytic bond cleavage
isenergetically favored.

When heterolytic bond cleavage is favored, the configuration energies as functions of
internuclear distance vary as shown below.
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E(Xe) + E(Y?)

1/2 [E(X#) + E(Ye) + E(Y) + E(X2)]

E(Y) + E(X)
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Configuration correlation diagram for a homonuclear case in which heterolytic bond
cleavageis energetically favored.

It is essentia to realize that the energies & | YHYF |fiof the CSFs do not represent
the energies of the true el ectronic states Ex ; the CSFs are simply spin- and spatial-
symmetry adapted antisymmetric functions that form abasis in terms of which to expand
the true electronic states. For R-values at which the CSF energies are separated widely, the
true Ex are rather well approximated by individua & | YHY# i values; such isthe case
near Re

For the homonuclear example, the 1S and 1S** CSFsundergo CI coupling to form
apair of states of 1S symmetry (the 1S* CSF cannot partake in this CI mixing becauseit is
of ungerade symmetry; the 3S* states can not mix because they are of triplet spin
symmetry). The Cl mixing of the 1S and 1S** CSFsis described in terms of a 2x2 secular

problem
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The diagonal entries are the CSF energies depicted in the above two figures. Using the
Slater-Condon rules, the off-diagonal coupling can be expressed in terms of an exchange
integral betweenthe s and s* orbitas:

ASYHYAS**fi= d/sa shy¥HY3/s*a s*b¥4i= Easl/%i—z Yos*s*fi= Kgg*

AtR® ¥, wherethelS and 1S** CSFs are degenerate, the two solutions to the above Cl
secular problem are:

E =U2[ E(X-)+E(Y:) +E(Y)*E(X:)] - éssl/zﬁlz 14s* S*f
+

with respective amplitudes for the 1S and 1S** CSFs given by

A. =+ B. :;i_
2

The first solution thus has

Y. = L [Ysa sbY%.- Ys*a s*bhY]

V2

which, when decomposed into atomic valence bond components, yields

1
Y. == [ VYs.a syb¥e- ¥s.b syaq.
NG [ Yaxa sy sxb sya’q
The other root has
1
Y == [Ysa sbhla+VYs*a s*b?
+ 73 [ /3
1 1
== Usa Syble+ Vs, a s,byg.
NG [ Y8xa sx sya syb%]

Clearly, 1S and 1S**, which both contain 50% ionic and 50% covalent parts, combine to
produceY _ whichispurely covalent and Y 4+ which is purely ionic.



The above strong Cl mixing of 1S and 1S** asR® ¥ quditatively dtersthe
configuration correlation diagrams shown above. Descriptions of the resulting valence
snglet and triplet S statesare given below for homonuclear situations in which covalent
products lie below and above ionic products, respectively. Note that in both cases, there
exists asingle attractive curve and five (n.b., the triplet state has three curves superposed)
repulsive curves.

E(Y) + E(X))

el

E(Xs) + E(Y+)

R —»

State correlation diagram for homonuclear case in which homolytic bond cleavageis
energetically favored.



E(Xe) + E(Y?)

e}
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State correlation diagram for homonuclear case in which heterolytic bond cleavageis
energetically favored.

If the energies of the s, and sy orbitals do not differ significantly (compared to the
coulombic interactions between electron pairs), it is expected that the essence of the
findings described above for homonuclear species will persist even for heteronuclear
systems. A decomposition of the six CSFs listed above, using the heteronuclear molecular
orbitals introduced earlier yields:

1S(0) = C2[ ¥sxa sb¥e+z2 Vsya sybVs
+Z Ysa syb¥e+zYsya sb'j

1S**(0) = C*2[22 Ysxa sbY2e+ Ysya syblz
-ZY/s¢a sybYe-z Ysya s

cc*
V2

+(Z2- 1)Vsya sib¥et (22 - 1) Ysxa syb¥4

1s*(0) = [ 2ZY/sxa sxb¥2-2zYsya syb'z



35*(0) = % (2+1) [Yaya sb¥e- Vaa s,bvg

35%(1) = CC* (22 + 1) Yosya sxa¥
35" (-1) = CC* (22 + 1) ¥s,b sxb¥s

Clearly, thethree 3S* CSFsretain purely covalent R® ¥ character eveninthe
heteronuclear case. The 1S, 1S**, and 1S* (all three of which can undergo CI mixing
now) possess one covalent and two ionic components of the form ¥sya syb'2+ ¥sya
sxb¥%; ¥sxa sxb¥s and ¥sya syb'z Thethree singlet CSFs therefore can be combined to
produce asinglet covalent product function ¥/sca syb%2+ Vsya scb%2aswell asboth X +Y

and X : + Y ionic product wavefunctions
Ysya syb%2and ¥sca sxb¥; respectively. In most situations, the energy ordering of the
homolytic and heterolytic dissociation productswill beeither E(X-) +E(Y-)<E(X: ) +
E(Y)<EX)+E(Y:)orE(XX:)+E(Y)<EX:-)+E(Y-)<E(X)+E(Y:).

The extensions of the state correlation diagrams given above to the heteronuclear
situations are described below.
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E(X) + E(Y)
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State correlation diagram for heteronuclear case in which homolytic bond
cleavage is energetically favored.



E 3¢ E(X) + E(Y3)

E(Xe) + E(Y?)
E(X) + E(Y)

R_>

State correlation diagram for heteronuclear case in which heterolytic
bond cleavage to one product is energetically favored but homolytic
cleavage lies below the second heterolytic asymptote.



l S * *
38
E E(Xe) + E(Y*)
1g *

E(X) + E(Y:)
E(X:) + E(Y)

State correlation diagram for heteronuclear case in which both heterolytic bond cleavage
products are energetically favored relative to homolytic cleavage.

Again note that only one curveisattractive and five arerepulsivein al cases. In
these heteronuclear cases, it isthe mixing of the 1S, 1S*, and 1S** CSFs, which varies

with R, that determines which molecular state connects to which asymptote. As the energy
ordering of the asymptotes varies, so do these correlations.

3. Summary



Even for the relatively simple two-electron, two-orbital single-bond interactions
between a pair of atoms or functional groups, the correlations among energy-ordered
molecular states and energy-ordered asymptotic states is complex enough to warrant
considerations beyond what is taught in most undergraduate and beginning graduate
inorganic and physical chemistry classes. In particular, the correlations that arise when one
(or both) of the heterolytic bond dissociation aysmptotes lies below the homolytic cleavage
products are important to realize and keep in mind.

In all casestreated here, the three singlet states that arise produce one and only one
attractive (bonding) potential energy curve; the other two singlet surfaces are repulsive. The
three triplet surfaces are also repulsive. Of course, in arriving at these conclusions, we have
considered only contributions to the inter-fragment interactions that arise from valence-
orbital couplings, no consideration has been made of attractive or repulsive forces that
result from one or both of the X- and Y - fragments possessing net charge. In the latter
case, one must, of course, add to the qualitative potential surfaces described here any
coulombic, charge-dipole, or charge-induced-dipole energies. Such additional factors can
lead to attractive long-range interactions in typical ion-molecule complexes.

The necessity of the analysis devel oped above becomes evident when considering
dissociation of diatomic transition metal ions. Most transition metal atoms have ground
states with electron configurations of theform s2d (for first-row metals, exceptions
include Cr (sld®), Cu (std0), and the sld® state of Ni is basically isoenergetic with the
s2d8 ground state). The corresponding positive ions have ground states with stdn (Sc, Ti,
Mn, Fe) or s0d*1 (V, Cr, Co, Ni, Cu) electron configurations. For each of these
elements, the aternate electron configuration leads to low-lying excited states.

One can imagine forming aM 2" metal dimer ion with a configuration described as
sg? d2+1  where the s¢ bonding orbital isformed primarily from the metal s orbitals and
the d orbitals are largely nonbonding (as is particularly appropriate towards the right hand
side of the periodic table). Cleavage of such as bond tends to occur heterolytically since
this forms lower energy species, M(s2d") + M*(s0dn+1), than homolytic cleavage to
M(stdn*1) + M+(sld"). For example, Cos * dissociates to Co(d’) + Cot(s0d8) rather
than to Co(std8) + Co*(sld”),2 which lies 0.85 eV higher in energy.

Quialitative aspects of the above analysis for homonuclear transition metal dimer
ionswill persist for heteronuclear ions. For example, the ground-state dissociation
asymptote for CoNi* isthe heterolytic cleavage products Co(s?d”) + Ni*(s0d®). The
aternative heterolytic cleavage to form Co*(s%d8) + Ni(s2d8) is 0.23 eV higher in energy,
while homolytic cleavage can lead to Co*(sld’) + Ni(s1d9), 0.45 eV higher, or Co(sld8) +
Ni*(sld8), 1.47 eV higher. Thisisthe situation illustrated in the last figure above.



[11. Various Types of Configuration Mixing
A. Essential ClI

The above examples of the use of CCD's show that, as motion takes place along the
proposed reaction path, geometries may be encountered at which it is essential to describe
the electronic wavefunction in terms of alinear combination of more than one CSF:

Y=5CFy,

where theF | are the CSFs which are undergoing the avoided crossing. Such essential
configuration mixing is often referred to as treating "essential Cl".

B. Dynamical Cl

To achieve reasonable chemical accuracy (e.g., + 5 kcal/mole) in electronic
structure calculationsit is necessary to use a multiconfigurational Y even in situations

where no obvious strong configuration mixing (e.g., crossings of CSF energies) is
present. For example, in describing the p2 bonding electron pair of an olefin or the ns?

electron pair in alkaline earth atoms, it isimportant to mix in doubly excited CSFs of the
form (p*)2 and np? , respectively. The reasons for introducing such a Cl-level treatment
were treated for an akaline earth atom earlier in this chapter.

Briefly, the physical importance of such doubly-excited CSFs can be made clear by
using the identity:

Cy1|.fafb.|]-Co|..f'laf'b.|

=Cq2{|..(f-xtYa (f +xfYb..|-|..(f -xf)b (f +xf)a..|},
where

x = (Co/Cp)V2,

This allows one to interpret the combination of two CSFswhich differ from one another by
adouble excitation from one orbital (f ) to another (f ') as equivalent to a singlet coupling of



two different (non-orthogonal) orbitals (f - xf') and (f + xf'). Thispictureis closely
related to the so-called generalized vaence bond (GVB) model that W. A. Goddard and his
co-workers have developed (see, for example, W. A. Goddard and L. B. Harding, Annu.
Rev. Phys. Chem. 29, 363 (1978)). In the simplest embodiment of the GVB model, each
electron pair in the atom or molecule is correlated by mixing in a CSF in which that electron
pair is"doubly excited" to a correlating orbital. The direct product of all such pair
correlations generates the GV B-type wavefunction. In the GVB approach, these electron
correlations are not specified in terms of double excitations involving CSFs formed from
orthonormal spin orhitals; instead, explicitly non-orthogonal GVB orbitals are used as
described above, but the result is the same as one would obtain using the direct product of
doubly excited CSFs.

In the olefin example mentioned above, the two non-orthogonal "polarized orbital
pairs' involve mixing the p and p* orbitals to produce two left-right polarized orbitals as
depicted below:

e

In this case, one says that the p2 electron pair undergoes left-right correlation when the
(p*)2 CSF is mixed into the Cl wavefunction.

In the alkaline earth atom case, the polarized orbital pairs are formed by mixing the nsand
np orhitals (actually, one must mix in equal amounts of p1, p-1, and pg orbitalsto preserve

p+Xp p-Xp
left polarized right polarized

overall 1S symmetry in this case), and give rise to angular correlation of the electron pair.
Use of an (n+1)s2 CSF for the alkaline earth calculation would contribute in-out or radial
correlation because, in this case, the polarized orbital pair formed from the nsand (n+1)s
orbitals would be radially polarized.

The use of doubly excited CSFsis thus seen as a mechanism by which Y can place
electron pairs, which in the single-configuration picture occupy the same orbital, into



different regions of space (i.e., one into amember of the polarized orbital pair) thereby
lowering their mutual coulombic repulsions. Such electron correlation effects are referred to
as "dynamical electron correlation”; they are extremely important to include if one expects
to achieve chemically meaningful accuracy (i.e., + 5 kcal/mole).




