Words to the reader about how to use this textbook

|. What This Book Does and Does Not Contain

Thistext isintended for use by beginning graduate students and advanced upper
division undergraduate studentsin all areas of chemistry.

It provides:

(i) An introduction to the fundamentals of quantum mechanics as they apply to chemistry,
(i) Material that provides brief introductions to the subjects of molecular spectroscopy and
chemical dynamics,

(i) Anintroduction to computationa chemistry applied to the treatment of electronic
structures of atoms, molecules, radicals, and ions,

(iv) A large number of exercises, problems, and detailed solutions.

It does not provide much historical perspective on the development of quantum
mechanics. Subjects such as the photoel ectric effect, black-body radiation, the dual nature
of electrons and photons, and the Davisson and Germer experiments are not even
discussed.

To provide atext that students can use to gain introductory level knowledge of
guantum mechanics as applied to chemistry problems, such a non-historical approach had
to be followed. Thistext immediately exposes the reader to the machinery of quantum
mechanics.

Sections 1 and 2 (i.e., Chapters 1-7), together with Appendices A, B, C and E,
could constitute a one-semester course for most first-year Ph. D. programsintheU. S. A.
Section 3 (Chapters 8-12) and selected material from other appendices or selections from
Section 6 would be appropriate for a second-quarter or second-semester course. Chapters
13- 15 of Sections4 and 5 would be of use for providing alink to a one-quarter or one-
semester class covering molecular spectroscopy. Chapter 16 of Section 5 provides a brief
introduction to chemical dynamics that could be used at the beginning of a class on this
subject.

There are many quantum chemistry and quantum mechanics textbooks that cover
material similar to that contained in Sections 1 and 2; in fact, our treatment of this material
isgeneraly briefer and less detailed than one finds in, for example, Quantum Chemistry,
H. Eyring, J. Walter, and G. E. Kimball, J. Wiley and Sons, New Y ork, N.Y. (1947),
Quantum Chemistry, D. A. McQuarrie, University Science Books, Mill Valley, Ca.
(1983), Molecular Quantum Mechanics, P. W. Atkins, Oxford Univ. Press, Oxford,
England (1983), or Quantum Chemistry, I. N. Levine, Prentice Hall, Englewood Cliffs,




N. J. (1991), Depending on the backgrounds of the students, our coverage may have to be
supplemented in these first two Sections.

By covering thisintroductory material in less detail, we are able, within the
confines of atext that can be used for a one-year or atwo-quarter course, to introduce the
student to the more modern subjects treated in Sections 3, 5, and 6. Our coverage of
modern quantum chemistry methodology is not as detailed as that found in Modern
Quantum Chemistry, A. Szabo and N. S. Ostlund, Mc Graw-Hill, New Y ork (1989),
which contains little or none of the introductory material of our Sections 1 and 2.

By combining both introductory and modern up-to-date quantum chemistry material
in asingle book designed to serve as atext for one-quarter, one-semester, two-quarter, or
one-year classesfor first-year graduate students, we offer a unique product.

It is anticipated that a course dealing with atomic and molecular spectroscopy will
follow the student's mastery of the material covered in Sections 1- 4. For this reason,
beyond these introductory sections, this text's emphasisis placed on el ectronic structure
applications rather than on vibrational and rotational energy levels, which are traditionally
covered in considerable detail in spectroscopy courses.

In brief summary, this book includes the following material:

1. The Section entitted The Basic Tools of Quantum Mechanics treats
the fundamental postulates of quantum mechanics and several applicationsto exactly
soluble model problems. These problemsinclude the conventional particle-in-a-box (in one
and more dimensions), rigid-rotor, harmonic oscillator, and one-electron hydrogenic
atomic orbitals. The concept of the Born-Oppenheimer separation of electronic and
vibration-rotation motions is introduced here. Moreover, the vibrational and rotational
energies, states, and wavefunctions of diatomic, linear polyatomic and non-linear
polyatomic molecules are discussed here at an introductory level. This section also
introduces the variational method and perturbation theory as tools that are used to deal with
problems that can not be solved exactly.

2. The SectionSimple Molecular Orbital Theory deaswith atomic and
molecular orbitalsin a qualitative manner, including their symmetries, shapes, sizes, and
energies. It introduces bonding, non-bonding, and antibonding orbitals, delocalized,
hybrid, and Rydberg orbitals, and introduces Hiickel-level models for the calculation of
molecular orbitals as linear combinations of atomic orbitals (amore extensive treatment of



several semi-empirical methodsis provided in Appendix F). This section also develops
the Orbital Correlation Diagram concept that plays a central role in using Woodward-
Hoffmann rules to predict whether chemical reactions encounter symmetry-imposed
barriers.

3. The Electronic Configurations, Term Symbols, and States
Section treats the spatial, angular momentum, and spin symmetries of the many-electron
wavefunctions that are formed as antisymmetrized products of atomic or molecular orbitals.
Proper coupling of angular momenta (orbital and spin) is covered here, and atomic and
molecular term symbols are treated. The need to include Configuration Interaction to
achieve qualitatively correct descriptions of certain species electronic structures is treated
here. Therole of the resultant Configuration Correlation Diagrams in the Woodward-
Hoffmann theory of chemical reactivity is aso devel oped.

4. The SectiononMolecular Rotation and Vibration providesan
introduction to how vibrational and rotational energy levels and wavefunctions are
expressed for diatomic, linear polyatomic, and non-linear polyatomic molecules whose
electronic energies are described by a single potential energy surface. Rotations of "rigid”
molecules and harmonic vibrations of uncoupled normal modes congtitute the starting point
of such treatments.

5. TheTime Dependent Processes Section usestime-dependent perturbation
theory, combined with the classical e ectric and magnetic fields that arise due to the
interaction of photons with the nuclei and electrons of a molecule, to derive expressions for
the rates of transitions among atomic or molecular electronic, vibrational, and rotational
states induced by photon absorption or emission. Sources of line broadening and time
correlation function treatments of absorption lineshapes are briefly introduced. Finaly,
transitions induced by collisions rather than by electromagnetic fields are briefly treated to
provide an introduction to the subject of theoretical chemical dynamics.

6. The SectiononMore Quantitive Aspects of Electronic Structure
Calculations introduces many of the computational chemistry methods that are used
to quantitatively evaluate molecular orbital and configuration mixing amplitudes. The
Hartree-Fock self-consistent field (SCF), configuration interaction (Cl),
multiconfigurational SCF (M CSCF), many-body and Mgller-Plesset perturbation theories,



coupled-cluster (CC), and density functional or X5 -like methods are included. The
strengths and weaknesses of each of these techniques are discussed in some detail. Having
mastered this section, the reader should be familiar with how potential energy
hypersurfaces, molecular properties, forces on the individual atomic centers, and responses
to externally applied fields or perturbations are evaluated on high speed computers.

I1. How to Use This Book: Other Sources of Information and Building Necessary
Background

In most class room settings, the group of students learning quantum mechanics as it
appliesto chemistry have quite diverse backgrounds. In particular, the level of preparation
in mathematicsis likely to vary considerably from student to student, as will the exposure
to symmetry and group theory. Thistext is organized in amanner that allows students to
skip material that is already familiar while providing access to most if not al necessary
background materia. Thisis accomplished by dividing the material into sections, chapters
and Appendices which fill in the background, provide methodological tools, and provide
additional details.

The Appendices covering Point Group Symmetry and Mathematics Review are
especially important to master. Neither of these two Appendices provides afirst-principles
treatment of their subject matter. The students are assumed to have fulfilled normal
American Chemical Society mathematics requirements for adegreein chemistry, so only a
review of the material especialy relevant to quantum chemistry is given in the Mathematics
Review Appendix.  Likewise, the student is assumed to have learned or to be
simultaneously learning about symmetry and group theory as applied to chemistry, so this
subject istreated in areview and practical-application manner here. If group theory isto be
included as an integral part of the class, then this text should be supplemented (e.g., by
using the text Chemical Applications of Group Theory, F. A. Cotton, Interscience, New
York, N. Y. (1963)).

The progression of sections leads the reader from the principles of quantum
mechanics and several model problems which illustrate these principles and relate to
chemical phenomena, through atomic and molecular orbitals, N-electron configurations,
states, and term symbols, vibrational and rotational energy levels, photon-induced
transitions among various levels, and eventually to computational techniques for treating
chemical bonding and reactivity.




At the end of each Section, aset of Review Exercises and fully worked out
answers are given. Attempting to work these exercises should allow the student to
determine whether he or she needs to pursue additional background building viathe
Appendices .

In addition to the Review Exercises , sets of Exercises and Problems, and
their solutions, are given at the end of each section.

The exercises are brief and highly focused on learning a particular skill. They alow the
student to practice the mathematical steps and other materia introduced in the section. The
problems are more extensive and require that numerous steps be executed. They illustrate
application of the material contained in the chapter to chemical phenomenaand they help
teach the relevance of this material to experimental chemistry. In many cases, new material
isintroduced in the problems, so all readers are encouraged to become actively involved in
solving all problems.

To further assist the learning process, readers may find it useful to consult other
textbooks or literature references. Severa particular texts are recommended for additional
reading, further details, or smply an aternative point of view. They include the following
(in each case, the abbreviated name used in thistext is given following the proper
reference):

1. Quantum Chemistry, H. Eyring, J. Walter, and G. E. Kimball, J. Wiley

and Sons, New York, N.Y. (1947)- EWK.

2. Quantum Chemistry, D. A. McQuarrie, University Science Books, Mill Valley, Ca.
(1983)- McQuarrie.

3. Molecular Quantum Mechanics, P. W. Atkins, Oxford Univ. Press, Oxford, England
(1983)- Atkins.

4. The Fundamental Principles of Quantum Mechanics, E. C. Kemble, McGraw-Hill, New
York, N.Y. (1937)- Kemble.

5. The Theory of Atomic Spectra, E. U. Condon and G. H. Shortley, Cambridge Univ.
Press, Cambridge, England (1963)- Condon and Shortley.

6. The Principles of Quantum Mechanics, P. A. M. Dirac, Oxford Univ. Press, Oxford,
England (1947)- Dirac.

7. Molecular Vibrations, E. B. Wilson, J. C. Decius, and P. C. Cross, Dover Pub., New
York, N. Y. (1955)- WDC.

8. Chemical Applications of Group Theory, F. A. Cotton, Interscience, New York, N. Y.
(1963)- Cotton.

9. Angular Momentum, R. N. Zare, John Wiley and Sons, New York, N. Y. (1988)-
Zare.




10. Introduction to Quantum Mechanics, L. Pauling and E. B. Wilson, Dover Publications,
Inc., New York, N. Y. (1963)- Pauling and Wilson.

11. Modern Quantum Chemistry, A. Szabo and N. S. Ostlund, Mc Graw-Hill, New Y ork
(1989)- Szabo and Ostlund.

12. Quantum Chemidtry, I. N. Levine, Prentice Hall, Englewood Cliffs, N. J. (1991)-
Levine.

13. Energetic Principles of Chemical Reactions, J. Simons, Jones and Bartlett, Portola
Valley, Cdlif. (1983),




Section 1 The Basic Tools of Quantum Mechanics

Chapter 1
Quantum Mechanics Describes Matter in Terms of Wavefunctions and Energy Levels.
Physical Measurements are Described in Terms of Operators Acting on Wavefunctions

|. Operators, Wavefunctions, and the Schrodinger Equation

Thetrendsin chemical and physical properties of the elements described beautifully
in the periodic table and the ability of early spectroscopiststo fit atomic line spectra by
simple mathematical formulas and to interpret atomic electronic statesin terms of empirical
guantum numbers provide compelling evidence that some relatively simple framework
must exist for understanding the electronic structures of all atoms. The great predictive
power of the concept of atomic valence further suggests that molecular € ectronic structure
should be understandable in terms of those of the constituent atoms.

Much of quantum chemistry attempts to make more quantitative these aspects of
chemists view of the periodic table and of atomic valence and structure. By starting from
first principles and treating atomic and molecular states as solutions of a so-called
Schrédinger equation, quantum chemistry seeks to determine what underlies the empirica
guantum numbers, orbitals, theaufbau principle and the concept of vaence used by
spectroscopists and chemists, in some cases, even prior to the advent of quantum
mechanics.

Quantum mechanicsis cast in alanguage that is not familiar to most students of
chemistry who are examining the subject for the first time. Its mathematical content and
how it relates to experimental measurements both require agreat deal of effort to master.
With these thoughts in mind, the authors have organized this introductory section in a
manner that first provides the student with a brief introduction to the two primary
constructs of quantum mechanics, operators and wavefunctions that obey a Schrodinger
equation, then demonstrates the application of these constructsto several chemically
relevant model problems, and finally returnsto examinein more detail the conceptual
structure of quantum mechanics.

By learning the solutions of the Schrodinger equation for afew model systems, the
student can better appreciate the treatment of the fundamental postulates of quantum
mechanics aswell as their relation to experimental measurement because the wavefunctions
of the known model problems can be used to illustrate.



A. Operators

Each physically measurable quantity has a corresponding operator. The eigenvalues
of the operator tell the values of the corresponding physical property that can be observed

In guantum mechanics, any experimentally measurable physical quantity F (e.g.,
energy, dipole moment, orbital angular momentum, spin angular momentum, linear
momentum, Kinetic energy) whose classical mechanical expression can be written in terms
of the cartesian positions{g;j} and momenta{p;} of the particles that comprise the system

of interest is assigned a corresponding quantum mechanical operator F. Given F in terms
of the{q} and {pi}, F isformed by replacing pj by -ik{/fg; and leaving ¢ untouched.
For example, if

F=Si=1N (p%/2m + V2 k(ai-a19? + L(q-q9)),
then

F=Si=1N (- B22my 12112 + V2 k(q-q9? + L(a-99))
is the corresponding quantum mechanical operator. Such an operator would occur when,
for example, one describes the sum of the kinetic energies of a collection of particles (the
Si=1.N (p&/2my ) term, plus the sum of "Hookes Law" parabolic potentials (the 1/2 Sj=1 N

k(gi-919)2), and (the last term in F) the interactions of the particles with an externally

applied field whose potential energy varies linearly as the particles move away from their
equilibrium positions { %} .
The sum of the z-components of angular momenta of a collection of N particles has

F=Sj=1N (XjPyj - YjPx)),
and the corresponding operator is
F=-ih Sj=1,n (X 1/1y; - y;1711%;).

The x-component of the dipole moment for a collection of N particles



has
F=Sj=1,n Zjex;j, and
F=Sj=1N Zj&X; ,

where Zje isthe charge on the jth particle.

The mapping from F to F is straightforward only in terms of cartesian coordinates.
To map aclassical function F, given in terms of curvilinear coordinates (even if they are
orthogonal), into its quantum operator isnot at al straightforward. Interested readers are
referred to Kemble's text on quantum mechanics which deals with this matter in detail. The
mapping can always be done in terms of cartesian coordinates after which a transformation
of the resulting coordinates and differential operatorsto a curvilinear system can be
performed. The corresponding transformation of the kinetic energy operator to spherical
coordinatesistreated in detail in Appendix A. Thetext by EWK also coversthistopicin
considerable detail.

The relationship of these quantum mechanical operators to experimental
measurement will be made clear later in this chapter. For now, sufficeit to say that these
operators define equations whose solutions determine the values of the corresponding
physical property that can be observed when ameasurement is carried out; only the values
so determined can be observed. This should suggest the origins of quantum mechanics
prediction that some measurements will produce discr ete or quantized values of certain
variables (e.g., energy, angular momentum, etc.).

B. Wavefunctions

The elgenfunctions of a quantum mechanical operator depend on the coordinates
upon which the operator acts; these functions are called wavefunctions

In addition to operators corresponding to each physically measurable quantity,
guantum mechanics describes the state of the system in terms of awavefunction Y thatisa
function of the coordinates { gj} and of timet. The function [Y (qj,t)|2= Y *Y givesthe
probability density for observing the coordinates at the values g; at timet. For amany-
particle system such as the HoO molecule, the wavefunction depends on many coordinates.
For the HoO example, it depends on the x, y, and z (or r,g, and f) coordinates of the ten



electrons and the x, y, and z (or r,q, and f) coordinates of the oxygen nucleus and of the
two protons; atotal of thirty-nine coordinates appear in'Y .

In classical mechanics, the coordinates gj and their corresponding momenta p;j are
functions of time. The state of the system is then described by specifying g;(t) and gi(t). In
quantum mechanics, the concept that g is known as afunction of time is replaced by the
concept of the probability density for finding ¢ at aparticular value at aparticular timet:

Y (gj,)[2. Knowledge of the corresponding momenta as functions of timeisalso
relinquished in quantum mechanics; again, only knowledge of the probability density for
finding p with any particular value a a particular time t remains.

C. The Schrodinger Equation

This equation is an eigenvalue equation for the energy or Hamiltonian operator; its
eigenvalues provide the energy levels of the system

1. The Time-Dependent Equation

If the Hamiltonian operator contains the time variable explicitly, one must solve the
time-dependent Schrodinger equation

How to extract from Y (gj,t) knowledge about momentais treated below in Sec. 111,
A, where the structure of quantum mechanics, the use of operators and wavefunctionsto
make predictions and interpretations about experimental measurements, and the origin of
‘uncertainty relations such as the well known Heisenberg uncertainty condition dealing
with measurements of coordinates and momenta are also treated.

Before moving deeper into understanding what quantum mechanics'means, itis
useful to learn how the wavefunctions Y are found by applying the basic equation of
guantum mechanics, the Schrodinger equation, to afew exactly soluble model problems.
Knowing the solutions to these 'easy’ yet chemically very relevant models will then
facilitate learning more of the details about the structure of quantum mechanics because
these model cases can be used as 'concrete examples.

The Schrodinger equation is a differential equation depending on time and on all of
the spatial coordinates necessary to describe the system at hand (thirty-nine for the H,O

example cited above). It isusualy written

HY =ih Y/t



where'Y (gj,t) is the unknown wavefunction and H isthe operator corresponding to the
total energy physical property of the system. This operator is called the Hamiltonian and is
formed, as stated above, by first writing down the classical mechanical expression for the
total energy (kinetic plus potential) in cartesian coordinates and momenta and then replacing
al classicd momenta p; by their quantum mechanical operators pj = - iR{/1g; .

For the H2O example used above, the classical mechanica energy of al thirteen
particlesis

E=Si{ piZ2me+ 12 Sj €2lrjj - SaZ£2ri 2}
+ Sa{pa/2ma+ 12 Sp ZaZne2lrap }
wheretheindicesi and j are used to label the ten electrons whose thirty cartesian
coordinates are {gj} and aand b label the three nuclel whose charges are denoted { Z3}, and
whose nine cartesian coordinates are { gg} . The electron and nuclear masses are denoted me
and {mg}, respectively.
The corresponding Hamiltonian operator is
H = S;i{ - (h2/2mg) 12/70i2 + /2 Sj €/ri j - SaZ£2lria}
+ Sa{ - (h%12my) T12/g2+ U2 Sp ZaZp2lrap } -
Noticethat H isasecond order differential operator in the space of the thirty-nine cartesian
coordinates that describe the positions of the ten el ectrons and three nuclei. It is a second
order operator becatise the momenta appear in the kinetic energy aspj2 and ps2, and the
quantum mechanical operator for each momentum p = -if §/9lq is of first order.
The Schrodinger equation for the HoO example at hand then reads
Si{ - (h&2mg) 1212 + U2 Sj €2lrij - SaZ£ria} Y
+ Sa{ - (h%2my) T12/ge2+ U2 Sp ZaZp2lrap} Y

=ihTY /Nt

2. The Time-Independent Equation



If the Hamiltonian operator does not contain the time variable explicitly, one can
solve the time-independent Schrodinger equation

In cases where the classical energy, and hence the quantum Hamiltonian, do not
contain terms that are explicitly time dependent (e.g., interactions with time varying
external electric or magnetic fields would add to the above classical energy expression time
dependent terms discussed later in this text), the separations of variables techniques can be
used to reduce the Schrédinger equation to a time-independent equation.

In such cases, H isnot explicitly time dependent, so one can assumethat Y (g;,t) is

of theform
Y (05,0 = Y (q) F(D).

Substituting this ‘ansatz' into the time-dependent Schrodinger equation gives
Y (g) ihFTt=H Y (q)) F() .

Dividing by Y (g;) F(t) then gives
FLiRTFM) =Y-1(H Y(q)).

Since F(t) isonly afunction of timet, and Y (q;) isonly afunction of the spatial
coordinates { g}, and because the | eft hand and right hand sides must be equal for all
values of t and of { g}, both the |eft and right hand sides must equal a constant. If this
constant iscalled E, thetwo equationsthat are embodied in this separated Schrodinger
equation read as follows:

H Y (q)=EY(q),
i h TR/t = ih dF(L)/dt = E ().

Thefirst of these equationsis called the time-independent Schrodinger equation; it
isaso-caled eigenvalue equation in which one is asked to find functions that yield a
constant multiple of themselves when acted on by the Hamiltonian operator. Such functions
are caled eigenfunctions of H and the corresponding constants are called eigenvalues of H.



For example, if H were of the form - h2/2M 12/1f 2 = H , then functions of the form exp(i
mf ) would be elgenfunctions because

{ - h2/2M 2/ 2} exp(i mf) ={ m2h2/2M } exp(i mf).

In this case, { m2 k2 /2M } isthe eigenvalue.

When the Schrédinger equation can be separated to generate a time-independent
equation describing the spatial coordinate dependence of the wavefunction, the eigenvalue
E must be returned to the equation determining F(t) to find the time dependent part of the
wavefunction. By solving

i dF(t)/dt = E F(t)
once E is known, one obtains
F(t) = exp( -i Et/ h),
and the full wavefunction can be written as
Y (g;,t) = Y (qj) exp (-i Et/ h).
For the above example, the time dependence is expressed by

F(t) =exp (-i t{ mh2/2M }/ h).

Having been introduced to the concepts of operators, wavefunctions, the
Hamiltonian and its Schrédinger equation, it isimportant to now consider several examples
of the applications of these concepts. The examples treated below were chosen to provide
the learner with valuable experience in solving the Schrodinger equation; they were also
chosen because the models they embody form the most e ementary chemical models of
electronic motions in conjugated molecules and in atoms, rotations of linear molecules, and
vibrations of chemical bonds.

I1. Examples of Solving the Schrédinger Equation

A. Free-Particle Motion in Two Dimensions



The number of dimensions depends on the number of particles and the number of
gpatial (and other) dimensions needed to characterize the position and motion of each

particle
1. The Schrédinger Equation

Consider an electron of mass m and charge e moving on atwo-dimensional surface
that defines the x,y plane (perhaps the electron is constrained to the surface of asolid by a
potential that bindsit tightly to anarrow region in the z-direction), and assume that the
electron experiences a constant potential Vg at al pointsin this plane (on any real atomic or
molecular surface, the electron would experience a potential that varies with positionin a
manner that reflects the periodic structure of the surface). The pertinent time independent
Schrédinger equation is:

- h2/2m (T2111x2 +92/y2)y (x.y) +V oy (x.y) = E Y (X,Y).
Because there are no termsin this equation that couplemotion in the x and y directions
(e.g., no terms of the form x&b or §/9x /1y or x1/1ly), separation of variables can be used

towritey asaproducty (x,y)=A(X)B(y). Substitution of this form into the Schrédinger
equation, followed by collecting together al x-dependent and all y-dependent terms, gives;

- R2/2m A-192A 1x2 - h2/2m B-192B/1ly2 =E- V.
Since the first term contains no y-dependence and the second contains no x-dependence,
both must actually be constant (these two constants are denoted Ex and Ey, respectively),
which allows two separate Schrodinger equations to be written:

- h2/2m A-192AMx2 =Ey, and

- h2/2m B-12B/1y2 =E.

The total energy E can then be expressed in terms of these separate energies Ex and Ey as
Ex + Ey =E-V(. Solutionsto the x- and y- Schrodinger equations are easily seen to be:

A(X) = exp(ix(2mEx/h2)V2) and exp(-ix(2mEx/h2)1/2) ,



B(y) = exp(iy(2mEy/h2)1/2) and exp(-iy(2mEy/h2)V/2).

Two independent solutions are obtained for each equation because the x- and y-space
Schrédinger equations are both second order differential equations.

2. Boundary Conditions

The boundary conditions, not the Schrédinger equation, determine whether the
eigenvalues will be discrete or continuous

If the electron is entirely unconstrained within the X,y plane, the energies Ex and Ey
can assume any value; this means that the experimenter can 'inject’ the electron onto the x,y
plane with any total energy E and any components Ex and Ey along the two axes aslong as
Ex + Ey = E. In such asituation, one speaks of the energies along both coordinates as
being 'in the continuum’ or 'not quantized'.

In contrast, if the electron is constrained to remain within afixed areain the X,y
plane (e.g., arectangular or circular region), then the situation is qualitatively different.
Constraining the electron to any such specified area gives rise to so-called boundary
conditions that impose additional requirements on the above A and B functions.

These constraints can arise, for example, if the potential Vo(X,y) becomes very large for
X,y values outside the region, in which case, the probability of finding the electron outside
the region is very small. Such a case might represent, for example, a situation in which the
molecular structure of the solid surface changes outside the enclosed region in away that is
highly repulsive to the electron.

For example, if motion is constrained to take place within arectangular region
defined by O£ X £ Ly; O£ y £ Ly, then the continuity property that all wavefunctions must
obey (because of their interpretation as probability densities, which must be continuous)
causes A(x) tovanish at O and at L. Likewise, B(y) must vanishatOand at Ly. To
implement these congtraints for A(x), one must linearly combine the above two solutions
exp(ix(2mEx/h2)1/2) and exp(-ix(2mEx/h?)L/2) to achieve a function that vanishes at x=0:

A(X) = exp(iX(2mEx/h2)12) - exp(-ix(2mEx/h2)1/2).

Oneisallowed to linearly combine solutions of the Schrédinger equation that have the same
energy (i.e., are degenerate) because Schrodinger equations are linear differential



equations. An analogous process must be applied to B(y) to achieve afunction that
vanishes at y=0:

B(y) = exp(iy(2mEy/h2)1/2) - exp(-iy(2mEyHh2)1/2).

Further requiring A(x) and B(y) to vanish, respectively, at x=Lx and y=Ly, gives
equations that can be obeyed only if Ex and E, assume particular values:

exp(iLx(2mEx/h2)V2) - exp(-iLx(2mEx/R2)12) = 0, and

exp(iLy(2mE,H2)2) - exp(-iLy(2mEy/Hh2)1/2) = 0.
These equations are equivalent to

sin(Lx(2mEx/A2)12) = sin(Ly(2mE,/H2)12) = 0.
Knowing that sin(q) vanishes at g=np, for n=1,2,3,..., (although the sin(np) function
vanishes for n=0, this function vanishesfor al x or y, and is therefore unacceptable
because it represents zero probability density at al pointsin space) one concludes that the
energies Ex and Ey can assume only values that obey:

Lx(2mEx/h2) Y2 =n,p,

Ly(2mEy/R2) 12 =nyp, or

Ex = Nx?p2 h2/(2mLy?), and

Ey = ny2p2 h%/(2mLy2), withny and ny =1,2,3, ...
It isimportant to stress that it is the imposition of boundary conditions, expressing the fact
that the electron is spatially constrained, that gives rise to quantized energies. In the absence
of spatial confinement, or with confinement only at x =0 or Ly or only
at'y =0 or Ly, quantized energies would not be realized.

In this example, confinement of the electron to afinite interval along both the x and

y coordinates yields energies that are quantized along both axes. If the electron were
confined along one coordinate (e.g., between 0 £ x £ Ly) but not along the other (i.e., B(y)



is either restricted to vanish at y=0 or at y=Ly or at neither point), then the total energy E
liesin the continuum,; its Ex component is quantized but Ey is not. Such cases arise, for
example, when alinear triatomic molecule has more than enough energy in one of its bonds
to rupture it but not much energy in the other bond; the first bond's energy liesin the
continuum, but the second bond's energy is quantized.

Perhaps more interesting is the case in which the bond with the higher dissociation
energy isexcited to alevel that is not enough to break it but that isin excess of the
dissociation energy of the weaker bond. In this case, one has two degenerate states- i. the
strong bond having high internal energy and the weak bond having low energy (y 1), and
ii. the strong bond having little energy and the weak bond having more than enough energy
to ruptureit (y 2). Although an experiment may prepare the moleculein a state that contains
only the former component (i.e., y = C1y 1 + Coy 2 with C1>>C>), coupling between the
two degenerate functions (induced by termsin the Hamiltonian H that have been ignored in
definingy 1 andy 2) usually causes the true wavefunction Y = exp(-itH/h) y to acquire a
component of the second function as time evolves. In such a case, one speaks of internal
vibrational energy flow giving rise to unimolecular decomposition of the molecule.

3. Energies and Wavefunctions for Bound States

For discrete energy levels, the energies are specified functions the depend on
guantum numbers, one for each degree of freedom that is quantized

Returning to the situation in which motion is constrained along both axes, the
resultant total energies and wavefunctions (obtained by inserting the quantum energy levels
into the expressions for
A(X) B(y) are asfollows:

Ex = Ny?p2 h2/(2mLy?), and

Ey = ny2p2 h2/(2mLy2),

E=Ex+Ey,

y (X,y) = (/2L x) V2 (1/2Ly) V2 exp(ingpx/Ly) -exp(-inypx/Lx)]

[exp(inypy/Ly) -exp(-inypy/Ly)], withny and ny =1,2,3, ... .



The two (1/2L)Y2 factors are included to guarantee that y is normalized:
oly (x,y)|2 dx dy = 1.

Normalization allows |y (x,y)|? to be properly identified as a probability density for finding
the electron at apoint X, y.

4. Quantized Action Can Also be Used to Derive Energy Levels

There is another approach that can be used to find energy levelsand is especially
straightforward to use for systems whose Schrédinger equations are separable. The so-
caled classical action (denoted S) of a particle moving with momentum p along a path
leading from initial coordinate g; at initia timet; to afina coordinate gs at timet; is defined

by:

astf
s= 8 p-dq .
di.t;

Here, the momentum vector p contains the momenta aong all coordinates of the system,
and the coordinate vector q likewise contains the coordinates along all such degrees of
freedom. For example, in the two-dimensional particle in abox problem considered above,
g = (X, y) hastwo components as does p = (Px, py),

and the action integral is:.

X,V b
S= 8 (px dx + pydy) .
Xi,Yisti

In computing such actions, it is essentia to keep in mind the sign of the momentum as the
particle moves fromitsinitia to itsfinal positions. An example will help clarify these
matters.

For systems such as the above particle in a box example for which the Hamiltonian
is separable, the action integral decomposed into a sum of such integrals, one for each
degree of freedom. In thistwo-dimensional example, the additivity of H:



H =Hyx + Hy =px2/2m + py22m + V(x) + V(y)
= - h2/2m 12/1x2 + V/(X) - h2/2m 12/y2 + V(y)

means that py and py can be independently solved for in terms of the potentials V(x) and
V(y) aswell asthe energies Ex and Ey associated with each separate degree of freedom:

Px = £ V2m(Ex - V(X))

Py == 2m(Ey - V(y)) ;

the signs on py and py must be chosen to properly reflect the motion that the particleis
actually undergoing. Substituting these expressions into the action integral yields:

S=S¢+Sy

Xtk Y1
= 8 #2mE-V(X)dx + 8 +/2mE - V() dy .
Xj i Yisti

The relationship between these classical action integrals and existence of quantized
energy levels has been show to involve equating the classical action for motion on a closed
path (i.e., apath that starts and ends at the same place after undergoing motion away from
the starting point but eventually returning to the starting coordinate at alater time) to an
integral multiple of Planck’s constant:

qr=qist
Sdosed= 8p-dg =nh. (n=1,23,4,..)
Qisti

Applied to each of the independent coordinates of the two-dimensional particle in abox
problem, this expression reads.

X:LX x=0

nch= 8 \2m(Ex - V(X)) dx + B -\/2m(Ex - V(X)) dx
x=0 X=Lx




y=Ly y=0
nyh= 8 \2m(E - V(y)) dy + 8 -\2m(E - V(y)) dy .
y=0 y=Ly

Notice that the sign of the momenta are positive in each of thefirst integrals appearing
above (because the particleis moving from x = 0 to X = Ly, and analogously for y-motion,
and thus has positive momentum) and negative in each of the second integrals (because the
motionisfrom x = Ly to x = 0 (and analogously for y-motion) and thus with negative
momentum). Within the region bounded by 0£ X £ Lx; O£ y £ Ly, the potential vanishes,
so V(x) = V(y) = 0. Using this fact, and reversing the upper and lower limits, and thus the
sign, in the second integrals above, one obtains:

X:LX

nch=2 8 \2mEg dx =2+2mEx Ly
x=0
y=Ly

nyh=2 8 \2mE, dy =2+2mg Ly,
y=0

Solving for Ex and Ey, one finds:

_ (nxh)?
8mLy2

X

Ey:(_nﬂ2 )

8mL2

These are the same quantized energy levels that arose when the wavefunction boundary
conditionswere matched at x =0, x =Ly andy = 0,y = Ly. Inthis case, one says that the

Bohr-Sommerfeld quantization condition:

af=qi;t
nh= 8p-dq
Qi;t



has been used to obtain the result.

B. Other Model Problems
1. Particlesin Boxes

The particle-in-a-box problem provides an important model for several relevant
chemical situations

The above 'particle in abox' model for motion in two dimensions can obviously be
extended to three dimensions or to one.

For two and three dimensions, it provides a crude but useful picture for electronic states on
surfaces or in crystals, respectively. Free motion within a spherical volume givesrise to
eigenfunctions that are used in nuclear physics to describe the motions of neutrons and
protonsin nuclei. In the so-called shell model of nuclel, the neutrons and protonsfill
separate s, p, d, etc orbitals with each type of nucleon forced to obey the Pauli principle.
These orbitals are not the samein their radial 'shapes asthe s, p, d, etc orbitals of atoms
because, in atoms, there is an additional radial potential V/(r) = -Ze2/r present. However,
their angular shapes are the same as in atomic structure because, in both cases, the potential
isindependent of g and f . This same spherical box model has been used to describe the
orbitals of valence el ectrons in clusters of mono-vaent metal atoms such as Cs,, Cup, Nap
and their positive and negative ions. Because of the metallic nature of these species, their
valence electrons are sufficiently delocalized to render this simple model rather effective
(seeT. P. Martin, T. Bergmann, H. Gohlich, and T. Lange, J. Phys. Chem. 95, 6421
(1991)).

One-dimensiond free particle motion provides a qualitatively correct picture for p-
electron motion along the py, orbitals of a delocalized polyene. The one cartesian dimension
then corresponds to motion along the delocalized chain. In such a model, the box length L
isrelated to the carbon-carbon bond length R and the number N of carbon centers involved
in the delocalized network L=(N-1)R. Below, such a conjugated network involving nine
centersis depicted. In this example, the box length would be eight times the C-C bond
length.



Conjugated p Network with 9 Centers Involved

The eigengtates y n(X) and their energies E, represent orbitals into which electrons are
placed. In the example casg, if nine p electrons are present (e.g., asin the 1,3,5,7-

nonatetraene radical), the ground el ectronic state would be represented by atotal
wavefunction consisting of a product in which the lowest four y 's are doubly occupied and
thefifthy issingly occupied:

Y =yjay 1by cay oby zay 3by say 4by sa.

A product wavefunction is appropriate because the total Hamiltonian involves the kinetic
plus potential energies of nine electrons. To the extent that this total energy can be
represented as the sum of nine separate energies, one for each electron, the Hamiltonian
allows a separation of variables

H @S; H(j)

in which each H(j) describes the kinetic and potential energy of an individual electron. This
(approximate) additivity of H impliesthat solutionsof HY =EY are products of solutions

toH () y(rj) =g y(rj.
The two lowest p-excited states would correspond to states of the form

*=yijayibyoayobyszaysbysaysbysa,and
Y* =yjayjibyraysbyzaysbysaysbyea,

where the spin-orbitals (orbitals multiplied by a or b) appearing in the above products
depend on the coordinates of the various electrons. For example,



yiayibyzayobyzaysbysaysbysa
denotes
yia(ry) yib (ro) yoa (ra) y2b (r4) ysa (rs) ysb (re) y4a (r7) ysb
(re) ysa (ro).
The electronic excitation energies within this model would be
DE* =p2h2/2m[ 52/L2 - 42/L.2] and

DE"™* = p2h2/2m [ 62/L2 - 52/L2], for the two excited-state functions described
above. It turns out that this simple model of p-electron energies provides a qualitatively
correct picture of such excitation energies.

This ssimple particle-in-a-box model does not yield orbital energiesthat relate to
ionization energies unless the potentia 'inside the box' is specified. Choosing the value of
this potential Vg such that Vg + p2 h2/2m [ 52/L2] is equal to minus the lowest ionization
energy of the 1,3,5,7-nonatetraene radical, gives energy levels (assE = Vg + p2h2/2m|[
n2/L.2]) which then are approximations to ionization energies.

Theindividua p-molecular orbitals

Y n = (2/L)Y2 sin(npx/L)

are depicted in the figure below for amodel of the 1,3,5 hexatriene p-orbital system for
which the 'box length' L isfive times the distance Rcc between neighboring pairs of
Carbon atoms.



2/L)"? sin(npx/L): L = 5 x Rge

In this figure, positive amplitude is denoted by the clear spheres and negative amplitude is
shown by the darkened spheres; the magnitude of the kth C-atom centered atomic orbital in
the nth p-molecular orbital is given by (2/L)Y2 sin(npkRcc/L).

Thissmple model allows one to estimate spin densities at each carbon center and
provides insight into which centers should be most amenable to electrophilic or nucleophilic
attack. For example, radica attack at the Cs carbon of the nine-atom system described
earlier would be morefacile for the ground state Y than for either Y * or Y '*. In the
former, the unpaired spin density resides in y 5, which has non-zero amplitude at the Cs
stex=L/2;inY* and Y *, the unpaired density isiny 4 and y g, respectively, both of
which have zero density at Cs. These densities reflect the values (2/L)Y2 sin(npkRcc/L) of
the amplitudes for this case in which L =8 x Rcc for n =5, 4, and 6, respectively.

2. One Electron Moving About a Nucleus



The Hydrogenic atom problem forms the basis of much of our thinking about
atomic structure. To solve the corresponding Schrodinger equation requires separation of
ther, g, andf variables

[Suggested Extra Reading- Appendix B: The Hydrogen Atom Orbital s

The Schrodinger equation for asingle particle of mass mmoving in a central
potential (one that depends only on the radia coordinate r) can be written as

9 2 2 2 . ..
hzad” 97 ﬂ—gy + VRIx2y2422 y = Ey.
2méx2  y2  172%g

This equation is not separable in cartesian coordinates (X,y,z) because of the way x,y, and
Z appear together in the square root. However, it is separablein spherical coordinates

h2 o e, Tydo 1 Ty, Ivo
—_— [¢ —=— + —_— ng —=
22 & & raw rZSinqﬂqg f Tag
1 1%
— +V =By .
¥ r2Sin2q 9f 2 HVy =B

2
Subtracting V(r)y from both sides of the equation and multiplying by - 2 then moving
h2
the derivatives with respect to r to the right-hand side, one obtains

1 Ty Ivo, 1 T2y
—— —Sing == + —
Sing 1q & qﬂqz Sin%q f 2

Ty s

_2m2 Te
= EVOY g

Notice that the right-hand side of this equation isafunction of r only; it containsno q or f
dependence. Let'scal the entire right hand side F(r) to emphasize this fact.

To further separate the g and f dependence, we multiply by Sin2g and subtract the
g derivative terms from both sidesto obtain
T2y . T Tye
2L = F(r)y SinZq - Sing — gsing —-2.
2 & fao
Now we have separated thef dependence from the g and r dependence. If we now
substitutey = F (f) Q(r,q) and divideby F Q, we obtain



F 92 Q?(r)sm Q- Sing 1q E%mq 190

Now all of thef dependenceisisolated on the left hand side; the right hand side contains

only r and q dependence.
Whenever one has isolated the entire dependence on one variable as we have done

abovefor thef dependence, one can easily see that the left and right hand sides of the
eguation must equal aconstant. For the above example, the left hand side containsno r or

g dependence and the right hand side containsno f dependence. Because the two sides are

equal, they both must actually containnor, g, or f dependence; that is, they are constant.
For the above example, we therefore can set both sides equal to a so-called

separation constant that we call -m2 . It will become clear shortly why we have chosen to
express the constant in this form.
a. The F Equation
Theresulting F equation reads
F"+m2F =0
which has asits most genera solution
F =Admf + Bgimf
We must require the function F to be single-valued, which means that
Ff)=F(2p +f) or,
Aemf (1 - e2imp) + Beimf (1 - e2imp) =,
Thisis satisfied only when the separation constant is equal to aninteger m=0, £1, + 2, ...

. and provides another example of the rule that quantization comes from the boundary
conditions on the wavefunction. Here misrestricted to certain discrete values because the

wavefunction must be such that when you rotate through 2p about the z-axis, you must get
back what you started with.

b. The Q Equation

Now returning to the equation in which the f dependence wasisolated from ther
and g dependence.and rearranging the q termsto the left-hand side, we have

1 ag ﬂQomQ

: =F(r
Sing ‘Hqg qg Sing (NQ



In this equation we have separated q and r variations so we can further decompose the
wavefunction by introducing Q = Q(q) R(r) , which yields

1 1 ﬂa§l s m _F(MR _

— 'n - -
QSnqg & " fqs Sng R

where a second separation constant, -l , has been introduced once the r and g dependent
terms have been separated onto the right and left hand sides, respectively.

We now can write the g equation as
1 T gy TQ0 m Q _
Sing 1q g fqg SinZg

where misthe integer introduced earlier. To solvethis equation for Q , we make the
substitutions z = Cosg and P(z) = Q(q) , so \/ 1-z2 = Sinq , and
T _9%z2% _ S 1

fa 919z {1z

Therange of valuesforqwasO£ q<p, sotherangefor zis
-1<z<1. Theequation for Q , when expressed in terms of P and z, becomes

d—zgl-Z) Eg-ﬁ +1P=0.

Now we can look for polynomial solutionsfor P, because z is restricted to be less than
unity in magnitude. If m =0, wefirst let

¥
P= dac,
k=0

and substitute into the differential equation to obtain

¥ ¥ ¥
A (k+2)(k+1) aks2 ZK - @ (k+1) k ak +1 §azk =0.
k=0 k=0 k=0

Equating like powers of z gives

_ a(k(k+1)-1)
K+2 = &) K+D)



Note that for large values of k

k2§+%‘g
&2 o -1,

& k2@_+§@_+1‘0
g ke kg

Since the coefficients do not decrease with k for large k, this serieswill divergeforz=+ 1
unless it truncates at finite order. This truncation only happensiif the separation constant |

obeys| =I(I+1), wherel isan integer. So, once again, we see that a boundary condition
(i.e., that the wavefunction be normalizable in this case) give rise to quantization. Inthis

case, thevalues of | arerestricted to I(I1+1); before, we saw that misrestrictedto 0, £1,

2, ...

Sincethis recursion relation links every other coefficient, we can choose to solve
for the even and odd functions separately. Choosing ag and then determining al of the
even g interms of this ag, followed by rescaling all of these & to make the function
normalized generates an even solution. Choosing a; and determining all of the odd & in
like manner, generates an odd solution.

For 1= 0, the series truncates after one term and resultsin Pg(z) = 1. For I= 1 the

same thing appliesand P1(z) = z. Forl=2,a=-6 8—20 = -3a, , SO one obtains Py = 372-1,

and so on. These polynomials are called L egendre polynomials.
For the more general casewherem® 0, one can proceed as above to generate a
polynomial solution for the Q function. Doing so, resultsin the following solutions:

- m o™ P (2)
P2 =(1-2) g

These functions are called Associated Legendre polynomials, and they constitute the

solutions to the Q problem for non-zero m values.

The above P and éMmf functions, when re-expressed in terms of g and f, yield the
full angular part of the wavefunction for any centrosymmetric potential. These solutions
1

areusualy writtenas Y| m(q.f) = Prln(Cosq) (2p)_5 exp(imf ), and are called spherical
harmonics. They provide the angular solution of ther,q, f Schrédinger equation for any
problem in which the potential depends only on the radial coordinate. Such situations

include all one-electron atoms and ions (e.g., H, He™, Li** , etc.), the rotational motion of
adiatomic molecule (where the potential depends only on bond length r), the motion of a
nucleon in a spherically symmetrical "box" (as occursin the shell model of nuclei), and the
scattering of two atoms (where the potential depends only on interatomic distance).

c. The R Equation



Let us now turn our attention to the radial equation, which isthe only place that the
explicit form of the potential appears. Using our derived results and specifying V(r) to be
the coulomb potential appropriate for an electron in the field of anucleus of charge +Ze,
yields:

1 d g4, dRy . @m 785 I(1 + 1)0
Soe Oy +éc;h—2§%+7g' > gR 0.

We can simplify things considerably if we choose rescaled length and energy units because

doing so removes the factors that depend on mh , and e. We introduce a new radial
coordinater and aquantity s asfollows:

1

%mzéé ,_ M2t
r = ‘e r, and s¢=- )
e h2 4 2Eh?2

Noticethat if E isnegative, asit will be for bound states (i.e., those states with energy

below that of afree eectron infinitely far from the nucleus and with zero kinetic energy), r
isreal. On the other hand, if E is poditive, asit will be for statesthat lie in the continuum,

r will beimaginary. Thesetwo caseswill giveriseto qualitatively different behavior in the
solutions of the radial equation devel oped below.

We now define afunction S such that S(r ) = R(r) and substitute Sfor R to obtain:

1d opdSy, el I+,
6?2 = —S 0.
r2dr e drz 4 2 r g

The differential operator terms can be recast in several ways using

10505, S 205 1 o

r2dré drg dr2 rdr rdr2
It isuseful to keep in mind these three embodiments of the derivatives that enter into the
radial kinetic energy; in various contextsit will be useful to employ various of these.
The strategy that we now follow is characteristic of solving second order

differential equations. We will examine the equation for Sat largeand small r values.

Having found solutions at these limits, we will use apower seriesinr to "interpolate”
between these two limits.

L et us begin by examining the solution of the above equation at small valuesof r to

see how theradial functions behave at small r. Asr® 0, the second term in the brackets
will dominate. Neglecting the other two terms in the brackets, we find that, for small

values of r (or r), the solution should behave liker L and because the function must be
normalizable, we must have L 3 0. Since L can be any non-negative integer, this suggests
the following more general form for S(r) :

S(r)y»rLed,



Thisform will insure that the functionisnormalizablesinceS(r) ® Oasr® ¥ foral L,

aslong asr isared quantity. If r isimaginary, such aform may not be normalized (see
below for further consequences).

Turning now to the behavior of Sfor larger , we make the substitution of S(r ) into

the above equation and keep only the terms with the largest power of r (e.g., first termin
brackets). Upon so doing, we obtain the equation

&rled :%r rleda |

which leads us to conclude that the exponent in the large-r behavior of Sisa= % :

Having found the small- and large-r behaviors of S(r ), we can take S to have the
following form to interpolate between large and small r -values:

r
S(r)=rle? P(r),
where the function L is expanded in an infinite power seriesinr asP(r) = é_ a rk. Agan
Substituting this expression for Sinto the above equation we obtain
P'r + P(2L+2-r) + P(s-L-I) =0,

and then substituting the power series expansion of P and solving for the ac's we arrive at:

_ (k-s+L+I) a
A+ = A D (kF2L+2) -

For large k, the ratio of expansion coefficients reaches the limit a;:l -1 , Which

has the same behavior as the power series expansion of €. Because the power series
expansion of P describes afunction that behaveslike € for larger , the resulting S(r )

r
function would not be normalizable becausethe e 2 factor would be overwhelmed by this
€ dependence. Hence, the series expansion of P must truncate in order to achieve a

normalizable Sfunction. Noticethat if r isimaginary, asit will beif E isin the continuum,
the argument that the series must truncate to avoid an exponentialy diverging function no

longer applies. Thus, we see akey difference between bound (with r real) and continuum

(withr imaginary) states. In the former case, the boundary condition of non-divergence
arises; in the latter, it does not.

To truncate at a polynomial of order n', we must haven'-s + L+1=0. This

impliesthat the quantity s introduced previoudly isrestrictedtos =n'+ L + 1, whichis
certainly an integer; let us call thisinteger n. If we label statesin order of increasing n =
1,2,3,... , we see that doing so is consistent with specifying a maximum order (n') in the



P(r ) polynomial n' = 0,1,2,... after which the [-value can run from | = O, in steps of unity
up toL = n-1.

Substituting the integer n for s , we find that the energy levels are quantized
becauses is quantized (equal to n):

2
E=- %t andr :A.
2h2n2 &N
. . @ ph20
Here, the length a, isthe so called Bohr radius ¢ap = Eﬁ it appears once the above E-
e o

expression is substituted into the equation for r . Using the recursion equation to solve for
the polynomial's coefficients a¢ for any choice of n and | quantum numbers generates a so-

called Laguerre polynomial; Pp- -1(r ). They contain powersof r from zero through n-I-1.
This energy quantization does not arise for states lying in the continuum because the

condition that the expansion of P(r ) terminate does not arise. The solutions of the radial
equation appropriate to these scattering states (which relate to the scattering motion of an
electron in the field of anucleus of charge Z) are treated on p. 90 of EWK.

In summary, separation of variables has been used to solve the full r,q,f
Schrédinger equation for one electron moving about a nucleus of chargeZ. Theq and f

solutions are the spherical harmonics Y| m (q,f). The bound-state radial solutions
r

Rl () =S(r)=rle2 P )

depend on the n and | quantum numbers and are given in terms of the Laguerre polynomials
(see EWK for tabulations of these polynomials).

d. Summary

To summarize, the quantum numbers | and m arise through boundary conditions
requiring that y (q) be normalizable (i.e., not diverge) andy (f) = y (f +2p). In the texts by
Atkins, EWK, and McQuarrie the differential equations obeyed by theq andf components
of Y| m are solved in more detail and properties of the solutions are discussed. This
differential equation involves the three-dimensional Schrodinger equation’s angular kinetic
energy operator. That is, the angular part of the above Hamiltonian is equal to h2L2/2mr2,
where L2 is the square of the total angular momentum for the electron.

Theradia equation, which isthe only place the potential energy enters, isfound to
possess both bound-states (i.e., states whose energies lie below the asymptote at which the
potentia vanishes and the kinetic energy is zero) and continuum states lying energetically
above this asymptote. The resulting hydrogenic wavefunctions (angular and radia) and



energies are summarized in Appendix B for principal quantum numbers n ranging from 1
to 3 and in Pauling and Wilson for n up to 5.

There are both bound and continuum solutions to the radial Schrédinger equation
for the attractive coulomb potential because, at energies below the asymptote the potential
confines the particle between r=0 and an outer turning point, whereas at energies above the
asymptote, the particleis no longer confined by an outer turning point (see the figure
below).
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The solutions of this one-electron problem form the qualitative basis for much of
atomic and molecular orbital theory. For this reason, the reader is encouraged to use
Appendix B to gain afirmer understanding of the nature of the radial and angular parts of
these wavefunctions. The orbitals that result are labeled by n, |, and m quantum numbers
for the bound states and by | and m quantum numbers and the energy E for the continuum
states. Much as the particle-in-a-box orbitals are used to qualitatively describe p- eectrons
in conjugated polyenes, these so-called hydrogen-like orbitals provide qualitative
descriptions of orbitals of atoms with more than a single el ectron. By introducing the
concept of screening as away to represent the repulsive interactions among the el ectrons of
an atom, an effective nuclear charge Zg can be used in place of Z inthey n | m and Ep | to
generate approximate atomic orbitals to be filled by electrons in a many-electron atom. For



example, in the crudest approximation of a carbon atom, the two 1s el ectrons experience
the full nuclear attraction so Zg=6 for them, whereas the 2s and 2p el ectrons are screened
by the two 1s electrons, so Zgt= 4 for them. Within this approximation, one then occupies
two 1s orbitals with Z=6, two 2s orbitals with Z=4 and two 2p orbitals with Z=4in
forming the full six-electron wavefunction of the lowest-energy state of carbon.

3. Rotational Motion For aRigid Diatomic Molecule
This Schrodinger equation relates to the rotation of diatomic and linear polyatomic
molecules. It also arises when treating the angular motions of electronsin any spherically

symmetric potential

A diatomic molecule with fixed bond length R rotating in the absence of any
external potential is described by the following Schrédinger equation:

h2/2m{ (R2sinq)-19/1q (sing 1Mq) + (R%sin2q) 1 12/9f2} y =Ey
or
L2y /2nR2=EYy.

Theanglesq and f describe the orientation of the diatomic moleculé's axisrelative to a
laboratory-fixed coordinate system, and mis the reduced mass of the diatomic molecule
memymy/(mMy+my). The differential operators can be seen to be exactly the same as those
that arose in the hydrogen-like-atom case, and, as discussed above, these g and f
differential operators are identical to the L2 angular momentum operator whose general
properties are analyzed in Appendix G. Therefore, the same spherical harmonics that
served as the angular parts of the wavefunction in the earlier case now serve asthe entire
wavefunction for the so-called rigid rotor: y =Y 3m(q,f). Asdetailed later in thistext, the
eigenvalues corresponding to each such eigenfunction are given as.

Ej=h2 J(J+1)/(2nR2) = B J(J+1)
and are independent of M. Thus each energy level islabeled by Jand is 23+1-fold

degenerate (because M ranges from -Jto J). The so-called rotational constant B (defined as
h2/2nR2) depends on the molecule's bond length and reduced mass. Spacings between



successive rotational levels (which are of spectroscopic relevance because angular
momentum selection rules often restrict DJ to 1,0, and -1) are given by

DE = B (J+1)(3+2) - B JJ+1) = 2B(J+1).

These energy spacings are of relevance to microwave spectroscopy which probesthe
rotational energy levels of molecules.

Therigid rotor provides the most commonly employed approximation to the
rotational energies and wavefunctions of linear molecules. As presented above, the model
restricts the bond length to be fixed. Vibrational motion of the molecule givesriseto
changesin R which are then reflected in changes in the rotational energy levels. The
coupling between rotational and vibrational motion givesriseto rotational B constants that
depend on vibrational state aswell as dynamical couplings,called centrifugal distortions,
that cause the total ro-vibrationa energy of the molecule to depend on rotational and
vibrational quantum numbers in a non-separable manner.

4. Harmonic Vibrational Motion
This Schrodinger equation forms the basis for our thinking about bond stretching and angle
bending vibrations as well as collective phonon motionsin solids

Theradia motion of adiatomic moleculeinitslowest (J=0) rotational level can be
described by the following Schrédinger equation:

- R22mr-20/r (r29Mr)y +V(r)y =Ey,

where mis the reduced mass m= mymy/(mg+my) of the two atoms.
By substituting y = F(r)/r into this equation, one obtains an equation for F(r) in which the
differential operators appear to be less complicated:

- R2/2md2F/dr2 + V(r) F=E F.

This equation is exactly the same as the equation seen above for the radia motion of the
electron in the hydrogen-like atoms except that the reduced mass mreplaces the electron

mass m and the potential V(r) is not the coulomb potential.



If the potential is approximated as a quadratic function of the bond displacement x =
r-re expanded about the point at which 'V is minimum:

V = 12 k(r-re)?,

the resulting harmonic-oscillator equation can be solved exactly. Because the potentia V

grows without bound as x approaches
¥ or -¥, only bound-state solutions exist for this model problem; that is, the motion is
confined by the nature of the potential, so no continuum states exist.
In solving theradial differential equation for this potential (see Chapter 5 of
McQuarrie), the large-r behavior isfirst examined. For large-r, the equation reads:
d2F/dx2 = 1/2 k x2 (2mk?) F,

where x = r-reisthe bond displacement away from equilibrium. Defining x= (k/h2)Y/4 x
asanew scaled radia coordinate allows the solution of the large-r equation to be written as:

Flager = exp(-x2/2).
The general solution to the radial equation is then taken to be of the form:

¥
F=exp(-x2/2) & xM Cp,
n=0

where the G, are coefficients to be determined. Substituting this expression into the full
radial equation generates a set of recursion equations for the C,, amplitudes. Asin the
solution of the hydrogen-like radial equation, the series described by these coefficientsis
divergent unless the energy E happens to equal specific values. It isthis requirement that
the wavefunction not diverge so it can be normalized that yields energy quantization. The
energies of the states that arise are given by:

En=h (km¥2 (n+1/2),

and the eigenfunctions are given in terms of the so-called Hermite polynomias Hp(y) as
follows:



yn(x) = (n! 2)-12 (a/p) 14 exp(-ax?/2) Hh(al/2 x),

wherea =(knh?)L/2, Within this harmonic approximation to the potential, the vibrational
energy levels are evenly spaced:

DE = En+1 - En=h (kkmV/2,

In experimental data such evenly spaced energy level patterns are seldom seen; most
commonly, one finds spacings En+1 - En that decrease as the quantum number n increases.
In such cases, one says that the progression of vibrational levels displays anharmonicity.

Because the H, are odd or even functions of x (depending on whether nisodd or
even), the wavefunctionsy n(x) are odd or even. This splitting of the solutions into two
distinct classes is an example of the effect of symmetry; in this case, the symmetry is
caused by the symmetry of the harmonic potential with respect to reflection through the
origin along the x-axis. Throughout this text, many symmetries will arise; in each case,
symmetry properties of the potentia will cause the solutions of the Schrodinger equation to
be decomposed into various symmetry groupings. Such symmetry decompositions are of
great use because they provide additional quantum numbers (i.e., symmetry labels) by
which the wavefunctions and energies can be labeled.

The harmonic oscillator energies and wavefunctions comprise the simplest
reasonable model for vibrational motion. Vibrations of a polyatomic molecule are often
characterized in terms of individual bond-stretching and angle-bending motions each of
whichis, in turn, approximated harmonically. Thisresultsin atotal vibrational
wavefunction that iswritten as a product of functions one for each of the vibrationa
coordinates.

Two of the most severe limitations of the harmonic oscillator model, the lack of
anharmonicity (i.e., non-uniform energy level spacings) and lack of bond dissociation,
result from the quadratic nature of its potential. By introducing model potentials that allow
for proper bond dissociation (i.e., that do not increase without bound as x=>¥ ), the major
shortcomings of the harmonic oscillator picture can be overcome. The so-called Morse
potential (see the figure below)

V(r) = De (1-exp(-a(r-1e)))2,

is often used in this regard.



Energy

Internuclear distance

Here, Deisthe bond dissociation energy, reis the equilibrium bond length, and aisa
constant that characterizes the 'steepness of the potential and determines the vibrational
frequencies. The advantage of using the Morse potential to improve upon harmonic-
oscillator-level predictionsisthat its energy levels and wavefunctions are aso known
exactly. The energies are given in terms of the parameters of the potential asfollows:

En = A(k/MY2 { (n+1/2) - (n+1/2)2 h(k/MY2/4De },

where the force constant k is k=2De &. The Morse potential supports both bound states
(those lying below the dissociation threshold for which vibration is confined by an outer
turning point) and continuum states lying above the dissociation threshold. Its degree of
anharmonicity is governed by the ratio of the harmonic energy h(k/m)Y/2 to the dissociation
energy De

[11. The Physical Relevance of Wavefunctions, Operators and Eigenvalues



Having gained experience on the application of the Schrodinger equation to several
of the more important model problems of chemistry, it istimeto return to the issue of how
the wavefunctions, operators, and energies relate to experimental reality.

In mastering the sections that follow the reader should keep in mind that :

i. Itisthe molecular system that possesses a set of characteristic wavefunctions and energy
levels, but

ii. Itisthe experimental measurement that determines the nature by which these energy
levels and wavefunctions are probed.

This separation between the 'system’ with itsintrinsic set of energy levels and
‘observation’ or ‘experiment’ with its characteristic interaction with the system forms an
important point of view used by quantum mechanics. It gives rise to apoint of view in
which the measurement itself can 'prepare’ the system in awavefunction Y that need not be
any single eigenstate but can still be represented as a combination of the complete set of
eigengtates. For the beginning student of quantum mechanics, these aspects of quantum
mechanics are among the more confusing. If it helps, one should rest assured that all of the
mathematical and 'rul€’ structure of this subject was created to permit the predictions of
guantum mechanicsto replicate what has been observed in laboratory experiments.

Note to the Reader :

Before moving on to the next section, it would be very useful to work some of the
Exercises and Problems. In particular, Exercises 3, 5, and 12 aswell as problems 6, 8, and
11 provide insight that would help when the material of the next section is studied. The
solution to Problem 11 is used throughout this section to help illustrate the concepts
introduced here.

A. The Basic Rules and Relation to Experimental Measurement

Quantum mechanics has a set of 'rules’ that link operators, wavefunctions, and
eigenvalues to physically measurable properties. These rules have been formulated not in
some arbitrary manner nor by derivation from some higher subject. Rather, the ruleswere
designed to allow quantum mechanics to mimic the experimentally observed facts as
revealed in mother nature's data. The extent to which these rules seem difficult to




understand usually reflects the presence of experimental observations that do not fit in with
our common experience base.

[Suggested Extra Reading- Appendix C: Quantum Mechanical Operators and Commutation]

The structure of quantum mechanics (QM) relates the wavefunction Y and
operators F to the 'real world' in which experimental measurements are performed through
aset of rules (Dirac'stext is an excellent source of reading concerning the historical
development of these fundamentals). Some of these rules have already been introduced
above. Here, they are presented in total asfollows:

1. Thetime evolution of the wavefunction Y is determined by solving the time-dependent
Schrédinger equation (see pp 23-25 of EWK for arationalization of how the Schrédinger
equation arises from the classical equation governing waves, Einstein's E=hn, and
deBrogli€'s postulate that | =h/p)

HRTY fit=HY,

where H isthe Hamiltonian operator corresponding to the total (kinetic plus potential)
energy of the system. For an isolated system (e.g., an atom or molecule not in contact with
any external fields), H consists of the kinetic and potential energies of the particles
comprising the system. To describe interactions with an external field (e.g., an
electromagnetic field, astatic electric field, or the 'crystal field' caused by surrounding
ligands), additional terms are added to H to properly account for the system-field
interactions.

If H contains no explicit time dependence, then separation of space and time
variables can be performed on the above Schrddinger equation Y =y exp(-itE/R) to give

Hy=Ey.

In such a case, the time dependence of the stateis carried in the phase factor exp(-itE/R); the
spatial dependence appearsiny (q;).

The so called time independent Schrodinger equation Hy =Ey must be solved to
determine the physically measurable energies Ex and wavefunctionsy i of the system. The
most general solution to the full Schrodinger equation iRYY /it = HY isthen given by
applying exp(-iH t/h) to the wavefunction at someinitia time (t=0) Y =Sk Cky k to obtain



Y (t)=Sk Cky k exp(-itEx/). The relative amplitudes Cy are determined by knowledge of
the state at the initial time; this depends on how the system has been prepared in an earlier
experiment. Just as Newton's laws of motion do not fully determine the time evolution of a
classical system (i.e., the coordinates and momenta must be known at someinitia time),
the Schrédinger equation must be accompanied by initial conditionsto fully determine

Y (qj,t).

Example:

Using the results of Problem 11 of this chapter to illustrate, the sudden ionization of N2 in
itsv=0 vibrational stateto generate No* produces a vibrational wavefunction

1
V4 ax2i2 = 353333A 2 o (244.83A2)(1-1.09760AY

Yo=§g

that was created by the fast ionization of N,. Subsequent to ionization, this N2 functionis
not an eigenfunction of the new vibrational Schrodinger equation appropriateto Not. Asa
result, this function will time evolve under the influence of the No* Hamiltonian.

The time evolved wavefunction, according to thisfirst rule, can be expressed in terms of
the vibrational functions{Y \} and energies {E,} of the No* ion as

Y (t) = SV C\/ Yy eXp(-I Ey t/h)

The amplitudes Cy, which reflect the manner in which the wavefunction is prepared (at
t=0), are determined by determining the component of each Y y in the function Y at t=0. To
do this, one uses

s

BY " Y (t=0)dt =Cy,

which is easily obtained by multiplying the above summation by Y *\ integrating, and
using the orthonormality of the{Y } functions.

For the case at hand, this results shows that by forming integrals involving
products of the N2 v=0 function Y (t=0)



1
V4 ax2i2 = 353333A 2 (244.83A2)(1-L.0760AY

Yo=§g

and various Not vibrational functionsY y,, one can determine how Y will evolve in time
and the amplitudes of all {Y } that it will contain. For example, the N, v=0 function, upon
ionization, contains the following amount of the No* v=0 function:

Co=8 Yg*(N2*) Yo(Np) dt

¥

= 83.47522 e-229.113(1-1.11642)23 53333e-244.83(r-1.09769)2r
-¥

As demonstrated in Problem 11, thisintegral reducesto 0.959. This means that the N> v=0
State, subsequent to sudden ionization, can be represented as containing [0.959|2 = 0.92
fraction of the v=0 state of the N>* ion.

This example relates to the well known Franck-Condon principal of spectroscopy in
which squares of ‘overlaps between the initial electronic state's vibrational wavefunction
and thefinal electronic state's vibrational wavefunctions allow one to estimate the
probabilities of populating various final-state vibrational levels.

In addition toinitial conditions, solutions to the Schrédinger equation must obey
certain other constraints in form. They must be continuous functions of all of their spatial
coordinates and must be single valued; these propertiesallow Y * Y to beinterpreted asa
probability density (i.e., the probability of finding a particle at some position can not be
multivalued nor can it be 'jerky’ or discontinuous). The derivative of the wavefunction
must a so be continuous except at points where the potential function undergoes an infinite
jump (e.g., at thewall of aninfinitely high and steep potential barrier). This condition
relates to the fact that the momentum must be continuous except at infinitely 'steep’
potential barriers where the momentum undergoes a 'sudden’ reversal.

2. An experimental measurement of any quantity (whose corresponding operator is F) must
result in one of the eigenvalues f; of the operator F. These eigenva ues are obtained by

solving



Ffj =fj fj,

where thef j are the eigenfunctions of F. Once the measurement of F is made, for that sub-
population of the experimental sample found to have the particular eigenvaluef;, the
wavefunction becomesf;.

The equation Hy k=Exy k isbut aspecia case; it isan especially important case
because much of the machinery of modern experimental chemistry is directed at placing the
system in aparticular energy quantum state by detecting its energy (e.g., by spectroscopic
means).

The reader is strongly urged to also study Appendix C to gain amore detailed and
illustrated treatment of this and subsequent rules of quantum mechanics.

3. The operators F corresponding to all physically measurable quantities are Hermitian; this
means that their matrix representations obey (see Appendix C for adescription of the 'bra
| > and 'ket' < | notation used below):

<Cj|[Flck> = <cklF[cj>*= <Fcjlck>

inany basis{cj} of functions appropriate for the action of F (i.e., functions of the
variables on which F operates). As expressed through equality of thefirst and third
elements above, Hermitian operators are often said to ‘obey the turn-over rul€'. This means
that F can be allowed to operate on the function to itsright or on the function to itsleft if F
is Hermitian.

Hermiticity assures that the eigenvaues {fj} areall red, that eigenfunctions{cj}
having different eigenvalues are orthogona and can be normalized <cjlck>=d; k, and that
eigenfunctions having the same eigenval ues can be made orthonormal (these statements are
proven in Appendix C).

4. Once aparticular vauef; is observed in ameasurement of F, this same value will be

observed in al subsequent measurements of F as long as the system remains undisturbed
by measurements of other properties or by interactions with external fields. In fact, once f;

has been observed, the state of the system becomes an eigenstate of F (if it dready was, it
remains unchanged):

FY =fY.



This means that the measurement process itself may interfere with the state of the system
and even determines what that state will be once the measurement has been made.

Example:

Again consider the v=0 Ny ionization treated in Problem 11 of this chapter. If,
subsequent to ionization, the N2>t ions produced wer e probed to determine their internal
vibrational state, a fraction of the sample equal to [<Y (N2; v=0) | Y (N2*; v=0)>|2 = 0.92
would be detected in the v=0 state of the No* ion. For this sub-sample, the vibrational
wavefunction becomes, and remains from then on,

Y (=Y (N2"; v=0) exp(-i t E*\=0/ h),

where Et\=q isthe energy of the No* ioninitsv=0 state. If, at some later time, this sub-
sampleisagain probed, all specieswill be found to be in the v=0 state.

5. The probability B of observing a particular value fx when F is measured, given that the
system wavefunctionis'Y prior to the measurement, is given by expanding Y in terms of
the complete set of normalized eigenstates of F

Y =S; rfj> <fj|Y>

and then computing Py =|<f k|Y >|2 . For the special casein whichY isalready one of the
eigenstates of F (i.e., Y =f), the probability of observing fj reducesto B =d; k. The set
of numbers C; = <f|Y > are called the expansion coefficients of Y in the basis of the {f j} .
These coefficients, when collected together in all possible products as

;i = Ci* Cj form the so-called density matrix Dj; of the wavefunction Y within the {f}
basis.

Example:

If F isthe operator for momentumin the x-direction and Y (x,t) is the wave

function for x as a function of time t, then the above expansion corresponds to a Fourier
transformof Y



Y (x,t) = 1/2p dexp(ikx) oexp(-ik<) Y (x',t) dx' dk.

Here (1/2p) Y2 exp(ikx) is the normalized eigenfunction of F =-ik{/fx corresponding to
momentum e genval ue hk. These momentum eigenfunctions are orthonormal:

1/2p dexp(-ikx) exp(ik'x) dx = d(k-k'),
and they form a complete set of functionsin x-space
1/2p oexp(-ikx) exp(ikx') dk = d(x-X")
because F isa Hermitian operator. The function 0exp(-ikx') Y (x',t) dx' is called the

momentum-space transform of Y (x,t) and is denoted Y (k,t); it gives, when used as
Y *(kt)Y (k,t), the probability density for observing momentum values bk at timet.

Another Example:
Taketheinitial y to be a superposition state of the form
y =a(2po+ 2p.1-2p1) + b (3po- 3p-1),

where the a and b ar amplitudes that describe the admixture of 2p and 3p functionsin this
wavefunction. Then:

a. If L2 were measured, the value 2h2 would be observed with probability 3 |a|2 + 2 |b|2 =
1, since all of thefunctionsiny are p-type orbitals. After said measurement, the
wavefunction would still be thissamey becausethisentirey isan eigenfunction of L 2.
b. If L, were measured for this

y =a(2po+ 2p-1-2p1) + b (3po - 3p-1),
the values Oh, 1k, and -1h would be observed (because these are the only functions with

non-zero Cn, coefficients for the L, operator) with respective probabilities| a2+ | b2, | -a
P,and| a2+ |-b|2.



c. After L, were measured, if the sub-population for which -1k had been detected were
subjected to measurement of L2 the value 2h2 would certainly be found because the new
wavefunction

y'={- a2p.1-b3p.g} (a2 + [b)12
istill an eigenfunction of L2 with this eigenvalue.

d. Again after L ; were measured, if the sub-population for which -1k
had been observed and for which the wavefunction is now

y'={- a2p.1- b3p.1} (|a]2+ b]2)-1/2

wer e subjected to measurement of the energy (through the Hamiltonian operator), two
values would be found. With probability

| -a|2 (ja]2 + |b|2) 1 the energy of the 2p.1 orbital would be observed; with probability | -b |2
(a2 + |b]2)-1, the energy of the 3p.1 orbital would be observed.

If Y isafunction of severa variables (e.g., whenY describes more than one
particlein acomposite system), and if F isaproperty that depends on a subset of these
variables (e.g., when F is a property of one of the particles in the composite system), then
the expansion Y =S; [f j> <f;|Y > isviewed asrelating only to Y 's dependence on the
subset of variablesrelated to F. In this case, the integrals <f k|Y > are carried out over only
these variables; thus the probabilities Pk =|<f k|Y >|2 depend parametrically on the remaining
variables.

Example:

Suppose that Y (r,q) describestheradial (r) and angular (q) motion of a diatomic
molecule constrained to move on a planar surface. If an experiment were performed to
measur e the component of the rotational angular momentum of the diatomic molecule
perpendicular to the surface (L = -ih 1/91q), only values equal to mh (m=0,1,-1,2,-2,3,-
3,...) could be observed, because these are the eigenvaluesof L ; :

L, fm=-ih 141G f m = mhf m, where

fm = (U2p)Y/2 exp(imq).



The quantization of L ; arises because the eigenfunctionsf j(q) must be periodicin g:
f(a+2p) =1(q).

Such quantization (i.e., constraints on the values that physical properties can realize) will
be seen to occur whenever the pertinent wavefunction is constrained to obey a so-called
boundary condition (in this case, the boundary condition isf (q+2p) = f (q)).

Expanding the g-dependence of Y in terms of thef 1y,

Y =Sm<fmlY>fm(q)

allows one to write the probability that mh is observed if the angular momentum Lz is
measured as follows:

Pm=[<fmlY>P=]d m*(a) Y (r,0) dq |2

If oneisinterested in the probability that mh be observed when L, is measured regardless
of what bond length r isinvolved, then it is appropriate to integrate this expression over the
r-variable about which one does not care. This, in effect, sums contributions fromall r-
values to obtain a result that isindependent of the r variable. As a result, the probability
reducesto:

Pm=o0f*(q") {0Y*(r,q") Y(r,q) rdr}f(q) dg’ da,

which is simply the above result integrated over r with a volume element r dr for the two-
dimensional motion treated here.

If, on the other hand, one were able to measure L, values when r is equal to some specified
bond length (thisis only a hypothetical example; there is no known way to perform such a
measurement), then the probability would equal:

Pmrdr=rdrof m*(q)Y*(r,g)Y (r,q)f m(q)dg' dg = |<f m|Y>]r dr.

6. Two or more properties F,G, Jwhose corresponding Hermitian operatorsF, G, J
commute



FG-GF=FJ-JF=GJ-JG=0

have complete sets of simultaneous eigenfunctions (the proof of thisistreated in
Appendix C). Thismeans that the set of functionsthat are eigenfunctions of one of the
operators can be formed into a set of functions that are aso eigenfunctions of the others:

Ffj=fjfj ==> Gfj=gjf; ==> Jf;=jjf;.

Example:

The px, py and p; orbitals are eigenfunctions of the L 2 angular momentum oper ator
with eigenvalues equal to L(L+1) h2 = 2h2. Snce L2 and L , commute and act on the same
(angle) coordinates, they possess a complete set of simultaneous eigenfunctions.

Although the px, py and p; orbitalsarenot eigenfunctions of L, , they can be
combined to formthree new orbitals: pg = pz,
p1= 2V2[p +ipy], and p.1= 2V2[p, - i py] that are still eigenfunctions of L2 but are
now eigenfunctions of L ; also (with eigenvalues ORh, 1k, and -14, respectively).

It should be mentioned that if two operators do not commute, they may still have
some eigenfunctions in common, but they will not have a complete set of simultaneous
eigenfunctions. For example, the Lz and Ly components of the angular momentum operator
do not commute; however, awavefunction with L=0 (i.e., an S-state) is an eigenfunction
of both operators.

The fact that two operators commute is of great importance. It means that once a
measurement of one of the propertiesis carried out, subsequent measurement of that
property or of any of the other properties corresponding to mutually commuting operators
can be made without altering the system’s value of the properties measured earlier. Only
subsequent measurement of another property whose operator does not commute with F,
G, or J will destroy precise knowledge of the values of the properties measured earlier.

Example:



Assume that an experiment has been carried out on an atomto measure its total
angular momentum L2. According to quantum mechanics, only values equal to L(L+1) h2
will be observed. Further assume, for the particular experimental sample subjected to
observation, that values of L2 equal to 2h2 and 0+ were detected in relative amounts of
64 % and 36 % , respectively. This means that the atom's original wavefunctiony could be
represented as.

y=08P+06S

where P and Srepresent the P-state and S-state components of y . The squares of the
amplitudes 0.8 and 0.6 give the 64 % and 36 % probabilities mentioned above.

Now assume that a subsequent measurement of the component of angular
momentum along the lab-fixed z-axisis to be measured for that sub-population of the
original sample found to bein the P-state. For that population, the wavefunction is now a
pure P-function:

y'=P.

However, at this stage we have no information about how much of thisy ' isof m= 1, 0,

or -1, nor do we know how much 2p, 3p, 4p, ... np components this state contains.
Because the property corresponding to the operator L, is about to be measured, we
expressthe abovey ' in terms of the eigenfunctions of L ,:

y'=P=Sm=10-1C'mPm.

When the measurement of L, is made, the values 1 h, 0 k, and -1 h will be observed with
probabilities given by |C'12, |C'ol2, and |C'-1J2, respectively. For that sub-population found
to have, for example, L, equal to-1H, the wavefunction then becomes

y" = P.1.

At this stage, we do not know how much of 2p_1, 3p-1, 4p-1, ... np-1 this wavefunction
contains. To probe this question another subsequent measurement of the energy

(corresponding to the H operator) could be made. Doing so would allow the amplitudesin
the expansion of the abovey "= P_1



y"=P1=SnC"nnPq

to be found.

The kind of experiment outlined above allows one to find the content of each
particular component of an initial sample's wavefunction. For example, the original
wavefunction has
0.64 |C"nJ2 |C'ml2 fractional content of the various nPyy, functions. It is analogous to the
other examples considered above because all of the operators whose propertiesare
measured commute.

Another Example:

Let us consider an experiment in which we begin with a sample (with wavefunction
y) that isfirst subjected to measurement of L, and then subjected to measurement of L2 and

then of the energy. In this order, one would first find specific values (integer multiples of
h) of Lz and one would expressy as

Y =SmDmym.

At this stage, the nature of each y i, is unknown (e.g., the y 1 function can contain npj,
n'dy, n''f1, etc. components); all that isknownisthaty ,, hasmh asitsL; value.

Taking that sub-population (|Dmf? fraction) with a particular mh value for L, and
subjecting it to subsequent measurement of L2 requires the current wavefunctiony m, to be
expressed as

Ym=SLDL,mYL,m

When L2 is measured the value L(L+1) h2 will be observed with probability |Dm, | [2, and
the wavefunction for that particular sub-population will become

y'=yLm
At this stage, we know the value of L and of m, but we do not know the energy of the

state. For example, we may know that the present sub-population has L=1, m=-1, but we
have no knowledge (yet) of how much 2p.1, 3p-1, ... np-1 the system contains.



To further probe the sample, the above sub-population with L=1 and m=-1 can be
subjected to measurement of the energy. In this case, the functiony 1 -1 must be expressed

as
Y1,-1=SnDn" nP_1.

When the energy measurement is made, the state nP_, will be found |Dp'"'|2 fraction of the
time.

Thefactthat L, , L2, and H al commute with one another (i.e., are mutually
commutative) makes the series of measurements described in the above examples more
straightforward than if these operators did not commute.

In the first experiment, the fact that they are mutually commutative allowed usto
expand the 64 % probable L 2 eigenstate with L=1 in terms of functions that were
eigenfunctions of the operator for which measurement was about to be made without
destroying our knowledge of the value of L2. That is, because L2 and L, can have
simultaneous eigenfunctions, the L = 1 function can be expanded in terms of functions that
are eigenfunctions of both L2 and L ,. Thisin turn, allowed us to find experimentally the
sub-population that had, for example -1 h asits value of L, while retaining knowledge that

the state remainsan eigenstate of L2 (the state at thistime had L = 1 and m = -1 and was
denoted P.1). Then, when this P-1 state was subjected to energy measurement, knowledge
of the energy of the sub-population could be gained without giving up knowledge of the L2
and L, information; upon carrying out said measurement, the state became nP-1.

We therefore conclude that the act of carrying out an experimental measurement
disturbs the system in that it causes the system's wavefunction to become an eigenfunction
of the operator whose property is measured. If two properties whose corresponding
operators commute are measured, the measurement of the second property does not destroy
knowledge of thefirst property's value gained in the first measurement.

On the other hand, as detailed further in Appendix C, if the two properties (F and
G) do not commute, the second measurement destroys knowledge of the first property's
value. After the first measurement, Y isan eigenfunction of F; after the second
measurement, it becomes an eigenfunction of G. If the two non-commuting operators
properties are measured in the opposite order, the wavefunction first is an eigenfunction of
G, and subsequently becomes an eigenfunction of F.

It isthus often said that 'measurements for operators that do not commute interfere
with one another'. The simultaneous measurement of the position and momentum aong the



same axis provides an example of two measurements that are incompatible. The fact that x
=x and px = -ih 1/9Ix do not commute is straightforward to demonstrate:

{XCRTMX) ¢ - (IR Tx )x ¢} =ihct 0.

Operators that commute with the Hamiltonian and with one another form a
particularly important class because each such operator permits each of the energy
eigenstates of the system to be labelled with a corresponding quantum number. These
operators are called symmetry operators. Aswill be seen later, they include angular
momenta (e.g., L2,L,, S2, S, for atoms) and point group symmetries (e.g., planes and
rotations about axes). Every operator that qualifies as a symmetry operator provides a
guantum number with which the energy levels of the system can be labeled.

7. If aproperty F ismeasured for alarge number of systemsall described by the same 'Y,
the average value <F> of F for such a set of measurements can be computed as

<F>= <Y F|Y >.

ExpandingY interms of the complete set of eigenstates of F allows <F> to be rewritten as
follows:

<F>=S;fj [<fjlY >]2,

which clearly expresses <F> as the product of the probability P, of obtaining the particular
value fj when the property F is measured and the value fj.of the property in such a
measurement. This same result can be expressed in terms of the density matrix D j of the
stateY defined above as:

<F>=§;jj <Y [fi> <fi[F[fj> <fjlY > = Sj; Ci* <fi[F[f;>C;

=Sjj Dj,i <filF(fj>=Tr (DF).
Here, DF represents the matrix product of the density matrix D;; and the matrix

representation F; j = <fi|F[f ;> of the F operator, both taken inthe {f;} basis, and Tr
represents the matrix trace operation.



As mentioned at the beginning of this Section, this set of rules and their
relationships to experimental measurements can be quite perplexing. The structure of
guantum mechanics embodied in the above rules was developed in light of new scientific
observations (e.g., the photoel ectric effect, diffraction of electrons) that could not be
interpreted within the conventional pictures of classical mechanics. Throughout its
development, these and other experimental observations placed severe constraints on the
structure of the equations of the new quantum mechanics as well as on their interpretations.
For example, the observation of discrete linesin the emission spectra of atoms gaveriseto
the idea that the atom's electrons could exist with only certain discrete energies and that
light of specific frequencies would be given off as transitions among these quantized
energy states took place.

Even with the assurance that quantum mechanics has firm underpinningsin
experimental observations, students learning this subject for the first time often encounter
difficulty. Therefore, it is useful to again examine some of the model problems for which
the Schrédinger equation can be exactly solved and to learn how the above rules apply to
such concrete examples.

The examples examined earlier in this Chapter and those given in the Exercises and
Problems serve as useful models for chemically important phenomena: electronic motion in
polyenes, in solids, and in atoms as well as vibrational and rotational motions. Their study
thus far has served two purposes; it alowed the reader to gain some familiarity with
applications of quantum mechanics and it introduced modelsthat play centra rolesin much
of chemistry. Their study now is designed to illustrate how the above seven rules of
guantum mechanics relate to experimental redlity.

B. An Example lllustrating Several of the Fundamental Rules

The physica significance of the time independent wavefunctions and energies
treated in Section |1 aswell as the meaning of the seven fundamental points given above
can be further illustrated by again considering the simple two-dimensional electronic motion
model.

If the electron were prepared in the eigenstate corresponding to ny =1, ny =2, its
total energy would be

E=p2hZ2m[ 12/Ly2 + 22/Ly2].



If the energy were experimentally measured, this and only this value would be observed,
and this same result would hold for all time aslong as the electron is undisturbed.

If an experiment were carried out to measure the momentum of the electron along
the y-axis, according to the second postulate above, only values equal to the eigenvalues of
-ihf/ly could be observed. The p, eigenfunctions (i.e., functions that obey py F =
-iRY/y F = cF) are of theform

(ULy)V2 expliky v),

where the momentum hky, can achieve any value; the (1/Ly) V2 factor is used to normalize
the eigenfunctions over therange O£ y £ Ly. It is useful to note that the y-dependence of y
as expressed above [exp(i2py/Ly) -exp(-iZpy/Ly)] is already written in terms of two such
eigenstates of -ih/1ly:

-y exp(iZpy/Ly) = 2h/Ly exp(i2py/Ly) , and
-ihT/Mly exp(-i2py/Ly) = -2h/Ly exp(-i2py/Ly) .

Thus, the expansion of y in terms of eigenstates of the property being measured dictated by
the fifth postul ate above is already accomplished. The only two termsin this expansion
correspond to momenta along the y-axis of 2h/Ly and -2h/Ly ; the probabilities of
observing these two momenta are given by the squares of the expansion coefficientsof y in
terms of the normalized eigenfunctions of -iRf/fly. The functions (1/ Ly)lf 2 exp(i2py/Ly)
and
(VLy) V2 exp(-i2py/ Ly) are such normalized eigenfunctions; the expansion coefficients of
these functionsiny are 21/2 and -2-1/2 | respectively. Thus the momentum 2h/Ly will be
observed with probability (2-1/2)2 = 1/2 and -2h/Ly will be observed with probability (-2-
12)2 = 1/2. If the momentum along the x-axis were experimentally measured, again only
two values 1h/Ly and -1h/Ly would be found, each with a probability of 1/2.

The average value of the momentum along the x-axis can be computed either as the
sum of the probabilities multiplied by the momentum values:

<py> = 1/2 [1/Ly -1h/Ly ] =0,

or as the so-called expectation value integral shown in the seventh postul ate:




<px>= 00y * (-ihfy /9x) dx dy.

Inserting the full expression for y (x,y) and integrating over x and y from0to Ly and Ly,

respectively, thisintegral is seen to vanish. This means that the result of alarge number of
measurements of py on electrons each described by the samey will yield zero net
momentum aong the x-axis.; half of the measurements will yield positive momenta and
half will yield negative momenta of the same magnitude.

The time evolution of the full wavefunction given above for the ny=1, ny=2 state is
easy to express because thisy isan energy eigenstate:

Y (X,y,t) =y (Xy) exp(-iIEtH).
If, on the other hand, the electron had been prepared in astate y (X,y) that is not a pure
eigendtate (i.e., cannot be expressed as a single energy eigenfunction), then the time
evolution is more complicated. For example, if at t=0y were of the form

y = (2/Lx)V2 (2/Ly)V2 [asin(2px/Ly) sin(1py/Ly)

+ b sin(1px/Lyx) sin(2py/Ly) 1,

with aand b both real numbers whose squares give the probabilities of finding the system
in the respective states, then the time evol ution operator exp(-iH t/h) applied toy would
yield the following time dependent function:

Y = (2Lx) V2 (2/Ly)V2 [aexp(-iEp 1 t/) sin(2px/Ly)

sin(1py/Ly) + b exp(-iE1 2 t/h) sin(1px/Lx) sin(2py/Ly) |,

where
Ex1=p2h22m[ 22/L,2 + 12/Ly2], and

E12 = p2h%2m|[ 12/L,2 + 22/Ly2].
The probability of finding Ep 1 if an experiment were carried out to measure energy would

be [aexp(-iEz 1 t/)]2 = [ap; the probability for finding E1 » would be |b|2. The spatial
probability distribution for finding the electron at points x,y will, in this case, be given by:



IY P =1aPly 21P + [bP Y 127 + 2 aby 21y 1,2 cos(DEA),
where DEisEp 1 - Ej 2,

y 2,1 =(2/Lx) V2 (2/Ly) V2 sin(2px/Ly) sSin(1py/Ly),
and

Y 12 =(2/Lx) V2 (2/Ly) V2 sin(1px/Ly) Sin(2py/Ly).

This spatial distribution is not stationary but evolvesin time. So in this case, one hasa
wavefunction that is not a pure elgenstate of the Hamiltonian (onesaysthat Y isa
superposition state or a non-stationary state) whose average energy remains constant
(E=Ez 1 |a? + E1 2 |bP) but whose spatial distribution changes with time.

Although it might seem that most spectroscopic measurements would be designed
to prepare the system in an eigenstate (e.g., by focusing on the sample light whose
frequency matches that of a particular transition), such need not be the case. For example,
if very short laser pulses are employed, the Heisenberg uncertainty broadening (DEDt 3 h)
causes the light impinging on the sample to be very non-monochromatic (e.g., apulse time
of 1 x10-12 sec corresponds to a frequency spread of approximately 5 cml). This, in turn,
removes any possibility of preparing the system in aparticular quantum state with a
resolution of better than 30 cmr1 because the system experiences time oscillating
electromagnetic fields whose frequencies range over at least 5 cmrl).

Essentially all of the model problems that have been introduced in this Chapter to
illustrate the application of quantum mechanics constitute widely used, highly successful
‘starting-point’ models for important chemical phenomena. As such, it isimportant that
students retain working knowl edge of the energy levels, wavefunctions, and symmetries
that pertain to these models.

Thusfar, exactly soluble model problems that represent one or more aspects of an
atom or molecul€e's quantum-state structure have been introduced and solved. For example,
electronic motion in polyenes was modeled by a particle-in-a-box. The harmonic oscillator
and rigid rotor were introduced to model vibrational and rotational motion of a diatomic
molecule.



As chemists, we are used to thinking of electronic, vibrational, rotational, and
trandational energy levels as being (at least approximately) separable. On the other hand,
we are aware that situations exist in which energy can flow from one such degree of
freedom to another (e.g., electronic-to-vibrational energy flow occursin radiationless
relaxation and vibration-rotation couplings are important in molecular spectroscopy). Itis
important to understand how the simplifications that allow us to focus on electronic or
vibrational or rotational motion arise, how they can be obtained from afirst-principles
derivation, and what their limitations and range of accuracy are.

Chapter 2
Approximation Methods Can be Used When Exact Solutions to the Schrédinger Equation
Can Not be Found.

In applying quantum mechanicsto 'real’ chemical problems, oneis usualy faced
with a Schrédinger differential equation for which, to date, no one has found an analytical
solution. Thisisequally true for electronic and nuclear-motion problems. It has therefore
proven essentia to devel op and efficiently implement mathematical methods which can
provide approximate solutions to such eigenval ue equations. Two methods are widely used
in this context- the variational method and perturbation theory. These tools, whose use
permeates virtually all areas of theoretical chemistry, are briefly outlined here, and the
details of perturbation theory are amplified in Appendix D.

|. The Variationa Method

For the kind of potentialsthat arise in atomic and molecular structure, the
Hamiltonian H is a Hermitian operator that is bounded from below (i.e., it has alowest
eigenvalue). BecauseitisHermitian, it possesses a complete set of orthonormal
eigenfunctions{yj}. Any functionF that depends on the same spatial and spin variables
on which H operates and obeys the same boundary conditions that the{y j} obey can be
expanded in this complete set

F=5 Gyj.



The expectation value of the Hamiltonian for any such function can be expressed in
terms of its G coefficients and the exact energy levels Ej of H asfollows:

<FHIF>=S;jj GiC;j <yilHlyj> = SjIGF §.

If the function F is normalized, the sum S;j |Cj2 is equal to unity. Because H is bounded
from below, all of the Ej must be greater than or equal to the lowest energy Eg. Combining
the latter two observations allows the energy expectation value of F to be used to produce a
very important inequality:

<FHFF>3 Eo.

The equality can hold only if F isequal toy g; if F contains components along any of the
otheryj, the energy of F will exceed Ep.

This upper-bound property forms the basis of the so-called variational method in
which 'trial wavefunctions F are constructed:

i. Toguaranteethat F obeysall of the boundary conditionsthat the exact y j do and
that F is of the proper spin and space symmetry and is afunction of the same spatial and
spin coordinates asthey j;

ii. With parameters embedded in F whose ‘optimal’ values are to be determined by
making <F |H|F > a minimum.

It is perfectly acceptable to vary any parametersin F to attain the lowest possible
value for <F |H|F > because the proof outlined above constrains this expectation value to be
above the true lowest eigenstate's energy Eg for any F. The philosophy then isthat the F
that gives the lowest <F |H|F > is the best because its expectation valueis closes to the exact
energy.

Quite often atria wavefunction is expanded as alinear combination of other

functions

F=S;CjF.

In these cases, one saysthat a'linear variational’ calculation is being performed. The set of
functions {F 3} are usually constructed to obey all of the boundary conditions that the exact
stateY obeys, to be functions of the the same coordinatesasY , and to be of the same

gpatial and spin symmetry as'Y . Beyond these conditions, the {F 5} are nothing more than



members of a set of functions that are convenient to deal with (e.g., convenient to evaluate
Hamiltonian matrix elements <F ||H|F ;>) and that can, in principle, be made complete if

more and more such functions are included.

For such atrial wavefunction, the energy depends quadratically on the 'linear
variational' Cj coefficients:

<F|H|F>=S;3CCy<F, HIF 5.

Minimization of this energy with the constraint that F remain normalized (KF|F>=1= S,
C|Cj<F|F 5) givesrise to a so-called secular or eigenval ue-eigenvector problem:

Sj[<F|HF »>-E<F||F5>] C3=S3[H13- ESJCy=0.

If the functions {F 3} are orthonormal, then the overlap matrix S reducesto the unit

matrix and the above generalized eigenval ue problem reduces to the more familiar form:
SjH|3C3=EC,.

The secular problem, in either form, has as many eigenvalues E; and eigenvectors
{Cij} asthedimension of the H;yjmatrix asF . It can also be shown that between
successive pairs of the eigenvalues obtained by solving the secular problem at least one
exact eigenvalue must occur (i.e., Ej+1 > Eexact > Ej, for al i). Thisobservationis
referred to as 'the bracketing theorem'.

Variationa methods, in particular the linear variational method, are the most widely
used approximation techniques in quantum chemistry. To implement such amethod one
needs to know the Hamiltonian H whose energy levels are sought and one needs to
construct atrial wavefunction in which some ‘'flexibility’ exists (e.g., asin the linear
variational method where the C;j coefficients can be varied). In Section 6 thistool will be
used to develop several of the most commonly used and powerful molecular orbital
methods in chemistry.

I1. Perturbation Theory

[Suggested Extra Reading- Appendix D; Time Independent Perturbation Theory]



Perturbation theory is the second most widely used approximation method in
guantum chemistry. It allows one to estimate the splittings and shiftsin energy levels and
changes in wavefunctions that occur when an external field (e.g., an electric or magnetic
field or afield that is due to a surrounding set of 'ligands- a crystal field) or afield arising
when a previously-ignored term in the Hamiltonian is applied to a species whose
‘unperturbed’ states are known. These 'perturbations’ in energies and wavefunctions are
expressed in terms of the (complete) set of unperturbed eigenstates.

Assuming that all of the wavefunctions F  and energies Ex° belonging to the
unperturbed Hamiltonian HO are known

HOF = EOFk,
and given that one wishes to find eigenstates (y k and Ex) of the perturbed Hamiltonian
H=HO+l V,

perturbation theory expressesy i and Ex as power seriesin the perturbation strength | :

¥

yk=a Inygm
n=0
¥

Ec=a | nEM.
n=0

The systematic development of the equations needed to determine the Ex(N and they k(M is
presented in Appendix D. Here, we simply quote the few lowest-order results.

The zeroth-order wavefunctions and energies are given in terms of the solutions of
the unperturbed problem asfollows:

y k(o) =Fg and Ek(o) = EkO_

This smply means that one must be willing to identify one of the unperturbed states asthe
'best’ approximation to the state being sought. This, of course, impliesthat one must
therefore strive to find an unperturbed model problem, characterized by HO that represents



the true system as accurately as possible, so that one of the F i will be as close as possible
toyk.

Thefirst-order energy correction is given in terms of the zeroth-order (i.e.,
unperturbed) wavefunction as:

Ex(D=<FyV |Fg>,
which isidentified as the average va ue of the perturbation taken with respect to the
unperturbed function F k. The so-called first-order wavefunction y k(1) expressed in terms
of the complete set of unperturbed functions{F 3} is:

yk= a3 <Fj| V| Fel[ BQ - EO] |Fj> .
jrk

The second-order energy correction is expressed as follows:

E@= aI<Fj| V | FieR/[ B - EO] ,
jtk

and the second-order correction to the wavefunction is expressed as
y K@ = Sj1 [ BO- L Sj i <Fj|V |F 1> -dj 1 BB}
<FI|V[Fi> [ EL-EOTLIF>.

An essential point about perturbation theory is that the energy corrections Ex(M and
wavefunction corrections y k(N are expressed in terms of integrals over the unperturbed
wavefunctionsF  involving the perturbation (i.e., <F;[V|F|>) and the unperturbed
energies Ej0. Perturbation theory is most useful when one has, in hand, the solutions to an
unperturbed Schrodinger equation that is reasonably 'close' to the full Schrédinger
equation whose solutions are being sought. In such acase, it islikely that low-order
corrections will be adequate to describe the energies and wavefunctions of the full problem.

It isimportant to stress that although the solutions to the full "perturbed’
Schrédinger equation are expressed, as above, in terms of sums over al states of the
unperturbed Schrodinger equation, it isimproper to speak of the perturbation as creating
excited-state species. For example, the polarization of the 1s orbital of the Hydrogen atom



caused by the application of a static external electric field of strength E along the z-axisis
described, in first-order perturbation theory, through the sum

Sn:2’¥ f npO <f npo | Eer coYg | 1s> [ E].S - Enpo ]_1

over all pz = pp orbitaslabeled by principal quantum number n. The coefficient multiplying
each pp orbital depends on the energy gap corresponding to the 1s-to-np 'excitation’ as well
asthe éectric dipoleintegral <f npg | E ercosq | 1s> between the 1s orbital and the npg

orbital.

This sum describes the polarization of the 1s orbital in terms of functions that have
po symmetry; by combining an s orbital and pg orbitals, one can form a'hybrid-like' orbital
that is nothing but a distorted 1s orbital. The appearance of the excited npg orbitals has
nothing to do with forming excited states; these npg orbitals simply provide a set of
functions that can describe the response of the 1s orbital to the applied electric field.

The relative strengths and weaknesses of perturbation theory and the variational
method, as applied to studies of the electronic structure of atoms and molecules, are
discussed in Section 6.

Chapter 3

The Application of the Schrédinger Equation to the Motions of Electrons and Nuclei in a
Molecule Lead to the Chemists' Picture of Electronic Energy Surfaces on Which Vibration
and Rotation Occurs and Among Which Transitions Take Place.

|. The Born-Oppenheimer Separation of Electronic and Nuclear Motions

Many elements of chemists pictures of molecular structure hinge on the point of
view that separates the electronic motions from the vibrational/rotational motions and treats
couplings between these (approximately) separated motions as 'perturbations. It is
essential to understand the origins and limitations of this separated-motions picture.

To develop aframework in terms of which to understand when such separability is
valid, one thinks of an atom or molecule as consisting of a collection of N electrons and M
nuclei each of which possesses kinetic energy and among which coulombic potential
energies of interaction arise. To properly describe the motions of all these particles, one
needs to consider the full Schrodinger equation HY = EY , in which the Hamiltonian H



contains the sum (denoted Hg) of the kinetic energies of all N electrons and the coulomb
potentia energies among the N electrons and the M nuclei aswell asthe kinetic energy T of
the M nucle

T=Sa1m (-h22mg) N2,

H=He+T

He=Sj{ (- h%2me) Nj2 - SaZ£2/ja} + Sj<k €21k
+ Sa<b ZaZp €Ryp.

Here, maisthe mass of the nucleus a, Zg2 isits charge, and N£ isthe Laplacian with
respect to the three cartesian coordinates of this nucleus (this operator N2 isgivenin
spherica polar coordinatesin Appendix A); 1j a isthe distance between the jth electron and
the &N nucleus, rj i is the distance between the jth and kih electrons, me is the electron's
mass, and R, is the distance from nucleus ato nucleus b.

The full Hamiltonian H thus contains differential operators over the 3N electronic
coordinates (denoted r as a shorthand) and the 3M nuclear coordinates (denoted R as a
shorthand). In contrast, the electronic Hamiltonian He isaHermitian differential operator in
r-space but not in R-space. Although He isindeed afunction of the R-variables, it isnot a
differentia operator involving them.

Because He isa Hermitian operator in r-space, its eigenfunctions Y i (r|R) obey

HeYi (rIR) =E (R) Yi (rR)

for any values of the R-variables, and form a complete set of functions of r for any values
of R. These eigenfunctions and their eigenvalues E;j (R) depend on R only because the
potentials appearing in He depend on R. The Y and E are the el ectronic wavefunctions

and electronic energies whose evaluations are treated in the next three Chapters.

Thefact that the set of {Y i} is, in principle, complete in r-space allows the full
(electronic and nuclear) wavefunction Y to have its r-dependence expanded in terms of the
Yi.

Y (R =Si Y (rR) X (R) .



The X;(R) functions, carry the remaining R-dependence of Y and are determined by
insistingthat Y as expressed here obey the full Schrédinger equation:

(HetT-E)Si Y (rR) Xi (R) =0.

Projecting this equation against <Y j (r|R)| (integrating only over the electronic coordinates
becausethe Y j are orthonormal only when so integrated) gives:

[ER-B)X (R +TX(R)]=-Si{<Yj[T[Yi>(R)Xi(R)
+ Sa=1m (- R2/my) <Y INalYi>R) - NaXi(R) },

wherethe (R) notationin<Y; | T|Y; > (R) and <Y |Na| Y >(R) has been used to
remind one that the integrals < ...> are carried out only over the r coordinates and, asa
result, still depend on the R coordinates.

IntheBorn-Oppenheimer (BO) approximation, one neglects the so-called non-
adiabatic or non-BO couplings on the right-hand side of the above equation. Doing so
yields the following equations for the Xj(R) functions:

[(§(R)-E)X°(R)+ T X;%R)] =0,

where the superscript in XjO(R) is used to indicate that these functions are solutions within
the BO approximation only.

These BO equations can be recognized as the equations for the trand ational
rotational, and vibrational motion of the nuclei on the 'potential energy surface' Ej (R).
That is, within the BO picture, the electronic energies Ej(R), considered as functions of the

nuclear positions R, provide the potentials on which the nuclei move. The el ectronic and
nuclear-motion aspects of the Schrodinger equation are thereby separated.

A. Time Scale Separation
The physical parametersthat determine under what circumstances the BO
approximation is accurate relate to the motional time scales of the electronic and

vibrational/rotational coordinates.

The range of accuracy of this separation can be understood by considering the
differencesin time scales that rel ate to € ectronic motions and nuclear motions under



ordinary circumstances. In most atoms and molecules, the electrons orbit the nuclel at
speeds much in excess of even the fastest nuclear motions (the vibrations). As aresult, the
electrons can adjust ‘quickly’ to the slow motions of the nuclel. Thismeansit should be
possible to develop amodel in which the electrons 'follow' smoothly as the nuclei vibrate
and rotate.

This pictureisthat described by the BO approximation. Of course, one should
expect large corrections to such amodel for electronic states in which 'loosely held'
electrons exist. For example, in molecular Rydberg states and in anions, where the outer
valence electrons are bound by afraction of an electron volt, the natural orbit frequencies of
these electrons are not much faster (if at all) than vibrational frequencies. In such cases,
significant breakdown of the BO picture isto be expected.

B. Vibration/Rotation States for Each Electronic Surface

The BO picture iswhat givesrise to the concept of a manifold of potential energy
surfaces on which vibrational/rotational motions occur.

Even within the BO approximation, motion of the nuclel on the various electronic
energy surfacesis different because the nature of the chemical bonding differs from surface
to surface. That is, the vibrational/rotational motion on the ground-state surfaceis certainly
not the same as on one of the excited-state surfaces. However, there are a complete set of
wavefunctions X9 m (R) and energy levels EQ i, for each surface Ej(R) because T + Ej(R)

isaHermitian operator in R-space for each surface (labelled j):

[T+E(R]X%m(R)=E%m XOm.

The eigenvalues EGj m must be labelled by the electronic surface (j) on which the motion
occurs as well asto denote the particular state (m) on that surface.

I1. Rotation and Vibration of Diatomic Molecules
For a diatomic species, the vibration-rotation (V/R) kinetic energy operator can be

expressed as followsin terms of the bond length R and the anglesq and f that describe the
orientation of the bond axis relative to alaboratory-fixed coordinate system:



Tv/r = - h2Z2m{ R2R( R2 1R) - R2h 2.2},
where the square of the rotational angular momentum of the diatomic speciesis
L2=h2{ (sing)1 1Mq ((sina) 1/a ) + (sina)-2 12/ 2} .

Because the potential Ej (R) depends on R but not onq or f, the V/R function X9 m can be

written as a product of an angular part and an R-dependent part; moreover, because L2
contains the full angle-dependence of Ty/r, Xoj,n can be written as

XO%n=Yam (a.f) Fjav (R).

The general subscript n, which had represented the state in the full set of 3M-3 R-space
coordinates, is replaced by the three quantum numbers J,M, and v (i.e., once one focuses
on the three specific coordinates R,q, and f , atotal of three quantum numbers arisein

place of the symbol n).
Substituting this product form for X9; , into the V/R equation gives:

- h2i2m{ R2IMR( R2 1MR) - R2h2 J(3+1) } Fj v (R)
+E(R)Fjav (R) = on Jv Fjav

asthe equation for the vibrational (i.e., R-dependent) wavefunction within electronic state |
and with the species rotating with J(J+1) h2 as the square of the total angular momentum
and a projection along the laboratory-fixed Z-axis of Mh. The fact that the Fj 5 functions
do not depend on the M quantum number derives from the fact that the Ty//r kinetic energy
operator does not explicitly contain Jz; only 2 appearsin Ty/r.

The solutions for which J=0 correspond to vibrational statesin which the species
has no rotational energy; they obey

- R2/2m{ R2MR(R21R) } Fjov (R)
+Ej(R) Fjov (R) = Eoj,O,v Fov-

The differential-operator parts of this equation can be smplified somewhat by substituting
F= R-1c and thus obtaining the following equation for the new function c:



- h2/2m ﬂ/ﬂR ﬂ/ﬂR Cj,O,V (R) + EJ (R) Cj,O,V (R) = EOj,O,V Cj,O,V .

Solutions for which J* O require the vibrational wavefunction and energy to respond to the
presence of the 'centrifugal potential' given by b2 J(J+1)/(2nR?); these solutions obey the
full coupled V/R equations given above.

A. Separation of Vibration and Rotation

It is common, in developing the working equations of diatomic-molecule
rotational/vibrational spectroscopy, to treat the coupling between the two degrees of
freedom using perturbation theory as developed later in this chapter. In particular, one can
expand the centrifugal coupling h2J(3+1)/(2nmR2) around the equilibrium geometry Re
(which depends, of course, onj):

R2J(F1)/(2nR2) = h2)(J+1)/(2n{RZ (1+DR)4])

= 2 JH1)/(2mR2) [1- 2DR + ... ],

and treat the terms containing powers of the bond length displacement DRK as
perturbations. The zeroth-order equations read:

- B2/2m{ R2TMR(R21MR) } F9,3v (R) + Ej(R) Fav (R)
+h2 J(IH1)/(2nRA) FY 3v =EY v FY av

and have solutions whose energies separate
B0 gv = h2 YH1)/(2nRA) + Ej

and whose wavefunctions are independent of J (because the coupling is not R-dependent in
zeroth order)

F90v (R) =Fjv (R).

Perturbation theory is then used to express the corrections to these zeroth order solutions as
indicated in Appendix D.



B. The Rigid Rotor and Harmonic Oscillator

Treatment of the rotational motion at the zeroth-order level described above
introduces the so-called 'rigid rotor' energy levels and wavefunctions. Ej = k2
J(FH1)/(2nRA) and Yim (q,f); these same quantities arise when the diatomic moleculeis
treated as arigid rod of length Re. The spacings between successive rotational levels within
this approximation are

DEj+1,0 = 2hcB(J+1),

where the so-called rotational constant B isgivenincmlas
B = h/(8p2 cnRe?) .

Therotationa level Jis (231)-fold degenerate because the energy E;j isindependent of the
M guantum number of which there are (2J+1) valuesfor each J. M= -J, -J+1, -2, ... J-2,
J1,J

The explicit form of the zeroth-order vibrational wavefunctions and energy levels,
FO;v and EY; v, depends on the description used for the electronic potential energy surface
Ej(R). In the crudest useful approximation, E;j(R) is taken to be a so-called harmonic
potential

E(R) » U2kj (R-R9?;
as a consequence, the wavefunctions and energy levels reduce to
EY v = Ej (Re) +h Od/m( v +1/2), and
FOv (R) =[2V V! ]-V2 (a/p)V4 exp(-a(R-R9?/2) Hy (22 (R-Ry)),

wherea = (K; mY2/h and Hy (y) denotes the Hermite polynomial defined by:
Hy (y) = (-1)V exp(y?) dV/dy¥ exp(-y?).

The solution of the vibrational differential equation



- R2/2m{ R2MR(R?1MR) } Fijv (R) + Ej(R) Fjv (R)=Ejy Fjv

istreated in EWK, Atkins, and McQuarrie.

These harmonic-oscillator solutions predict evenly spaced energy levels (i.e., no
anharmonicity) that persist for al v. It is, of course, known that molecular vibrations
display anharmonicity (i.e., the energy levels move closer together as one moves to higher
v) and that quantized vibrational motion ceases once the bond dissociation energy is
reached.

C. The Morse Oscillator

The Morse oscillator model is often used to go beyond the harmonic oscillator
approximation. In this model, the potential Ej(R) is expressed in terms of the bond
dissociation energy De and a parameter arelated to the second derivative k of Ej(R) at Re
k = ( d2Ej/dR2) = 2a?De as follows:

Ej(R) - Ej(Re) = De{ 1 - exp(-a(R-Re) }2.
The Morse oscillator energy levels are given by

EY v = Ej(Re) +h Ckim(v+1/2) - h2/4 (kimDg) (v+1/2)2;
the corresponding eigenfunctions are a so known analytically in terms of hypergeometric
functions (see, for example, Handbook of Mathematical Functions, M. Abramowitz and 1.

A. Stegun, Dover, Inc. New York, N. Y. (1964)). Clearly, the Morse solutions display
anharmonicity as reflected in the negative term proportional to (v+1/2)2 .

D. Perturbative Treatment of Vibration-Rotation Coupling
I11. Rotation of Polyatomic Molecules

To describe the orientations of a diatomic or linear polyatomic molecule requires
only two angles (usually termed q andf ). For any non-linear molecule, three angles
(usually a, b, and g) are needed. Hence the rotational Schrodinger equation for a non-
linear moleculeis a differential equation in three-dimensions.



There are 3M-6 vibrations of anon-linear molecule containing M atoms; alinear
molecule has 3M-5 vibrations. The linear molecule requires two angular coordinates to
describe its orientation with respect to a laboratory-fixed axis system; a non-linear molecule
requires three angles.

A. Linear Molecules

The rotational motion of alinear polyatomic molecule can be treated as an extension
of the diatomic molecule case. One obtainsthe Y 3 (q.,f) as rotational wavefunctions and,

within the approximation in which the centrifugal potential is approximated at the
equilibrium geometry of the molecule (Re), the energy levels are:

E0; = J(J+1) h2/(2!) .

Here the total moment of inertia | of the molecule takes the place of nR¢? in the diatomic
molecule case

| = Sama(Ra- RCofM)Z;

Mg is the mass of atom a whose distance from the center of mass of the moleculeis (Rj-
Rcofm). Therotational level with quantum number Jis (23+1)-fold degenerate again
because there are (23+1)

M- values.

B. Non-Linear Molecules

For anon-linear polyatomic molecule, again with the centrifugal couplingsto the
vibrations evaluated at the equilibrium geometry, the following terms form the rotational
part of the nuclear-motion kinetic energy:

Trot = Si:a,b,c (Ji2/2|i)-

Here, | isthe eigenvalue of the moment of inertia tensor:



Ixx = SaMa[ (RarRcofm)? -(Xa- Xcofm )4
Ixy = Samal[ (Xa- XcofM) (Ya-Ycoim) |

expressed originally in terms of the cartesian coordinates of the nuclel () and of the center
of massin an arbitrary molecule-fixed coordinate system (and similarly for Iz, lyy , Ixz
and ly 7). The operator J corresponds to the component of the total rotational angular
momentum J aong the direction belonging to the ith eigenvector of the moment of inertia
tensor.

Moleculesfor which all three principal moments of inertia (the l;'s) are equal are
called 'spherical tops. For these species, the rotational Hamiltonian can be expressed in
terms of the square of the total rotational angular momentum J

Trot = J2 /2| ;
as a conseguence of which the rotational energies once again become
Ej=h2 J(J+1)/21.

However, the Y 3 are not the corresponding eigenfunctions because the operator J now
contains contributions from rotations about three (no longer two) axes (i.e., the three
principal axes). The proper rotational eigenfunctions arethe DIy k (a,b,g) functions
known as 'rotation matrices (see Sections 3.5 and 3.6 of Zare's book on angular
momentum) these functions depend on three angles (the three Euler angles needed to
describe the orientation of the molecule in space) and three quantum numbers- J M, and K.
The quantum number M |abels the projection of the total angular momentum (as Mh) along
the laboratory-fixed z-axis; Kh is the projection along one of the internal principa axes (in
a spherical top molecule, al three axes are equivaent, so it does not matter which axisis
chosen).

The energy levels of spherical top molecules are (23+1)2 -fold degenerate. Both the
M and K quantum numbers run from -J, in steps of unity, to J; because the energy is
independent of M and of K, the degeneracy is (23+1)2.

Molecules for which two of the three principa moments of inertiaare equal are
called symmetric top molecules. Prolate symmetric tops have I13< I = I ¢ ; oblate symmetric
tops have I3 = Ip < I¢ (itisconvention to order the momentsof inertiaaslg£ Ip £ I¢).



The rotational Hamiltonian can now be written in terms of 2 and the component of J
along the unigue moment of inertia's axis as:

Trot = Jaz ( 1/2|a' 1/2|b ) + J2 /2|b
for prolate tops, and
Trot = JCZ ( 1/2'0 - 1/2|b) + J2/2|b

for oblate tops. Again, the Dy k (a,b,g) are the eigenfunctions, where the quantum
number K describes the component of the rotational angular momentum J along the unique
molecule-fixed axis (i.e., the axis of the unique moment of inertia). The energy levelsare
now given in terms of Jand K asfollows:

Ejk =h2J(IH1)/2lp +h2 K2 (1/25- 1/2lp)
for prolate tops, and

Ejk =h2)(3+1)/2lp +h2K2 (12l - 1/2lp)
for oblate tops.

Because the rotational energies now depend on K (aswell ason J), the
degeneracies are lower than for spherical tops. In particular, because the energies do not
depend on M and depend on the square of K, the degeneracies are (23+1) for states with
K=0and 2(2J+1) for states with |K| > O; the extrafactor of 2 arisesfor |K| > 0 states
because pairs of stateswith K = |[K| and K = |-K| are degenerate.

V. Summary

This Chapter has shown how the solution of the Schrédinger equation governing
the motions and interparticle potential energies of the nuclei and electrons of an atom or
molecule (or ion) can be decomposed into two distinct problems: (i) solution of the
electronic Schrédinger equation for the electronic wavefunctions and energies, both of
which depend on the nuclear geometry and (i) solution of the vibration/rotation
Schrédinger equation for the motion of the nuclel on any one of the electronic energy
surfaces. This decomposition into approximately separable electronic and nuclear-
motion problems remains an important point of view in chemistry. It forms the basis of




many of our models of molecular structure and our interpretation of molecular
spectroscopy. It also establishes how we approach the computational simulation of the
energy levels of atoms and molecules; we first compute electronic energy levelsat a'grid'
of different positions of the nuclei, and we then solve for the motion of the nuclei on a
particular energy surface using this grid of data.

The treatment of electronic motion istreated in detail in Sections 2, 3, and 6
where molecular orbitals and configurations and their computer evaluation is covered. The
vibration/rotation motion of molecules on BO surfaces isintroduced above, but should be
treated in more detail in a subsequent course in molecular spectroscopy.

Section Summary

This Introductory Section was intended to provide the reader with an overview of
the structure of quantum mechanics and to illustrate its application to severa exactly
solvable model problems. The model problems analyzed play especialy important rolesin
chemistry because they form the basis upon which more sophisticated descriptions of the
electronic structure and rotational-vibrational motions of molecules are built. The variational
method and perturbation theory constitute the tools needed to make use of solutions of
simpler model problems as starting points in the treatment of Schrédinger equations that are
impossible to solve analyticaly.

In Sections 2, 3, and 6 of thistext, the electronic structures of polyatomic
molecules, linear molecules, and atoms are examined in some detail. Symmetry, angular
momentum methods, wavefunction antisymmetry, and other tools are introduced as needed
throughout the text. The application of modern computational chemistry methods to the
treatment of molecular eectronic structure is included. Given knowledge of the electronic
energy surfaces as functions of the internal geometrical coordinates of the molecule, it is
possible to treat vibrational-rotational motion on these surfaces. Exercises, problems,
and solutions are provided for each Chapter. Readers are strongly encouraged to work
these exercises and problems because new materia that is used in other Chaptersis often
developed within this context.



