Section 6 More Quantitative Aspects of Electronic Structure
Calculations.

Chapter 17

Electronsinteract via pairwise Coulomb forces; within the "orbital picture" these
interactions are modelled by less difficult to treat "averaged” potentials. The difference
between the true Coulombic interactions and the averaged potential is not small, so to
achieve reasonable (ca. 1 kcal/mol) chemical accuracy, high-order correctionsto the orbital
picture are needed.

The discipline of computationa ab initio quantum chemistry isaimed at determining
the electronic energies and wavefunctions of atoms, molecules, radicals, ions, solids, and
all other chemical species. The phrase abinitio implies that one attempts to solve the
Schrédinger equation from first principles, treating the molecule as a collection of positive
nuclei and negative eectrons moving under the influence of coulombic potentials, and not
using any prior knowledge about this species chemical behavior.

To make practical use of such apoint of view requires that approximations be
introduced; the full Schrédinger equation istoo difficult to solve exactly for any but smple
model problems. These approximations take the form of physical concepts (e.g., orbitals,
configurations, quantum numbers, term symbols, energy surfaces, selection rules, etc.)
that provide useful means of organizing and interpreting experimental data and
computational methods that allow quantitative predictions to be made.

Essentially al abinitio quantum chemistry methods use, as a starting point from
which improvements are made, a picture in which the electrons interact via a one-electron
additive potential. These so-called mean-field potentials Vm(f(r) = Sj Vmf(rj) provide
descriptions of atomic and molecular structure that are approximate. Their predictions must
be improved to achieve reasonably accurate solutions to the true electronic Schroédinger
equation. In so doing, three constructs that characterize essentialy all ab initio quantum
chemical methods are employed: or bitals, configurations, and electron

correlation.
Since the eectronic kineticenergy T = Sj Tj operator is one-electron additive, the

mean-field Hamiltonian HO = T + VVmf isalso of this form. The additivity of HO implies
that the mean-field wavefunctions{ Y Ok} can be formed in terms of products of functions
{f k} of the coordinates of the individua electrons, and that the corresponding energies

{EQ} are additive. Thus, it is the ansatz that Vmf is separable that leads to the concept of



orbitals, which are the one-electron functions {f j} . These orbitals are found by solving

the one-electron Schrodinger equations:
(T1+Vmf(ry) fj(ra) = g fj(ro);

the eigenvalues{ g} arecaled orbital energies.

Because each of the electrons also possesses intrinsic spin, the one-electron
functions {f j} used in this construction are taken to be eigenfunctions of (T1 + Vmf(r1))
multiplied by either a or b. This set of functionsis called the set of mean-field spin-
orbitals.

Given the complete set of solutions to this one-electron equation, a complete set of
N-electron mean-field wavefunctions can be written down. Each Y O is constructed by

forming an antisymmetrized product of N spin-orbitals chosen from the set of {f j},

allowing each spin-orbital in the list to be afunction of the coordinates of one of the N
electrons (e.g,

Y O = [f ka(ra) fk2(r2)f ka(r3) - FkN-1(rN-1) FKN(N)L,

as above). The corresponding mean field energy is evaluated as the sum over those spin-
orbitals that appear in Y Ok :

Ed=Si-1 N -

By choosing to place N electrons into specific spin-orbitals, one has specified a
configuration. By making other choices of which N f to occupy, one describes other

configurations. Just as the one-electron mean-field Schrédinger equation has a complete set
of spin-orbital solutions{fj and g}, the N-electron mean-field Schrodinger equation has a

complete set of N-electron configuration state functions (CSFs) Y Ok and energies EOk.

[1. Electron Correlation Requires Moving Beyond a Mean-Field Model

To improve upon the mean-field picture of electronic structure, one must move
beyond the single-configuration approximation. It is essentia to do so to achieve higher
accuracy, but it is also important to do so to achieve a conceptually correct view of chemical
electronic structure. However, it is very disconcerting to be told that the familiar 1s22s22p2



description of the carbon atom isinadequate and that instead one must think of the 3P
ground state of this atom as a'mixture’ of 1s22s22p2, 1s22s23p2, 1522523d2, 2523s22p2
(and any other configurations whose angular momenta can be coupled to produce L=1 and
S=1).

Although the picture of configurationsin which N electrons occupy N spin-orbitals
may be very familiar and useful for systematizing electronic states of atoms and molecules,
these constructs are approximations to the true states of the system. They were introduced
when the mean-field approximation was made, and neither orbitals nor configurations
describe the proper eigenstates{ Y k, Ek} . The inclusion of instantaneous spatial
correlations among electrons is necessary to achieve amore accurate description of atomic
and molecular eectronic structure. No single spin-orbital product wavefunction is capable
of treating electron correlation to any extent; its product nature renders it incapable of doing
So.

[11. Moving from Qualitative to Quantitative Models

The preceding Chapters introduced, in a qualitative manner, many of the concepts
which are used in applying quantum mechanics to el ectronic structures of atoms and
molecules. Atomic, bonding, non-bonding, antibonding, Rydberg, hybrid, and delocalized
orbitals and the configurations formed by occupying these orbitals were discussed. Spin
and spatial symmetry aswell as permutational symmetry were treated, and properly
symmetry-adapted configuration state functions were formed. The Slater-Condon rules
were shown to provide expressions for Hamiltonian matrix elements (and those involving
any one- or two-electron operator) over such CSFsin terms of integrals over the orbitals
occupied in the CSFs. Orbital, configuration, and state correlation diagrams were
introduced to allow one to follow the evolution of electronic structures throughout a
'reaction path'.

Section 6 addresses the quantitative and computational implementation of many of
the above ideas. It is not designed to address all of the state-of-the-art methods which have
been, and are till being, devel oped to calculate orbitals and state wavefunctions. The rapid
growth in computer hardware and software power and the evolution of new computer
architectures makesiit difficult, if not impossible, to present an up-to-date overview of the
techniques that are presently at the cutting edge in computational chemistry. Nevertheless,
this Section attempts to describe the essential elements of several of the more powerful and
commonly used methods; it islikely that many of these elementswill persist in the next




generation of computational chemistry techniques athough the details of their
implementation will evolve considerably. The text by Szabo and Ostlund provides excellent
insightsinto many of the theoretical methods treated in this Section.

V. Atomic Units

The electronic Hamiltonian is expressed, in this Section, in so-called atomic units
(aus)

He: SJ { (' 1/2) sz‘ SaZdrj,a} + Sj<|( ]-/rj,k .

These units are introduced to remove all b, e, and me factors from the equations.

To effect this unit transformation, one notes that the kinetic energy operator scales
as rj2 whereas the coulombic potentials scale asrj-1 and as rj k1. So, if each of the
distances appearing in the cartesian coordinates of the electrons and nuclei were expressed
as aunit of length ag multiplied by a dimensionless length factor, the kinetic energy
operator would involve terms of the form
(- h2/2(ap)?me) Nj2, and the coulombic potentials would appear as
Z£2/(2o)rj,a and €2/(ap)rj K - A factor of €2/ag (which has units of energy since ag has units
of length) can then be removed from the coulombic and kinetic energies, after which the
kinetic energy terms appear as ( - h2/2(e2ag)me ) N2 and the potential energies appear as
ZJrj.a and 1/rj k. Then, choosing ag = h2/e2me changes the kinetic energy termsinto -1/2 N
j2; asaresult, the entire electronic Hamiltonian takes the form given above in which no €2,
Me, Or K2 factors appear. The value of the so-called Bohr radius ag = h2/e2meis 0.529 A,
and the so-called Hartree energy unit e2/ay, which factors out of He, is27.21 eV or 627.51
kcal/mol.

Chapter 18

The single Sater determinant wavefunction (properly spin and symmetry adapted) isthe
starting point of the most common mean field potential. It is also the origin of the molecular
orbital concept.

|. Optimization of the Energy for a Multiconfiguration Wavefunction

A. The Energy Expression



The most straightforward way to introduce the concept of optimal molecular orbitals
isto consider atrial wavefunction of the form which wasintroduced earlier in Chapter 9.11.
The expectation value of the Hamiltonian for awavefunction of the multiconfigurational
form

Y =S CF,

where F | isa space- and spin-adapted CSF which consists of determinental wavefunctions
If 12f 12f 13...T INI , can be written as:

E=S|j=1,MCICi<F||H|F3>.

The spin- and space-symmetry of the F | determine the symmetry of the state Y whose
energy isto be optimized.

Inthisform, itisclear that E is aquadratic function of the Cl amplitudesCj; itisa
quartic functional of the spin-orbitals because the Slater-Condon rules expresseach < F |
H | F 3> CI matrix element in terms of one- and two-electronintegrals<f; | f |f; > and
<fifj|g|fkf| > over these spin-orbitals.

B. Application of the Variational Method

Thevariational method can be used to optimize the above expectation value
expression for the electronic energy (i.e., to make the functiona stationary) as a function of
the CI coefficients Cj and the LCAO-MO coefficients{Cp,i} that characterize the spin-
orbitals. However, in doing so the set of {Cy,,i} can not be treated as entirely independent
variables. The fact that the spin-orbitals {f ;} are assumed to be orthonormal imposes a set
of constraints on the { Cp,i}:

<fi[fj>=dij =Smn C*mi <cnlcn>Cyj.
These constraints can be enforced within the variational optimization of the energy function
mentioned above by introducing a set of Lagrange multipliers{g j} , onefor each

constraint condition, and subsequently differentiating

E-Sij6&,j[dij-SmnC'mi<cnicn>Cqj]



with respect to each of the Cy, j variables.

C. The Fock and Secular Equations

Upon doing so, the following set of equationsis obtained (early referencesto the
derivation of such equationsinclude A. C. Wahl, J. Chem. Phys. 41,2600 (1964) and F.
Greinand T. C. Chang, Chem. Phys. Lett. 12, 44 (1971); amore recent overview is
presented in R. Shepard, p 63, in Adv. in Chem. Phys. LXIX, K. P. Lawley, Ed., Wiley-
Interscience, New Y ork (1987); the subject is aso treated in the textbook Second
Quantization Based Methods in Quantum Chemistry, P. Jargensen and J. Simons,
Academic Press, New York (1981))) :

Sj=1mH 3 C3=EC 1=1,2..M,and
Ffi=Sjq;f],

wheretheg j are Lagrange multipliers.

Thefirst set of equations govern the { Cj} amplitudes and are called the Cl- secular
equations. The second set determine the LCAO-MO coefficients of the spin-orbitals {f}
and are called the Fock equations. The Fock operator F is given in terms of the one- and
two-electron operatorsin H itself aswell asthe so-called one- and two-electron density
matrices g j and G j k,| which are defined below. These density matrices reflect the
averaged occupancies of the various spin orbitalsin the CSFs of Y . The resultant
expression for Fis:

Ffi=Sjag,hfj+Sjki Gkl dilfk

where h is the one-electron component of the Hamiltonian (i.e., the kinetic energy operator
and the sum of coulombic attractions to the nuclei). The operator J; | is defined by:

J1 k) =8 £5(r) (I Ulr-r| dt' fi(r),

where the integration denoted dt' is over the spatial and spin coordinates. The so-called
spin integration simply means that thea or b spin function associated with f | must be the



sameasthea or b spin function associated with fj or the integral will vanish. Thisisa
consequence of the orthonormality conditions<ala> = <blb> =1, <a|b>=<bja> = 0.

D. One- and Two- Electron Density Matrices
The density matrices introduced above can most straightforwardly be expressed in
terms of the Cl amplitudes and the nature of the orbital occupanciesinthe CSFsof Y as

follows:

1. g, isthesum over al CSFs, in whichf isoccupied, of the square of the C; coefficient
of that CSF:

g =S| (withf; occupied) C2 .

2. g isthe sum over pairs of CSFs which differ by a single spin-orbital occupancy (i.e.,
one having fj occupied where the other hasfj occupied after the two are placed into
maximal coincidence-the sign factor (sign) arising from bringing the two to maximal
coincidence is attached to the final density matrix element):

g, = Si,5(sign)(withf; occupiedin | wheref;isinJ) C; Cj.
The two-electron density matrix elements are given in similar fashion:
3. G j,i,j = Si (with bothf; andfj occupied) C C; ;
4. G j,j,i =-Si (withbothf; and fj occupied) C; C; =-Gj
(it can be shown, in generd that G j k| is odd under exchange of i and j, odd under
exchange of k and | and even under (i,j)<=>(k,!) exchange; thisimpliesthat G j k|
vanishesifi=jork=1.);

5. G jkj=S13(sgn)(withfjinbothl andJ
andfjinl wherefgisinJ) CC;

=Gijk=-Gjjk=-G,ikj



6. G j kI =S1a(sign(withfjinl wherefyisinJandfjinl where f|isinJ)C

=Gilk=-G,ikI=-GjIk=Gilk-

These density matrices are themselves quadratic functions of the Cl coefficients and
they reflect al of the permutational symmetry of the determinental functions used in
constructing Y ; they are a compact representation of all of the Slater-Condon rules as
applied to the particular CSFswhich appear in Y . They contain all information about the
spin-orbital occupancy of the CSFsin Y . The one- and two- electronintegrals<f; | f [fj >
and <fifj [g|fkf| >containall of theinformation about the magnitudes of the kinetic and
Coulombic interaction energies.

I1. The Single-Determinant Wavefunction

The simplest tria function of the form given above isthe single Slater determinant
function:

Y =|fafof3... NI

For such afunction, the ClI part of the energy minimization is absent (the classic papersin
which the SCF equations for closed- and open-shell systems are treated are C. C. J.
Roothaan, Rev. Mod. Phys. 23, 69 (1951); 32, 179 (1960)) and the density matrices
simplify greatly because only one spin-orbital occupancy is operative. In this case, the
orbital optimization conditions reduce to:

Ffi=Sja,fj.
where the so-called Fock operator F is given by

Ffi=hfi+ Sjoccupied) [Jj - Kj] fi -

The coulomb (J) and exchange (Kj) operators are defined by the relations:

Jy fi=of*(r") fi(r)Ur-r| dt' fi(r) , and



Kj fi = of *j(r') fi(r)Ulr-r'| dt’ £(r) .

Again, the integration implies integration over the spin variables associated with thef j
(and, for the exchange operator, f j), as aresult of which the exchange integral vanishes
unless the spin function of f isthe same asthat of fj; the coulomb integral is non-
vanishing no matter what the spin functions of f; and f;.

The sum over coulomb and exchange interactions in the Fock operator runs only
over those spin-orbitals that are occupied inthetrial Y . Because a unitary transformation
among the orbitals that appear in Y leaves the determinant unchanged (thisis a property of
determinants- det (UA) = det (U) det (A) = 1 det (A), if U isaunitary matrix), it is possible
to choose such a unitary transformation to make the g j matrix diagonal. Upon so doing,
oneisleft with the so-called canonical Hartree-Fock equations:

Ffi= gfj,

where g isthe diagonal value of the g j matrix after the unitary transformation has been
applied; that is, g isan eigenvalue of the g j matrix. These equations are of the eigenvalue-
eigenfunction form with the Fock operator playing the role of an effective one-electron
Hamiltonian and thef playing the role of the one-electron eigenfunctions.

It should be noted that the Hartree-Fock equationsF f = g f; possess solutions
for the spin-orbitalswhich appear in Y (the so-called occupied spin-orbitals) aswell asfor
orbitalswhich are not occupied in Y ( the so-called virtua spin-orbitals). In fact, the F
operator is hermitian, so it possesses a compl ete set of orthonormal eigenfunctions; only
those which appear in'Y appear in the coulomb and exchange potentials of the Fock
operator. The physica meaning of the occupied and virtual orbitals will be clarified later in
this Chapter (Section VII.A)

[11. The Unrestricted Hartree-Fock Spin Impurity Problem

Asformulated above in terms of spin-orbitals, the Hartree-Fock (HF) equations
yield orbitals that do not guaranteethat Y possesses proper spin symmetry. Toillustrate the

point, consider the form of the equations for an open-shell system such as the Lithium atom
Li. If 1sa, 1sb, and 2sa spin-orbitals are chosen to appear in thetria function Y, then the

Fock operator will contain the following terms:



F=h+Jisa + J1sb + J2sa - [ K1sa + K1sp + K2sa | -
Acting on an a spin-orbita f k5 with F and carrying out the spin integrations, one obtains
Ffka =hfka +(2J1s+ J2s) fka - (K1s+ K2g) fka -

In contrast, when acting on ab spin-orbital, one obtains

Ffko=hfkp+ (2J1s+ J2s) kb - (K1s) fkb -

Spin-orbitalsof a and b type do not experience the same exchange potential in this model,
which isclearly dueto thefact that Y containstwoa spin-orbitals and only one b spin-
orbital.

One consequence of the spin-polarized nature of the effective potentia in F isthat
the optimal 1sa and 1sb spin-orbitals, which are themselves solutionsof Ffj =g fj, do
not have identical orbital energies(i.e., e1sq 1 €15p) and are not spatialy identical to one
another (i.e., f 155 and f 19y do not have identical LCAO-MO expansion coefficients). This
resultant spin polarization of the orbitalsin'Y givesriseto spinimpuritiesinY . That is, the
determinant | 1sa 1s'b 2sa |isnot a pure doublet spin eigenfunction athoughitisan S,
eigenfunction with Mg = 1/2; it contains both S= 1/2 and S = 3/2 components. If the 1sa
and 1s'b spin-orbitals were spatially identical, then | 1sa 1s'b 2sa | would be a pure spin
eigenfunction with S= 1/2.

The above single-determinant wavefunction is commonly referred to as being of the
unrestricted Hartree-Fock (UHF) type because no restrictions are placed on the spatial
nature of the orbitals which appear in'Y . In general, UHF wavefunctions are not of pure
spin symmetry for any open-shell system. Such a UHF treatment forms the starting point
of early versions of the widely used and highly successful Gaussian 70 through Gaussian-
8X series of eectronic structure computer codes which derive from J. A. Pople and co-
workers (see, for example, M. J. Frisch, J. S. Binkley, H. B. Schlegel, K Raghavachari,
C. F. Méelius, R. L. Martin, J. J. P. Stewart, F. W. Bobrowicz, C. M. Rohling, L. R.
Kahn, D. J. Defrees, R. Seeger, R. A. Whitehead, D. J. Fox, E. M. Fleuder, and J. A.
Pople, Gaussian 86 , Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh,
PA (1984)).

The inherent spin-impurity problem is sometimes 'fixed' by using the orbitals
which are obtained in the UHF calculation to subsequently form a properly spin-adapted
wavefunction. For the above Li atom example, this amounts to forming a new



wavefunction (after the orbitals are obtained via the UHF process) using the techniques
detailled in Section 3 and Appendix G:

Y =12 [|1sa 1sb 2sa |- |1sb 1s'a 2sa |] .

Thiswavefunctionisapure S = 1/2 state. This prescription for avoiding spin
contamination (i.e., carrying out the UHF calculation and then forming anew spin-pureY')
isreferred to as spin-projection.

Itis, of course, possible to first form the above spin-pure Y asatrial wavefunction
and to then determine the orbitals 1s 1s' and 2s which minimize its energy; in so doing, one
is dealing with a spin-pure function from the start. The problem with carrying out this
process, which is referred to as aspin-adapted Hartree-Fock calculation, isthat the
resultant 1sand 1s orbitals still do not have identical spatial attributes. Having a set of
orbitals (1s, 1s, 2s, and the virtual orbitals) that form a non-orthogonal set (1sand 1s are
neither identical nor orthogonal) makesit difficult to progress beyond the single-
configuration wavefunction as one often wishesto do. That is, it is difficult to use a spin-
adapted wavefunction as a starting point for a correlated-level treatment of electronic
motions.

Before addressing head-on the problem of how to best treat orbital optimization for
open-shell species, it isuseful to examine how the HF equations are solved in practicein
terms of the LCAO-MO process.

V. The LCAO-MO Expansion

The HF equations Ff = g fj comprise a set of integro-differential equations; their
differentia nature arises from the kinetic energy operator in h, and the coulomb and
exchange operators provide their integral nature. The solutions of these equations must be
achieved iteratively becausethe J and K operatorsin F depend on the orbitalsf which
areto be solved for. Typical iterative schemes begin with a'guess for those fj which
appear in'Y , which then allows F to be formed. Solutionsto Ff = g fi are then found,
and thosef j which possess the space and spin symmetry of the occupied orbitals of Y and
which have the proper energies and nodal character are used to generate a new F operator
(i.e., new J; and K; operators). The new F operator then gives new f and g via solution of
thenew Ffj = g fj equations. Thisiterative processis continued until thef; and g do not
vary significantly from one iteration to the next, at which time one says that the process has
converged. Thisiterative procedure isreferred to as the Hartree-Fock self-consistent field




(SCF) procedure because iteration eventually leads to coulomb and exchange potential
fields that are consistent from iteration to iteration.

In practice, solution of Ffj = g fj asan integro-differential equation can be carried
out only for atoms (C. Froese-Fischer, Comp. Phys. Commun. 1, 152 (1970)) and linear
molecules (P. A. Christiansen and E. A. McCullough, J. Chem. Phys. 67, 1877 (1977))
for which the angular parts of thef; can be exactly separated from the radial because of the
axial- or full- rotation group symmetry (e.g., fi = Y| m Rn) (r) foranatomandf; =
exp(imf) Rn | m (r,q) for alinear molecule). In such special cases, Ffj = g fj givesriseto
aset of coupled equations for the R | (r) or Rn | m(r,q) which can and have been solved.

However, for non-linear molecules, the HF equations have not yet been solved in such a
manner because of the three-dimensional nature of thefj and of the potential termsin F.

In the most commonly employed procedures used to solve the HF equations for
non-linear molecules, the f ; are expanded in abasis of functions cyaccording to the
LCAO-MO procedure:

f| = SmCm| Cm-

Doing sothenreduces F fj = g f to amatrix eigenvalue-type equation of the form:

Sn Fmn Cn,i =& Sn Smn Ch,i

where Smn = < ¢m| cn> isthe overlap matrix among the atomic orbitals (aos) and

Fmn = <cnfhen> + Sak [Gk<CnfagiCnCk>G1 k™ <CnEdgiCkCn ]

isthe matrix representation of the Fock operator in the ao basis. The coulomb and
exchange- density matrix elementsin the ao basis are:

3,k = Si(occupied) Cd,i Ck,i, and
A,k = Si(occ., and same spin) Cd,i Cki

where the sum in gy k& runs over those occupied spin-orbitals whose mg valueis equal to
that for which the Fock matrix is being formed (for a closed-shell species, gq k& = 1/2

Od.k)-



It should be noted that by moving to amatrix problem, one does not remove the
need for an iterative solution; the Fyyn matrix elements depend onthe C j LCAO-MO

coefficients which are, in turn, solutions of the so-called Roothaan matrix Hartree-Fock
equations- Sp Fmn Cni =& Sn Smn Ch,i . One should also note that, just as
Ffi= g f; possesses acomplete set of eigenfunctions, the matrix Fryyn , whose dimension

M isequal to the number of atomic basis orbitals used in the LCAO-MO expansion, has M
eigenvalues g and M eigenvectors whose elements are the C, j. Thus, there are occupied

and virtual molecular orbitals (mos) each of which is described in the LCAO-MO form with
Ch,i coefficients obtained via solution of

Sn Fmn Cni =& Sn Smn Chji -
V. Atomic Orbital Basis Sets

A.STOsand GTOs

The basis orbitals commonly used in the LCAO-MO-SCF processfall into two
classes:

1. Slater-type orbitals

cnl,m (ra.f)=NnImz Yi,m(q.f) mlezr,
which are characterized by quantum numbersn, |, and m and exponents (which
characterize the 'size' of the basis function) z. The symbol Nn, | m z denotes the
normalization constant.
2. Cartesian Gaussian-type orbitals

Ca,b,c (10,f) =N'gpca Xayb z exp(-arz),
characterized by quantum numbers a, b, and ¢ which detail the angular shape and direction

of the orbital and exponentsa which govern the radial 'size' of the basis function. For
example, orbitalswith a, b, and ¢ values of 1,0,0 or 0,1,0 or 0,0,1 are px , py , and pz

orbitals; those with a,b,c values of 2,0,0 or 0,2,0 or 0,0,2 and



1,1,0 0r 0,1,1 or 1,0,1 span the space of five d orbitals and one s orbital (the sum of the
2,0,0 and 0,2,0 and 0,0,2 orhitalsis an s orbital because x2 + y2 + z2 = r2 js independent
of g andf).

For both types of orbitals, the coordinatesr, g, and f refer to the position of the
electron relative to a set of axes attached to the center on which the basis orbital islocated.
Although Slater-type orbitals (STOs) are preferred on fundamenta grounds (e.g., as
demonstrated in Appendices A and B, the hydrogen atom orbitals are of thisform and the
exact solution of the many-electron Schrédinger equation can be shown to be of thisform
(in each of its coordinates) near the nuclear centers), STOs are used primarily for atomic
and linear-molecul e cal cul ations because the multi-center integrals< caCp| g | cccd > (each
basis orbital can be on a separate atomic center) which arise in polyatomic-molecule
calculations can not efficiently be performed when STOs are employed. In contrast, such
integrals can routinely be done when Gaussian-type orbitals (GTOs) are used. This
fundamental advantage of GTOs has lead to the dominance of these functions in molecular
guantum chemistry.

To understand why integrals over GTOs can be carried out when analogous STO-
based integrals are much more difficult, one must only consider the orbital products (cacc

(rp) and cpcd (rp) ) which arise in such integrals. For orbitals of the GTO form, such
products involve exp(-a (r-Rg)?2) exp(-ac (r-Ro)?). By completing the square in the
exponent, this product can be rewritten asfollows:

exp(-aa(r-Ra?) exp(-ac(r-Re)?)

= exp(-(@aatad(r-R")?) exp(-a'(RaRe)?),
where

R'=[agRatadRc]/(aa+ac and

a'=agad(aztag).
Thus, the product of two GTOs on different centersis equal to asingle other GTO at a
center R between the two original centers. As aresult, even afour-center two-electron

integral over GTOs can be written as, at most, atwo-center two-electron integral; it turns
out that this reduction in centersis enough to allow all such integralsto be carried out. A



similar reduction does not arise for STOs because the product of two STOs can not be
rewritten asanew STO at anew center.

To overcome the primary weakness of GTO functions, that they have incorrect
behavior near the nuclear centers (i.e., their radial derivatives vanish at the nucleus whereas
the derivatives of STOs are non-zero), it is common to combine two, three, or more GTOs,
with combination coefficients which are fixed and not treated as LCAO-MO parameters,
into new functions called contracted GTOs or CGTOs. Typically, a series of tight,
medium, and loose GTOs (i.e., GTOs with large, medium, and small a values,
respectively) are multiplied by so-called contraction coefficients and summed to produce a
CGTO which appears to possess the proper ‘cusp’ (i.e., non-zero slope) at the nuclear
center (although even such a combination can not because each GTO has zero dope at the
nucleus).

B. Basis Set Libraries

Much effort has been devoted to developing sets of STO or GTO basis orbitals for
main-group elements and the lighter transition metals. This ongoing effort isaimed at
providing standard basis set libraries which:

1. Yield reasonable chemical accuracy in the resultant wavefunctions and energies.

2. Are cost effectivein that their usein practical calculationsisfeasible.

3. Arerelatively transferrable in the sense that the basis for a given atom is flexible enough
to be used for that atom in avariety of bonding environments (where the atom's
hybridization and local polarity may vary).

C. The Fundamental Core and Vaence Basis

In constructing an atomic orbital basisto usein aparticular calculation, one must
choose from among several classes of functions. First, the size and nature of the primary
core and valence basis must be specified. Within this category, the following choices are
common:

1. A minimal basisin which the number of STO or CGTO orbitalsis equal to the number
of core and valence atomic orbitalsin the atom.

2. A double-zeta (DZ) basisin which twice as many STOs or CGTOs are used asthere are
core and valence atomic orbitals. The use of more basis functionsis motivated by a desire
to provide additiona variational flexibility to the LCAO-MO process. Thisflexibility
allowsthe LCAO-MO process to generate molecular orbitals of variable diffuseness asthe



local electronegativity of the atom varies. Typically, double-zeta bases include pairs of
functions with one member of each pair having a smaller exponent (z or a value) thanin
the minimal basis and the other member having alarger exponent.

3. A triple-zeta (TZ) basis in which three times as many STOs or CGTOs are used asthe
number of core and valence atomic orbitals.

4. Dunning has developed CGTO bases which range from approximately DZ to
substantially beyond TZ quality (T. H. Dunning, J. Chem. Phys. 53, 2823 (1970); T. H.
Dunning and P. J. Hay in Methods of Electronic Structure Theory, H. F. Schaefer, 111
Ed., Plenum Press, New Y ork (1977))). These bases involve contractions of primitive
GTO bases which Huzinaga had earlier optimized (S. Huzinaga, J. Chem. Phys. 42, 1293
(1965)) for use as uncontracted functions (i.e., for which Huzinaga varied the a valuesto

minimize the energies of several electronic states of the corresponding atom). These
Dunning bases are commonly denoted, for example, as follows for first-row atoms:
(10s,6p/5s,4p), which means that 10 s-type primitive GTOs have been contracted to
produce 5 separate s-type CGTOs and that 6 primitive p-type GTOs were contracted to
generate 4 separate p-type CGTOs. More recent basis sets from the Dunning group are
givenin T. Dunning, J. Chem. Phys. 90, 1007 (1990).
5. Even-tempered basis sets (M. W. Schmidt and K. Ruedenberg, J. Chem. Phys. 71,
3961 (1979)) consist of GTOsin which the orbital exponents a belonging to series of
orbitals consist of geometrical progressions: ak = abk , where aand b characterize the
particular set of GTOs.
6. STO-3G bases were employed some years ago (W. J. Hehre, R. F. Stewart, and J. A.
Pople, J. Chem. Phys. 51, 2657 (1969)) but are less popular recently. These bases are
constructed by least squaresfitting GTOs to STOs which have been optimized for various
electronic states of the atom. When three GTOs are employed to fit each STO, aSTO-3G
basisisformed.
7. 4-31G, 5-31G, and 6-31G bases (R. Ditchfield, W. J. Hehre, and J. A. Pople, J.
Chem. Phys. 54, 724 (1971); W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem.
Phys. 56, 2257 (1972); P. C. Hariharan and J. A. Pople, Theoret. Chim. Acta. (Berl.) 28,
213 (1973); R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72,
650 (1980)) employ asingle CGTO of contraction length 4, 5, or 6 to describe the core
orbital. The valence spaceis described at the DZ level with the first CGTO constructed
from 3 primitive GTOs and the second CGTO built from asingle primitive GTO.

The values of the orbital exponents (zs or as) and the GTO-to-CGTO contraction
coefficients needed to implement a particular basis of the kind described above have been
tabulated in several journa articles and in computer data bases (in particular, in the data



base contained in the book Handbook of Gaussian Basis Sets: A. Compendium for Ab
initio Molecular Orbital Calculations, R. Poirer, R. Kari, and I. G. Csizmadia, Elsevier
Science Publishing Co., Inc., New York, New Y ork (1985)).

Severd other sources of basis setsfor particular atoms are listed in the Table shown
below (here JCP and JACS are abbreviations for the Journal of Chemical Physics and the
Journal of The American Chemical Society, respectively).

Literature Reference BasisType Atoms

Hehre, W.J.; Stewart, R.F.; Pople, JA. STO-3G H-Ar
JCP 51, 2657 (1969).

Hehre, W.J.; Ditchfield, R.; Stewart, R.F;

Pople, J.A. JCP 52, 2769 (1970).

Binkley, J.S.; Pople, JA.; Hehre, W.J. 3-21G H-Ne
JACS 102, 939 (1980).

Gordon, M.S,; Binkley, J.S.; Pople, JA.; 3-21G Na-Ar
Pietro, W.J.; Hehre, W.J. JACS 104, 2797 (1982).

Dobbs, K.D.; Hehre, W.J. 3-21G K,Ca,Ga
J. Comput. Chem. 7, 359 (1986).

Dobbs, K.D.; Hehre, W.J. 3-21G Sc-Zn
J. Comput. Chem. 8, 880 (1987).

Ditchfield, R.; Hehre, W.J.; Pople, JA. 6-31G H
JCP 54, 724 (1971).

Dill, J.D.; Pople, JA. 6-31G Li,B

JCP 62, 2921 (1975).

Binkley, J.S.; Pople, JA. 6-31G Be
JCP 66, 879 (1977).



Hehre, W.J.; Ditchfield, R.; Pople, JA.

JCP 56, 2257 (1972).

Francl, M.M.; Pietro, W.J.; Hehre, W.J.;

Binkley, J.S.; Gordon, M.S.; DeFrees, D.J,;

Pople, J.A. JCP 77, 3654 (1982).

Dunning, T. JCP 53, 2823 (1970).

Dunning, T. JCP 55, 716 (1971).

Krishnan, R.; Binkley, J.S.; Seeger, R.;
Pople, J.A. JCP 72, 650 (1980).

Dunning, unpublished VDZ.

Dunning, unpublished VTZ.

Dunning, unpublished VQZ.

6-31G C-F
6-31G Na-Ar
(49/2s) H
(49/39) H
(9s5p/3s2p) B-F
(9s5p/4s2p) B-F
(9s5p/5s3p) B-F
(59/39) H
(10g/49) Li
(10s/59) Be

(10s6p/5s3p) B-Ne
(10s6p/54p) B-Ne

6-311G H-Ne

(49/2s) H
(9s5p/3s2)  Li,Be,C-Ne
(12s8p/4s3p) Na-Ar

(55/39) H
(65/39) H
(12s6p/4s3p) Li,Be,C-Ne

(17s10p/54p) Mg-Ar

(79/4s) H
(8g/4s) H
(16s7p/54p) B-Ne



Dunning, T. JCP 90, 1007 (1989). (4s1p/2s1p) H
(pVDZ,pVTZ,pVQZ correation-consistent)  (5s2pld/3s2pld) H
(6s3p1d1f/4s3p2dlf) H
(94p1d/3s2pld) B-Ne
(10s5p2d1f/4s3p2dif) B-Ne
(12s6p3d2f1g/5s4p3d2flg) B-Ne

Huzinaga, S.; Klobukowski, M.; Tatewaki, H. (149/29) Li,Be
Can. J. Chem. 63, 1812 (1985). (14s9p/2slp) B-Ne
(16s9p/3slp) NaMg
(16s11p/3s2p) Al-Ar

Huzinaga, S.; Klobukowski, M. (14s10p/2s1p) B-Ne
THEOCHEM. 44, 1 (1988). (17s10p/3s1p) Na-Mg
(17s13p/3s2p)  Al-Ar

(20s13p/4s2p) K-Ca

(20s13p10d/4s2pl1d) Sc-Zn

(20s14p9d/4s3d1d) Ga

McLean, A.D.; Chandler, G.S. (12s8p/4s2p) Na-Ar, P-,S,Cl-

JCP 72, 5639 (1980). (12s8p/5s3p) Na-Ar, P-,S,Cl-
(12s8p/6s4p) Na-Ar, P-,S,Cl-
(12s9p/6s4p) Na-Ar, P-,S,Cl-
(12s9p/6s5p) Na-Ar, P-,S,Cl-

Dunning, T.H.Jr.; Hay, P.J. Chapter 1in (11s7p/6s4p) Al-Cl

'Methods of Electronic Structure Theory’,

Schaefer, H.F.111, Ed., Plenum Press,

N.Y., 1977.

Hood, D.M.; Pitzer, R.M.; Schaefer, H.F.1l1 (14s11p6d/10s8p3d) Sc-Zn

JCP 71, 705 (1979).

Schmidt, M.W.; Ruedenberg, K. (IN]s), N=3-10 H
JCP 71, 3951 (1979). ([2N]s), N=3-10 He



(regular even-tempered) ([2N]s), N=3-14 Li,Be
([2N]s[N]p),N=3-11 B,N-Ne
([2N]9[N]p),N=3-13 C
([2N]s[N]p).N=4-12  NaMg
([2N-6]9[N]p),N=7-15  Al-Ar

D. Polarization Functions

In addition to the fundamental core and valence basis described above, one usually
adds a set of so-called polarization functions to the basis. Polarization functions are
functions of one higher angular momentum than appears in the atom's valence orbital space
(e.g, d-functionsfor C, N , and O and p-functions for H). These polarization functions
have exponents (z or a) which cause their radia sizesto be similar to the sizes of the

primary vaence orbitals

(i.e., the polarization p orbitals of the H atom are similar in size to the 1s orbital). Thus,
they are not orbitals which provide a description of the atom's valence orbital with one
higher I-value; such higher-1 valence orbitals would be radially more diffuse and would
therefore require the use of STOs or GTOs with smaller exponents.

The primary purpose of polarization functionsis to give additiona angular
flexibility to the LCAO-MO processin forming the valence molecular orbitas. Thisis
illustrated below where polarization dy, orbitals are seen to contribute to formation of the
bonding p orbital of a carbonyl group by allowing polarization of the Carbon atom's pp
orbital toward the right and of the Oxygen atom's py orhital toward the |eft.




Polarization functions are essential in strained ring compounds because they provide the
angular flexibility needed to direct the electron density into regions between bonded atoms.

Functions with higher I-values and with 'sizes more in line with those of the
lower-| orbitals are also used to introduce additional angular correlation into the calculation
by permitting polarized orbital pairs (see Chapter 10) involving higher angular correlations
to be formed. Optimal polarization functions for first and second row atoms have been
tabulated (B. Roos and P. Siegbahn, Theoret. Chim. Acta (Berl.) 17, 199 (1970); M. J.
Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80, 3265 (1984)).

E. Diffuse Functions

When dealing with anions or Rydberg states, one must augment the above basis
sets by adding so-called diffuse basis orbitals. The conventional valence and polarization
functions described above do not provide enough radial flexibility to adequately describe
either of these cases. Energy-optimized diffuse functions appropriate to anions of most
lighter main group elements have been tabulated in the literature (an excellent source of
Gaussian basis set information is provided in Handbook of Gaussian Basis Sets, R.
Poirier, R. Kari, and I. G. Csizmadia, Elsevier, Amsterdam (1985)) and in data bases.
Rydberg diffuse basis sets are usually created by adding to conventional valence-plus-
polarization bases sequences of primitive GTOs whose exponents are smaller than that (call
it agiff) of the most diffuse GTO which contributes strongly to the valence CGTOs. Asa

'rule of thumb', one can generate a series of such diffuse orbitals which are liniarly
independent yet span considerably different regions of radia space by introducing primitive
GTOs whose exponents are a gif /3, adiff /9 , aiff /27, €tc.

Once one has specified an atomic orbital basis for each atom in the molecule, the
LCAO-MO procedure can be used to determine the Cy, j coefficientsthat describe the
occupied and virtual orbitalsin terms of the chosen basis set. It isimportant to keep in mind
that the basis orbitals are not themselves the true orbitals of the isolated atoms; even the
proper atomic orbitals are combinations (with atomic values for the Cy, j coefficients) of the
basis functions. For example, in aminimal-basis-level treatment of the Carbon atom, the 2s
atomic orbital isformed by combining, with opposite sign to achieve the radia node, the
two CGTOs (or STOs); the more diffuse s-type basis function will have alarger Cj n
coefficient in the 2s atomic orbital. The 1s atomic orbital is formed by combining the same
two CGTOs but with the same sign and with the less diffuse basis function having alarger



Chn,i coefficient. The LCAO-MO-SCF process itself determines the magnitudes and signs
of theGy .
V1. The Roothaan Matrix SCF Process

The matrix SCF equations introduced earlier

Sn Fmn Cn,i =& Sn Smn Chi

must be solved both for the occupied and virtual orbitals energiesg and C, j values. Only
the occupied orbitals Cp, j coefficients enter into the Fock operator

Fmn=<Cmlh|cn>+Sdk [Fk<CmCd|glCn Ck >
- Qdk<cmcd|g|ck cn>],
but both the occupied and virtual orbitals are solutions of the SCF equations. Once atomic

basis sets have been chosen for each atom, the one- and two-electron integrals appearing in
Fmn must be evaluated. Doing so is atime consuming process, but there are presently

severa highly efficient computer codes which allow such integrals to be computed for s, p,
d, f, and even g, h, and i basis functions. After executing one of these 'integral packages

for abasiswith atotal of N functions, one has available (usually on the computer's hard
disk) of the order of N2/2 one-electron and N4/8 two-electron integrals over these atomic
basis orbitals (the factors of 1/2 and 1/8 arise from permutational symmetries of the
integrals). When treating extremely large atomic orbital basis sets (e.g., 200 or more basis
functions), modern computer programs cal culate the requisite integrals but never store them
on the disk. Instead, their contributions to Fyyn, are accumulated ‘on the fly' after which the
integrals are discarded.

To begin the SCF process, one must input to the computer routine which computes
Fmn initial 'guesses’ for the G, j values corresponding to the occupied orbitals. These

initial guesses are typically made in one of the following ways:

1. If one has available Cp, j valuesfor the system from an SCF calculation performed
earlier at anearby molecular geometry, one can usethese Cy, j values to begin the SCF
process.



2.1f onehas Cp, j values appropriate to fragments of the system (e.g., for C and O atoms
if the CO moleculeis under study or for CH2 and O if HoCO is being studied), one can use
these.

3. If one has no other information available, one can carry out one iteration of the SCF
process in which the two-electron contributionsto Fyyn areignored (i.e., take Fjyn = < Cm
| h|ch >) and use the resultant solutionsto Sp Fmn Cni =& Sh Smn Cnj  asinitial
guesses for the Cy, j . Using only the one-electron part of the Hamiltonian to determine
initial valuesfor the LCAO-MO coefficients may seem like arather severe step; it is, and
the resultant Cp, j values are usually far from the converged values which the SCF process
eventually produces. However, theinitial Cp, j obtained in this manner have proper
symmetries and nodal patterns because the one-electron part of the Hamiltonian has the
same symmetry as the full Hamiltonian.

Onceinitial guesses are made for the Cp, j  of the occupied orbitals, the full Fyn
matrix isformed and new g and Cy, j values are obtained by solving Sp Fiyn Chi =& Sp
Smn Chn,i . These new orbitals are then used to form anew Fyn matrix from which new g
and C, i areobtained. Thisiterative processis carried on until theg and C, j do not vary
(within specified tolerances) from iteration to iteration, at which time one says that the SCF
process has converged and reached self-consistency.

As presented, the Roothaan SCF processis carried out in afully ab initio manner in
that al one- and two-€electron integrals are computed in terms of the specified basis set; no
experimental data or other input is employed. As described in Appendix F, it ispossibleto
introduce approximations to the coulomb and exchange integral s entering into the Fock
matrix elements that permit many of the requisite Fry, ; elementsto be evaluated in terms of
experimental dataor in terms of asmall set of ‘fundamental’ orbital-level coulomb
interaction integrals that can be computed in an ab initio manner. This approach formsthe
basis of so-called 'semi-empirical’ methods. Appendix F provides the reader with a brief
introduction to such approaches to the electronic structure problem and deals in some detail
with the well known Hiickel and CNDO- level approximations.

VII. Observations on Orbitals and Orbital Energies
A. The Meaning of Orbital Energies

The physical content of the Hartree-Fock orbital energies can be seen by observing
that Ffj = g f; impliesthat g can be written as:



g =<fi|F[fi>=<fi|h|fi>+ Sjocoupie) <fi | J - Kj[fi >
=<fi[h|fi>+ Sjoccupied) [ Ji,j - Kij |-

Inthisform, itisclear that g isequal to the average value of the kinetic energy plus
coulombic attraction to the nucle for an eectronin f plus the sum over all of the spin-
orbitals occupied in Y of coulomb minus exchange interactions between f; and these
occupied spin-orbitals. If f itself isan occupied spin-orbital, theterm [ J i - Kj j]
disappears and the latter sum represents the coulomb minus exchange interaction of f with
all of the N-1 other occupied spin-orbitals. If fj isavirtua spin-orbital, this cancellation
does not occur, and one obtains the coulomb minus exchange interaction of f with all N of
the occupied spin-orbitals.

In this sense, the orbital energies for occupied orbitals pertain to interactions which
are appropriate to atotal of N electrons, while the orbital energies of virtual orbitals pertain
to asystem with N+1 electrons. It isthis fact that makes SCF virtual orbitals not optimal
(infact, not usually very good) for use in subsequent correlation calculations where, for
instance, they are used, in combination with the occupied orbitals, to form polarized orbital
pairs as discussed in Chapter 12. To correlate apair of electrons that occupy avalence
orbital requires double excitationsinto avirtual orbital that is not too didike in size.
Although the virtual SCF orbitals themselves suffer these drawbacks, the space they span
can indeed be used for treating electron correlation. To do so, it is useful to recombine (in a
unitary manner to preserve orthonormality) the virtual orbitalsto ‘focus' the correlating
power into as few orbitals as possible so that the multiconfigurational wavefunction can be
formed with as few CSFs as possible. Techniques for effecting such reoptimization or
improvement of the virtual orbitals are treated later in thistext.

B.. Koopmans Theorem

Further insight into the meaning of the energies of occupied and virtual orbitals can
be gained by considering the following model of the vertical (i.e., at fixed molecular
geometry) detachment or attachment of an electron to the original N-electron molecule:

1. In thismodel, both the parent molecule and the species generated by adding or removing
an electron are treated at the single-determinant level.

2. In this model, the Hartree-Fock orbitals of the parent molecule are used to describe both
the parent and the species generated by electron addition or removal. It is said that such a
model neglects 'orbital relaxation’ which would accompany the electron addition or




remova (i.e., thereoptimization of the spin-orbitalsto alow them to become appropriate
to the daughter species).
Within this smplified model, the energy difference between the daughter and the

parent species can be written as follows (f k represents the particular spin-orbital that is
added or removed):
1. For electron detachment:
EN-1-EN=<|fof o .. fr fnH|[f1f2 .. fr1.TN|>-
<|fafo...frafk..TNIH]||f2f2.. . Frafk..TN|>
= - <fy|h|fk>-Sjzak1k+1N) [ Kj-Kkjl=-&;
2. For electron attachment:
EN-EN+tl=<|fqfo .. fn|H|f1f2 .. .fN|>-
<|fafo.. INfR|H||faf2....TNTK>
= - <fglh|fk>-Sj=an [ kj-Kkjl=-&-

So, within the limitations of the single-determinant, frozen-orbital model set forth,
the ionization potentials (1Ps) and electron affinities (EAS) are given as the negative of the
occupied and virtual spin-orbital energies, respectively. This statement isreferred to as
Koopmans' theorem (T. Koopmans, Physica 1, 104 (1933)); it is used extensively in

guantum chemical calculations as a means for estimating 1Ps and EAs and often yields
resultsthat are at least qualitatively correct (i.e., = 0.5 eV).

C. Orbital Energies and the Total Energy

For the N-electron species whose Hartree-Fock orbitals and orbital energies have
been determined, the total SCF electronic energy can be written, by using the Slater-
Condon rules, as:

E = Si(occupied) < fi [ h i >+ Sisj(occupied) [ Jij - Kij 1.



For this same system, the sum of the orbital energies of the occupied spin-orbitalsis given
by:

Si(occupied) & = Si(occupied) < fi [h[fi >
+ Sj j(occupied) [ Jij - Kij 1-

These two seemingly very similar expressions differ in avery important way; the sum of
occupied orbital energies, when compared to the total energy, double counts the coulomb
minus exchange interaction energies. Thus, within the Hartree-Fock approximation, the
sum of the occupied orbital energiesis not equal to the total energy. The total SCF energy
can be computed in terms of the sum of occupied orbital energies by taking one-half of
Si(occupied) & and then adding to this one-half of Sj(occupied) < fi | h|[fi >:

E = 1/2 [Sj(occupied) < fi | h [fi >+ Si(occupied) &1-

The fact that the sum of orbital energiesis not the total SCF energy also means that
as one attempts to develop a qualitative picture of the energies of CSFs along areaction
path, as when orbital and configuration correlation diagrams are constructed, one must be
careful not to equate the sum of orbital energies with the total configurational energy; the
former is higher than the latter by an amount equal to the sum of the coulomb minus
exchange interactions.

D. The Brillouin Theorem

The condition that the SCF energy <[f 1...f n| H [f 1...T n[> be stationary with respect
to variations df ; in the occupied spin-orbitals (that preserve orthonormality) can be written

<|f1df|fN|Htf1f|fN|>:O

Theinfinitessimal variation of f; can be expressed in terms of its (small) components along
the other occupied f; and along the virtual f , as follows:

df| = Sj:occ U” fl + SmU|mfm



When substituted into [f 1...df j...f n|, the terms Sj=qccff 1...fj...f n|Uij vanish becausef
aready appearsintheoriginal Slater determinant [f 1...f |, so |f 1...f;...f y| contains T

twice. Only the sum over virtua orbitals remains, and the stationary property written
above becomes

SmUim<[f1...fm..Fn[H [ 1...fi...F N[> = O.

The Sater-Condon rules alow one to express the Hamiltonian matrix el ements
appearing here as

<[fr..fm. ENH 1 Fi NP = <Elnff > + Sj=oce,1 i <f ml[-K{]If i>,

which (because the term with j=i can beincluded sinceit vanishes) is equal to the following
element of the Fock operator: <f |Fffi> = g di, =0. Thisresult provesthat Hamiltonian
matrix elements between the SCF determinant and those that are singly excited relative to
the SCF determinant vanish because they reduce to Fock-operator integrals connecting the
pair of orbitalsinvolved in the 'excitation’. This stability property of the SCF energy is
known as the Brillouin theorem (i.e., that |f 1ff \| and [f 1...f m...T n| have zero Hamiltonian
matrix elementsif thef sare SCF orbitals). It is exploited in quantum chemical calculations
in two manners:

(i) When multiconfiguration wavefunctions are formed from SCF spin-orbitals, it
allows one to neglect Hamiltonian matrix elements between the SCF configuration and
those that are 'singly excited' in constructing the secular matrix.

(i) A so-called generalized Brillouin theorem (GBT) arises when one deals with
energy optimization for amulticonfigurational variational trial wavefunction for which the
orbitals and C; mixing coefficients are simultaneously optimized. This GBT causes certain
Hamiltonian matrix elementsto vanish, which, in turn, smplifies the treatment of electron
correlation for such wavefunctions. This matter is treated in more detail later in this text.

Chapter 19

Correctionsto the mean-field model are needed to describe the instantaneous Coulombic
interactions among the electrons. Thisis achieved by including more than one Sater
determinant in the wavefunction.

Much of the development of the previous chapter pertains to the use of asingle
Slater determinant trial wavefunction. As presented, it relates to what has been called the



unrestricted Hartree-Fock (UHF) theory in which each spin-orbital f; hasits own orbital
energy g and LCAO-MO coefficients Cy, j ; there may be different Cy, j for a spin-orbitals
than for b spin-orbitals. Such awavefunction suffers from the spin contamination
difficulty detailed earlier.

To alow for aproperly spin- and space- symmetry adapted trial wavefunction and
to permit Y to contain more than asingle CSF, methods which are more flexible than the
single-determinant HF procedure are needed. In particular, it may be necessary to use a
combination of determinants to describe such a proper symmetry function. Moreover, as
emphasized earlier, whenever two or more CSFs have similar energies (i.e., Hamiltonian
expectation values) and can couple strongly through the Hamiltonian (e.g., at avoided
crossingsin configuration correlation diagrams), the wavefunction must be described in a
multiconfigurational manner to permit the wavefunction to evolve smoothly from reactants
to products. Also, whenever dynamical electron correlation effects are to be treated, a
multiconfigurational Y must be used; in this case, CSFsthat are doubly excited relative to
one or more of the essential CSFs (i.e., the dominant CSFs that are included in the so-
called reference wavefunction) are included to permit polarized-orbital-pair formation.

Multiconfigurational functions are needed not only to account for electron
correlation but also to permit orbital readjustmentsto occur. For example, if a set of SCF
orbitalsis employed in forming a multi-CSF wavefunction, the variational condition that
the energy is stationary with respect to variations in the LCAO-MO coefficientsis no longer
obeyed (i.e., the SCF energy functional is stationary when SCF orbitals are employed, but
the MC-energy functional is generally not stationary if SCF orbitals are employed). For
such reasons, it isimportant to include CSFsthat are singly excited relative to the dominant
CSFsin the reference wavefunction.

That singly excited CSFs allow for orbital relaxation can be seen asfollows.
Consider awavefunction consisting of one CSF |f ;...f;...f y| to which singly excited CSFs
of theform [f 1...f m...f | have been added with coefficients Cj m:

Y =Sm Cim . fom ol + o fioful

All of these determinants have all of their columns equal except the ith column; therefore,
they can be combined into a single new determinant:

Y =[f1...fi"...TNI,

where the relaxed orbital ' is given by



fi'=fi+SmCimfm.

The sum of CSFsthat are singly excited in the ith spin-orbital with respect to [f 1...f;...f |
istherefore seen to alow the spin-orbital f to relax into the new spin-orbital f'. Itisin
this sense that singly excited CSFs allow for orbital reoptimization.

In summary, doubly excited CSFs are often employed to permit polarized orbital
pair formation and hence to alow for electron correlations. Singly excited CSFs are
included to permit orbital relaxation (i.e., orbital reoptimization) to occur.

|. Different Methods

There are numerous procedures currently in use for determining the 'best'
wavefunction of the form:

Y =S5 C Fy,

where F| isaspin-and space- symmetry adapted CSF consisting of determinants of the
form |f1f12f13... fin|. Excdlent overviews of many of these methods are included in
Modern Theoretical Chemistry Vols. 3 and 4, H. F. Schaefer, 111 Ed., Plenum Press, New
York (1977) and in Advancesin Chemical Physics, Vols. LXVII and LXIX, K. P.
Lawley, Ed., Wiley-Interscience, New Y ork (1987). Within the present Chapter, these two
key references will be denoted MTC, Vols. 3and 4, and ACP, Vols. 67 and 69,
respectively.

In all such trial wavefunctions, there are two fundamentally different kinds of
parameters that need to be determined- the ClI coefficients C; and the LCAO-MO
coefficients describing the f |k . The most commonly employed methods used to determine

these parametersinclude;

1. The multiconfigurational self-consistent field ( MCSCF) method in which the
expectationvalue<Y |H|Y >/<Y |Y >istreated variationally and ssmultaneously
made stationary with respect to variationsin the Cy and Cn, j coefficients subject to the
congtraints that the spin-orbitals and the full N-electron wavefunction remain normalized:

< fi|fj>=dij =SnmCn, Sn,mCmi,and



S| C3 =1

The articles by H.-J. Werner and by R. Shepard in ACP Val. 69 provide up to date
reviews of the status of this approach. The articleby A. C. Wahl and G. Dasin MTC Val.
3 coversthe 'earlier' history on thistopic. F. W. Bobrowicz and W. A. Goddard, I11
provide, in MTC Vol. 3, an overview of the GVB approach, which, as discussed in
Chapter 12, can be viewed as a specific kind of MCSCF calculation.

2. The configuration interaction (Cl) method in which the

LCAO-MO coefficients are determined first (and independently) viaeither asingle-
configuration SCF calculation or an MCSCEF calculation using asmall number of CSFs.
The CI coefficients are subsequently determined by making the expectation value<Y |H |
Y>/<Y]|Y >

stationary with respect to variationsin the C; only. In this process, the optimizations of the
orbitals and of the CSF amplitudes are done in separate steps. The articles by I. Shavitt and
by B. O. Rossand P. E. M. Siegbahnin MTC, Vol. 3 give excellent early overviews of
the Cl method.

3. The M gller-Plesset perturbation method (MPPT) uses the single-configuration
SCF process (usually the UHF implementation) to first determine aset of LCAO-MO
coefficients and, hence, a set of orbitalsthat obey Ffj = g fi . Then, using an unperturbed
Hamiltonian equal to the sum of these Fock operators for each of the N electrons HO =
Si=1,N F(i), perturbation theory (see Appendix D for an introduction to time-independent
perturbation theory) is used to determine the C; amplitudes for the CSFs. The MPPT
procedure is also referred to as the many-body perturbation theory (MBPT) method. The
two names arose because two different schools of physics and chemistry developed them
for somewhat different applications. Later, workers realized that they wereidentical in their
working equations when the UHF HO is employed as the unperturbed Hamiltonian. In this
text, we will therefore refer to this approach as MPPT/MBPT.

The amplitude for the so-called reference CSF used in the SCF process is taken as
unity and the other CSFs amplitudes are determined, relative to this one, by Rayleigh-
Schrédinger perturbation theory using the full N-electron Hamiltonian minus the sum of
Fock operators H-HO as the perturbation. The Slater-Condon rules are used for evaluating
matrix elements of (H-HO) among these CSFs. The essential features of the MPPT/MBPT
approach are described in the following articles: J. A. Pople, R. Krishnan, H. B. Schlegel,
and J. S. Binkley, Int. J. Quantum Chem. 14, 545 (1978); R. J. Bartlett and D. M. Silver,



J. Chem. Phys. 62, 3258 (1975); R. Krishnan and J. A. Pople, Int. J. Quantum Chem.
14, 91 (1978).

4. The Coupled-Cluster method expressesthe Cl part of the wavefunctionin a
somewhat different manner (the early work in chemistry on this method is described in J.
Cizek, J. Chem. Phys. 45, 4256 (1966); J. Paldus, J. Cizek, and |. Shavitt, Phys. Rev.
A5, 50 (1972); R. J. Bartlett and G. D. Purvis, Int. J. Quantum Chem. 14, 561 (1978); G.
D. Purvisand R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982)):

Y =exp(T) F,

whereF isasingle CSF (usually the UHF single determinant) which has been used to
independently determine a set of spin-orbitals and LCAO-MO coefficients via the SCF
process. The operator T generates, when acting on F, single, double, etc. 'excitations
(i.e., CSFsin which one, two, etc. of the occupied spin-orbitalsin F have been replaced
by virtual spin-orbitals). T is commonly expressed in terms of operators that effect such
spin-orbital removals and additions as follows:

T=SimtMm*i+Sjjmntj™" m*n*ji+..,
where the operator m* is used to denote creation of an electron in virtua spin-orbital f

and the operator j is used to denote removal of an electron from occupied spin-orbital f; .
Thet™, tj;™N, etc. amplitudes, which play the role of the Cl coefficientsin CC

theory, are determined through the set of equations generated by projecting the Schrédinger
equation in the form

exp(-T)Hexp(T)F =EF

against CSFswhich are single, double, etc. excitationsrelative to F . For example, for
double excitations F j j™" the equations read:

<Fijj™n|exp(-T)Hexp(T) |F > =E<FjjMN|F >=0;

zero is obtained on the right hand side because the excited CSFs



IF i j™"> are orthogonal to the reference function |F >. The elements on the left hand side of
the CC equations can be expressed, as described below, in terms of one- and two-electron
integrals over the spin-orbitals used in forming the reference and excited CSFs.

A. Integral Transformations

All of the above methods require the evaluation of one- and two-electron integrals
over the N atomic orbital basis: <c 3 [flcpy> and <c L£p|glc . Eventualy, all of these
methods provide their working equations and energy expressionsin terms of one- and two-
electron integrals over the N final molecular orbitals: <f [fff ;> and <f if;|gff kf |>.

The mo-based integrals can only be evaluated by transforming the AO-based integrals as
follows:

<fifj|off kf 1> = Sap,c,d CaiCh,jCckCd,l <CLplolcC
and
<filfff j> = Sab CaiCp,j <Calflcr>.

It would seem that the process of evaluating all N4 of the <f if j|gff kf |>, each of which
requires N4 additions and multiplications, would require computer time proportional to N8,
However, it is possible to perform the full transformation of the two-electron integral list in

atimethat scalesas N ®. Thisis done by first performing a transformation of the
<CLplglccg> to an intermediate array labeled <c £ p|glc f 1> asfollows:

<caChlglcd 1> = SqCq,1<CLplglccCo.
This partial transformation requires N> multiplications and additions.
Thelist <c L£plglcf 1> isthen transformed to a second-level transformed array
<caChloff kf 1>
<cbldff kf 1> = S¢ Cek<caplgled 1>,
which requires another N° operations. This sequential, one-index-at-a-time transformation

isrepeated four times until the final <f if;|gff kf |> array isin hand. The entire
transformation done this way requires 4N > multiplications and additions.



Once the requisite one- and two-€lectron integrals are available in the molecular
orbital basis, the multiconfigurational wavefunction and energy calculation can begin.
These transformations consume a large fraction of the computer time used in most such
calculations, and represent a severe bottleneck to progressin applying ab initio electronic
structure methods to larger systems.

B. Configuration List Choices

Once the requisite one- and two-€lectron integrals are available in the molecular

orbital basis, the multiconfigurational wavefunction and energy cal culation can begin. Each
of these methods has its own approach to describing the configurations { F 3} included in

the calculation and how the { Cj} amplitudes and the total energy E isto be determined.
The number of configurations (NC) varies greatly among the methods and is an

important factor to keep in mind when planning to carry out an ab initio calculation. Under
certain circumstances (e.g., when studying Woodward-Hoffmann forbidden reactions
where an avoided crossing of two configurations produces an activation barrier), it may be
essential to use more than one electronic configuration. Sometimes, one configuration
(e.g., the SCF mode!) is adequate to capture the qualitative essence of the electronic
structure. In al cases, many configurations will be needed if highly accurate treatment of

electron-electron correlations are desired.
The value of NC determines how much computer time and memory is needed to

solve the Nc-dimensional Sy H|,j Cj=E C| secular problemin the Cl and MCSCF

methods. Solution of these matrix elgenval ue equations requires computer time that scales

as N2 (if few eigenvalues are computed) to N3 (if most eigenvalues are obtained).
So-called complete-active-space (CAS) methods form all CSFsthat can be created

by distributing N valence electrons among P valence orbitals. For example, the eight non-
core electrons of H2O might be distributed, in a manner that givesM s = 0, among six

valence orbitals (e.g., two lone-pair orbitals, two OH s bonding orbitals, and two OH s ™
antibonding orbitals). The number of configurations thereby created is 225 . If the same
eight electrons were distributed among ten valence orbitals 44,100 configurations results;
for twenty and thirty valence orbitals, 23,474,025 and 751,034,025 configurations arise,
respectively. Clearly, practical considerations dictate that CA S-based approaches be limited
to situationsin which afew electrons are to be correlated using afew vaence orbitals. The
primary advantage of CAS configurations is discussed below in Sec. 1. C.

I1. Strengths and Weaknesses of Various Methods



A. Variational Methods Such as MCSCF, SCF, and CI Produce Energies that are Upper
Bounds, but These Energies are not Size-Extensive

Methods that are based on making the energy functional
<Y |H|Y >/<Y |Y >gsationary (i.e, variational methods) yield upper bounds to the
lowest energy of the symmetry which characterizes the CSFswhich comprise Y . These
methods also can provide approximate excited-state energies and wavefunctions (e. g., in
the form of other solutions of the secular equation SyH, 3 Cj = E C, that arisesin the Cl
and MCSCF methods). Excited-state energies obtained in this manner can be shown to
‘bracket’ the true energies of the given symmetry in that between any two approximate
energies obtained in the variational calculation, there exists at least one true eigenval ue.
This characteristic is commonly referred to as the 'bracketing theorem' (E. A. Hylleraas
and B. Undheim, Z. Phys. 65, 759 (1930); J. K. L. MacDonald, Phys. Rev. 43, 830
(1933)). These are strong attributes of the variational methods, asisthe long and rich
history of developments of analytical and computational tools for efficiently implementing
such methods (see the discussions of the Cl and MCSCF methodsin MTC and ACP).

However, al variationa techniques suffer from at least one serious drawback; they
are not size-extensive (J. A. Pople, pg. 51 in Energy, Structure, and Reactivity, D. W.
Smith and W. B. McRae, Eds., Wiley, New Y ork (1973)). This means that the energy
computed using these tools can not be trusted to scale with the size of the system. For
example, acalculation performed on two CH3 species at large separation may not yield an

energy equal to twice the energy obtained by performing the same kind of calculation on a
single CH3 species. Lack of size-extensivity precludes these methods from use in extended
systems (e.g., solids) where errors due to improper scaling of the energy with the number
of molecules produce nonsensical results.

By carefully adjusting the kind of variational wavefunction used, it is possibleto
circumvent size-extensivity problems for selected species. For example, a Cl calculation on
Bey using all 1Sy CSFsthat can be formed by placing the four valence electrons into the
orbitals 25, 2sy, 3sg, 3Su, 1pu, and 1pg canyield an energy equal to twice that of the Be
atom described by CSFsin which the two valence electrons of the Be atom are placed into
the 2s and 2p orbitalsin all ways consistent with a 1S symmetry. Such special choices of
configurations give rise to what are called complete-active-space (CAS) MCSCF or ClI
calculations (see the article by B. O. Roosin ACP for an overview of this approach).




Let us consider an example to understand why the CAS choice of configurations
works. The 1S ground state of the Be atom is known to form awavefunction that is a
strong mixture of CSFsthat arise from the 252 and 2p2 configurations:

Y ge=C1 [12 282 | + Cp | 12 2p2 |,

where the latter CSF is a short-hand representation for the proper spin- and space-
symmetry adapted CSF

| 152 2p2 | = VOB [ |1sa 1sb2pga2pgb] - [1sa1sb2pia2p-1b|
- |1sa1sb?2p.;a2pib|].

The reason the CAS process works is that the Bex CAS wavefunction has the flexibility to
dissociate into the product of two CAS Be wavefunctions:

Y =YBeaY Beb
={C1 152252 |+ Cp | 12 2p2 [}  C1 |12 252 | + Cp | 152 2p2 [},

where the subscripts aand b label the two Be atoms, because the four electron CAS
function distributes the four electronsin al ways among the 2s,, 2Sp, 2p5 and 2pp orbitals.
In contrast, if the Bey calculation had been carried out using only the following CSFs:

| 1524 152, 2524 252, | and all single and double excitations relative to this (dominant)
CSF, which isavery common type of Cl procedure to follow, the Bex; wavefunction
would not have contained the particular CSFs | 152 2p2 |5 | 1s? 2p? | because these CSFs
arefour-fold excited relative to the | 152 152, 2523 252, | 'reference’ CSF.

In general, one finds that if the 'monomer’ uses CSFsthat are K-fold excited
relative to its dominant CSF to achieve an accurate description of its electron correlation, a
size-extensive variational calculation on the ‘dimer* will require the inclusion of CSFs that
are 2K-fold excited relative to the dimer's dominant CSF. To perform a size-extensive
variational calculation on a species containing M monomers therefore requires the inclusion
of CSFsthat are MxK-fold excited relative to the M-mer's dominant CSF.

B. Non-Variational Methods Such as MPPT/MBPT and CC do not Produce Upper
Bounds, but Yield Size-Extensive Energies



In contrast to variational methods, perturbation theory and coupled-cluster methods
achieve their energies from a'trangition formula < F |H | Y > rather than from an

expectation value

<Y |H|Y >. It can be shown (H. P. Kelly, Phys. Rev. 131, 684 (1963)) that this
difference alows non-variational techniques to yield size-extensive energies. This can be
seen in the MPPT/MBPT case by considering the energy of two non-interacting Be atoms.
Thereference CSFisF = | 154 252 1sy2 22 |; the Slater-Condon rules limit the CSFsin
Y which can contribute to

E:<F|H|Y >:<F|H|SJCJFJ>,

to beF itself and those CSFsthat are singly or doubly excited relativeto F. These
‘excitations can involve atom a, atom b, or both atoms. However, any CSFs that involve
excitations on both atoms

(e.g., | 1s 254 2pa 1sp2 25y 2pp | ) giverise, viathe SC rules, to one- and two- electron
integrals over orbitals on both atoms; these integrals ( e.9., < 2532pa| 9| 2% 2pp >)
vanish if the atoms are far apart, as aresult of which the contributions due to such CSFs
vanish in our consideration of size-extensivity. Thus, only CSFsthat are excited on one or
the other atom contribute to the energy:

E=<FaFp|H|S1aCnaF aFb+ Sk CopFaF p>,

where F gand Fp aswell asF* jaand F* 3, are used to denote the aand b parts of the

reference and excited CSFs, respectively.
This expression, once the SC rules are used to reduce it to one- and two- electron
integrals, is of the additive form required of any size-extensive method:

E=<Fa|H|S@aCuaFn>+<Fp|H|S»hCihFn>,

and will yield a size-extensive energy if the equations used to determine the C33 and Cyp
amplitudes are themselves separable. In MPPT/MBPT, these amplitudes are expressed, in
first order, as:

Cia =<FaFp|H|F*5aFp>/[ EOa+ EO - E" 33-E%]



(and analogously for Cjp). Again using the SC rules, this expression reduces to one that
involves only atom a:

Cia =<Fa|H|F a>[E% -E ]

The additivity of E and the separability of the equations determining the Cj coefficients
make the MPPT/MBPT energy size-extensive. This property can also be demonstrated for
the Coupled-Cluster energy (see the references given above in Chapter 19. 1.4). However,
size-extensive methods have at |east one serious weakness; their energies do not provide
upper bounds to the true energies of the system (because their energy functional is not of
the expectation-value form for which the upper bound property has been proven).

C. Which Method is Best?

At thistime, it may not possible to say which method is preferred for applications
where al are practical. Nor isit possible to assess, in away that is applicable to most
chemical species, the accuracies with which various methods predict bond lengths and
energies or other properties. However, there are reasons to recommend some methods over
others in specific cases. For example, certain applications require a size-extensive
energy (e.g., extended systems that consist of alarge or macroscopic number of units or
studies of weak intermolecular interactions), so MBPT/MPPT or CC or CAS-based
MCSCF are preferred. Moreover, certain chemical reactions (e.g., Woodward-Hoffmann
forbidden reactions) and certain bond-breaking events require two or more 'essential’
electronic configurations. For them, single-configuration-based methods such as
conventional CC and MBTP/MPPT should not be used; MCSCF or CI calculations would
be better. Very large molecules, in which thousands of atomic orbital basis functions are
required, may be impossible to treat by methods whose effort scales as N4 or higher;
density functional methods would be better to use then.

For all calculations, the choice of atomic orbital basis set must be made carefully,
keeping in mind the N4 scaling of the one- and two-electron integral evaluation step and the
N> scaling of the two-electron integral transformation step. Of course, basis functions that
describe the essence of the states to be studied are essential (e.g., Rydberg or anion states
require diffuse functions, and strained rings require polarization functions).

Aslarger atomic basis sets are employed, the size of the CSF list used to treat
dynamic correlation increases rapidly. For example, most of the above methods use singly
and doubly excited CSFsfor this purpose. For large basis sets, the number of such CSFs,



Nc, scales as the number of electrons squared, ne?, times the number of basis functions
squared, N2 . Since the effort needed to solve the CI secular problem varies as Nc2 or
Nc3, adependence as strong as N4 to N6 can result. To handle such large CSF spaces, all

of the multiconfigurational techniques mentioned in this paper have been devel oped to the
extent that calculations involving of the order of 100 to 5,000 CSFs are routinely
performed and calculations using 10,000, 100,000, and even several million CSFs are
practical.

Other methods, most of which can be viewed as derivatives of the techniques
introduced above, have been and are still being developed. This ongoing process has been,
in large part, stimulated by the explosive growth in computer power and changein
computer architecture that has been realized in recent years. All indications are that this
growth pattern will continue, so ab initio quantum chemistry will likely have an even larger
impact on future chemistry research and education (through new insights and concepts).

[11. Further Details on Implementing Multiconfigurational Methods
A. The MCSCF Method

The simultaneous optimization of the LCAO-MO and CI coefficients performed
within an MCSCF calculation is a quite formidabl e task. The variational energy functional
isaquadratic function of the CI coefficients, and so one can express the stationary
conditions for these variablesin the secular form:

SyH4Cy =EC,.

However, E isaquartic function of the Cp, j coefficients because each matrix element < F |
H | F 3> involves one- and two-electron integrals over the mosf j , and the two-electron
integrals depend quartically on the Cy,  coefficients. The stationary conditions with respect
to these G, j parameters must be solved iteratively because of this quartic dependence.

It iswell known that minimization of afunction (E) of several non-linear parameters
(the G, j) isadifficult task that can suffer from poor convergence and may locate local
rather than global minima. In an MCSCF wavefunction containing many CSFs, the energy
isonly weakly dependent on the orbitals that are weakly occupied (i.e., those that appear in
CSFswith small C; values); in contrast, E is strongly dependent on the Cy, j coefficients of
those orbitals that appear in the CSFswith larger C values. One istherefore faced with
minimizing afunction of many variables (there may be as many Cy, j asthe square of the



number of orbital basis functions) that depends strongly on several of the variables and
weakly on many others. Thisisavery difficult job.

For these reasons, in the MCSCF method, the number of CSFsis usually kept to a
small to moderate number (e.g., afew to several hundred) chosen to describe essential
correlations (i.e., configuration crossings, proper dissociation) and important dynamical
correlations (those electron-pair correlations of angular, radial, left-right, etc. nature that
arise when low-lying 'virtual' orbitals are present). In such a compact wavefunction, only
spin-orbitals with reasonably large occupations (e.g., as characterized by the diagonal
elements of the one-particle density matrix g j) appear. As aresult, the energy functional is
expressed in terms of variables on which it is strongly dependent, in which case the non-
linear optimization processislesslikely to be pathological.

Such a compact MCSCF wavefunction is designed to provide a good description of
the set of strongly occupied spin-orbitals and of the Cl amplitudes for CSFsin which only
these spin-orbitals appear. It, of course, provides no information about the spin-orbitals
that are not used to form the CSFs on which the MCSCF calculation is based. As aresullt,
the MCSCF energy isinvariant to a unitary transformation among these 'virtua' orbitals.

In addition to the references mentioned earlier in ACP and MTC, the following
papers describe severa of the advances that have been made in the MCSCF method,
especially with respect to enhancing its rate and range of convergence: E. Dalgaard and P.
Jargensen, J. Chem. Phys. 69, 3833 (1978); H. J. Aa. Jensen, P. Jargensen, and H.
&qgren, J. Chem. Phys. 87, 457 (1987); B. H. Lengsfield, 111 and B. Liu, J. Chem. Phys.
75, 478 (1981).

B. The Configuration Interaction Method

In the CI method, one usually attemptsto realize a high-level treatment of electron
correlation. A set of orthonormal molecular orbitals arefirst obtained from an SCF or
MCSCEF calculation (usualy involving asmall to moderate list of CSFs). The LCAO-MO
coefficients of these orbitals are no longer considered as variational parametersin the
subsequent ClI calculation; only the C; coefficients are to be further optimized.

The ClI wavefunction

Y =S5;C;3F;

ismost commonly constructed from CSFs F j that include;



1. All of the CSFsin the SCF (in which case only asingle CSF isincluded) or MCSCF
wavefunction that was used to generate the molecular orbitalsf . This set of CSFsare
referred to as spanning the reference space’ of the subsequent CI calculation, and the
particular combination of these CSFs used in this orbital optimization (i.e., the SCF or
MCSCF wavefunction) is called the reference function.

2. CSFsthat are generated by carrying out single, double, triple, etc. level 'excitations
(i.e., orbital replacements) relative to reference CSFs. Cl wavefunctions limited to include
contributions through various levels of excitation (e.g., single, double, etc. ) are denoted S
(singly excited), D (doubly), SD ( singly and doubly), SDT (singly, doubly, and triply),
and so on.

The orbitals from which electrons are removed and those into which electrons are
excited can be restricted to focus attention on correlations among certain orbitals. For
example, if excitations out of core electrons are excluded, one computes atotal energy that
contains no correlation corrections for these core orbitals. Often it is possible to so limit the
nature of the orbital excitations to focus on the energetic quantities of interest (e.g., the CC
bond breaking in ethane requires correlation of the scc orbita but the 1s Carbon core
orbitals and the CH bond orbitals may be treated in a non-correlated manner).

Clearly, the number of CSFsincluded in the ClI calculation can be far in excess of
the number considered in typical MCSCF calculations; Cl wavefunctions including 5,000
to 50,000 CSFs are routinely used, and functions with one to several million CSFs are
within the realm of practicality (see, for example, J. Olsen, B. Roos, Poul Jargensen, and
H. J. Aa. Jensen, J. Chem. Phys. 89, 2185 (1988) and J. Olsen, P. Jargensen, and J.
Simons, Chem. Phys. Letters 169, 463 (1990)).

The need for such large CSF expansions should not come as a surprise once one
considersthat (i) each electron pair requires at least two CSFs (let us say it requires P of
them, on average, a dominant one and P-1 others which are doubly excited) to form
polarized orbital pairs, (ii) there are of the order of N(N-1)/2 = X electron pairsin an atom
or molecule containing N electrons, and (iii) that the number of termsin the Cl
wavefunction scales as PX. So, for an H,O molecule containing ten electrons, there would
be P55 terms in the Cl expansion. Thisis 3.6 x1016 termsif P=2 and 1.7 x1026 terms if
P=3. Undoubtedly, thisis an over estimate of the number of CSFs needed to describe
electron correlation in H2O, but it demonstrates how rapidly the number of CSFs can grow
with the number of electronsin the system.



The H, y matricesthat arisein Cl calculations are evaluated in terms of one- and
two- electron integrals over the molecular orbitals using the equivalent of the Slater-Condon
rules. For large Cl calculations, the full Hy y matrix isnot actually evaluated and stored in
the computer's memory (or on its disk); rather, so-called 'direct CI' methods (see the article
by Roos and Siegbahn in MTC) are used to compute and immediately sum contributionsto
the sum Sy H) 5 Cyintermsof integrals, density matrix elements, and approximate values
of the Cy amplitudes. Iterative methods (see, for example, E. R. Davidson, J. Comput.
Phys. 17, 87 (1975)), in which approximate values for the Cj coefficients and energy E
are refined through sequential application of Sy Hj jto the preceding estimate of the C;
vector, are employed to solve these large Cl matrix eigenvalue problems.

C. The MPPT/MBPT Method

In the MPPT/MBPT method, once the reference CSF is chosen and the SCF
orbitals belonging to this CSF are determined, the wavefunction Y and energy E are

determined in an order-by-order manner. Thisis one of the primary strengths of the
MPPT/MBPT technique; it does not require one to make further (potentially arbitrary)
choices once the basis set and dominant (SCF) configuration are specified. In contrast to

the MCSCF and Cl treatments, one need not make choices of CSFsto includein or exclude
fromY . The MPPT/MBPT perturbation equations determine what CSFs must be included

through any particular order.
For example, the first-order wavefunction correction Y 1
(i.e., Y =F +Y lthrough first order) is given by:
Y1=-Sicjmen <Fij™N|H-HO|F >[en-a +en-g]1|Fjjmn>

=- Sicj,men [<1j lgl mn>-<ij gl nm>][ em-q +en-g ] 1|Fj;jm™n >

where the SCF orbital energies are denoted g and F ™" represents a CSF that is doubly
excited relativeto F . Thus, only doubly excited CSFs contribute to the first-order
wavefunction; as aresult, the energy E is given through second order as:

E=<F|HO|F>+<F |[H-HO|F>+<F |H-HO|Y1>

=<F [H|F>-Siymen [<Fij™" |H-HO|F >2/ [en-q +en-g ]



=Escr - Sigj,men | <ijlgImn>-<ij|g|nm>|2[ en-& +en-g]
= B0+ El +E2.

These contributions have been expressed, using the SC rules, in terms of the two-electron
integrals<i,j | g | m,n > coupling the excited spin-orbitals to the spin-orbitals from which
electrons were excited aswell asthe orhital energy differences| en-g +én -§ ]
accompanying such excitations. In thisform, it becomes clear that magjor contributions to
the correlation energy of the pair of occupied orbitasf; f; are made by double excitations
into virtual orbitalsf i, f 1, that have large coupling (i..e., large <i,j | g | m,n > integrals)
and small orbital energy gaps, [ en-6 +én-§ ].

In higher order corrections to the wavefunction and to the energy, contributions
from CSFsthat are singly, triply, etc. excited relative to F appear, and additional
contributions from the doubly excited CSFs aso enter. It isrelatively common to carry
MPPT/MBPT calculations (see the references given above in Chapter 19.1.3 where the
contributions of the Pople and Bartlett groups to the development of MPPT/MBPT are
documented) through to third order in the energy (whose evaluation can be shown to
requireonly Y O and Y 1). The entire GAUSSIAN-8X series of programs, which have been
used in thousands of important chemical studies, calculate E through third order in this
manner.

In addition to being size-extensive and not requiring one to specify input beyond the
basis set and the dominant CSF, the MPPT/MBPT approach is able to include the effect of
all CSFs (that contribute to any given order) without having to find any eigenvalues of a
matrix. Thisis an important advantage because matrix eigenvalue determination, whichis
necessary in MCSCF and CI calculations, requires computer time in proportion to the third
power of the dimension of the H; j matrix. Despite al of these advantages, it isimportant to
remember the primary disadvantages of the MPPT/MBPT approach; its energy isnot an
upper bound to the true energy and it may not be able to treat cases for which two or more
CSFs have equal or nearly equal amplitudes because it obtains the amplitudes of all but the
dominant CSF from perturbation theory formulas that assume the perturbation is'small’.

D. The Coupled-Cluster Method
The implementation of the CC method begins much asin the MPPT/MBPT casg,

one selects areference CSF that is used in the SCF process to generate a set of spin-orbitals
to be used in the subsequent correlated calculation. The set of working equations of the CC



technique given above in Chapter 19.1.4 can be written explicitly by introducing the form
of the so-called cluster operator T,

T=SimtMm*i+Sjjmntj™" m*n*ji+..,

where the combination of operatorsm™ i denotescreation of an eectron in virtual spin-
orbital f ;y and removal of an electron from occupied spin-orbita f j to generate asingle

excitation. The operation m* n* j i therefore represents a double excitation from f j f jtofm
f n. Expressing the cluster operator T in terms of the amplitudesti™ , tj ;™" , etc. for

singly, doubly, etc. excited CSFs, and expanding the exponential operatorsin exp(-T) H
exp(T) one obtains:

<FiM™|H+[H,T] +Y2[[H,T],T] + V6 [[[H,T]T]T]
+ 124 [[[[H,T],T],T],T] |F >=0;

<Fjjm™"|H+[HT] +V2[[HT],T] + Y6 [[[H,T],T],T]
+ 124 [[[[H,T],T],T],T] |F >=0;

<Fjjk™M™P|H+[HT] + V2[[H,T],T] + Y6 [[[H,T],T],T]
+ 124 [[[[H,T],T],T],T] |F > =0,

and so on for higher order excited CSFs. It can be shown, because of the one- and two-
electron operator nature of H, that the expansion of the exponential operators truncates
exactly at the fourth power; that isterms such as[[[[[H,T],T],T],T],T] and higher
commutators vanish identically (thisis demonstrated in Chapter 4 of Second Quantization
Based Methods in Quantum Chemistry, P. Jargensen and J. Simons, Academic Press,
New York (1981).

Asaresult, the exact CC equations are guartic equations for the ™, tj ;™" , etc.

amplitudes. Although it isarather formidable task to evaluate al of the commutator matrix
elements appearing in the above CC equations, it can be and has been done (the references
given above to Purvis and Bartlett are especialy relevant in this context). The result isto
express each such matrix element, via the Slater-Condon rules, in terms of one- and two-
electron integrals over the spin-orbitals used in determining F, including those in F itsalf
and the 'virtual' orbitalsnot in F.

In general, these quartic equations must then be solved in an iterative manner and
are susceptible to convergence difficulties that are similar to those that arisein MCSCF-type



calculations. In any such iterative process, it isimportant to start with an approximation (to
the t amplitudes, in this case) which is reasonably close to the final converged result. Such
an approximation is often achieved, for example, by neglecting all of the terms that are non-
linear in the t amplitudes (because these amplitudes are assumed to be less than unity in
magnitude). Thisleads, for the CC working equations obtained by projecting onto the
doubly excited CSFs, to:

<ijlglmn>'+[en-g +en-g]tijm"+
Sitjmn <FijMmNH-HO[Fj pmint> g pmin' =0,

where the notation < i,j | g | m,n >" is used to denote the two-electron integral difference <
i,jlg|mn>-<ij|g|nm>.If, inaddition, the factors that couple different doubly
excited CSFs areignored (i.e., the sum over i',j’,m',n’) , the equations for the t amplitudes
reduce to the equations for the CSF amplitudes of the first-order MPPT/MBPT
wavefunction:

ijmN=-<ijlglmn>/[en¢g+en-g1].

As Bartlett and Pople have both demonstrated, thereis, in fact, close relationship between
the MPPT/MBPT and CC methods when the CC equations are solved iteratively starting
with such an MPPT/MBPT-like initial 'guess for these double-excitation amplitudes.

The CC method, as presented here, suffers from the same drawbacks as the
MPPT/MBPT approach; its energy is not an upper bound and it may not be able to
accurately describe wavefunctions which have two or more CSFs with approximately equal
amplitude. Moreover, solution of the non-linear CC equations may be difficult and lowly
(if at al) convergent. It has the same advantages as the MPPT/MBPT method; its energy is
Size-extensive, it requires no large matrix eigenvalue solution, and its energy and
wavefunction are determined once one specifies the basis and the dominant CSF.

E. Density Functiona Methods

These approaches provide alternatives to the conventional tools of quantum
chemistry. The CI, MCSCF, MPPT/MBPT, and CC methods move beyond the single-

configuration picture by adding to the wave function more configurations whose



amplitudes they each determine in their own way. This can lead to avery large number of
CSFsin the correlated wave function, and, as aresult, aneed for extraordinary computer
resources.

The density functional approaches are different. Here one solves a set of orbital-

level equations

[ - h22me N2 - S Zae2/r-RA| + 81 (r')e2/r-r'[dr’

+UMN)] fi=¢gfj

inwhich the orbitals{f i} 'feel’ potentials due to the nuclear centers (having charges Za),

Coulombic interaction with the total electron density r (r'), and a so-called exchange-
correlation potential denoted U(r'). The particular electronic state for which the calculation
is being performed is specified by forming a corresponding density r (r*). Before going

further in describing how DFT calculations are carried out, let us examine the origins
underlying this theory.

The so-called Hohenberg-Kohn theorem states that the ground-state electron
density r (r) describing an N-electron system uniquely determines the potential V(r) in the

Hamiltonian

H =S {-R2m N2+ V() +&/2S,, Ur,},



and, because H determines the ground-state energy and wave function of the system, the

ground-state density r (r) determines the ground-state properties of the system. The proof

of thistheorem proceeds as follows:

a. r (r) determines N because or (r) d®r = N.

b. Assume that there are two distinct potentials (aside from an additive constant that smply
shifts the zero of total energy) V(r) and V'’ (r) which, when used in H and H’,, respectively,

to solve for aground state produce E,, Y (r) and E;’, Y ' (r) that have the same one-electron
density: O|Y P dr,dr,... dry=r (r)= 0 [Y'fdr,dr,... dr.

c. If wethink of Y’ as trial variational wave function for the Hamiltonian H, we know that
E, <<Y'HY'>=<Y'|H|Y'>+0r(r) [V(r)-V' ()] P*r=E, +or (r) [V({) - V()] &r.
d. Smilarly, taking Y asatria function for the H' Hamiltonian, one finds that

E, <E,+or(r)[V'()-V()] d.
e. Adding the equationsin c and d gives
E,+E <E+E,

aclear contradiction.

Hence, there cannot be two distinct potentials V and V' that give the same ground-

stater (r). So, the ground-state density r (r) uniquely determines N and V, and thus H, and
therefore Y and E,. Furthermore, because Y determinesall properties of the ground state,

thenr (r), in principle, determines all such properties. This means that even the kinetic

energy and the electron-electron interaction energy of the ground-state are determined by



r (r). Itiseasy to seethat or (r) V(r) d®r = V[r ] gives the average value of the electron-
nuclear (plus any additional one-electron additive potential) interaction in terms of the

ground-state density r (r), but how are the kinetic energy T[r ] and the electron-electron

interaction V _[r ] energy expressed in terms of r ?

The main difficulty with DFT isthat the Hohenberg-K ohn theorem shows that the

ground-statevalues of T, V., V, etc. are al unique functionals of the ground-stater (i.e.,

that they can, in principle, be determined oncer isgiven), but it does not tell us what these

functional relations are.

To see how it might make sense that a property such as the kinetic energy, whose

operator -H /2m, N2 involves derivatives, can be related to the electron density, consider a

simple system of N non-interacting el ectrons moving in athree-dimensional cubic “box”

potential. The energy states of such electrons are known to be

E = (h*/2mL?) (n2+nj2+n}?),

where L isthe length of the box along the three axes, and n, , n, , and n, are the quantum
numbers describing the state. We can view n,?+ n? +n,” = R? as defining the squared
radius of a sphere in three dimensions, and we realize that the density of quantum statesin
this space is one state per unit volumeinthen, , n , n,space. Becausen , n, , and n, must

be positive integers, the volume covering all states with energy less than or equal to a

specified energy E = (h?/2mL?) R? is 1/8 the volume of the sphere of radius R:

F(E) = 1/8 (4p/3) R®* = (p/6) (8mL2E/M)*>.



Since thereis one state per unit of such volume, F (E) is aso the number of states with

energy lessthan or equal to E, and is called the integrated density of states. The number of

states g(E) dE with energy between E and E+dE, the density of states, isthe derivative of

F:

9(E) = dF /dE = (p/4) (8mL¥/M?)¥2EY2 |

If we calculate the total energy for N electrons, with the states having energies up to the so-
caled Fermi energy (i.e., the energy of the highest occupied molecular orbital HOMO)

doubly occupied, we obtain the ground-state energy:

Er

E, = 2 qp(E)EdE = (8p/5) (2m/?)*2L® E52.

The total number of electrons N can be expressed as

Ee

N = 2 dp(E)dE = (8p/3) (2m/h?)**L*E*?,

which can be solved for E.in terms of N to then express E, intermsof N instead of E.:
E, = (3h?/10m,) (3/8p)*> L® (N/L%)>".

This gives the total energy, which is also the kinetic energy in this case because the

potential energy is zero within the “box”, in terms of the electron density r (x,y,z) =

(N/L3). It therefore may be plausible to express kinetic energiesin terms of electron



densitiesr (r), but it is by no means clear how to do so for “real” atoms and molecules with

electron-nuclear and electron-electron interactions operative.

In one of the earliest DFT models, the Thomas-Fermi theory, the kinetic energy of
an atom or molecule is approximated using the above kind of treatment on a“loca” level.
That is, for each volume element inr space, one assumes the expression given above to be

valid, and then one integrates over all r to compute the total kinetic energy:

T,[r]=0(3h*10m,) (3/8p)* [r (r)]*"® d®r = C. o[r (r)]*" d’r,

where the last equality ssimply defines the C. constant (which is 2.8712 in atomic units).
Ignoring the correlation and exchange contributions to the total energy, this T is combined
with the electron-nuclear V and Coulombic electron-electron potential energiesto give the

Thomas-Fermi total energy:

Eore [r1=Ce O[r (N]** Pr+ oV (r) r (r) dr + /2 or (r) r (r')fr-r’| r or,

This expression is an example of how E, is given as alocal density functional

approximation (LDA). The term local meansthat the energy is given asafunctional (i.e.,, a

function of r ) which depends only onr (r) at pointsin space but not onr (r) at more than

one point in space.

Unfortunately, the Thomas-Fermi energy functional does not produce results that
are of sufficiently high accuracy to be of great use in chemistry. What is missing in this
theory are a. the exchange energy and b. the correlation energy; moreover, the kinetic

energy istreated only in the approximate manner described.



In the book by Parr and Yang, it is shown how Dirac was able to address the
exchange energy for the 'uniform electron gas (N Coulomb interacting electrons moving in
auniform positive background charge whose magnitude balances the charge of the N
electrons). If the exact expression for the exchange energy of the uniform electron gasis

applied on alocal level, one obtains the commonly used Dirac local density approximation

to the exchange energy:

Eecoirel "1 = - C, O[r (N]** o,

with C,_ = (3/4) (3/p)*® = 0.7386 in atomic units. Adding this exchange energy to the

Thomas-Fermi tota energy E, .. [r ] givesthe so-called Thomas-Fermi-Dirac (TFD) energy

functional.

Because electron densities vary rather strongly spatially near the nuclei, corrections

to the above approximationsto T[r ] and E,, .. are needed. One of the more commonly

used so-called gradient-corrected approximationsis that invented by Becke, and referred to

as the Becke88 exchange functional:

E..(Beckes8) = E, . [r ] -9 r 3 (1+6 gx sinh™(x))*dr,

where x =r **|Nr |, and gis a parameter chosen so that the above exchange energy can best

reproduce the known exchange energies of specific electronic states of the inert gas atoms

(Becke findsgto equal 0.0042). A common gradient correction to the earlier T[r ] iscalled

the Weizsacker correction and is given by



dT,

Weizsacker

= (U72)(7Im) O|Nr (r)P/r (r) dr.

Although the above discussion suggests how one might compute the ground-state

energy once the ground-state density r (r) is given, one still needs to know how to obtain

r . Kohn and Sham (KS) introduced a set of so-called KS orbitals obeying the following

equation:

{-272R% +V(r) + €42 or (r’)/f-r'| dr’ +U,_(r) H,=¢gf,,
where the so-called exchange-correlation potentia U, . (r) = dE [r ]/dr (r) could be obtained
by functional differentiation if the exchange-correlation energy functional E [r ] were

known. KS also showed that the KS orbitals {f;} could be used to compute the density r

by simply adding up the orbital densities multiplied by orbital occupanciesn,:

r(r) = Sjnj ffj(r)2

(here nj =0,1, or 2 is the occupation number of the orbital f j in the state being studied) and

that the kinetic energy should be calculated as
T = Sjnj <fj(NlFU2 N2 [f(r)>.
The same investigations of the idealized 'uniform electron gas' that identified the

Dirac exchange functional, found that the correlation energy (per el ectron) could also be

written exactly as afunction of the electron density r of the system, but only in two




limiting cases- the high-density limit (larger ) and the low-density limit. There still exists
no exact expression for the correlation energy even for the uniform electron gas that isvalid
at arbitrary values of r . Therefore, much work has been devoted to creating efficient and

accurate interpolation formulas connecting the low- and high- density uniform electron gas

expressions. One such expression is

Efr]=0r(r)e(r)dr,

where

e(r) = A/2{In(x/X) + 20/Q tam(Q/(2x+b)) -bx,/X, [IN((x-%,)?/X)

+2(b+2x,)/Q tan™(Q/(2x+b))]

isthe correlation energy per electron. Here x = r.?, X=x?+bx+c, X, =x, +bx,+c and

Q=(4c- b")"?, A = 0.0621814, x,=-0.409286, b = 13.0720, and c = 42.7198. The

parameter r.is how the density r enterssince 4/3 pr.isequal to Ur ; that is, r,is the radius

of a sphere whose volume is the effective volume occupied by one electron. A reasonable

approximation to the full E, [r ] would contain the Dirac (and perhaps gradient corrected)

exchange functional plus the above E_[r ], but there are many alternative approximations to

the exchange-correlation energy functional. Currently, many workers are doing their best to
“cook up” functionals for the correlation and exchange energies, but no one has yet

invented functionals that are so reliable that most workers agree to use them.



To summarize, in implementing any DFT, one usually proceeds as follows:

1. An atomic orbital basisis chosen in terms of which the KS orbitals are to be expanded.
2. Someinitia guessis made for the LCAO-KS expansion coefficientsC; : f,= S,C; ,c

avja“a

3. Thedendity is computed asr (r) = Sj nj |fj(r)|2 . Often, r (r) isexpanded in an atomic
orbital basis, which need not be the same as the basis used for the f ;, and the expansion
coefficients of r are computed in terms of those of thef . It is also common to use an

atomic orbital basisto expand r ¥3(r) which, together withr , is needed to evaluate the

exchange-correlation functional’ s contribution to E,.

4. The current iteration’ s density is used in the KS equations to determine the Hamiltonian

{-V2N*+V(r) +€/2 or (r")/-r'| dr’ +U,(r) }whose“new” eigenfunctions{f } and
eigenvaues{e} arefound by solving the KS equations.

5. These new f; are used to compute a new density, which, in turn, is used to solve a new

set of KS equations. This processis continued until convergenceis reached (i.e., until the

f J. used to determine the current iteration’sr are the same f J. that arise as solutions on the

next iteration.

6. Once the converged r (r) is determined, the energy can be computed using the earlier

expression

E[r]=Sjnj<fj(r)[-/2N?[f,(r)>+ ov/(r) r (r) dr + &/2q (r)r (' )/f-r’ [dr dr’+

Elrl.



In closing this section, it should once again be emphasized that this areais currently
undergoing explosive growth and much scrutiny. Asaresult, it is nearly certain that many
of the specific functionals discussed above will be replaced in the near future by improved
and more rigoroudly justified versions. It isalso likely that extensions of DFT to excited
states (many workers are actively pursuing this) will be placed on more solid ground and
made applicable to molecular systems. Because the computationa effort involved in these
approaches scales much less strongly with basis set size than for conventional (SCF,
MCSCEF, Cl, etc.) methods, density functional methods offer great promise and are likely

to contribute much to quantum chemistry in the next decade.



Chapter 20

Many physical properties of a molecule can be calculated as expectation values of a
corresponding quantum mechanical operator. The evaluation of other properties can be
formulated in terms of the "response” (i.e., derivative) of the electronic energy with respect
to the application of an external field perturbation.

|. Calculations of Properties Other Than the Energy

There are, of course, properties other than the energy that are of interest to the
practicing chemist. Dipole moments, polarizabilities, transition probabilities among states,
and vibrational frequencies all come to mind. Other properties that are of importance
involve operators whose quantum numbers or symmetry indices label the state of interest.
Angular momentum and point group Symmetries are examples of the latter properties; for
these quantities the properties are precisely specified once the quantum number or
symmetry label is given (e.g., for a3P state, the average value of L2 is <3P|L2P3P> =
h21(1+1) = 2h2).

Although it may be straightforward to specify what property is to be evaluated,
often computational difficulties arise in carrying out the calculation. For some ab initio
methods, these difficulties are less severe than for others. For example, to compute the
electric dipole transition matrix element <Y 2 | r | Y 1> between two states Y 1 and Y 5,
one must evaluate the integral involving the one-electron dipole operator r = Sj erj - Sae
Za Ry herethefirst sum runs over the N electrons and the second sum runs over the nuclel
whose charges are denoted Z,. To evaluate such transition matrix elementsin terms of the
Slater-Condon rulesisrelatively straightforward aslongas'Y 1 and Y 2 are expressed in
terms of Slater determinants involving asingle set of orthonormal spin-orbitals. If Y 1 and
Y 2, have been obtained, for example, by carrying out separate MCSCF calculations on the
two states in question, the energy optimized spin-orbitals for one state will not be the same
as the optimal spin-orbitalsfor the second state. As aresult, the determinantsin’Y 1 and
thoseinY 2 will involve spin-orbitals that are not orthonormal to one another. Thus, the SC
rules can not immediately be applied. Instead, a transformation of the spin-orbitals of Y 1
and Y 2 to asingle set of orthonormal functions must be carried out. This then expresses
Y 1andY 2 interms of new Slater determinants over this new set of orthonormal spin-
orbitals, after which the SC rules can be exploited.

In contrast, if Y 1 and Y 2 are obtained by carrying out a Cl calculation using a
single set of orthonormal spin-orbitals (e.g., withY 1 and Y 2 formed from two different



eigenvectors of the resulting secular matrix), the SC rules can immediately be used to
evaluate the trangition dipole integral.

A. Formulation of Property Calculations as Responses

Essentialy all experimentally measured properties can be thought of as arising
through theresponse of the system to some externally applied perturbation or disturbance.
In turn, the calculation of such properties can be formulated in terms of the response of the
energy E or wavefunction Y to a perturbation. For example, molecular dipole moments m

are measured, via electric-field deflection, in terms of the change in energy

DE=mE+ 1/2E a -E+16EEEDb+ ..

caused by the application of an external eectric field E which is spatially inhomogeneous,
and thus exertsaforce

on the molecule proportional to the dipole moment (good treatments of response properties
for awide variety of wavefunction types (i.e., SCF, MCSCF, MPPT/MBPT, etc.) are
given in Second Quantization Based Methods in Quantum Chemistry , P. Jergensen and J.
Simons, Academic Press, New Y ork (1981) and in Geometrical Derivatives of Energy
Surfaces and Molecular Properties, P. Jargensen and J. Simons, Eds., NATO AS| Series,
Vol. 166, D. Reidel, Dordrecht (1985)).

To obtain expressions that permit properties other than the energy to be evaluated in
terms of the state wavefunction Y, the following strategy is used:

1. The perturbation V = H-HO appropriate to the particular property is identified. For dipole
moments (M), polarizabilities (a), and hyperpolarizabilities (b), V is the interaction of the

nuclel and electrons with the external electric field
V =SaZ£RaE - Sjerj-E.
For vibrational frequencies, one needs the derivatives of the energy E with respect to

deformation of the bond lengths and angles of the molecule, so V isthe sum of al changes
in the electronic Hamiltonian that arise from displacements dR ; of the atomic centers



V =S; (NRH) - dRa.

2. A power series expansion of the state energy E, computed in a manner consistent with
how Y isdetermined (i.e., as an expectation value for SCF, MCSCF, and CI
wavefunctions or as <F |H|Y > for MPPT/MBPT or as <F |exp(-T)Hexp(T)|F > for CC

wavefunctions), is carried out in powers of the perturbation V:
E=E0+E® + E®@ + EQ) + ...

In evaluating the terms in this expansion, the dependence of H = HO+V and of Y (whichis
expressed as a solution of the SCF, MCSCF, ..., or CC equations for H not for HO) must
be included.

3. The desired physical property must be extracted from the power series expansion of DE
in powers of V.

B. The MCSCF Response Case
1. The Dipole Moment

To illustrate how the above devel opments are carried out and to demonstrate how
the results express the desired quantities in terms of the original wavefunction, let us
consider, for an MCSCF wavefunction, the response to an external electric field. In this
case, the Hamiltonian is given as the conventional one- and two-€l ectron operators HO to
which the above one-electron electric dipole perturbation V is added. The MCSCF
wavefunction Y and energy E are assumed to have been obtained viathe MCSCF
procedure with H=HO+| V, where| can be thought of as a measure of the strength of the
applied eectric field.

The termsin the expansion of E(l ) in powersof | :

E=E(=0)+1 (dE/ )o+ 121 2 (dRE/d 2)g + ...

are obtained by writing the total derivatives of the MCSCF energy functional with respect
tol and evaluating these derivativesat | =0



(whichisindicated by the subscript (..)g on the above derivatives):
E(l =0) = <Y (I =0)|HOJY (I =0)> = EO,
(dE/d )o = <Y (I =O)V|Y (I =0)> + 2 S3(TCHM )o <TY MCHOJY (I =0)>
+2 Sj a(TCa,i/Ml o <TY /fCaj[HOY (I =0)>
+2 S (Ten/Ml o <TY MicaHOY (1 =0)>,

and so on for higher order terms. The factors of 2 in the last three terms come through
using the hermiticity of HO to combine termsin which derivatives of Y occur.

Thefirst-order correction can be thought of as arising from the response of the
wavefunction (as contained in its LCAO-MO and CI amplitudes and basis functions cp,)

plus the response of the Hamiltonian to the external field. Because the MCSCF energy
functional has been made stationary with respect to variations in the Cj and Cj 5 amplitudes,

the second and third terms above vanish:

TEMCy=2<TY IC3HOJY (I =0)> =0,

TEMCqj = 2 <TY MICq,|HOJY (I =0)> =0.
If, asis common, the atomic orbital bases used to carry out the MCSCF energy
optimization are not explicitly dependent on the external field, the third term also vanishes
because (fich/1ll )o = 0. Thus for the MCSCF case, the first-order response is given as the
average value of the perturbation over the wavefunction with | =0:

(dE/d )o = <Y (I =O)N|Y (I =0)>.

For the external electric field case at hand, this result says that the field-dependence of the
state energy will have alinear term equal to

<Y (I =Q)|V|Y (I =0)> =<Y [SaZEeRae - Sjerj-e[Y >,

where e isaunit vector in the direction of the applied eectric field (the magnitude of the
fieldl having already been removed in the power series expansion). Since the dipole



moment is determined experimentally as the energy's slope with respect to field strength,
this means that the dipole moment is given as.

m= <Y [SaZ£Ra- SjerjlY >.
2. The Geometrical Force

These same techniques can be used to determine the response of the energy to
displacements dR 5 of the atomic centers. In such a case, the perturbation is

V =SadRa NRry(-Si Z«£2 /Ii-Rd)
=- SaZaezdRaS| (ri‘ Ra)/lrrRalg

Here, the one-electron operator S; (ri- Ro)/|ri-Rdl3 is referred to as 'the Hellmann-
Feynman' force operator; it is the derivative of the Hamiltonian with respect to

displacement of center-ainthex, y, or z direction.
The expressions given above for E(I =0) and (dE/d ) can once again be used, but

with the Hellmann-Feynman form for V. Once again, for the MCSCF wavefunction, the
variational optimization of the energy gives

<TY MIC4HOY (I =0)> = <TY /9Cqaj[HOY (I =0)> =0.
However, because the atomic basis orbitals are attached to the centers, and because these
centersare displaced in forming V, it isno longer true that (c 1/l )o = 0; the variationin

the wavefunction caused by movement of the basis functions now contributes to the first-
order energy response. As aresult, one obtains

(dE/ )g = - SaZa€2dRa <Y [S; (ri- RY)/|li-R|Y >
+2 SadRa Sn (NR £n)o <TY Mcn|HOY (I =0)>.
Thefirst contribution to the force

Fa - Za€2<Y [Sj (ri- RY/|i-RaPY >



+2 Sp (Nrcn)o <TY /Mcn[HOY (I =0)>

along the x, y, and z directions for center-ainvolves the expectation value, with respect to
the MCSCF wavefunction with | =0, of the Hellmann-Feynman force operator. The second

contribution gives the forces due to infinitesimal displacements of the basis functions on
center-a.
The evaluation of the latter contributions can be carried out by first realizing that

Y =S3Cy f uf of 33...F n... T N
with
fj = SmCmJ Cm

involves the basis orhital's through the LCAO-MO expansion of thef js. So the derivatives
of the basis orbitals contribute as follows:

Snh (NRaCn) <Y Micnl=S3Sj,nCy Cnj <If nf pf J3....NRaCn..fJN|.

Each of these factors can be viewed as combinations of CSFswith the same Cyand Cy |
coefficientsasin Y but with the jth spin-orbital involving basis functions that have been
differentiated with respect to displacement of center-a. It turns out that such derivatives of
Gaussian basis orbitals can be carried out analytically (giving rise to new Gaussians with
one higher and one lower I-quantum number).

When substituted into S, (NRr L£n)o <TY icn [HOJY (I =0)>, these basis derivative

termsyield
Sn (NRn)o <TY Mcn[HOY (I =0)>
=S53SjnCyCnj <If uf 2of Jg....NRaCn..fJN|HO|Y >,

whose evaluation viathe Slater-Condon rules is straightforward. It issimply the
expectation value of HO with respectto Y (with the same density matrix elements that arise



in the evauation of Y 's energy) but with the one- and two-electron integrals over the
atomic basis orbitals involving one of these differentiated functions:

<Cnfnldlcgca> P I<|Ra<Can|g|CgC3d>: <NRaCnCn|g|Cng>
+<cplNR Lnlglcged™ +<cnenlgNR CoCd> +<CnenldlcgNR Co>-

In summary, the force F 5 felt by the nuclear framework due to a displacement of
center-aaong thex, y, or z axisisgiven as

Fa= - Za€<Y [Si (ri- RQ/IN-RalY > + (Nr <Y [HOY >),

where the second term isthe energy of Y but with all atomic integrals replaced by integra
derivatives: <cpfnlglcgcqs™> P

NRs<Cnfnlglcgcd™>.
C. Responses for Other Types of Wavefunctions

It should be stressed that the MCSCF wavefunction yiel ds especially compact
expressions for responses of E with respect to an externa perturbation because of the
variational conditions

<Y MIC3HOJY (I =0)> = <{Y MCq;[HOY (I =0)> =0

that apply. The SCF case, which can be viewed as a special case of the MCSCF situation,
also admits these ssimplifications. However, the Cl, CC, and MPPT/MBPT casesinvolve
additional factors that arise because the above variationa conditions do not apply (in the Cl
case, <Y /1IC;|HOY (I =0)> = 0 till applies, but the orbital condition

<Y MIC4,[HOY (I =0)> =0 does not because the orbitals are not varied to make the Cl
energy functional stationary).

Within the CC, Cl, and MPPT/MBPT methods, one must evaluate the so-called
responses of the C; and C,j coefficients (Cy/1ll )o and (TC4,i/1l )o that appear in the full
energy response as (see above)

2 S3(1CH Yo <TY MCHHOYY (I =0)>+2 Sj 5(C4;i/Ml )o<TY /MCqi|HOJY (I =0)>. To do so
requires solving a set of response equations that are obtained by differentiating whatever



equations govern the C; and C,; coefficientsin the particular method (e.g., Cl, CC, or
MPPT/MBPT) with respect to the external perturbation. In the geometrical derivative case,
this amounts to differentiating with respect to x, y, and z displacements of the atomic
centers. These response equations are discussed in Geometrical Derivatives of Energy
Surfaces and Molecular Properties, P. Jargensen and J. Simons, Eds.,, NATO AS| Series,
Vol. 166, D. Reidel, Dordrecht (1985). Their treatment is somewhat beyond the scope of
thistext, so they will not be dealt with further here.

D. The Use of Geometrical Energy Derivatives
1. Gradients as Newtonian Forces

Thefirst energy derivativeis called the gradient g and is the negative of the force F
(with components along the ath center denoted F 5) experienced by the atomic centers F = -
g . Theseforces, as discussed in Chapter 16, can be used to carry out classical trajectory
simulations of molecular collisions or other motions of large organic and biological
molecules for which a quantum treatment of the nuclear motion is prohibitive.

The second energy derivatives with respect to the x, y, and z directions of centersa
and b (for example, the x, y component for centersaand b is Hay ny = (T2E/Xaflyb)o) form
the Hessian matrix H. The elements of H give the local curvatures of the energy surface
along the 3N cartesian directions.

The gradient and Hessian can be used to systematically locate local minima.(i.e.,
stable geometries) and transition states that connect one local minimum to another. At each
of these stationary points, all forces and thus all elements of the gradient g vanish. At a
local minimum, the H matrix has 5 or 6 zero eigenvalues corresponding to trandational and
rotational displacements of the molecule (5 for linear molecules; 6 for non-linear species)
and 3N-5 or 3N-6 positive eigenvalues. At atransition state, H has one negative
eigenvalue, 5 or 6 zero eigenvalues, and 3N-6 or 3N-7 positive eigenval ues.

2. Transition State Rate Coefficients

The trangition state theory of Eyring or its extensions due to Truhlar and co-
workers (see, for example, D. G. Truhlar and B. C. Garrett, Ann. Rev. Phys. Chem. 35,
159 (1984)) allow knowledge of the Hessian matrix at atransition state to be used to
compute arate coefficient kyae @ppropriate to the chemical reaction for which the transition

state applies.



More specificaly, the geometry of the molecule at the transition state is used to
compute arotational partition function QTrot in which the principal moments of inertia g,
Ip, and | ¢ (see Chapter 13) are those of the transition state (the T symbol is, by convention,
used to label the transition state):

/8 2| KT
QTrot = I:’n:a,b,c phzn )

where k isthe Boltzmann constant and T is the temperaturein °K.
The eigenvalues{w,} of the mass weighted Hessian matrix (see below) are used to
compute, for each of the 3N-7 vibrations with real and positive w, values, avibrationa

partition function that is combined to produce atransition-state vibrational partition
function:

exp(-hwa /2KT)
1-exp(-hwa /KT)

Qlvib=Pa=13n-7

The electronic partition function of the transition state is expressed in terms of the activation
energy (the energy of the transition state relative to the el ectronic energy of the reactants) =
as:

QTeIectronic =w' exp(-ET/ KT)

wherew! isthe degeneracy of the electronic state at the transition state geometry.

In the original Eyring version of transition state theory (TST), the rate coefficient
KrateiS then given by:

QTrotQTvi b

KT
Krate= - W' exp(-ET/KT) ool

where Qreactants iS the conventional partition function for the reactant materials.
For example, in abimolecular reaction such as:

F+Hy® FH +H,



the reactant partition function

Qreactants = QF QI-|2

iswritten in terms of the trandlational and e ectronic (the degeneracy of the 2P state
produces the 2 (3) overall degeneracy factor) partition functions of the F atom

_ a8pmekTo 32

QF 2

2 (3)

and the trandational, €l ectronic, rotational, and vibrational partition functions of the Ho
molecule

_ a8pmp kT 32 8p2lH KT exp(-Awi,/2KT)
278 2 o 22 1-exp(-Aw/KT) '

Thefactor of 2 in the denominator of the Ho> moleculesrotational partition function isthe
"symmetry number" that must be inserted because of the identity of the two H nuclei.

The overall rate coefficient krge (With units sec'! because thisis arate per collision
pair) can thus be expressed entirely in terms of energetic, geometrical, and vibrational
information about the reactants and the transition state. Even within the extensions to
Eyring's original model, such isthe case. The primary difference in the more modern
theoriesis that the transition state isidentified not as the point on the potential energy
surface at which the gradient vanishes and there is one negative Hessian eigenvalue.
Instead, a so-called variational transition state (see the above reference by Truhlar and
Garrett) isidentified. The geometry, energy, and local vibrational frequencies of this
transition state are then used to compute, must like outlined above, krze

3. Harmonic Vibrational Frequencies

It is possible (see, for example, J. Nichols, H. L. Taylor, P. Schmidt, and J.
Simons, J. Chem. Phys. 92, 340 (1990) and references therein) to remove from H the zero
eigenvalues that correspond to rotation and trandation and to thereby produce a Hessian
matrix whose elgenval ues correspond only to internal motions of the system. After doing
so, the number of negative eigenvalues of H can be used to characterize the nature of the



stationary point (local minimum or transition state), and H can be used to evaluate the local
harmonic vibrational frequencies of the system.

The relationship between H and vibrational frequencies can be made clear by
recalling the classical equations of motion in the Lagrangian formulation:

d/dt(ILAIq j) - (TLAMIG) = O,

where g denotes, in our case, the 3N cartesian coordinates of the N atoms, and qj isthe
velocity of the corresponding coordinate. Expressing the Lagrangian L as kinetic energy
minus potential energy and writing the potential energy asalocal quadratic expansion about
apoint where g vanishes, gives

L=1/2 Sj m; qu - E(0) - ]JZSj'k g Hj k Ok -
Here, E(0) isthe energy at the stationary point, m; isthe mass of the atom to which g
applies, and the H; k arethe elements of H along the x, y, and z directions of the various

atomic centers.

Applying the Lagrangian equationsto thisform for L gives the equations of motion
of the g coordinates.

mj q j = - Sk Hjk Ok

To find solutions that correspond to local harmonic motion, one assumes that the
coordinates gj oscillate in time according to

q;(t) = gj cos(wt).

Substituting this form for gj(t) into the equations of motion gives
m W2 0j = Sk Hj k Ok-

Defining

q' = qj (my)12



and introducing this into the above equation of motion yields
w2q' = Sk Hjk ok,

where
H'j k= Hij k (mjmi)1/2

isthe so-called mass-weighted Hessian matrix.
The squares of the desired harmonic vibrational frequenciesw? are thus given as

eigenvalues of the mass-weighted Hessian H":
H'g'a=wW2aQ'a
The corresponding eigenvector, {q'a j} gives, when multiplied by

mj'UZ, the atomic displacements that accompany that particular harmonic vibration. At a
transition state, one of the w2, will be negative and 3N-6 or 3N-7 will be positive.

4. Reaction Path Following

The Hessian and gradient can also be used to trace out 'streambeds’ connecting
local minimato transition states. In doing so, one utilizes alocal harmonic description of
the potential energy surface

ExX)=E@Q)+x-g+12x-H-x + ...,
where x represents the (small) step away from the point x=0 at which the gradient g and
Hessian H have been evaluated. By expressing x and g in terms of the eigenvectorsv of
H

Hva =14 Va,

X =Sa <ValX>Va = Sa Xa Va,

g =Sa <Valg>Va =Sa da Va,



the energy change E(x) - E(0) can be expressed in terms of a sum of independent changes
along the eilgendirections:

E(X) - E(O) = Sa[ Xa ga +1/2 X2a I a ] + ...

Depending on the signs of g5 and of | 5, various choices for the displacements x5 will
produce increases or decreases in energy:

1. If | 5 ispositive, then astep x5 'along’ ga (i.e., one with x5 ga positive) will generate
an energy increase. A step 'opposed to' g will generate an energy decreaseiif it is short
enough that X5 ga islarger in magnitude than 1/2 x25 | 4, otherwise the energy will
increase.

2. 1T | 5 isnegative, a step opposed to g5 will generate an energy decrease. A step aong
0a Will give an energy increase if it is short enough for x5 ga to be larger in magnitude
than 1/2 x25 | 4, otherwise the energy will decrease.

Thus, to proceed downhill in al directions (such as one wants to do when
searching for local minima), one chooses each x5 in opposition to g; and of small enough
length to guarantee that the magnitude of x5 ga exceedsthat of 1/2 x25 | 4 for those modes
with| 53 > 0. To proceed uphill dong amodewith | 5' < 0 and downhill along all other
modeswith| 5 > 0, one chooses x5" along ga ' with X' short enough to guarantee that
Xa' Oa'islarger in magnitude than 1/2 x23'1 ', and one chooses the other x5 opposed to
ga and short enough that X5 ga islarger in magnitude than 1/2 x25 | 4.

Such considerations have allowed the devel opment of highly efficient potential
energy surface ‘walking' algorithms (see, for example, J. Nichols, H. L. Taylor, P.
Schmidt, and J. Simons, J. Chem. Phys. 92, 340 (1990) and references therein) designed
to trace out streambeds and to locate and characterize, viathe local harmonic frequencies,
minima and transition states. These algorithms form essential components of most modern
ab initio, semi-empirical, and empirical computational chemistry software packages.



[1. Ab Initio, Semi-Empirical and Empirical Force Field Methods

A. Ab Initio Methods

Most of the techniques described in this Chapter are of the ab initio type. This
means that they attempt to compute el ectronic state energies and other physical properties,
as functions of the positions of the nuclei, from first principles without the use or
knowledge of experimental input. Although perturbation theory or the variational method
may be used to generate the working equations of a particular method, and although finite
atomic orbital basis sets are nearly aways utilized, these approximations do not involve
fitting' to known experimental data. They represent approximations that can be
systematically improved as the level of treatment is enhanced.

B. Semi-Empirical and Fully Empirical Methods

Semi-empirical methods, such as those outlined in Appendix F, use experimental
data or the results of ab initio calculations to determine some of the matrix elements or
integrals needed to carry out their procedures. Totally empirical methods attempt to describe
the internal electronic energy of a system as afunction of geometrical degrees of freedom
(e.g., bond lengths and angles) in terms of analytical 'force fields whose parameters have
been determined to ‘fit' known experimental data on some class of compounds. Examples
of such parameterized force fields were presented in Section 111. A of Chapter 16.

C. Strengths and Weaknesses

Each of these tools has advantages and limitations. Ab initio methods involve
intensive computation and therefore tend to be limited, for practical reasons of computer
time, to smaller atoms, molecules, radicals, and ions. Their CPU time needs usually vary
with basis set size (M) as at least M4; correl ated methods require time proportional to at
least M> because they involve transformation of the atomic-orbital-based two-€lectron
integrals to the molecular orbital basis. As computers continue to advance in power and
memory size, and as theoretical methods and algorithms continue to improve, ab initio
techniques will be applied to larger and more complex species. When dealing with systems
in which qualitatively new electronic environments and/or new bonding types arise, or
excited electronic states that are unusual, ab initio methods are essential. Semi-empirical or
empirica methods would be of little use on systems whose electronic properties have not
been included in the data base used to construct the parameters of such models.




On the other hand, to determine the stable geometries of large moleculesthat are
made of conventional chemical units (e.g., CC, CH, CO, etc. bonds and steric and
torsional interactions among same), fully empirical force-field methods are usually quite
reliable and computationally very fast. Stable geometries and the relative energetic stabilities
of various conformers of large macromolecules and biopolymers can routinely be predicted
using such toals if the system contains only conventional bonding and common chemical
building blocks. These empirical potentials usually do not contain sufficient flexibility (i.e.,
their parameters and input data do not include enough knowledge) to address processes that
involve rearrangement of the electronic configurations. For example, they can not treat:

1. Electronic transitions, because knowledge of the optical oscillator strengths and of the
energies of excited statesis absent in most such methods;

2. Concerted chemical reactions involving simultaneous bond breaking and forming,
because to do so would require the force-field parameters to evolve from those of the
reactant bonding to those for the product bonding as the reaction proceeds,

3. Molecular properties such as dipole moment and polarizability, although in certain fully
empirical models, bond dipoles and lone-pair contributions have been incorporated
(although again only for conventional chemical bonding situations).

Semi-empirical techniques share some of the strengths and weaknesses of ab initio
and of fully empirical methods. They treat at |east the valence electrons explicitly, so they
are able to address questions that are inherently electronic such as electronic transitions,
dipole moments, polarizability, and bond breaking and forming. Some of the integrals
involving the Hamiltonian operator and the atomic basis orbitals are performed ab initio;
others are obtained by fitting to experimental data. The computational needs of semi-
empirical methods lie between those of the ab initio methods and the force-field techniques.
Aswith the empirical methods, they should never be employed when qualitatively new
electronic bonding situations are encountered because the data base upon which their
parameters were determined contain, by assumption, no similar bonding cases.







