
Section 6 More Quantitative Aspects of Electronic Structure
Calculations.

Chapter 17

Electrons interact via pairwise Coulomb forces; within the "orbital picture" these

interactions are modelled by less difficult to treat "averaged" potentials. The difference

between the true Coulombic interactions and the averaged potential is not small, so to

achieve reasonable (ca. 1 kcal/mol) chemical accuracy, high-order corrections to the orbital

picture are needed.

The discipline of computational ab initio quantum chemistry is aimed at determining

the electronic energies and wavefunctions of atoms, molecules, radicals, ions, solids, and

all other chemical species. The phrase ab initio  implies that one attempts to solve the

Schrödinger equation from first principles, treating the molecule as a collection of positive

nuclei and negative electrons moving under the influence of coulombic potentials, and not

using any prior knowledge about this species' chemical behavior.

To make practical use of such a point of view requires that approximations be

introduced; the full Schrödinger equation is too difficult to solve exactly for any but simple

model problems. These approximations take the form of physical concepts (e.g., orbitals,

configurations, quantum numbers, term symbols, energy surfaces, selection rules, etc.)

that provide useful means of organizing and interpreting experimental data and

computational methods that allow quantitative predictions to be made.

Essentially all ab initio  quantum chemistry methods use, as a starting point from

which improvements are made, a picture in which the electrons interact via a one-electron
additive potential. These so-called mean-field potentials Vmf(r) = Σj Vmf(rj) provide

descriptions of atomic and molecular structure that are approximate. Their predictions must

be improved to achieve reasonably accurate solutions to the true electronic Schrödinger

equation. In so doing, three constructs that characterize essentially all ab initio quantum

chemical methods are employed: orbitals, configurations, and electron

correlation.
Since the electronic kinetic energy T = Σj Tj operator is one-electron additive, the

mean-field Hamiltonian H0 = T + Vmf  is also of this form. The additivity of H0  implies

that the mean-field wavefunctions {Ψ0k} can be formed in terms of products of functions

{φk} of the coordinates of the individual electrons, and that the corresponding energies

{E0k} are additive. Thus, it is the ansatz that Vmf is separable that leads to the concept of



orbitals, which are the one-electron functions {φj}. These orbitals are found by solving

the one-electron Schrödinger equations:

(T1 + Vmf(r1)) φj(r1) = εj φj(r1);

the eigenvalues {εj} are called orbital energies.

Because each of the electrons also possesses intrinsic spin, the one-electron
functions {φj} used in this construction are taken to be eigenfunctions of (T1 + Vmf(r1))

multiplied by either α or β. This set of functions is called the set of mean-field spin-

orbitals.

Given the complete set of solutions to this one-electron equation, a complete set of
N-electron mean-field wavefunctions can be written down. Each Ψ0k is constructed by

forming an antisymmetrized product of N spin-orbitals chosen from the set of {φj},

allowing each spin-orbital in the list to be a function of the coordinates of one of the N

electrons (e.g,

Ψ0k = |φk1(r1) φk2(r2)φk3(r3) ... φkN-1(rN-1) φkN(rN)|,

as above). The corresponding mean field energy is evaluated as the sum over those spin-
orbitals that appear in Ψ0k :

E0k = Σj=1,N  εkj.

By choosing to place N electrons into specific spin-orbitals, one has specified a
configuration. By making other choices of which N φj to occupy, one describes other

configurations. Just as the one-electron mean-field Schrödinger equation has a complete set
of spin-orbital solutions {φj and εj}, the N-electron mean-field Schrödinger equation has a

complete set of N-electron    configuration state functions     (CSFs) Ψ0k and energies E0k.

II. Electron Correlation Requires Moving Beyond a Mean-Field Model

To improve upon the mean-field picture of electronic structure, one must move

beyond the single-configuration approximation. It is essential to do so to achieve higher

accuracy, but it is also important to do so to achieve a    conceptually     correct view of chemical

electronic structure. However, it is very disconcerting to be told that the familiar 1s22s22p2



description of the carbon atom is inadequate and that instead one must think of the 3P

ground state of this atom as a 'mixture' of 1s22s22p2, 1s22s23p2, 1s22s23d2, 2s23s22p2

(and any other configurations whose angular momenta can be coupled to produce L=1 and

S=1).

Although the picture of configurations in which N electrons occupy N spin-orbitals

may be very familiar and useful for systematizing electronic states of atoms and molecules,

these constructs are approximations to the true states of the system. They were introduced

when the mean-field approximation was made, and neither orbitals nor configurations
describe the proper eigenstates {Ψk, Ek}. The inclusion of instantaneous spatial

correlations among electrons is necessary to achieve a more accurate description of atomic

and molecular electronic structure.       No      single spin-orbital product wavefunction is capable

of treating electron correlation to    any      extent; its product nature renders it incapable of doing

so.

III. Moving from Qualitative to Quantitative Models

The preceding Chapters introduced, in a qualitative manner, many of the concepts

which are used in applying quantum mechanics to electronic structures of atoms and

molecules. Atomic, bonding, non-bonding, antibonding, Rydberg, hybrid, and delocalized

orbitals and the configurations formed by occupying these orbitals were discussed. Spin

and spatial symmetry as well as permutational symmetry were treated, and properly

symmetry-adapted configuration state functions were formed. The Slater-Condon rules

were shown to provide expressions for Hamiltonian matrix elements (and those involving

any one- or two-electron operator) over such CSFs in terms of integrals over the orbitals

occupied in the CSFs. Orbital, configuration, and state correlation diagrams were

introduced to allow one to follow the evolution of electronic structures throughout a

'reaction path'.

Section 6 addresses the     quantitative and computational implementation     of many of

the above ideas. It is not designed to address all of the state-of-the-art methods which have

been, and are still being, developed to calculate orbitals and state wavefunctions. The rapid

growth in computer hardware and software power and the evolution of new computer

architectures makes it difficult, if not impossible, to present an up-to-date overview of the

techniques that are presently at the cutting edge in computational chemistry. Nevertheless,

this Section attempts to describe the essential elements of several of the more powerful and

commonly used methods; it is likely that many of these elements will persist in the next



generation of computational chemistry techniques although the details of their

implementation will evolve considerably. The text by Szabo and Ostlund provides excellent

insights into many of the theoretical methods treated in this Section.

IV. Atomic Units

The electronic Hamiltonian is expressed, in this Section, in so-called atomic units

(aus)

He = Σ j { ( - 1/2 ) ∇j2 - Σa Za/rj,a } + Σ j<k 1/rj,k .

These units are introduced to remove all h , e, and me factors from the equations.

To effect this unit transformation, one notes that the kinetic energy operator scales

as rj-2 whereas the coulombic potentials scale as rj-1 and as rj,k-1. So, if each of the

distances appearing in  the cartesian coordinates of the electrons and nuclei were expressed

as a unit of length a0 multiplied by a dimensionless length factor, the kinetic energy

operator would involve terms of the form

( - h2/2(a0)2me ) ∇ j2 , and the coulombic potentials would appear as

Zae2/(a0)rj,a  and e2/(a0)rj,k . A factor of e2/a0 (which has units of energy since a0 has units

of length) can then be removed from the coulombic and kinetic energies, after which the

kinetic energy terms appear as ( - h2/2(e2a0)me ) ∇ j2 and the potential energies appear as

Za/rj,a and 1/rj,k. Then, choosing a0 = h2/e2me changes the kinetic energy terms into -1/2 ∇

j2; as a result, the entire electronic Hamiltonian takes the form given above in which no e2,

me, or h2 factors appear. The value of the so-called Bohr radius a0 = h2/e2me is 0.529 Å,

and the so-called Hartree energy unit e2/a0, which factors out of He, is 27.21 eV or 627.51

kcal/mol.

Chapter 18

The single Slater determinant wavefunction (properly spin and symmetry adapted) is the

starting point of the most common mean field potential. It is also the origin of the molecular

orbital concept.

I. Optimization of the Energy for a Multiconfiguration Wavefunction

A. The Energy Expression



The most straightforward way to introduce the concept of optimal molecular orbitals

is to consider a trial wavefunction of the form which was introduced earlier in Chapter 9.II.

The expectation value of the Hamiltonian for a wavefunction of the multiconfigurational

form

Ψ = ΣI CIΦI ,

where ΦI is a space- and spin-adapted CSF which consists of determinental wavefunctions

|φI1φI2φI3. . .φIN| , can be written as:

E =ΣI,J = 1, M CICJ < ΦI | H | ΦJ > .

The spin- and space-symmetry of the ΦI determine the symmetry of the state Ψ whose

energy is to be optimized.

In this form, it is clear that E is a quadratic function of the CI amplitudes CJ ; it is a

quartic functional of the spin-orbitals because the Slater-Condon rules express each < ΦI |

H | ΦJ > CI matrix element in terms of one- and two-electron integrals < φi | f | φj > and

< φiφj | g | φkφl > over these spin-orbitals.

B. Application of the Variational Method

The     variational    method can be used to optimize the above expectation value

expression for the electronic energy (i.e., to make the functional stationary) as a function of

the CI coefficients CJ and the LCAO-MO coefficients {Cν, i} that characterize the spin-

orbitals. However, in doing so the set of {Cν, i} can not be treated as entirely independent

variables. The fact that the spin-orbitals {φi} are assumed to be orthonormal imposes a set

of constraints on the {Cν, i}:

< φi | φj> = δi,j  = Σµ,ν C*µ,i < χµ| χν > Cν ,j.

These constraints can be enforced within the variational optimization of the energy function

mentioned above by introducing a set of Lagrange multipliers {εi,j} , one for each

constraint condition, and subsequently differentiating

E - Σ i,j  εi,j [ δi,j  - Σµ,ν C*µ,i < χµ| χν > Cν ,j ]



with respect to each of the Cν ,i variables.

C. The Fock and Secular Equations

Upon doing so, the following set of equations is obtained (early references to the

derivation of such equations include A. C. Wahl, J. Chem. Phys.     41     ,2600 (1964) and F.

Grein and T. C. Chang, Chem. Phys. Lett.     12    , 44 (1971); a more recent overview is

presented in R. Shepard, p 63, in Adv. in Chem. Phys. LXIX, K. P. Lawley, Ed., Wiley-

Interscience, New York (1987); the subject is also treated in the textbook     Second

    Quantization Based Methods in Quantum Chemistry    , P. Jørgensen and J. Simons,

Academic Press, New York (1981))) :

Σ J =1, M HI,J   CJ  = E CI ,  I = 1, 2, ... M, and

F φi = Σ j εi,j φj,

where the εi,j  are Lagrange multipliers.

The first set of equations govern the {CJ} amplitudes and are called the CI- secular

equations. The second set determine the LCAO-MO coefficients of the spin-orbitals {φj}

and are called the Fock equations. The Fock operator F is given in terms of the one- and

two-electron operators in H itself as well as the so-called one- and two-electron density

matrices γi,j  and Γi,j,k,l which are defined below. These density matrices reflect the

averaged occupancies of the various spin orbitals in the CSFs of Ψ. The resultant

expression for F is:

F φi = Σ j γi,j  h φj + Σ j,k,l Γi,j,k,l Jj,l  φk,

where h is the one-electron component of the Hamiltonian (i.e., the kinetic energy operator

and the sum of coulombic attractions to the nuclei). The operator Jj,l  is defined by:

Jj,l φk(r) =⌡⌠ φ*j(r ') φl(r')1/|r-r'| dτ'   φk(r),

where the integration denoted dτ' is over the spatial and spin coordinates. The so-called

spin integration simply means that the α or β spin function associated with φl must be the



same as the α or β spin function associated with φj or the integral will vanish. This is a

consequence of the orthonormality conditions <α|α> = <β|β> = 1, <α|β> = <β|α> = 0.

D. One- and Two- Electron Density Matrices

The density matrices introduced above can most straightforwardly be expressed in

terms of the CI amplitudes and the nature of the orbital occupancies in the CSFs of Ψ as

follows:

1. γi,i  is the sum over all CSFs, in which φi is occupied, of the square of the CI coefficient

of that CSF:

γi,i  =ΣI (with φi occupied) C2I .

2. γi,j  is the sum over pairs of CSFs which differ by a single spin-orbital occupancy (i.e.,

one having φi occupied where the other has φj occupied after the two are placed into

maximal coincidence-the sign factor (sign) arising from bringing the two to maximal

coincidence is attached to the final density matrix element):

γi,j  = ΣI,J (sign)( with φi occupied in I where φj is in J) CI CJ .

The two-electron density matrix elements are given in similar fashion:

3. Γi,j,i,j = ΣI (with both φi and φj occupied) CI CI ;

4.   Γi,j,j,i = -ΣI (with both φi and φj occupied) CI CI  = -Γi,j,i,j

(it can be shown, in general that Γi,j,k,l is odd under exchange of i and j, odd under

exchange of k and l and even under (i,j)<=>(k,l) exchange; this implies that Γi,j,k,l

vanishes if i = j or k = l.) ;

5. Γi,j,k,j = Σ I,J (sign)(with φj in both I and J

and φi in I where φk is in J) CICJ

= Γj,i,j,k = - Γi,j,j,k = - Γj,i,k,j;



6. Γi,j,k,l = ΣI,J (sign)( with φi in I where φk is in J and φj in I where φl is in J) CI

CJ

= Γj,i,l,k = - Γj,i,k,l = - Γi,j,l,k = Γj,i,l,k .

These density matrices are themselves quadratic functions of the CI coefficients and

they reflect all of the permutational symmetry of the determinental functions used in

constructing Ψ;  they are a compact representation of all of the Slater-Condon rules as

applied to the particular CSFs which appear in Ψ. They contain all information about the

spin-orbital occupancy of the CSFs in Ψ. The one- and two- electron integrals < φi | f | φj >

and < φiφj | g | φkφl > contain all of the information about the magnitudes of the kinetic and

Coulombic interaction energies.

II. The Single-Determinant Wavefunction

The simplest trial function of the form given above is the single Slater determinant

function:

Ψ = | φ1φ2φ3 ... φN |.

For such a function, the CI part of the energy minimization is absent  (the classic papers in

which the SCF  equations for closed- and open-shell systems are treated are C. C. J.

Roothaan, Rev. Mod. Phys.     23    , 69 (1951);     32    , 179 (1960)) and the density matrices

simplify greatly because only one spin-orbital occupancy is operative. In this case, the

orbital optimization conditions reduce to:

F φi = Σ j εi,j  φj ,

where the so-called Fock operator F is given by

F φi = h φi + Σ j(occupied) [Jj - Kj] φi .

The coulomb (Jj) and exchange (Kj) operators are defined by the relations:

Jj φi = ∫ φ*j(r') φj(r')1/|r-r'| dτ'  φi(r) , and



Kj φi = ∫ φ*j(r') φi(r')1/|r-r'| dτ'  φj(r) .

Again, the integration implies integration over the spin variables associated with the φj

(and, for the exchange operator, φi), as a result of which the exchange integral vanishes

unless the spin function of φj is the same as that of φi; the coulomb integral is non-

vanishing no matter what the spin functions of φj and φi.

The sum over coulomb and exchange interactions in the Fock operator runs only

over those spin-orbitals that are occupied in the trial Ψ. Because a unitary transformation

among the orbitals that appear in Ψ leaves the determinant unchanged (this is a property of

determinants- det (UA) = det (U) det (A) = 1 det (A), if U is a unitary matrix), it is possible

to choose such a unitary transformation to make the εi,j matrix diagonal. Upon so doing,

one is left with the so-called    canonical Hartree-Fock equations   :

F φi =  εi φj,

where εi is the diagonal value of the εi,j  matrix after the unitary transformation has been

applied; that is, εi is an eigenvalue of the εi,j  matrix. These equations are of the eigenvalue-

eigenfunction form with the Fock operator playing the role of an effective one-electron

Hamiltonian and the φi  playing the role of the one-electron eigenfunctions.

It should be noted that the Hartree-Fock equations F φi =  εi φj possess solutions

for the spin-orbitals which appear in Ψ (the so-called     occupied     spin-orbitals) as well as for

orbitals which are not occupied in Ψ ( the so-called     virtual    spin-orbitals). In fact, the F

operator is hermitian, so it possesses a complete set of orthonormal eigenfunctions; only

those which appear in Ψ appear in the coulomb and exchange potentials of the Fock

operator. The physical meaning of the occupied and virtual orbitals will be clarified later in

this Chapter (Section VII.A)

III. The Unrestricted Hartree-Fock Spin Impurity Problem

As formulated above in terms of spin-orbitals, the Hartree-Fock (HF) equations

yield orbitals that do not guarantee that Ψ possesses proper spin symmetry. To illustrate the

point, consider the form of the equations for an open-shell system such as the Lithium atom

Li. If 1sα, 1sβ, and 2sα spin-orbitals are chosen to appear in the trial function Ψ, then the

Fock operator will contain the following terms:



F = h + J1sα + J1sβ + J2sα - [ K1sα + K1sβ + K2sα ] .

Acting on an α spin-orbital φkα with F and carrying out the spin integrations, one obtains

F φkα = h φkα + (2J1s + J2s ) φkα - ( K1s + K2s) φkα .

In contrast, when acting on a β spin-orbital, one obtains

F φkβ = h φkβ + (2J1s + J2s ) φkβ - ( K1s) φkβ .

Spin-orbitals of α and  β type do     not    experience the same exchange potential in this model,

which is clearly due to the fact that Ψ contains two α spin-orbitals and only one β spin-

orbital.

One consequence of the spin-polarized nature of the effective potential in F is that

the optimal 1sα and 1sβ spin-orbitals, which are themselves solutions of F φi = εi φi , do

not have identical orbital energies (i.e., ε1sα ≠ ε1sβ ) and are not spatially identical to one

another ( i.e., φ1sα and φ1sβ do not have identical LCAO-MO expansion coefficients). This

resultant spin polarization of the orbitals in Ψ gives rise to spin impurities in Ψ. That is, the

determinant | 1sα 1s'β 2sα | is not a pure doublet spin eigenfunction although it is an Sz

eigenfunction with Ms = 1/2; it contains both S = 1/2 and S = 3/2 components. If the 1sα
and 1s'β spin-orbitals were spatially identical, then | 1sα 1s'β 2sα | would be a pure spin

eigenfunction with S = 1/2.

The above single-determinant wavefunction is commonly referred to as being of the

unrestricted Hartree-Fock (UHF) type because no restrictions are placed on the spatial

nature of the orbitals which appear in Ψ. In general, UHF wavefunctions are not of pure

spin symmetry for any open-shell system. Such a UHF treatment forms the starting point

of early versions of the widely used and highly successful Gaussian 70 through Gaussian-

8X series of electronic structure computer codes which derive from J. A. Pople and co-

workers (see, for example, M. J. Frisch, J. S. Binkley, H. B. Schlegel, K Raghavachari,

C. F. Melius, R. L. Martin, J. J. P. Stewart, F. W. Bobrowicz, C. M. Rohling, L. R.

Kahn, D. J. Defrees, R. Seeger, R. A. Whitehead, D. J. Fox, E. M. Fleuder, and J. A.

Pople,      Gaussian 86     , Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh,

PA (1984)).

The inherent spin-impurity problem is sometimes 'fixed' by using the orbitals

which are obtained in the UHF calculation to subsequently form a properly spin-adapted

wavefunction. For the above Li atom example, this amounts to forming a new



wavefunction (after the orbitals are obtained via the UHF process) using the techniques

detailed in Section 3 and Appendix G:

Ψ = 1/√2 [ |1sα 1s'β 2sα | - | 1sβ 1s'α 2sα | ] .

This wavefunction is a pure S = 1/2 state. This prescription for avoiding spin

contamination (i.e., carrying out the UHF calculation and then forming a new spin-pure Ψ)

is referred to as    spin-projection    .

It is, of course, possible to first form the above spin-pure Ψ as a trial wavefunction

and to then determine the orbitals 1s 1s' and 2s which minimize its energy; in so doing, one

is dealing with a spin-pure function from the start. The problem with carrying out this

process, which is referred to as a    spin-adapted     Hartree-Fock calculation, is that the

resultant 1s and 1s' orbitals still do not have identical spatial attributes. Having a set of

orbitals (1s, 1s', 2s, and the virtual orbitals) that form a non-orthogonal set (1s and 1s' are

neither identical nor orthogonal) makes it difficult to progress beyond the single-

configuration wavefunction as one often wishes to do. That is, it is difficult to use a spin-

adapted wavefunction as a starting point for a correlated-level treatment of electronic

motions.

Before addressing head-on the problem of how to best treat orbital optimization for

open-shell species, it is useful to examine how the HF equations are solved in practice in

terms of the LCAO-MO process.

IV. The LCAO-MO Expansion

The HF equations F φi = εi φi comprise a set of integro-differential equations; their

differential nature arises from the kinetic energy operator in h, and the coulomb and

exchange operators provide their integral nature. The solutions of these equations must be

achieved iteratively because the Ji and Ki  operators in F depend on the orbitals φi  which

are to be solved for. Typical iterative schemes begin with a 'guess' for those φi which

appear in Ψ, which then allows F to be formed. Solutions to F φi = εi φi are then found,

and those φi which possess the space and spin symmetry of the occupied orbitals of Ψ and

which have the proper energies and nodal character are used to generate a new F operator

(i.e., new Ji and Ki operators). The new F operator then gives new φi and εi via solution of

the new F φi = εi φi equations. This iterative process is continued until the φi and εi do not

vary significantly from one iteration to the next, at which time one says that the process has

converged. This iterative procedure is referred to as the Hartree-Fock    self-consistent field    



(SCF) procedure because iteration eventually leads to coulomb and exchange potential

fields that are consistent from iteration to iteration.

In practice, solution of F φi = εi φi as an integro-differential equation can be carried

out only for atoms (C. Froese-Fischer, Comp. Phys. Commun.     1     , 152 (1970)) and linear

molecules (P. A. Christiansen and E. A. McCullough, J. Chem. Phys.     67    , 1877 (1977))

for which the angular parts of the φi  can be exactly separated from the radial because of the

axial- or full- rotation group symmetry (e.g., φi = Yl,m  Rn,l (r)  for an atom and φi =

exp(imφ) Rn,l,m (r,θ) for a linear molecule). In such special cases, F φi = εi φi gives rise to

a set of coupled equations for the Rn,l(r) or Rn,l,m(r,θ) which can and have been solved.

However, for non-linear molecules, the HF equations have not yet been solved in such a

manner because of the three-dimensional nature of the φi and of the potential terms in F.

In the most commonly employed procedures used to solve the HF equations for

non-linear molecules, the φi are expanded in a basis of functions χµ according to the

LCAO-MO procedure:

φi = Σµ Cµ,i χµ .

Doing so then reduces F φi = εi φi to a matrix eigenvalue-type equation of the form:

Σν  Fµ,ν Cν ,i = εi Σν  Sµ,ν Cν ,i  ,

where Sµ,ν = < χµ | χν> is the overlap matrix among the atomic orbitals (aos) and

    Fµ,ν = <χµ|h|χν> + Σδ,κ [γδ,κ<χµχδ |g|χνχκ>-γδ,κex<χµχδ|g|χκχν >]

is the matrix representation of the Fock operator in the ao basis.  The coulomb and

exchange- density matrix elements in the ao basis are:

γδ,κ = Σ i(occupied) Cδ,i Cκ,i, and

γδ,κex = Σ i(occ., and same spin)  Cδ,i Cκ,i,

where the sum in γδ,κex runs over those occupied spin-orbitals whose ms value is equal to

that for which the Fock matrix is being formed (for a closed-shell species, γδ,κex = 1/2

γδ,κ).



It should be noted that by moving to a matrix problem, one does not remove the

need for an iterative solution; the Fµ,ν matrix elements depend on the Cν ,i  LCAO-MO

coefficients which are, in turn, solutions of the so-called Roothaan matrix Hartree-Fock

equations- Σν  Fµ,ν Cν ,i  = εi Σν  Sµ,ν Cν ,i .  One should also note that, just as

F φi =  εi φj possesses a complete set of eigenfunctions, the matrix Fµ,ν  , whose dimension

M is equal to the number of atomic basis orbitals used in the LCAO-MO expansion, has M

eigenvalues εi and M eigenvectors whose elements are the Cν ,i. Thus, there are occupied

and virtual molecular orbitals (mos) each of which is described in the LCAO-MO form with

Cν ,i  coefficients obtained via solution of

Σν  Fµ,ν Cν ,i  = εi Σν  Sµ,ν Cν ,i  .

V. Atomic Orbital Basis Sets

A. STOs and GTOs

The basis orbitals commonly used in the LCAO-MO-SCF process fall into two

classes:

1. Slater-type orbitals

χn,l,m (r,θ,φ) = Nn,l,m,ζ  Yl,m (θ,φ) rn-1 e-ζr ,

which are characterized by quantum numbers n, l, and m and exponents (which

characterize the 'size' of the basis function) ζ. The symbol Nn,l,m,ζ denotes the

normalization constant.

2. Cartesian Gaussian-type orbitals

χa,b,c (r,θ,φ) = N'a,b,c,α  xa yb zc exp(-αr2),

characterized by quantum numbers a, b, and c which detail the angular shape and direction

of the orbital and exponents α which govern the radial 'size' of the basis function. For

example, orbitals with a, b, and c values of 1,0,0 or 0,1,0 or 0,0,1 are px , py , and pz

orbitals; those with a,b,c values of 2,0,0 or 0,2,0 or 0,0,2 and



1,1,0 or 0,1,1 or 1,0,1 span the space of five d orbitals and one s orbital (the sum of the

2,0,0 and 0,2,0 and 0,0,2 orbitals is an s orbital because x2 + y2 + z2 = r2 is independent

of θ and φ).

For both types of orbitals, the coordinates r, θ, and φ refer to the position of the

electron relative to a set of axes attached to the center on which the basis orbital is located.

Although Slater-type orbitals (STOs) are preferred on fundamental grounds (e.g., as

demonstrated in Appendices A and B, the hydrogen atom orbitals are of this form and the

exact solution of the many-electron Schrödinger equation can be shown to be of this form

(in each of its coordinates) near the nuclear centers), STOs are used primarily for atomic
and linear-molecule calculations because the multi-center integrals < χaχb| g | χcχd > (each

basis orbital can be on a separate atomic center) which arise in polyatomic-molecule

calculations can not efficiently be performed when STOs are employed. In contrast, such

integrals can routinely be done when Gaussian-type orbitals (GTOs) are used. This

fundamental advantage of GTOs has lead to the dominance of these functions in molecular

quantum chemistry.

To understand why integrals over GTOs can be carried out when analogous STO-
based integrals are much more difficult, one must only consider the orbital products ( χaχc
(r1) and χbχd (r2) ) which arise in such integrals. For orbitals of the GTO form, such

products involve exp(-αa (r-Ra)2) exp(-αc (r-Rc)2). By completing the square in the

exponent, this product can be rewritten as follows:

exp(-αa (r-Ra)2) exp(-αc (r-Rc)2)

= exp(-(αa+αc)(r-R')2) exp(-α'(Ra-Rc)2),

where

R' = [ αa Ra + αcRc ]/(αa + αc) and

α' = αa αc/(αa +αc).

Thus, the product of two GTOs on different centers is equal to a single other GTO at a

center R' between the two original centers. As a result, even a four-center two-electron

integral over GTOs can be written as, at most, a two-center two-electron integral; it turns

out that this reduction in centers is enough to allow all such integrals to be carried out. A



similar reduction does not arise for STOs because the product of two STOs can not be

rewritten as a new STO at a new center.

To overcome the primary weakness of GTO functions, that they have incorrect

behavior near the nuclear centers (i.e., their radial derivatives vanish at the nucleus whereas

the derivatives of STOs are non-zero), it is common to combine two, three, or more GTOs,

with combination coefficients which are fixed and     not    treated as LCAO-MO parameters,

into new functions called contracted GTOs or CGTOs. Typically, a series of tight,

medium, and loose GTOs (i.e., GTOs with large, medium, and small α values,

respectively) are multiplied by so-called contraction coefficients and summed to produce a

CGTO which appears to possess the proper 'cusp' (i.e., non-zero slope) at the nuclear

center (although even such a combination can not because each GTO has zero slope at the

nucleus).

B. Basis Set Libraries

Much effort has been devoted to developing sets of STO or GTO basis orbitals for

main-group elements and the lighter transition metals. This ongoing effort is aimed at

providing standard basis set libraries which:

1. Yield reasonable chemical accuracy in the resultant wavefunctions and energies.

2. Are cost effective in that their use in practical calculations is feasible.

3. Are relatively transferrable in the sense that the basis for a given atom is flexible enough

to be used for that atom in a variety of bonding environments (where the atom's

hybridization and local polarity may vary).

C. The Fundamental Core and Valence Basis

In constructing an atomic orbital basis to use in a particular calculation, one must

choose from among several classes of functions. First, the size and nature of the primary

core and valence basis must be specified. Within this category, the following choices are

common:

1. A      minimal basis    in which the number of STO or CGTO orbitals is equal to the number

of core and valence atomic orbitals in the atom.

2. A     double-zeta    (DZ) basis in which twice as many STOs or CGTOs are used as there are

core and valence atomic orbitals. The use of more basis functions is motivated by a desire

to provide additional variational flexibility to the LCAO-MO process.  This flexibility

allows the LCAO-MO process to generate molecular orbitals of variable diffuseness as the



local electronegativity of the atom varies.  Typically, double-zeta bases include pairs of

functions with one member of each pair having a smaller exponent (ζ or α value) than in

the minimal basis and the other member having a larger exponent.

3. A    triple-zeta    (TZ) basis in which three times as many STOs or CGTOs are used as the

number of core and valence atomic orbitals.

4. Dunning has developed CGTO bases which range from approximately DZ to

substantially beyond TZ quality (T. H. Dunning, J. Chem. Phys.     53    , 2823 (1970); T. H.

Dunning and P. J. Hay in      Methods of Electronic Structure Theory    , H. F. Schaefer, III

Ed., Plenum Press, New York (1977))). These bases involve contractions of primitive

GTO bases which Huzinaga had earlier optimized (S. Huzinaga, J. Chem. Phys.     42    , 1293

(1965)) for use as uncontracted functions (i.e., for which Huzinaga varied the α values to

minimize the energies of several electronic states of the corresponding atom). These

Dunning bases are commonly denoted, for example, as follows for first-row atoms:

(10s,6p/5s,4p), which means that 10 s-type primitive GTOs have been contracted to

produce 5 separate s-type CGTOs and that 6 primitive p-type GTOs were contracted to

generate 4 separate p-type CGTOs. More recent basis sets from the Dunning group are

given in T. Dunning, J. Chem. Phys.     90    , 1007 (1990).

5. Even-tempered basis sets (M. W. Schmidt and K. Ruedenberg, J. Chem. Phys.     71    ,

3961 (1979)) consist of GTOs in which the orbital exponents αk belonging to series of

orbitals consist of geometrical progressions: αk = a βk , where a and β characterize the

particular set of GTOs.

6. STO-3G bases were employed some years ago (W. J. Hehre, R. F. Stewart, and J. A.

Pople, J. Chem. Phys.     51    , 2657 (1969)) but are less popular recently. These bases are

constructed by least squares fitting GTOs to STOs which have been optimized for various

electronic states of the atom. When three GTOs are employed to fit each STO, a STO-3G

basis is formed.

7. 4-31G, 5-31G, and 6-31G bases (R.  Ditchfield, W. J. Hehre, and J. A. Pople, J.

Chem. Phys.     54    , 724 (1971); W. J. Hehre, R.  Ditchfield, and J. A. Pople, J. Chem.

Phys.     56    , 2257 (1972); P. C. Hariharan and J. A. Pople, Theoret. Chim. Acta. (Berl.)     28    ,

213 (1973); R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys.     72    ,

650 (1980)) employ a single CGTO of contraction length 4, 5, or 6 to describe the core

orbital. The valence space is described at the DZ level with the first CGTO constructed

from 3 primitive GTOs and the second CGTO built from a single primitive GTO.

The values of the orbital exponents (ζs or αs) and the GTO-to-CGTO contraction

coefficients needed to implement a particular basis of the kind described above have been

tabulated in several journal articles and in computer data bases (in particular, in the data



base contained in the book      Handbook of Gaussian Basis Sets:  A. Compendium for Ab

   initio Molecular Orbital Calculations   , R. Poirer, R. Kari, and I. G. Csizmadia, Elsevier

Science Publishing Co., Inc., New York, New York (1985)).

Several other sources of basis sets for particular atoms are listed in the Table shown

below (here JCP and JACS are abbreviations for the Journal of Chemical Physics and the

Journal of The American Chemical Society, respectively).

    Literature Reference                                        Basis Type        Atoms   

Hehre, W.J.; Stewart, R.F.; Pople, J.A.           STO-3G                  H-Ar

JCP     51    , 2657 (1969).

Hehre, W.J.; Ditchfield, R.; Stewart, R.F.;

Pople, J.A. JCP     52    , 2769 (1970).

Binkley, J.S.; Pople, J.A.; Hehre, W.J.             3-21G                   H-Ne

JACS     102    , 939 (1980).

Gordon, M.S.; Binkley, J.S.; Pople, J.A.;          3-21G                    Na-Ar

Pietro, W.J.; Hehre, W.J. JACS     104    , 2797 (1982).

Dobbs, K.D.; Hehre, W.J.                                3-21G                   K,Ca,Ga

J. Comput. Chem.     7    , 359 (1986).

Dobbs, K.D.; Hehre, W.J.                                3-21G                   Sc-Zn

J. Comput. Chem.     8,    880 (1987).

Ditchfield, R.; Hehre, W.J.; Pople, J.A.            6-31G                    H

JCP     54    , 724 (1971).

Dill, J.D.; Pople, J.A.                                       6-31G                   Li,B

JCP     62    , 2921 (1975).

Binkley, J.S.; Pople, J.A.                                 6-31G                   Be

JCP     66    , 879 (1977).



Hehre, W.J.; Ditchfield, R.; Pople, J.A.             6-31G                   C-F

JCP     56    , 2257 (1972).

Francl, M.M.; Pietro, W.J.; Hehre, W.J.;           6-31G                   Na-Ar

Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.;

Pople, J.A. JCP     77    , 3654 (1982).

Dunning, T. JCP     53    , 2823 (1970).                  (4s/2s)                   H

                                                                    (4s/3s)                   H

                                                                    (9s5p/3s2p)           B-F

                                                                    (9s5p/4s2p)           B-F

                                                                    (9s5p/5s3p)           B-F

Dunning, T. JCP     55    , 716 (1971).                    (5s/3s)                   H

                                                                    (10s/4s)                 Li

                                                                    (10s/5s)                 Be

                                                                    (10s6p/5s3p)         B-Ne

                                                                    (10s6p/5s4p)         B-Ne

Krishnan, R.; Binkley, J.S.; Seeger, R.;             6-311G                  H-Ne

Pople, J.A. JCP     72    , 650 (1980).

Dunning, unpublished VDZ.                          (4s/2s)                   H

                                                                    (9s5p/3s2)       Li,Be,C-Ne

                                                                    (12s8p/4s3p)       Na-Ar

Dunning, unpublished VTZ.                          (5s/3s)                   H

                                                                    (6s/3s)                  H

                                                                    (12s6p/4s3p)  Li,Be,C-Ne

                                                  (17s10p/5s4p)         Mg-Ar

Dunning, unpublished VQZ.                          (7s/4s)                   H

                                                                    (8s/4s)                   H

                                                                    (16s7p/5s4p)        B-Ne



Dunning, T. JCP     90    , 1007 (1989).                 (4s1p/2s1p)            H

(pVDZ,pVTZ,pVQZ correlation-consistent)     (5s2p1d/3s2p1d)    H

                                                              (6s3p1d1f/4s3p2d1f)   H

                                                              (9s4p1d/3s2p1d)         B-Ne

                                                              (10s5p2d1f/4s3p2d1f) B-Ne

                                                      (12s6p3d2f1g/5s4p3d2f1g)  B-Ne

Huzinaga, S.; Klobukowski, M.; Tatewaki, H.       (14s/2s)            Li,Be

Can. J. Chem.     63    , 1812 (1985).                         (14s9p/2s1p)      B-Ne

                                            (16s9p/3s1p)     Na-Mg

                                                                        (16s11p/3s2p)  Al-Ar

Huzinaga, S.; Klobukowski, M.                     (14s10p/2s1p)         B-Ne

THEOCHEM.     44    , 1 (1988).                            (17s10p/3s1p)        Na-Mg

                                        (17s13p/3s2p)       Al-Ar

                                                               (20s13p/4s2p)        K-Ca

                                                            (20s13p10d/4s2p1d) Sc-Zn

                                                            (20s14p9d/4s3d1d)         Ga

McLean, A.D.; Chandler, G.S.                    (12s8p/4s2p) Na-Ar, P-,S-,Cl-

JCP     72    , 5639 (1980).                              (12s8p/5s3p) Na-Ar, P-,S-,Cl-

        (12s8p/6s4p) Na-Ar, P-,S-,Cl-

        (12s9p/6s4p) Na-Ar, P-,S-,Cl-

          (12s9p/6s5p) Na-Ar, P-,S-,Cl-

Dunning, T.H.Jr.; Hay, P.J. Chapter 1 in          (11s7p/6s4p)         Al-Cl

'Methods of Electronic Structure Theory',

Schaefer, H.F.III, Ed., Plenum Press,

N.Y., 1977.

Hood, D.M.; Pitzer, R.M.; Schaefer, H.F.III  (14s11p6d/10s8p3d)  Sc-Zn

JCP     71    , 705 (1979).

Schmidt, M.W.; Ruedenberg, K.                     ([N]s), N=3-10            H

JCP     71    , 3951 (1979).                                  ([2N]s), N=3-10           He



(regular even-tempered)                           ([2N]s), N=3-14           Li,Be

                                                        ([2N]s[N]p),N=3-11        B,N-Ne

                                                            ([2N]s[N]p),N=3-13            C

                                                            ([2N]s[N]p),N=4-12         Na,Mg

                                                            ([2N-6]s[N]p),N=7-15      Al-Ar

D. Polarization Functions

In addition to the fundamental core and valence basis described above, one usually

adds a set of so-called     polarization functions    to the basis. Polarization functions are

functions of one higher angular momentum than appears in the atom's valence orbital space

(e.g, d-functions for C, N , and O and p-functions for H). These polarization functions

have exponents (ζ or α) which cause their radial sizes to be similar to the sizes of the

primary valence orbitals

( i.e., the polarization p orbitals of the H atom are similar in size to the 1s orbital).  Thus,

they are     not    orbitals which provide a description of the atom's valence orbital with one

higher l-value; such higher-l valence orbitals would be radially more diffuse and would

therefore require the use of STOs or GTOs with smaller exponents.

The primary purpose of polarization functions is to give additional angular

flexibility to the LCAO-MO process in forming the valence molecular orbitals. This is

illustrated below where polarization dπ orbitals are seen to contribute to formation of the

bonding π orbital of a carbonyl group by allowing polarization of the Carbon atom's pπ
orbital toward the right and of the Oxygen atom's pπ orbital toward the left.

              

C O



Polarization functions are essential in strained ring compounds because they provide the

angular flexibility needed to direct the electron density into regions between bonded atoms.

Functions with higher l-values and with 'sizes' more in line with those of the

lower-l orbitals are also used to introduce additional angular correlation into the calculation

by permitting polarized orbital pairs (see Chapter 10) involving higher angular correlations

to be formed. Optimal polarization functions for first and second row atoms have been

tabulated (B. Roos and P. Siegbahn, Theoret. Chim. Acta (Berl.)     17    , 199 (1970); M. J.

Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys.     80     , 3265 (1984)).

E. Diffuse Functions

When dealing with anions or Rydberg states, one must augment the above basis

sets by adding so-called diffuse basis orbitals. The conventional valence and polarization

functions described above do not provide enough radial flexibility to adequately describe

either of these cases. Energy-optimized diffuse functions appropriate to anions of most

lighter main group elements have been tabulated in the literature (an excellent source of

Gaussian basis set information is provided in      Handbook of Gaussian Basis Sets   , R.

Poirier, R. Kari, and I. G. Csizmadia, Elsevier, Amsterdam (1985)) and in data bases.

Rydberg diffuse basis sets are usually created by adding to conventional valence-plus-

polarization bases sequences of primitive GTOs whose exponents are smaller than that (call

it αdiff) of the most diffuse GTO which contributes strongly to the valence CGTOs. As a

'rule of thumb', one can generate a series of such diffuse orbitals which are liniarly

independent yet span considerably different regions of radial space by introducing primitive

GTOs whose exponents are αdiff /3, αdiff /9 , αdiff /27, etc.

Once one has specified an atomic orbital basis for each atom in the molecule, the

LCAO-MO procedure can be used to determine the Cν ,i  coefficients that describe the

occupied and virtual orbitals in terms of the chosen basis set. It is important to keep in mind

that the basis orbitals are     not    themselves the true orbitals of the isolated atoms; even the

proper atomic orbitals are combinations (with atomic values for the Cν ,i  coefficients) of the

basis functions. For example, in a minimal-basis-level treatment of the Carbon atom, the 2s

atomic orbital is formed by combining, with opposite sign to achieve the radial node, the

two CGTOs (or STOs); the more diffuse s-type basis function will have a larger Ci,ν

coefficient in the 2s atomic orbital. The 1s atomic orbital is formed by combining the same

two CGTOs but with the same sign and with the less diffuse basis function having a larger



Cν ,i coefficient. The LCAO-MO-SCF process itself determines the magnitudes and signs

of the Cν ,i  .

VI. The Roothaan Matrix SCF Process

The matrix SCF equations introduced earlier

Σν  Fµ,ν Cν ,i  = εi Σν  Sµ,ν Cν ,i

must be solved both for the occupied and virtual orbitals' energies εi and Cν ,i  values. Only

the occupied orbitals' Cν ,i  coefficients enter into the Fock operator

Fµ,ν  = < χµ | h | χν > + Σδ,κ  [γδ,κ< χµ χδ | g | χν χκ >

-  γδ,κex< χµ χδ | g | χκ χν >],

but both the occupied and virtual orbitals are solutions of the SCF equations. Once atomic

basis sets have been chosen for each atom, the     one- and two-electron integrals    appearing in

Fµ,ν  must be evaluated. Doing so is a time consuming process, but there are presently

several highly efficient computer codes which allow such integrals to be computed for s, p,

d, f, and even g, h, and i basis functions. After executing one of these '   integral packages   '

for a basis with a total of N functions, one has available (usually on the computer's hard

disk) of the order of N2/2 one-electron and N4/8 two-electron integrals over these atomic

basis orbitals (the factors of 1/2 and 1/8 arise from permutational symmetries of the

integrals). When treating extremely large atomic orbital basis sets (e.g., 200 or more basis

functions), modern computer programs calculate the requisite integrals but never store them

on the disk. Instead, their contributions to Fµ,ν are accumulated 'on the fly' after which the

integrals are discarded.

To begin the SCF process, one must input to the computer routine which computes

Fµ,ν    initial 'guesses'    for the Cν ,i  values corresponding to the occupied orbitals. These

initial guesses are typically made in one of the following ways:

1. If one has available Cν ,i  values for the system from an SCF calculation performed

earlier at a nearby molecular geometry, one can use these Cν ,i  values to begin the SCF

process.



2. If one has Cν ,i  values appropriate to fragments of the system (e.g., for C and O atoms

if the CO molecule is under study or for CH2 and O if H2CO is being studied), one can use

these.

3. If one has no other information available, one can carry out one iteration of the SCF

process in which the two-electron contributions to Fµ,ν   are ignored ( i.e., take Fµ,ν  = < χµ
| h | χν >) and use the resultant solutions to Σν  Fµ,ν Cν ,i  = εi Σν  Sµ,ν Cν ,i   as initial

guesses for the Cν ,i . Using only the one-electron part of the Hamiltonian to determine

initial values for the LCAO-MO coefficients may seem like a rather severe step; it is, and

the resultant Cν ,i  values are usually far from the converged values which the SCF process

eventually produces. However, the initial Cν ,i  obtained in this manner have proper

symmetries and nodal patterns because the one-electron part of the Hamiltonian has the

same symmetry as the full Hamiltonian.

Once initial guesses are made for the Cν ,i   of the occupied orbitals, the full Fµ,ν
matrix is formed and new εi and Cν ,i  values are obtained by solving Σν  Fµ,ν Cν ,i  = εi Σν
Sµ,ν Cν ,i . These new orbitals are then used to form a new Fµ,ν   matrix from which new εi

and Cν ,i  are obtained. This iterative process is carried on until the εi and Cν ,i  do not vary

(within specified tolerances)  from iteration to iteration, at which time one says that the SCF

process has converged and reached self-consistency.

As presented, the Roothaan SCF process is carried out in a fully    ab        initio     manner in

that all one- and two-electron integrals are computed in terms of the specified basis set; no

experimental data or other input is employed. As described in Appendix F,  it is possible to

introduce approximations to the coulomb and exchange integrals entering into the Fock

matrix elements that permit many of the requisite Fµ,ν elements to be evaluated in terms of

experimental data or in terms of a small set of 'fundamental' orbital-level coulomb

interaction integrals that can be computed in an    ab        initio     manner. This approach forms the

basis of so-called 'semi-empirical' methods. Appendix F provides the reader with a brief

introduction to such approaches to the electronic structure problem and deals in some detail

with the well known Hückel and CNDO- level approximations.

VII. Observations on Orbitals and Orbital Energies

A. The Meaning of Orbital Energies

The physical content of the Hartree-Fock orbital energies can be seen by observing

that Fφi = εi φi  implies that εi can be written as:



εi = < φi | F | φi > = < φi | h | φi > + Σ j(occupied) < φi | Jj - Kj | φi >

= < φi | h | φi > + Σ j(occupied) [ Ji,j - Ki,j  ].

In this form, it is clear that εi is equal to the average value of the kinetic energy plus

coulombic attraction to the nuclei for an electron in φi plus the sum over all of the spin-

orbitals occupied in Ψ of coulomb minus exchange interactions between φi  and these

occupied spin-orbitals. If φi itself is an occupied spin-orbital, the term [ Ji,i - Ki,i]

disappears and the latter sum represents the coulomb minus exchange interaction of φi with

all of the  N-1     other    occupied spin-orbitals. If φi is a virtual spin-orbital, this cancellation

does not occur, and one obtains the coulomb minus exchange interaction of φi with all N of

the occupied spin-orbitals.

In this sense, the orbital energies for occupied orbitals pertain to interactions which

are appropriate to a total of N electrons, while the orbital energies of virtual orbitals pertain

to a system with N+1 electrons. It is this fact that makes SCF virtual orbitals not optimal

(in fact, not usually very good) for use in subsequent correlation calculations where, for

instance, they are used, in combination with the occupied orbitals, to form polarized orbital

pairs as discussed in Chapter 12. To correlate a pair of electrons that occupy a valence

orbital requires double excitations into a virtual orbital that is not too dislike in size.

Although the virtual SCF orbitals themselves suffer these drawbacks, the space they span

can indeed be used for treating electron correlation. To do so, it is useful to recombine (in a

unitary manner to preserve orthonormality) the virtual orbitals to 'focus' the correlating

power into as few orbitals as possible so that the multiconfigurational wavefunction can be

formed with as few CSFs as possible. Techniques for effecting such reoptimization or

improvement of the virtual orbitals are treated later in this text.

B.. Koopmans' Theorem

Further insight into the meaning of the energies of occupied and virtual orbitals can

be gained by considering the following model of the vertical (i.e., at fixed molecular

geometry) detachment or attachment of an electron to the original N-electron molecule:

1. In this model,     both     the parent molecule and the species generated by adding or removing

an electron are treated at the single-determinant level.

2. In this model, the Hartree-Fock orbitals of the parent molecule are used to describe both

the parent and the species generated by electron addition or removal. It is said that such a

model neglects '    orbital relaxation    ' which would accompany the electron addition or



removal (i.e., the reoptimization  of the spin-orbitals to allow them to become appropriate

to the daughter species).

Within this simplified model, the energy difference between the daughter and the

parent species can be written as follows (φk represents the particular spin-orbital that is

added or removed):

1. For electron detachment:

EN-1 - EN = < | φ1φ2 ...φk-1. .φN| H | φ1φ2 ...φk-1. .φN| > -

< | φ1φ2. . .φk-1φk. .φN | H | | φ1φ2. . .φk-1φk. .φN | >

=  − < φk | h | φk > - Σ j=(1,k-1,k+1,N) [ Jk,j - Kk,j ] = - εk  ;

2. For electron attachment:

EN - EN+1 = < | φ1φ2 ...φN| H | φ1φ2 ...φN| > -

< | φ1φ2. . .φNφk | H | | φ1φ2. . . .φN φk| >

=  − < φk | h | φk > - Σ j=(1,N) [ Jk,j - Kk,j ] = - εk .

So, within the limitations of the single-determinant, frozen-orbital model set forth,

the ionization potentials (IPs) and electron affinities (EAs) are given as the negative of the

occupied and virtual spin-orbital energies, respectively. This statement is referred to as

Koopmans' theorem (T. Koopmans, Physica     1    , 104 (1933)); it is used extensively in

quantum chemical calculations as a means for estimating IPs and EAs and often yields

results that are at least qualitatively correct (i.e., ± 0.5 eV).

C. Orbital Energies and the Total Energy

For the N-electron species whose Hartree-Fock orbitals and orbital energies have

been determined, the total SCF electronic energy can be written, by using the Slater-

Condon rules, as:

 E = Σ i(occupied) < φi | h | φi > + Σ i>j(occupied) [ Ji,j - Ki,j ].



For this same system, the sum of the orbital energies of the occupied spin-orbitals is given

by:

Σ i(occupied) εi = Σ i(occupied) < φi | h | φi >

+ Σ i,j(occupied) [ Ji,j - Ki,j ].

These two seemingly very similar expressions differ in a very important way; the sum of

occupied orbital energies, when compared to the total energy, double counts the coulomb

minus exchange interaction energies. Thus, within the Hartree-Fock approximation, the

sum of the occupied orbital energies is     not    equal to the total energy. The total SCF energy

can be computed in terms of the sum of occupied orbital energies by taking one-half of

Σ i(occupied) εi and then adding to this one-half of Σ i(occupied) < φi | h | φi >:

E = 1/2 [Σ i(occupied) < φi | h | φi > + Σ i(occupied) εi].

The fact that the sum of orbital energies is not the total SCF energy also means that

as one attempts to develop a qualitative picture of the energies of CSFs along a reaction

path, as when orbital and configuration correlation diagrams are constructed, one must be

careful not to equate the sum of orbital energies with the total configurational energy; the

former is higher than the latter by an amount equal to the sum of the coulomb minus

exchange interactions.

D.  The Brillouin Theorem

The condition that the SCF energy <|φ1. . .φN| H |φ1. . .φN|> be stationary with respect

to variations δφi  in the occupied spin-orbitals (that preserve orthonormality) can be written

<|φ1. . .δφi. . .φN|H|φ1. . .φi. . .φN|> = 0.

The infinitesimal variation of φi can be expressed in terms of its (small) components along

the other occupied φj and along the virtual φm as follows:   

δφi =  Σ j=occ  Uij φj  + Σm Uim φm.



When substituted into |φ1. . .δφi. . .φΝ|, the terms Σ j'=occ|φ1. . .φj. . .φN|Uij vanish because φj

already appears in the original Slater determinant |φ1. . .φN|, so |φ1. . .φj. . .φΝ| contains φj

twice.  Only the sum over virtual orbitals remains, and the stationary property written

above becomes

Σm Uim<|φ1. . .φm. . .φN| H |φ1. . .φi. . .φN|> = 0.

The Slater-Condon rules allow one to express the Hamiltonian matrix elements

appearing here as

<|φ1. . .φm. . .φN| H |φ1. . .φi. . .φN|> = <φm|h|φi> + Σ j=occ ,≠i <φm|[Jj-Kj]|φi>,

which (because the term with j=i can be included since it vanishes) is equal to the following

element of the Fock operator: <φm|F|φi> = εi δim = 0.  This result proves that Hamiltonian

matrix elements between the SCF determinant and those that are singly excited relative to

the SCF determinant vanish because they reduce to Fock-operator integrals connecting the

pair of orbitals involved in the 'excitation'.  This stability property of the SCF energy is

known as the Brillouin theorem (i.e., that |φ1φiφN| and |φ1. . .φm. . .φN| have zero Hamiltonian

matrix elements    if    the φs are SCF orbitals). It is exploited in quantum chemical calculations

in two manners:

(i) When multiconfiguration wavefunctions are formed from SCF spin-orbitals, it

allows one to neglect Hamiltonian matrix elements between the SCF configuration and

those that are 'singly excited' in constructing the secular matrix.

(ii) A so-called generalized Brillouin theorem (GBT) arises when one deals with

energy optimization for a multiconfigurational variational trial wavefunction for which the

orbitals and CI mixing coefficients are simultaneously optimized. This GBT causes certain

Hamiltonian matrix elements to vanish, which, in turn, simplifies the treatment of electron

correlation for such wavefunctions. This matter is treated in more detail later in this text.

Chapter 19

Corrections to the mean-field model are needed to describe the instantaneous Coulombic

interactions among the electrons. This is achieved by including more than one Slater

determinant in the wavefunction.

Much of the development of the previous chapter pertains to the use of a single

Slater determinant trial wavefunction.  As presented, it relates to what has been called the



unrestricted Hartree-Fock (UHF) theory in which each spin-orbital φi has its own orbital

energy εi and LCAO-MO coefficients Cν ,i ; there may be different Cν ,i  for α spin-orbitals

than for β  spin-orbitals. Such a wavefunction suffers from the spin contamination

difficulty detailed earlier.

To allow for a properly spin- and space- symmetry adapted trial wavefunction and

to permit Ψ to contain more than a single CSF,  methods which are more flexible than the

single-determinant HF procedure are needed. In particular, it may be necessary to use a

combination of determinants to describe such a proper symmetry function. Moreover, as

emphasized earlier, whenever two or more CSFs have similar energies (i.e., Hamiltonian

expectation values) and can couple strongly through the Hamiltonian (e.g., at avoided

crossings in configuration correlation diagrams), the wavefunction must be described in a

multiconfigurational manner to permit the wavefunction to evolve smoothly from reactants

to products. Also, whenever dynamical electron correlation effects are to be treated, a

multiconfigurational Ψ must be used; in this case, CSFs that are     doubly excited     relative to

one or more of the essential CSFs (i.e., the dominant CSFs that are included in the so-

called    reference wavefunction    ) are included to permit polarized-orbital-pair formation.

Multiconfigurational functions are needed not only to account for electron

correlation but also to permit orbital readjustments to occur. For example, if a set of SCF

orbitals is employed in forming a multi-CSF wavefunction, the variational condition that

the energy is stationary with respect to variations in the LCAO-MO coefficients is no longer

obeyed (i.e., the SCF energy functional is stationary when SCF orbitals are employed, but

the MC-energy functional is generally not stationary if SCF orbitals are employed). For

such reasons, it is important to include CSFs that are    singly excited     relative to the dominant

CSFs in the reference wavefunction.

That singly excited CSFs allow for orbital relaxation can be seen as follows.

Consider a wavefunction consisting of one CSF |φ1. . .φi. . .φN| to which singly excited CSFs

of the form |φ1. . .φm. . .φN| have been added with coefficients Ci,m:

Ψ = Σm Ci,m |φ1. . .φm. . .φN| + |φ1. . .φi. . .φN|.

All of these determinants have all of their columns equal except the ith column; therefore,

they can be combined into a single new determinant:

Ψ = |φ1. . .φi' . . .φN|,

where the relaxed orbital φi' is given by



φi' = φi + Σm Ci,m φm.

The sum of CSFs that are singly excited in the ith spin-orbital with respect to |φ1. . .φi. . .φN|

is therefore seen to allow the spin-orbital φi to relax into the new spin-orbital φi'. It is in

this sense that singly excited CSFs allow for orbital reoptimization.

In summary, doubly excited CSFs are often employed to permit polarized orbital

pair formation and hence to allow for electron correlations. Singly excited CSFs are

included to permit orbital relaxation (i.e., orbital reoptimization) to occur.

I. Different Methods

There are numerous procedures currently in use for determining the 'best'

wavefunction of the form:

Ψ = ΣI CI ΦI,

where ΦI  is a spin-and space- symmetry adapted CSF consisting of determinants of the

form  | φI1 φI2 φI3 ... φIN | . Excellent overviews of many of these methods are included in

     Modern Theoretical Chemistry     Vols. 3 and 4, H. F. Schaefer, III Ed., Plenum Press, New

York (1977) and in     Advances in Chemical Physics   , Vols. LXVII and LXIX, K. P.

Lawley, Ed., Wiley-Interscience, New York (1987). Within the present Chapter, these two

key references will be denoted MTC, Vols. 3 and 4, and ACP, Vols. 67 and 69,

respectively.

In all such trial wavefunctions, there are two fundamentally different kinds of

parameters that need to be determined- the CI coefficients CI and the LCAO-MO

coefficients describing the φIk . The most commonly employed methods used to determine

these parameters include:

1. The multiconfigurational self-consistent field ( MCSCF) method in which the

expectation value < Ψ | H | Ψ > / < Ψ | Ψ > is treated variationally and simultaneously

made stationary with respect to variations in the CI and Cν ,i  coefficients subject to the

constraints that the spin-orbitals and the full N-electron wavefunction remain normalized:

<  φi | φj > = δi,j  = Σν ,µ Cν ,i  Sν ,µ Cµ,i , and



ΣI C2I = 1.

The articles by H.-J. Werner and by R. Shepard in ACP Vol. 69 provide up to date

reviews of the status of this approach. The article by A. C. Wahl and G. Das in MTC Vol.

3 covers the 'earlier' history on this topic. F. W. Bobrowicz and W. A. Goddard, III

provide, in MTC Vol. 3, an overview of the GVB approach, which, as discussed in

Chapter 12, can be viewed as a specific kind of MCSCF calculation.

2. The configuration interaction (CI) method in which the

LCAO-MO coefficients are determined first (and independently) via either a single-

configuration SCF calculation or an MCSCF calculation using a small number of CSFs.

The CI coefficients are subsequently determined by making the expectation value < Ψ | H |

Ψ > / < Ψ | Ψ >

stationary with respect to variations in the CI only. In this process, the optimizations of the

orbitals and of the CSF amplitudes are done in separate steps. The articles by I. Shavitt and

by B. O. Ross and P. E. M. Siegbahn in MTC, Vol. 3 give excellent early overviews of

the CI method.

3. The Møller-Plesset perturbation method (MPPT) uses the single-configuration

SCF process (usually the UHF implementation) to first determine a set of LCAO-MO

coefficients and, hence, a set of orbitals that obey Fφi = εi φi . Then, using an unperturbed

Hamiltonian equal to the sum of these Fock operators for each of the N electrons H0 =

Σ i=1,N F(i), perturbation theory (see Appendix D for an introduction to time-independent

perturbation theory) is used to determine the CI amplitudes for the CSFs. The MPPT

procedure is also referred to as the many-body perturbation theory (MBPT) method. The

two names arose because two different schools of physics and chemistry developed them

for somewhat different applications. Later, workers realized that they were identical in their

working equations when the UHF H0 is employed as the unperturbed Hamiltonian. In this

text, we will therefore refer to this approach as MPPT/MBPT.

The amplitude for the so-called    reference    CSF used in the SCF process is taken as

unity and the other CSFs' amplitudes are determined, relative to this one, by Rayleigh-

Schrödinger perturbation theory using the full N-electron Hamiltonian minus the sum of

Fock operators H-H0  as the perturbation. The Slater-Condon rules are used for evaluating

matrix elements of (H-H0) among these CSFs. The essential features of the MPPT/MBPT

approach are described in the following articles: J. A. Pople, R. Krishnan, H. B. Schlegel,

and J. S. Binkley, Int. J. Quantum Chem.     14    , 545 (1978); R. J. Bartlett and D. M. Silver,



J. Chem. Phys.     62    , 3258 (1975); R. Krishnan and J. A. Pople, Int. J. Quantum Chem.

    14    , 91 (1978).

4. The Coupled-Cluster method expresses the CI part of the wavefunction in a

somewhat different manner (the early work in chemistry on this method is described in J.

Cizek, J. Chem. Phys.     45    , 4256 (1966); J. Paldus, J. Cizek, and I. Shavitt, Phys. Rev.

    A5    , 50 (1972); R. J. Bartlett and G. D. Purvis, Int. J. Quantum Chem.     14    , 561 (1978); G.

D. Purvis and R. J. Bartlett, J. Chem. Phys.     76    , 1910 (1982)):

Ψ = exp(T) Φ,

where Φ  is a single CSF (usually the UHF single determinant) which has been used to

independently determine a set of spin-orbitals and LCAO-MO coefficients via the SCF

process. The operator T generates, when acting on Φ, single, double, etc. 'excitations'

(i.e., CSFs in which one, two, etc. of the occupied spin-orbitals in Φ have been replaced

by virtual spin-orbitals). T is commonly expressed in terms of operators that effect such

spin-orbital removals and additions as follows:

T = Σ i,m  tim m+ i + Σ i,j,m,n ti,jm,n  m+ n+ j i + ...,

where the operator m+ is used to denote    creation     of an electron in virtual spin-orbital φm

and the operator j is used to denote    removal    of an electron from occupied spin-orbital φj .

The tim , ti,jm,n, etc. amplitudes, which play the role of the CI coefficients in CC

theory, are determined through the set of equations generated by projecting the Schrödinger

equation in the form

exp(-T) H exp(T) Φ  = E Φ

against CSFs which are single, double, etc. excitations relative to Φ. For example, for

double excitations Φi,jm,n the equations read:

< Φi,jm,n | exp(-T) H exp (T) | Φ >  = E < Φi,jm,n | Φ > = 0;

zero is obtained on the right hand side because the excited CSFs



|Φi,jm,n> are orthogonal to the reference function |Φ>. The elements on the left hand side of

the CC equations can be expressed, as described below, in terms of one- and two-electron

integrals over the spin-orbitals used in forming the reference and excited CSFs.

A. Integral Transformations

All of the above methods require the evaluation of one- and two-electron integrals

over the N atomic     orbital basis:    <χa |f|χb> and <χaχb|g|χcχd>. Eventually, all of these

methods provide their working equations and energy expressions in terms of one- and two-

electron integrals over the N final      molecular orbitals   : <φi|f|φj> and <φiφj|g|φkφl>.

The mo-based integrals can only be evaluated by    transforming     the AO-based integrals as

follows:

<φiφj|g|φkφl> = Σa,b,c,d Ca,iCb,jCc,kCd,l <χaχb|g|χcχd>,

and

<φi|f|φj> = Σa,b Ca,iCb,j <χa |f|χb>.

It would seem that the process of evaluating all N4 of the <φiφj|g|φkφl>, each of which

requires N4 additions and multiplications, would require computer time proportional to N8.

However, it is possible to perform the full transformation of the two-electron integral list in

a time that scales as N5 . This is done by first performing a transformation of the

<χaχb|g|χcχd> to an intermediate array labeled <χaχb|g|χcφl> as follows:

<χaχb|g|χcφl> = Σd Cd,l<χaχb|g|χcχd>.

This partial transformation requires N5 multiplications and additions.

The list <χaχb|g|χcφl> is then transformed to a second-level transformed array

<χaχb|g|φkφl>:

<χaχb|g|φkφl> = Σc Cc,k<χaχb|g|χcφl>,

which requires another N5 operations. This sequential, one-index-at-a-time transformation

is repeated four times until the final <φiφj|g|φkφl> array is in hand. The entire

transformation done this way requires 4N5  multiplications and additions.



Once the requisite one- and two-electron integrals are available in the molecular

orbital basis, the multiconfigurational wavefunction and energy calculation can begin.

These transformations consume a large fraction of the computer time used in most such

calculations, and represent a severe bottleneck to progress in applying    ab initio     electronic

structure methods to larger systems.

B. Configuration List Choices

Once the requisite one- and two-electron integrals are available in the molecular

orbital basis, the multiconfigurational wavefunction and energy calculation can begin. Each
of these methods has its own approach to describing the configurations {ΦJ} included in

the calculation and how the {CJ} amplitudes and the total energy E is to be determined.

The     number of configurations     (NC) varies greatly among the methods and is an

important factor to keep in mind when planning to carry out an ab initio calculation. Under

certain circumstances (e.g., when studying Woodward-Hoffmann forbidden reactions

where an avoided crossing of two configurations produces an activation barrier), it may be

essential to use more than one electronic configuration. Sometimes, one configuration

(e.g., the SCF model) is adequate to capture the qualitative essence of the electronic

structure. In all cases, many configurations will be needed if highly accurate treatment of

electron-electron correlations are desired.
The value of NC determines how much computer time and memory is needed to

solve the NC-dimensional ΣJ HI,J CJ = E CI secular problem in the CI and MCSCF

methods. Solution of these matrix eigenvalue equations requires computer time that scales
as  NC2 (if few eigenvalues are computed) to NC3 (if most eigenvalues are obtained).

So-called    complete-active-space     (CAS)  methods form    all     CSFs that can be created

by distributing N valence electrons among P valence orbitals. For example,  the eight non-
core electrons of H2O might be distributed, in a manner that gives MS = 0, among six

valence orbitals (e.g., two lone-pair orbitals, two OH σ bonding orbitals, and two OH σ*

antibonding orbitals). The number of configurations thereby created is 225 . If the same

eight electrons were distributed among ten valence orbitals 44,100 configurations results;

for twenty and thirty valence orbitals,  23,474,025 and 751,034,025 configurations arise,

respectively. Clearly, practical considerations dictate that CAS-based approaches be limited

to situations in which a few electrons are to be correlated using a few valence orbitals. The

primary advantage of CAS configurations is discussed below in Sec. II. C.

II. Strengths and Weaknesses of Various Methods



A. Variational Methods Such as MCSCF, SCF, and CI Produce Energies that are Upper

Bounds, but These Energies are not Size-Extensive

Methods that are based on making the energy functional

< Ψ | H | Ψ > / < Ψ | Ψ > stationary (i.e., variational methods) yield     upper bounds    to the

lowest energy of the symmetry which characterizes the CSFs which comprise Ψ. These

methods also can provide approximate excited-state energies and wavefunctions (e. g., in

the form of other solutions of the secular equation ΣJ HI,J CJ  = E CI that arises in the CI

and MCSCF methods). Excited-state energies obtained in this manner can be shown to

'bracket' the true energies of the given symmetry in that between any two approximate

energies obtained in the variational calculation, there exists at least one true eigenvalue.

This characteristic is commonly referred to as the 'bracketing theorem' (E. A. Hylleraas

and B. Undheim, Z. Phys.     65    , 759 (1930); J. K. L. MacDonald, Phys. Rev.     43    , 830

(1933)). These are strong attributes of the variational methods, as is the long and rich

history of developments of analytical and computational tools for efficiently implementing

such methods (see the discussions of the CI and MCSCF methods in MTC and ACP).

However, all variational techniques suffer from at least one serious drawback; they

are not size-extensive (J. A. Pople, pg. 51 in     Energy, Structure, and Reactivity    , D. W.

Smith and W. B. McRae, Eds., Wiley, New York (1973)). This means that the energy

computed using these tools can not be trusted to scale with the size of the system. For

example, a calculation performed on two CH3 species at large separation may not yield an

energy equal to twice the energy obtained by performing the same kind of calculation on a

single CH3 species. Lack of size-extensivity precludes these methods from use in extended

systems (e.g., solids) where errors due to improper scaling of the energy with the number

of molecules produce nonsensical results.

By carefully adjusting the kind of variational wavefunction used, it is possible to

circumvent size-extensivity problems for selected species. For example, a CI calculation on

Be2 using    all    1Σg CSFs that can be formed by placing the four valence electrons into the

orbitals 2σg, 2σu , 3σg, 3σu, 1πu, and 1πg can yield an energy equal to twice that of the Be

atom described by CSFs in which the two valence electrons of the Be atom are placed into

the 2s and 2p orbitals in all ways consistent with a 1S symmetry. Such special choices of

configurations give rise to what are called    complete-active-space    (CAS) MCSCF or CI

calculations (see the article by B. O. Roos in ACP for an overview of this approach).



Let us consider an example to understand why the CAS choice of configurations

works. The 1S ground state of the Be atom is known to form a wavefunction that is a

strong mixture of CSFs that arise from the 2s2  and 2p2 configurations:

ΨBe = C1 |1s2 2s2 | + C2 | 1s2 2p2 |,

where the latter CSF  is a short-hand representation for the proper spin- and space-

symmetry adapted CSF

| 1s2 2p2 | = 1/√3 [ |1sα1sβ2p0α2p0β| - |1sα1sβ2p1α2p-1β|

- |1sα1sβ2p-1α2p1β| ].

The reason the CAS process works is that the Be2 CAS wavefunction has the flexibility to

dissociate into the product of two CAS Be wavefunctions:

 Ψ  = ΨBea ΨBeb

= {C1 |1s2 2s2 | + C2 | 1s2 2p2 |}a{C1 |1s2 2s2 | + C2 | 1s2 2p2 |}b,

where the subscripts a and b label the two Be atoms, because the four electron CAS

function distributes the four electrons in all ways among the 2sa, 2sb, 2pa, and 2pb orbitals.

In contrast, if the Be2 calculation had been carried out using only the following CSFs :

| 1σ2g 1σ2u 2σ2g 2σ2u | and all single and double excitations relative to this (dominant)

CSF, which is a very common type of CI procedure to follow, the Be2 wavefunction

would not have contained the particular CSFs | 1s2 2p2 |a | 1s2 2p2 |b because these CSFs

are four-fold excited relative to the | 1σ2g 1σ2u 2σ2g 2σ2u | 'reference' CSF.

In general, one finds that if the 'monomer' uses CSFs that are K-fold excited

relative to its dominant CSF to achieve an accurate description of its electron correlation, a

size-extensive variational calculation on the 'dimer' will require the inclusion of CSFs that

are 2K-fold excited relative to the dimer's dominant CSF. To perform a size-extensive

variational calculation on a species containing M monomers therefore requires the inclusion

of CSFs that are MxK-fold excited relative to the M-mer's dominant CSF.

B. Non-Variational Methods Such as MPPT/MBPT and CC do not Produce Upper

Bounds, but Yield Size-Extensive Energies



In contrast to variational methods, perturbation theory and coupled-cluster methods

achieve their energies from a '   transition formula   ' < Φ | H | Ψ > rather than from an

expectation value

< Ψ | H | Ψ >. It can be shown (H. P. Kelly, Phys. Rev.     131    , 684 (1963)) that this

difference allows non-variational techniques to yield size-extensive energies. This can be

seen in the MPPT/MBPT case by considering the energy of two non-interacting Be atoms.

The reference CSF is Φ = | 1sa2 2sa2 1sb2 2sb2 |; the Slater-Condon rules limit the CSFs in

Ψ which can contribute to

E = < Φ | H | Ψ > = < Φ | H | ΣJ CJ ΦJ >,

to be Φ itself and those CSFs that are singly or doubly excited relative to Φ. These

'excitations' can involve atom a, atom b, or both atoms. However, any CSFs that involve

excitations on both atoms

( e.g., | 1sa2 2sa 2pa 1sb2 2sb 2pb | ) give rise, via the SC rules, to one- and two- electron

integrals over orbitals on both atoms; these integrals ( e.g., < 2sa 2pa | g | 2sb 2pb > )

vanish if the atoms are far apart, as a result of which the contributions due to such CSFs

vanish in our consideration of size-extensivity. Thus, only CSFs that are excited on one or

the other atom contribute to the energy:

E = < Φa Φb | H | ΣJa CJa Φ∗Ja Φb + ΣJb CJb Φa Φ∗Jb >,

where Φa and Φb as well as Φ*Ja and Φ*Jb  are used to denote the a and b parts of the

reference and excited CSFs, respectively.

This expression, once the SC rules are used to reduce it to one- and two- electron

integrals, is of the additive form required of any size-extensive method:

E = < Φa | H | ΣJa CJa ΦJa > + < Φb | H | ΣJb CJb ΦJb >,

and will yield a size-extensive energy    if    the equations used to determine the CJa and CJb

amplitudes are themselves separable. In MPPT/MBPT, these amplitudes are expressed, in

first order, as:

CJa  = < Φa Φb | H | Φ*Ja Φb>/[ E0a + E0b - E*Ja -E0b]



(and analogously for CJb). Again using the SC rules, this expression reduces to one that

involves only atom a:

CJa  = < Φa | H | Φ*Ja >/[ E0a  - E*Ja ].

The additivity of E and the separability of the equations determining the CJ  coefficients

make the MPPT/MBPT energy size-extensive. This property can also be demonstrated for

the Coupled-Cluster energy (see the references given above in Chapter 19. I.4). However,

size-extensive methods have at least one serious weakness; their energies do     not    provide

upper bounds to the true energies of the system (because their energy functional is not of

the expectation-value form for which the upper bound property has been proven).

C. Which Method is Best?

At this time, it may not possible to say which method is preferred for applications

where all are practical. Nor is it possible to assess, in a way that is applicable to most

chemical species, the accuracies with which various methods predict bond lengths and

energies or other properties. However, there are reasons to recommend some methods over

others in specific cases. For example, certain applications require a size-extensive

energy (e.g., extended systems that consist of a large or macroscopic number of units or

studies of weak intermolecular interactions), so MBPT/MPPT or CC or CAS-based

MCSCF are preferred. Moreover, certain chemical reactions (e.g., Woodward-Hoffmann

forbidden reactions) and certain bond-breaking events require two or more 'essential'

electronic configurations. For them, single-configuration-based methods such as

conventional CC and MBTP/MPPT should not be used; MCSCF or CI calculations would

be better. Very large molecules, in which thousands of atomic orbital basis functions are

required, may be impossible to treat by methods whose effort scales as N4 or higher;

density functional methods would be better to use then.

For all calculations, the choice of atomic orbital basis set must be made carefully,

keeping in mind the N4 scaling of the one- and two-electron integral evaluation step and the

N5 scaling of the two-electron integral transformation step. Of course, basis functions that

describe the essence of the states to be studied are essential (e.g., Rydberg or anion states

require diffuse functions, and strained rings require polarization functions).

As larger atomic basis sets are employed, the size of the CSF list used to treat

dynamic correlation increases rapidly. For example, most of the above methods use singly

and doubly excited CSFs for this purpose. For large basis sets, the number of such CSFs,



NC, scales as the number of electrons squared, ne2,  times the number of basis functions

squared, N2 . Since the effort needed to solve the CI secular problem varies as NC2 or

NC3, a dependence as strong as N4 to N6 can result. To handle such large CSF spaces, all

of the multiconfigurational techniques mentioned in this paper have been developed to the

extent that calculations involving of the order of 100 to 5,000 CSFs are routinely

performed and calculations using 10,000, 100,000, and even several million CSFs are

practical.

Other methods, most of which can be viewed as derivatives of the techniques

introduced above, have been and are still being developed. This ongoing process has been,

in large part, stimulated by the explosive growth in computer power and change in

computer architecture that has been realized in recent years. All indications are that this

growth pattern will continue, so ab initio  quantum chemistry will likely have an even larger

impact on future chemistry research and education (through new insights and concepts).

III. Further Details on Implementing Multiconfigurational Methods

A. The MCSCF Method

The simultaneous optimization of the LCAO-MO and CI coefficients performed

within an MCSCF calculation is a quite formidable task. The variational energy functional

is a quadratic function of the CI coefficients, and so one can express the stationary

conditions for these variables in the secular form:

ΣJ HI,J CJ  = E CI .

However, E is a quartic function of the Cν ,i coefficients because each matrix element < ΦI |

H | ΦJ > involves one- and two-electron integrals over the mos φi , and the two-electron

integrals depend quartically on the Cν ,i coefficients. The stationary conditions with respect

to these Cν ,i parameters must be solved iteratively because of this quartic dependence.

It is well known that minimization of a function (E) of several non-linear parameters

(the Cν ,i) is a difficult task that can suffer from poor convergence and may locate local

rather than global minima. In an MCSCF wavefunction containing many CSFs, the energy

is only weakly dependent on the orbitals that are weakly occupied (i.e., those that appear in

CSFs with small CI values); in contrast, E is strongly dependent on the Cν ,i  coefficients of

those orbitals that appear in the CSFs with larger CI values. One is therefore faced with

minimizing a function of many variables (there may be as many Cν ,i as the square of the



number of orbital basis functions) that depends strongly on several of the variables and

weakly on many others. This is a very difficult job.

For these reasons, in the MCSCF method, the number of CSFs is usually kept to a

small to moderate number (e.g., a few to several hundred) chosen to describe essential

correlations (i.e., configuration crossings, proper dissociation) and important dynamical

correlations (those electron-pair correlations of angular, radial, left-right, etc. nature that

arise when low-lying 'virtual' orbitals are present). In such a compact wavefunction, only

spin-orbitals with reasonably large occupations (e.g., as characterized by the diagonal

elements of the one-particle density matrix γi,j) appear. As a result, the energy functional is

expressed in terms of variables on which it is strongly dependent, in which case the non-

linear optimization process is less likely to be pathological.

Such a compact MCSCF wavefunction is designed to provide a good description of

the set of strongly occupied spin-orbitals and of the CI amplitudes for CSFs in which only

these spin-orbitals appear. It, of course, provides no information about the spin-orbitals

that are not used to form the CSFs on which the MCSCF calculation is based. As a result,

the MCSCF energy is invariant to a unitary transformation among these 'virtual' orbitals.

In addition to the references mentioned earlier in ACP and MTC, the following

papers describe several of the advances that have been made in the MCSCF method,

especially with respect to enhancing its rate and range of convergence: E. Dalgaard and P.

Jørgensen, J. Chem. Phys.     69    , 3833 (1978); H. J. Aa. Jensen, P. Jørgensen, and H.

�Ågren, J. Chem. Phys.     87    , 457 (1987); B. H. Lengsfield, III and B. Liu, J. Chem. Phys.

    75    , 478 (1981).

B. The Configuration Interaction Method

In the CI method, one usually attempts to realize a high-level treatment of electron

correlation. A set of orthonormal molecular orbitals are first obtained from an SCF or

MCSCF calculation (usually involving a small to moderate list of CSFs). The LCAO-MO

coefficients of these orbitals are     no longer considered     as variational parameters in the

subsequent CI calculation; only the CI coefficients are to be further optimized.

The CI wavefunction

Ψ = ΣJ CJ ΦJ

is most commonly constructed from CSFs ΦJ  that include:



1. All of the CSFs in the SCF (in which case only a single CSF is included) or MCSCF

wavefunction that was used to generate the molecular orbitals φi . This set of CSFs are

referred to as spanning the '   reference space   ' of the subsequent CI calculation, and the

particular combination of these CSFs used in this orbital optimization (i.e., the SCF or

MCSCF wavefunction) is called the    reference function    .

2. CSFs that are generated by carrying out single, double, triple, etc. level 'excitations'

(i.e., orbital replacements ) relative to reference CSFs. CI wavefunctions limited to include

contributions through various levels of excitation (e.g., single, double, etc. ) are denoted S

(singly excited), D (doubly), SD ( singly and doubly), SDT (singly, doubly, and triply),

and so on.

The orbitals from which electrons are removed and those into which electrons are

excited can be restricted to focus attention on correlations among certain orbitals. For

example, if excitations out of core electrons are excluded, one computes a total energy that

contains no correlation corrections for these core orbitals. Often it is possible to so limit the

nature of the orbital excitations to focus on the energetic quantities of interest (e.g., the CC

bond breaking in ethane requires correlation of the σCC orbital but the 1s Carbon core

orbitals and the CH bond orbitals may be treated in a non-correlated manner).

Clearly, the number of CSFs included in the CI calculation can be far in excess of

the number considered in typical MCSCF calculations; CI wavefunctions including 5,000

to 50,000 CSFs are routinely used, and functions with one to    several million     CSFs are

within the realm of practicality (see, for example, J. Olsen, B. Roos, Poul Jørgensen, and

H. J. Aa. Jensen, J. Chem. Phys.     89    , 2185 (1988) and J. Olsen, P. Jørgensen, and J.

Simons, Chem. Phys. Letters      169    , 463 (1990)).

The need for such large CSF expansions should not come as a surprise once one

considers that (i) each electron pair requires    at least    two CSFs (let us say it requires P of

them, on average, a dominant one and P-1 others which are doubly excited) to form

polarized orbital pairs, (ii) there are of the order of N(N-1)/2 = X electron pairs in an atom

or molecule containing N electrons, and (iii) that the number of terms in the CI

wavefunction scales as PX. So, for an H2O molecule containing ten electrons, there would

be P55 terms in the CI expansion. This is 3.6 x1016 terms if P=2 and 1.7 x1026 terms if

P=3. Undoubtedly, this is an over estimate of the number of CSFs needed to describe

electron correlation in H2O, but it demonstrates how rapidly the number of CSFs can grow

with the number of electrons in the system.



The HI,J matrices that arise in CI calculations are evaluated in terms of one- and

two- electron integrals over the molecular orbitals using the equivalent of the Slater-Condon

rules. For large CI calculations, the full HI,J matrix is not actually evaluated and stored in

the computer's memory (or on its disk); rather, so-called 'direct CI' methods (see the article

by Roos and Siegbahn in MTC) are used to compute and immediately sum contributions to

the sum ΣJ HI,J CJ in terms of integrals, density matrix elements, and approximate values

of the CJ amplitudes. Iterative methods (see, for example, E. R. Davidson, J. Comput.

Phys.     17    , 87 (1975)), in which approximate values for the  CJ  coefficients and energy E

are refined through sequential application of ΣJ HI,J to the preceding estimate of the CJ

vector, are employed to solve these large CI matrix eigenvalue problems.

C. The MPPT/MBPT Method

In the MPPT/MBPT method, once the reference CSF is chosen and the SCF

orbitals belonging to this CSF are determined, the wavefunction Ψ and energy E are

determined in an order-by-order manner. This is one of the primary strengths of the

MPPT/MBPT technique; it does not require one to make further (potentially arbitrary)

choices once the basis set and dominant (SCF) configuration are specified. In contrast to

the MCSCF and CI treatments, one need not make choices of CSFs to include in or exclude

from Ψ. The MPPT/MBPT perturbation equations determine what CSFs must be included

through any particular order.

For example, the first-order wavefunction correction Ψ1

(i.e., Ψ = Φ + Ψ1 through first order) is given by:

Ψ1 = - Σ i<j,m<n < Φi,jm,n | H - H0 | Φ > [ εm-εi +εn -εj ]-1 | Φi,jm,n >

= - Σ i<j,m<n [< i,j |g| m,n >- < i,j |g| n,m >][ εm-εi +εn -εj ]-1 | Φi,jm,n >

where the SCF orbital energies are denoted εk and Φi,jm,n represents a CSF that is     doubly

   excited     relative to Φ. Thus, only doubly excited CSFs contribute to the    first-order

     wavefunction    ; as a result, the energy E is given through second order as:

E = < Φ | H0 | Φ> + < Φ | H - H0 | Φ> + < Φ | H - H0 | Ψ1 >

= < Φ | H | Φ> - Σ i<j,m<n |< Φi,jm,n | H - H0 | Φ >|2/ [ εm-εi +εn -εj ]



= ESCF - Σ i<j,m<n | < i,j | g | m,n > - < i,j | g | n,m > |2/[ εm-εi +εn -εj]

= E0 + E1 +E2.

These contributions have been expressed, using the SC rules, in terms of the two-electron

integrals < i,j | g | m,n > coupling the excited spin-orbitals to the spin-orbitals from which

electrons were excited as well as the orbital energy differences [ εm-εi +εn -εj ]

accompanying such  excitations. In this form, it becomes clear that major contributions to

the correlation energy of the pair of occupied orbitals φi φj are made by double excitations

into virtual orbitals φm φn that have large coupling (i..e., large < i,j | g | m,n > integrals)

and small orbital energy gaps,  [ εm-εi +εn -εj ].

In higher order corrections to the wavefunction and to the energy, contributions

from CSFs that are singly, triply, etc. excited relative to Φ appear, and additional

contributions from the doubly excited CSFs also enter. It is relatively common to carry

MPPT/MBPT calculations (see the references given above in Chapter 19.I.3 where the

contributions of the Pople and Bartlett groups to the development of MPPT/MBPT are

documented) through to third order in the energy (whose evaluation can be shown to

require only Ψ0 and Ψ1). The entire GAUSSIAN-8X series of programs, which have been

used in thousands of important chemical studies, calculate E through third order in this

manner.

In addition to being size-extensive and not requiring one to specify input beyond the

basis set and the dominant CSF, the MPPT/MBPT approach is able to include the effect of

   all    CSFs (that contribute to any given order) without having to find any eigenvalues of a

matrix. This is an important advantage because matrix eigenvalue determination, which is

necessary in MCSCF and CI calculations, requires computer time in proportion to the third

power of the dimension of the HI,J matrix. Despite all of these advantages, it is important to

remember the primary disadvantages of the MPPT/MBPT approach; its energy is not an

upper bound to the true energy and it may not be able to treat cases for which two or more

CSFs have equal or nearly equal amplitudes because it obtains the amplitudes of all but the

dominant CSF from perturbation theory formulas that assume the perturbation is 'small'.

D. The Coupled-Cluster Method

The implementation of the CC method begins much as in the MPPT/MBPT case;

one selects a reference CSF that is used in the SCF process to generate a set of spin-orbitals

to be used in the subsequent correlated calculation. The set of working equations of the CC



technique given above in Chapter 19.I.4 can be written explicitly by introducing the form

of the so-called cluster operator T,

T = Σ i,m  tim m+ i + Σ i,j,m,n ti,jm,n  m+ n+ j i + ...,

where the combination of operators m+ i  denotes    creation     of an electron in virtual spin-
orbital φm  and     removal    of an electron from occupied spin-orbital φi to generate a single

excitation. The operation m+ n+ j i therefore represents a double excitation from φi φj to φm
φn. Expressing the cluster operator T in terms of the amplitudes tim , ti,jm,n , etc. for

singly, doubly, etc. excited CSFs, and expanding the exponential operators in exp(-T) H

exp(T) one obtains:

< Φim | H + [H,T] + 1/2 [[H,T],T] + 1/6 [[[H,T],T],T]

+ 1/24 [[[[H,T],T],T],T] | Φ > = 0;

 < Φi,jm,n | H + [H,T] + 1/2 [[H,T],T] + 1/6 [[[H,T],T],T]

+ 1/24 [[[[H,T],T],T],T] | Φ > = 0;

< Φi,j,km,n,p| H + [H,T] + 1/2 [[H,T],T] + 1/6 [[[H,T],T],T]

+ 1/24 [[[[H,T],T],T],T] | Φ > = 0,

and so on for higher order excited CSFs. It can be shown, because of the one- and two-

electron operator nature of H, that the expansion of the exponential operators truncates

exactly at the fourth power; that is terms such as [[[[[H,T],T],T],T],T] and higher

commutators vanish identically (this is demonstrated in Chapter 4 of     Second Quantization

    Based Methods in Quantum Chemistry    , P. Jørgensen and J. Simons, Academic Press,

New York (1981).

As a result, the exact CC equations are     quartic equations    for the tim , ti,jm,n , etc.

amplitudes. Although it is a rather formidable task to evaluate all of the commutator matrix

elements appearing in the above CC equations, it can be and has been done (the references

given above to Purvis and Bartlett are especially relevant in this context). The result is to

express each such matrix element, via the Slater-Condon rules, in terms of one- and two-

electron integrals over the spin-orbitals used in determining Φ, including those in Φ itself

and the 'virtual' orbitals not in Φ.

In general, these quartic equations must then be solved in an iterative manner and

are susceptible to convergence difficulties that are similar to those that arise in MCSCF-type



calculations. In any such iterative process, it is important to start with an approximation (to

the t amplitudes, in this case) which is reasonably close to the final converged result. Such

an approximation is often achieved, for example, by neglecting all of the terms that are non-

linear in the t amplitudes (because these amplitudes are assumed to be less than unity in

magnitude). This leads, for the CC working equations obtained by projecting onto the

doubly excited CSFs, to:

< i,j | g | m,n >' + [ εm-εi +εn -εj ] ti,jm,n +

Σ i',j',m',n' < Φi,jm,n | H - H0 | Φi',j'm',n' > ti',j'm',n' = 0 ,

where the notation < i,j | g | m,n >' is used to denote the two-electron integral difference <

i,j | g | m,n > - < i,j | g | n,m >. If, in addition, the factors that couple different doubly

excited CSFs are ignored (i.e., the sum over i',j',m',n') , the equations for the t amplitudes

reduce to the  equations for the CSF amplitudes of the first-order MPPT/MBPT

wavefunction:

ti,jm,n = - < i,j | g | m,n >'/ [ εm-εi +εn -εj ] .

As Bartlett and Pople have both demonstrated, there is, in fact, close relationship between

the MPPT/MBPT and CC methods when the CC equations are solved iteratively starting

with such an MPPT/MBPT-like initial 'guess' for these double-excitation amplitudes.

The CC method, as presented here, suffers from the same drawbacks as the

MPPT/MBPT approach; its energy is not an upper bound and it may not be able to

accurately describe wavefunctions which have two or more CSFs with approximately equal

amplitude. Moreover, solution of the non-linear CC equations may be difficult and slowly

(if at all) convergent. It has the same advantages as the MPPT/MBPT method; its energy is

size-extensive, it requires no large matrix eigenvalue solution, and its energy and

wavefunction are determined once one specifies the basis and the dominant CSF.

E. Density Functional Methods

These approaches provide alternatives to the conventional tools of quantum

chemistry. The CI, MCSCF, MPPT/MBPT, and CC methods move beyond the single-

configuration picture by adding to the wave function more configurations whose



amplitudes they each determine in their own way. This can lead to a very large number of

CSFs in the correlated wave function, and, as a result, a need for extraordinary computer

resources.

The density functional approaches are different. Here one solves a set of orbital-

level equations

[ - h2/2me ∇2 - ΣA ZAe2/|r-RA| + ⌡⌠ρ(r')e2/|r-r'|dr' 

+ U(r)] φi = εi φi

in which the orbitals {φi} 'feel' potentials due to the nuclear centers (having charges ZA),

Coulombic interaction with the    total    electron density ρ(r'), and a so-called    exchange-   

   correlation     potential denoted U(r'). The particular electronic state for which the calculation

is being performed is specified by forming a corresponding density ρ(r'). Before going

further in describing how DFT calculations are carried out, let us examine the origins

underlying this theory.

The so-called Hohenberg-Kohn  theorem states that the     ground-state    electron

density ρ(r) describing an N-electron system uniquely determines the potential V(r) in the

Hamiltonian

H = Σ j {-h2/2me ∇j
2 + V(rj) + e2/2 Σk≠j 1/rj,k },



and, because H  determines the ground-state energy and wave function of the system, the

ground-state density ρ(r) determines the ground-state properties of the system. The proof

of this theorem proceeds as follows:

a. ρ(r) determines N because ∫ ρ(r) d3r = N.

b. Assume that there are two distinct potentials (aside from an additive constant that simply

shifts the zero of total energy) V(r) and V’(r) which, when used in H and H’, respectively,

to solve for a ground state produce E0, Ψ (r) and E0’, Ψ’(r) that have the same one-electron

density: ∫ |Ψ|2 dr2 dr3 ... drN = ρ(r)=  ∫  |Ψ’|2 dr2 dr3 ... drN .

c. If we think of Ψ’ as  trial variational wave function for the Hamiltonian H, we know that

E0  < <Ψ’|H|Ψ’> = <Ψ’|H’|Ψ’> + ∫ ρ(r) [V(r) - V’(r)] d3r = E0’ + ∫ ρ(r) [V(r) - V’(r)] d3r.

d. Similarly, taking Ψ as a trial function for the H’ Hamiltonian, one finds that

E0’  < E0 + ∫ ρ(r) [V’(r) - V(r)] d3r.

e. Adding the equations in c and d gives

E0 + E0’ < E0 + E0’,

a clear contradiction.

Hence, there cannot be two distinct potentials V and V’ that give the same ground-

state ρ(r). So, the ground-state density ρ(r) uniquely determines N and V, and thus H, and

therefore Ψ and E0. Furthermore, because Ψ determines all properties of the ground state,

then ρ(r), in principle, determines all such properties. This means that even the kinetic

energy and the electron-electron interaction energy of the ground-state are determined by



ρ(r). It is easy to see that ∫ ρ(r) V(r) d3r = V[ρ] gives the average value of the electron-

nuclear (plus any additional one-electron additive potential) interaction in terms of the

ground-state density ρ(r), but how are the kinetic energy T[ρ] and the electron-electron

interaction Vee[ρ] energy expressed in terms of ρ?

The main difficulty with DFT is that the Hohenberg-Kohn theorem shows that the

    ground-state    values of T, Vee , V, etc. are all unique functionals of the     ground-state    ρ (i.e.,

that they can, in principle, be determined once ρ is given), but it does not tell us what these

functional relations are.

To see how it might make sense that a property such as the kinetic energy, whose

operator -h2 /2me ∇
2 involves derivatives, can be related to the electron density, consider a

simple system of N non-interacting electrons moving in a three-dimensional cubic “box”

potential. The energy states of such electrons are known to be

E  = (h2/2meL
2) (nx

2 + ny
2 +nz

2 ),

where L is the length of the box along the three axes, and nx , ny , and nz  are the quantum

numbers describing the state. We can view nx
2 + ny

2 +nz
2 = R2  as defining the squared

radius of a sphere in three dimensions, and we realize that the density of quantum states in

this space is one state per unit volume in the nx , ny , n z space. Because nx , ny , and nz must

be positive integers, the volume covering all states with energy less than or equal to a

specified energy E = (h2/2meL
2) R2  is 1/8 the volume of the sphere of radius R:

Φ(E) = 1/8 (4π/3) R3 = (π/6) (8meL
2E/h2)3/2 .



Since there is one state per unit of such volume, Φ(E) is also the number of states with

energy less than or equal to E, and is called the    integrated density of states   . The number of

states g(E) dE with energy between E and E+dE, the     density of states   , is the derivative of

Φ:

g(E) = dΦ/dE = (π/4) (8meL
2/h2)3/2 E1/2  .

If we calculate the total energy for N electrons, with the states having energies up to the so-

called     Fermi energy     (i.e., the energy of the highest occupied molecular orbital HOMO)

doubly occupied, we obtain the ground-state energy:

E0 = 2 g(E)EdE
0

EF

∫  = (8π/5) (2me/h
2)3/2 L3 EF

5/2.

The total number of electrons N can be expressed as

N = 2 g(E)dE
0

EF

∫  = (8π/3) (2me/h
2)3/2 L3 EF

3/2,

which can be solved for EF in terms of N to then express E0  in terms of N instead of EF:

E0 = (3h2/10me) (3/8π)2/3 L3 (N/L3)5/3 .

This gives the total energy, which is also the kinetic energy in this case because the

potential energy is zero within the “box”, in terms of the electron density ρ (x,y,z) =

(N/L3). It therefore may be plausible to express kinetic energies in terms of electron



densities ρ(r), but it is by no means clear how to do so for “real” atoms and molecules with

electron-nuclear and electron-electron interactions operative.

In one of the earliest DFT models, the     Thomas-Fermi    theory, the kinetic energy of

an atom or molecule is approximated using the above kind of treatment on a “local” level.

That is, for each volume element in r space, one assumes the expression given above to be

valid, and then one integrates over all r to compute the total kinetic energy:

TTF[ρ] = ∫ (3h2/10me) (3/8π)2/3  [ρ(r)]5/3 d3r = CF  ∫ [ρ(r)]5/3 d3r ,

where the last equality simply defines the CF constant (which is 2.8712 in atomic units).

Ignoring the correlation and exchange contributions to the total energy, this T is combined

with the electron-nuclear V and Coulombic electron-electron potential energies to give the

Thomas-Fermi total energy:

E0,TF [ρ] = CF  ∫ [ρ(r)]5/3 d3r +  ∫ V(r) ρ(r) d3r + e2/2  ∫ ρ(r) ρ(r’)/|r-r’|  d3r d3r’,

This expression is an example of how E0 is given as a    local density functional   

approximation (LDA). The term local means that the energy is given as a functional (i.e., a

function of ρ) which depends only on ρ(r) at points in space but not on ρ(r) at more than

one point in space.

Unfortunately, the Thomas-Fermi energy functional does not produce results that

are of sufficiently high accuracy to be of great use in chemistry. What is missing in this

theory are a. the exchange energy and b. the correlation energy; moreover, the kinetic

energy is treated only in the approximate manner described.



In the book by Parr and Yang, it is shown how Dirac was able to address the

exchange energy for the 'uniform electron gas' (N Coulomb    interacting     electrons moving in

a uniform positive background charge whose magnitude balances the charge of the N

electrons). If the exact expression for the exchange energy of the uniform electron gas is

applied on a local level, one obtains the commonly used Dirac    local density approximation

   to the exchange energy    :

Eex,Dirac[ρ] = - Cx  ∫ [ρ(r)]4/3 d3r,

with Cx = (3/4) (3/π)1/3 = 0.7386 in atomic units. Adding this exchange energy to the

Thomas-Fermi total energy E0,TF [ρ] gives the so-called Thomas-Fermi-Dirac (TFD) energy

functional.

Because electron densities vary rather strongly spatially near the nuclei, corrections

to the above approximations to T[ρ] and Eex.Dirac  are needed. One of the more commonly

used so-called     gradient-corrected     approximations is that invented by Becke, and referred to

as the Becke88 exchange functional:

Eex(Becke88) = Eex,Dirac[ρ] -γ ∫x2 ρ4/3 (1+6 γ x sinh-1(x))-1 dr,

where x =ρ-4/3 |∇ρ |, and γ is a parameter chosen so that the above exchange energy can best

reproduce the known exchange energies of specific electronic states of the inert gas atoms

(Becke finds γ to equal 0.0042). A common gradient correction to the earlier T[ρ] is called

the Weizsacker correction and is given by



δTWeizsacker = (1/72)(  h /me)  ∫ |∇ρ(r)|2/ρ(r) dr.

Although the above discussion suggests how one might compute the ground-state

energy once the ground-state density ρ(r) is given, one still needs to know how to obtain

ρ. Kohn and Sham  (KS) introduced a set of so-called KS orbitals obeying the following

equation:

{-1/2∇2 + V(r)  + e2/2  ∫ ρ(r’)/|r-r’|   dr’ + Uxc(r) }φj = εj φj ,

where the so-called exchange-correlation potential Uxc (r) = δExc[ρ]/δρ(r) could be obtained

by functional differentiation if the exchange-correlation energy functional Exc[ρ] were

known. KS also showed that the KS orbitals {φj} could be used to compute the density ρ

by simply adding up the orbital densities multiplied by orbital occupancies nj :

ρ(r) = Σj nj |φj(r)|2.

(here nj =0,1, or 2 is the occupation number of the orbital φj in the state being studied) and

that the kinetic energy should be calculated as

T = Σj nj <φj(r)|-1/2 ∇ 2 |φj(r)>.

The same investigations of the idealized 'uniform electron gas' that identified the

Dirac exchange functional, found that the correlation energy (per electron) could also be

written exactly as a    function     of the electron density ρ of the system, but only in two



limiting cases- the high-density limit (large ρ) and the low-density limit. There still exists

no exact expression for the correlation energy even for the uniform electron gas that is valid

at arbitrary values of ρ. Therefore, much work has been devoted to creating efficient and

accurate interpolation formulas connecting the low- and high- density uniform electron gas

expressions. One such expression is

EC[ρ] = ∫ ρ(r) εc(ρ) dr,

where

εc(ρ) = A/2{ln(x/X) + 2b/Q tan-1(Q/(2x+b)) -bx0/X0 [ln((x-x0)
2/X)

+2(b+2x0)/Q tan-1(Q/(2x+b))]

is the correlation energy per electron. Here x = rs
1/2 , X=x2 +bx+c, X0 =x0

2 +bx0+c and

Q=(4c - b2)1/2, A = 0.0621814,  x0= -0.409286, b = 13.0720, and c = 42.7198. The

parameter rs is how the density ρ enters since 4/3 πrs
3 is equal to 1/ρ; that is, rs is the radius

of a sphere whose volume is the effective volume occupied by one electron. A reasonable

approximation to the full Exc[ρ] would contain the Dirac (and perhaps gradient corrected)

exchange functional plus the above EC[ρ], but there are many alternative approximations to

the exchange-correlation energy functional. Currently, many workers are doing their best to

“cook up” functionals for the correlation and exchange energies, but no one has yet

invented functionals that are so reliable that most workers agree to use them.



To summarize, in implementing any DFT, one usually proceeds as follows:

1. An atomic orbital basis is chosen in terms of which the KS orbitals are to be expanded.

2. Some initial guess is made for the LCAO-KS expansion coefficients Cjj,a: φj = Σa Cj,a χa.

3. The density is computed as ρ(r) = Σj nj |φj(r)|2 . Often, ρ(r) is expanded in an atomic

orbital basis, which need not be the same as the basis used for the φj, and the expansion

coefficients of ρ are computed in terms of those of the φj . It is also common to use an

atomic orbital basis to expand ρ1/3(r) which, together with ρ, is needed to evaluate the

exchange-correlation functional’s contribution to E0.

4. The current iteration’s density is used in the KS equations to determine the Hamiltonian

{-1/2∇2 + V(r)  + e2/2  ∫ ρ(r’)/|r-r’|   dr’ + Uxc(r) }whose “new” eigenfunctions {φj} and

eigenvalues {εj} are found by solving the KS equations.

5. These new φj  are used to compute a new density, which, in turn, is used to solve a new

set of KS equations. This process is continued until convergence is reached (i.e., until the

φj used to determine the current iteration’s ρ are the same φj that arise as solutions on the

next iteration.

6. Once the converged ρ(r) is determined, the energy can be computed using the earlier

expression

E [ρ] = Σj nj <φj(r)|-1/2 ∇ 2 |φj(r)>+  ∫V(r) ρ(r) dr + e2/2∫ρ(r)ρ(r’)/|r-r’|dr dr’+

Exc[ρ].



In closing this section, it should once again be emphasized that this area is currently

undergoing explosive growth and much scrutiny. As a result, it is nearly certain that many

of the specific functionals discussed above will be replaced in the near future by improved

and more rigorously justified versions. It is also likely that extensions of DFT to excited

states (many workers are actively pursuing this) will be placed on more solid ground and

made applicable to molecular systems. Because the computational effort involved in these

approaches scales much less strongly  with basis set size than for conventional (SCF,

MCSCF, CI, etc.) methods, density functional methods offer great promise and are likely

to contribute much to quantum chemistry in the next decade.



Chapter 20

Many physical properties of a molecule can be calculated as expectation values of a

corresponding quantum mechanical operator. The evaluation of other properties can be

formulated in terms of the "response" (i.e., derivative) of the electronic energy with respect

to the application of an external field perturbation.

I. Calculations of Properties Other Than the Energy

There are, of course, properties other than the energy that are of interest to the

practicing chemist. Dipole moments, polarizabilities, transition probabilities among states,

and vibrational frequencies all come to mind. Other properties that are of importance

involve operators whose quantum numbers or symmetry indices label the state of interest.

Angular momentum and point group symmetries are examples of the latter properties; for

these quantities the properties are precisely specified once the quantum number or

symmetry label is given (e.g., for a 3P state, the average value of L2 is <3P|L2|3P> =

h21(1+1) = 2h2).

Although it may be straightforward to specify what property is to be evaluated,

often computational difficulties arise in carrying out the calculation. For some    ab initio    

methods, these difficulties are less severe than for others. For example, to compute the

electric dipole transition matrix element <Ψ2 | r | Ψ1> between two states Ψ1 and Ψ2,

one must evaluate the integral involving the one-electron dipole operator r = Σ j e rj - Σa e

Za Ra; here the first sum runs over the N electrons and the second sum runs over the nuclei

whose charges are denoted Za. To evaluate such transition matrix elements in terms of the

Slater-Condon rules is relatively straightforward as long as Ψ1 and Ψ2 are expressed in

terms of Slater determinants involving a single set of orthonormal spin-orbitals. If Ψ1 and

Ψ2, have been obtained, for example, by carrying out separate MCSCF calculations on the

two states in question, the energy optimized spin-orbitals for one state will not be the same

as the optimal spin-orbitals for the second state. As a result, the determinants in Ψ1 and

those in Ψ2 will involve spin-orbitals that are not orthonormal to one another. Thus, the SC

rules can not immediately be applied. Instead, a transformation of the spin-orbitals of Ψ1

and Ψ2 to a single set of orthonormal functions must be carried out. This then expresses

Ψ1 and Ψ2 in terms of new Slater determinants over this new set of orthonormal spin-

orbitals, after which the SC rules can be exploited.

In contrast, if Ψ1 and Ψ2 are obtained by carrying out a CI calculation using a

single set of orthonormal spin-orbitals (e.g., with Ψ1 and Ψ2 formed from two different



eigenvectors of the resulting secular matrix), the SC rules can immediately be used to

evaluate the transition dipole integral.

A. Formulation of Property Calculations as Responses

Essentially all experimentally measured properties can be thought of as arising

through the    response     of the system to some externally applied perturbation or disturbance.

In turn, the calculation of such properties can be formulated in terms of the response of the

energy E or wavefunction Ψ to a perturbation. For example, molecular dipole moments µ
are measured, via electric-field deflection, in terms of the change in energy

∆E = µ. E + 1/2 E.  α . E + 1/6 E. E. E. β + ...

caused by the application of an external electric field E which is spatially inhomogeneous,

and thus exerts a force

F = - ∇ ∆E

on the molecule proportional to the dipole moment (good treatments of response properties

for a wide variety of wavefunction types (i.e., SCF, MCSCF, MPPT/MBPT, etc.) are

given in     Second Quantization Based Methods in Quantum Chemistry     , P. Jørgensen and J.

Simons, Academic Press, New York (1981) and in      Geometrical Derivatives of Energy

    Surfaces and Molecular Properties   , P. Jørgensen and J. Simons, Eds., NATO ASI Series,

Vol. 166, D. Reidel, Dordrecht (1985)).

To obtain expressions that permit properties other than the energy to be evaluated in

terms of the state wavefunction Ψ, the following strategy is used:

1. The perturbation V = H-H0 appropriate to the particular property is identified. For dipole

moments (µ), polarizabilities (α), and hyperpolarizabilities (β), V is the interaction of the

nuclei and electrons with the external electric field

V = Σa Zae Ra. E - Σ je rj. E.

For vibrational frequencies, one needs the derivatives of the energy E with respect to

deformation of the bond lengths and angles of the molecule, so V is the sum of all changes

in the electronic Hamiltonian that arise from displacements δRa of the atomic centers



V = Σa  (∇RaH) .  δRa .

2. A power series expansion of the state energy E, computed in a manner consistent with

how Ψ is determined (i.e., as an expectation value for SCF, MCSCF, and CI

wavefunctions or as <Φ|H|Ψ> for MPPT/MBPT or as <Φ|exp(-T)Hexp(T)|Φ> for CC

wavefunctions), is carried out in powers of the perturbation V:

E = E0 + E(1) + E(2) + E(3) + ...

In evaluating the terms in this expansion, the dependence of H = H0+V    and     of Ψ (which is

expressed as a solution of the SCF, MCSCF, ...,  or CC equations for H     not    for H0) must

be included.

3. The desired physical property must be extracted from the power series expansion of ∆E

in powers of V.

B. The MCSCF Response Case

1. The Dipole Moment

To illustrate how the above developments are carried out and to demonstrate how

the results express the desired quantities in terms of the original wavefunction, let us

consider, for an MCSCF wavefunction, the response to an external electric field. In this

case, the Hamiltonian is given as the conventional one- and two-electron operators H0  to

which the above one-electron electric dipole perturbation V is added. The MCSCF

wavefunction Ψ and energy E are assumed to have been obtained via the MCSCF

procedure with H=H0+λV, where λ can be thought of as a measure of the strength of the

applied electric field.

The terms in the expansion of E(λ) in powers of λ:

E = E(λ=0) + λ (dE/dλ)0 + 1/2 λ2 (d2E/dλ2)0 + ...

are obtained by writing the total derivatives of the MCSCF energy functional with respect

to λ and evaluating these derivatives at λ=0



(which is indicated by the subscript (..)0 on the above derivatives):

E(λ=0) = <Ψ(λ=0)|H0|Ψ(λ=0)> = E0,

(dE/dλ)0 = <Ψ(λ=0)|V|Ψ(λ=0)> + 2 ΣJ (∂CJ/∂λ)0 <∂Ψ/∂CJ|H0|Ψ(λ=0)>

+ 2 Σ i,a(∂Ca,i/∂λ)0 <∂Ψ/∂Ca,i|H0|Ψ(λ=0)>

+ 2 Σν (∂χν/∂λ)0 <∂Ψ/∂χν |H0|Ψ(λ=0)>,

and so on for higher order terms. The factors of 2 in the last three terms come through

using the hermiticity of H0 to combine terms in which derivatives of Ψ occur.

The first-order correction can be thought of as arising from the response of the

wavefunction (as contained in its LCAO-MO and CI amplitudes and basis functions χν)

plus the response of the Hamiltonian to the external field. Because the MCSCF energy

functional has been made stationary with respect to variations in the CJ and Ci,a amplitudes,

the second and third terms above vanish:

∂E/∂CJ = 2 <∂Ψ/∂CJ|H0|Ψ(λ=0)> = 0,

∂E/∂Ca,i = 2 <∂Ψ/∂Ca,i|H0|Ψ(λ=0)> =0.

If, as is common, the atomic orbital bases used to carry out the MCSCF energy

optimization are not explicitly dependent on the external field, the third term also vanishes

because (∂χν/∂λ)0 = 0. Thus for the MCSCF case, the first-order response is given as the

average value of the perturbation over the wavefunction with λ=0:

(dE/dλ)0 = <Ψ(λ=0)|V|Ψ(λ=0)>.

For the external electric field case at hand, this result says that the field-dependence of the

state energy will have a linear term equal to

<Ψ(λ=0)|V|Ψ(λ=0)> = <Ψ|Σa Zae Ra. e - Σ je rj. e|Ψ>,

where e is a unit vector in the direction of the applied electric field (the magnitude of the

field λ having already been removed in the power series expansion). Since the dipole



moment is determined experimentally as the energy's slope with respect to field strength,

this means that the dipole moment is given as:

µ = <Ψ|Σa Zae Ra - Σ je rj|Ψ>.

2. The Geometrical Force

These same techniques can be used to determine the response of the energy to

displacements δRa of the atomic centers. In such a case, the perturbation is

V = Σa δRa.  ∇Ra(-Σ i Zae2 /|ri-Ra|)

= - Σa Za e2δRa . Σ i (ri- Ra)/|ri-Ra|3.

Here, the one-electron operator Σ i (ri- Ra)/|ri-Ra|3 is referred to as 'the Hellmann-

Feynman' force operator; it is the derivative of the Hamiltonian with respect to

displacement of center-a in the x, y, or z direction.

The expressions given above for E(λ=0) and (dE/dλ)0 can once again be used, but

with the Hellmann-Feynman form for V. Once again, for the MCSCF wavefunction, the

variational optimization of the energy gives

<∂Ψ/∂CJ|H0|Ψ(λ=0)> = <∂Ψ/∂Ca,i|H0|Ψ(λ=0)> =0.

However, because the atomic basis orbitals are attached to the centers, and because these

centers are displaced in forming V, it is no longer true that (∂χν/∂λ)0 = 0; the variation in

the wavefunction caused by movement of the basis functions now contributes to the first-

order energy response. As a result, one obtains

(dE/dλ)0 = - Σa Za e2δRa . <Ψ|Σ i (ri- Ra)/|ri-Ra|3|Ψ>

+ 2 Σa δRa. Σν (∇Raχν)0 <∂Ψ/∂χν |H0|Ψ(λ=0)>.

The first contribution to the    force   

Fa= - Za e2<Ψ|Σ i (ri- Ra)/|ri-Ra|3|Ψ>



+ 2 Σν (∇Raχν)0 <∂Ψ/∂χν |H0|Ψ(λ=0)>

along the x, y, and z directions for center-a involves the expectation value, with respect to

the MCSCF wavefunction with λ=0, of the Hellmann-Feynman force operator. The second

contribution gives the forces due to infinitesimal displacements of the basis functions on

center-a.

The evaluation of the latter contributions can be carried out by first realizing that

Ψ = ΣJ CJ  |φJ1φJ2φJ3. . .φJn. . .φJN|

with

φj = Σµ Cµ,j χµ

involves the basis orbitals through the LCAO-MO expansion of the φjs. So the derivatives

of the basis orbitals contribute as follows:

Σν (∇Raχν) <∂Ψ/∂χν | = ΣJ Σ j,νCJ Cν ,j <|φJ1φJ2φJ3. . . .∇Raχν. .φJN|.

Each of these factors can be viewed as combinations of CSFs with the same CJ and Cν ,j

coefficients as in Ψ but with the jth spin-orbital involving basis functions that have been

differentiated with respect to displacement of center-a. It turns out that such derivatives of

Gaussian basis orbitals can be carried out analytically (giving rise to new Gaussians with

one higher and one lower l-quantum number).
When substituted into Σν (∇Raχν)0 <∂Ψ/∂χν |H0|Ψ(λ=0)>, these basis derivative

terms yield

Σν (∇Raχν)0 <∂Ψ/∂χν |H0|Ψ(λ=0)>

= ΣJ Σ j,νCJ Cν ,j <|φJ1φJ2φJ3. . . .∇Raχν. .φJN|H0|Ψ>,

whose evaluation via the Slater-Condon rules is straightforward. It is simply the

expectation value of H0 with respect to Ψ (with the same density matrix elements that arise



in the evaluation of Ψ's energy)     but    with the one- and two-electron integrals over the

atomic basis orbitals involving one of these differentiated functions:

<χµχν |g|χγ χδ> ⇒ ∇Ra<χµχν |g|χγ χδ>= <∇Raχµχν |g|χγ χδ>

+<χµ∇Raχν |g|χγ χδ> +<χµχν |g|∇Raχγ χδ> +<χµχν |g|χγ ∇Raχδ>.

In summary, the force Fa felt by the nuclear framework due to a displacement of

center-a along the x, y, or z axis is given as

Fa= - Za e2<Ψ|Σ i (ri- Ra)/|ri-Ra|3|Ψ> + (∇Ra<Ψ|H0|Ψ>),

where the second term is the energy of Ψ but with all atomic integrals replaced by integral

derivatives: <χµχν |g|χγ χδ> ⇒
∇Ra<χµχν |g|χγ χδ>.

C. Responses for Other Types of Wavefunctions

It should be stressed that the MCSCF wavefunction yields especially compact

expressions for responses of E with respect to an external perturbation because of the

variational conditions

<∂Ψ/∂CJ|H0|Ψ(λ=0)> = <∂Ψ/∂Ca,i|H0|Ψ(λ=0)> =0

that apply. The SCF case, which can be viewed as a special case of the MCSCF situation,

also admits these simplifications. However, the CI, CC, and MPPT/MBPT cases involve

additional factors that arise because the above variational conditions do not apply (in the CI

case, <∂Ψ/∂CJ|H0|Ψ(λ=0)> = 0 still applies, but the orbital condition

<∂Ψ/∂Ca,i|H0|Ψ(λ=0)> =0 does not because the orbitals are not varied to make the CI

energy functional stationary).

Within the CC, CI, and MPPT/MBPT methods, one must evaluate the so-called

responses of the CI and Ca,i coefficients (∂CJ/∂λ)0 and (∂Ca,i/∂λ)0 that appear in the full

energy response as (see above)

2 ΣJ (∂CJ/∂λ)0 <∂Ψ/∂CJ|H0|Ψ(λ=0)>+2 Σ i,a(∂Ca,i/∂λ)0<∂Ψ/∂Ca,i|H0|Ψ(λ=0)>. To do so

requires solving a set of response equations that are obtained by differentiating whatever



equations govern the CI  and Ca,i coefficients in the particular method (e.g., CI, CC, or

MPPT/MBPT) with respect to the external perturbation. In the geometrical derivative case,

this amounts to differentiating with respect to x, y, and z displacements of the atomic

centers. These response equations are discussed in      Geometrical Derivatives of Energy

    Surfaces and Molecular Properties   , P. Jørgensen and J. Simons, Eds., NATO ASI Series,

Vol. 166, D. Reidel, Dordrecht (1985). Their treatment is somewhat beyond the scope of

this text, so they will not be dealt with further here.

D. The Use of Geometrical Energy Derivatives

1. Gradients as Newtonian Forces

The first energy derivative is called the gradient g  and is the negative of the force F
(with components along the ath center denoted Fa) experienced by the atomic centers F = -

g  . These forces, as discussed in Chapter 16, can be used to carry out classical trajectory

simulations of molecular collisions or other motions of large organic and biological

molecules for which a quantum treatment of the nuclear motion is prohibitive.

The second energy derivatives with respect to the x, y, and z directions of centers a

and b (for example, the x, y component for centers a and b is Hax,by = (∂2E/∂xa∂yb)0) form

the Hessian matrix H. The elements of H give the local curvatures of the energy surface

along the 3N cartesian directions.

The gradient and Hessian can be used to systematically locate local minima (i.e.,

stable geometries) and transition states that connect one local minimum to another. At each

of these stationary points, all forces and thus all elements of the gradient g  vanish. At a

local minimum, the H matrix has 5 or 6 zero eigenvalues corresponding to translational and

rotational displacements of the molecule (5 for linear molecules; 6 for non-linear species)

and 3N-5 or 3N-6  positive eigenvalues. At a transition state, H has one negative

eigenvalue, 5 or 6 zero eigenvalues, and 3N-6 or 3N-7 positive eigenvalues.

2. Transition State Rate Coefficients

The transition state theory of Eyring or its extensions due to Truhlar and co-

workers (see, for example, D. G. Truhlar and B. C. Garrett, Ann. Rev. Phys. Chem.     35    ,

159 (1984)) allow knowledge of the Hessian matrix at a transition state to be used to

compute a rate coefficient krate appropriate to the chemical reaction for which the transition

state applies.



More specifically, the geometry of the molecule at the transition state is used to

compute a rotational partition function Q†
rot in which the principal moments of inertia Ia,

Ib, and Ic (see Chapter 13) are those of the transition state (the † symbol is, by convention,

used to label the transition state):

Q†
rot = Πn=a,b,c 

8π2InkT

h2  ,

where k is the Boltzmann constant and T is the temperature in °K.

The eigenvalues {ωα} of the mass weighted Hessian matrix (see below) are used to

compute, for each of the 3N-7 vibrations with real and positive ωα values, a vibrational

partition function that is combined to produce a transition-state vibrational partition

function:

Q†
vib = Πα=1,3Ν−7  

exp(-hωα/2kT)

1-exp(-hωα/kT)
   .

The electronic partition function of the transition state is expressed in terms of the activation

energy (the energy of the transition state relative to the electronic energy of the reactants) E†

as:

Q†
electronic = ω† exp(-E†/kT)

where ω† is the degeneracy of the electronic state at the transition state geometry.

In the original Eyring version of transition state theory (TST), the rate coefficient

krate is then given by:

krate = 
kT
h   ω† exp(-E†/kT) 

Q†
rotQ

†
vib

Qreactants
  ,

where Qreactants is the conventional partition function for the reactant materials.

For example, in a bimolecular reaction such as:

F + H2 → FH + H,



the reactant partition function

Qreactants = QF  QH2

is written in terms of the translational and electronic (the degeneracy of the 2P state

produces the 2 (3) overall degeneracy factor) partition functions of the F atom

QF =  






2πmFkT

h2
 
3/2

 2 (3)

and the translational, electronic, rotational, and vibrational partition functions of the H2

molecule

QH2 
= 







2πmH2kT

h2
 
3/2

 
8π2IH2

kT

2h2
  

exp(-hωH2
/2kT)

1-exp(-hωH2
/kT)

  .

The factor of 2 in the denominator of the H2 molecule's rotational partition function is the

"symmetry number" that must be inserted because of the identity of the two H nuclei.

The overall rate coefficient krate (with units sec-1 because this is a rate per collision

pair) can thus be expressed entirely in terms of energetic, geometrical, and vibrational

information about the reactants and the transition state. Even within the extensions to

Eyring's original model, such is the case. The primary difference in the more modern

theories is that the transition state is identified not as the point on the potential energy

surface at which the gradient vanishes and there is one negative Hessian eigenvalue.

Instead, a so-called variational transition state (see the above reference by Truhlar and

Garrett) is identified. The geometry, energy, and local vibrational frequencies of this

transition state are then used to compute, must like outlined above, krate.

3. Harmonic Vibrational Frequencies

It is possible (see, for example, J. Nichols, H. L. Taylor, P. Schmidt, and J.

Simons, J. Chem. Phys.     92    , 340 (1990) and references therein) to remove from H the zero

eigenvalues that correspond to rotation and translation and to thereby produce a Hessian

matrix whose eigenvalues correspond only to internal motions of the system. After doing

so, the number of negative eigenvalues of H can be used to characterize the nature of the



stationary point (local minimum or transition state), and H can be used to evaluate the local

harmonic vibrational frequencies of the system.

The relationship between H and vibrational frequencies can be made clear by

recalling the classical equations of motion in the Lagrangian formulation:

d/dt(∂L/∂q
• j) - (∂L/∂qj) = 0,

where qj denotes, in our case, the 3N cartesian coordinates of the N atoms, and q
•
 j  is the

velocity of the corresponding coordinate. Expressing the Lagrangian L as kinetic energy

minus potential energy and writing the potential energy as a local quadratic expansion about

a point where g  vanishes, gives

L = 1/2 Σ j mj q
•

 j2 - E(0) - 1/2 Σ j,k qj Hj,k qk .

Here, E(0) is the energy at the stationary point, mj is the mass of the atom to which qj

applies, and the Hj,k are the elements of H along the x, y, and z directions of the various

atomic centers.

Applying the Lagrangian equations to this form for L gives the equations of motion

of the qj  coordinates:

mj q
••

 j = - Σk Hj,k qk.

To find solutions that correspond to local harmonic motion, one assumes that the

coordinates qj oscillate in time according to

qj(t) = qj cos(ωt).

Substituting this form for qj(t) into the equations of motion gives

mj ω2 qj = Σk Hj,k qk.

Defining

qj' = qj (mj)1/2



and introducing this into the above equation of motion yields

ω2 qj' = Σk H'j,k qk'  ,

where

H' j,k = Hj,k (mjmk)-1/2

is the so-called      mass-weighted Hessian     matrix.

The squares of the desired harmonic vibrational frequencies ω2  are thus given as

eigenvalues of the mass-weighted Hessian H' :

H'  q'α = ω2α q'α

The corresponding eigenvector, {q'α,j} gives, when multiplied by

mj-1/2, the atomic displacements that accompany that particular harmonic vibration. At a

transition state, one of the ω2α will be negative and 3N-6 or 3N-7 will be positive.

4. Reaction Path Following

The Hessian and gradient can also be used to trace out 'streambeds' connecting

local minima to transition states. In doing so, one utilizes a local harmonic description of

the potential energy surface

E(x) = E(0) + x•g  + 1/2 x•H•x  + ...,

where x  represents the (small) step away from the point x=0  at which the gradient g and

Hessian H have been evaluated. By expressing x  and g  in terms of the eigenvectors vα of

H

Hvα = λα vα,

x = Σα <vα|x> vα = Σα xα vα,

g  = Σα <vα|g> vα = Σα gα vα,



the energy change E(x) - E(0) can be expressed in terms of a sum of independent changes

along the eigendirections:

E(x) - E(0) = Σα[ xα gα +1/2 x2α λα ] + ...

Depending on the signs of gα and of λα, various choices for the displacements xα will

produce increases or decreases in energy:

1. If λα is positive, then a step xα 'along' gα (i.e., one with xα gα positive) will generate

an energy increase. A step 'opposed to' gα will generate an energy decrease if it is short

enough that xα gα is larger in magnitude than 1/2 x2α λα, otherwise the energy will

increase.

2. If λα is negative, a step opposed to gα will generate an energy decrease. A step along

gα will give an energy increase if it is short enough for xα gα to be larger in magnitude

than 1/2 x2α λα, otherwise the energy will decrease.

Thus, to proceed downhill in all directions (such as one wants to do when

searching for local minima), one chooses each xα in opposition to gα and of small enough

length to guarantee that the magnitude of xα gα exceeds that of 1/2 x2α λα for those modes

with λα > 0. To proceed uphill along a mode with λα ' < 0 and downhill along all other

modes with λα > 0, one chooses xα ' along gα ' with xα ' short enough to guarantee that

xα ' gα ' is larger in magnitude than 1/2 x2α ' λα ', and one chooses the other xα opposed to

gα and short enough that xα gα is larger in magnitude than 1/2 x2α λα.

Such considerations have allowed the development of highly efficient potential

energy surface 'walking' algorithms (see, for example, J. Nichols, H. L. Taylor, P.

Schmidt, and J. Simons, J. Chem. Phys.     92    , 340 (1990) and references therein) designed

to trace out streambeds and to locate and characterize, via the local harmonic frequencies,

minima and transition states. These algorithms form essential components of most modern

   ab initio    , semi-empirical, and empirical computational chemistry software packages.



II.     Ab Initio    , Semi-Empirical and Empirical Force Field Methods

A. Ab Initio  Methods

Most of the techniques described in this Chapter are of the    ab initio     type. This

means that they attempt to compute electronic state energies and other physical properties,

as functions of the positions of the nuclei, from first principles without the use or

knowledge of experimental input. Although perturbation theory or the variational method

may be used to generate the working equations of a particular method, and although finite

atomic orbital basis sets are nearly always utilized, these approximations do not involve

'fitting' to known experimental data. They represent approximations that can be

systematically improved as the level of treatment is enhanced.

B. Semi-Empirical and Fully Empirical Methods

Semi-empirical methods, such as those outlined in Appendix F, use experimental

data or the results of    ab initio     calculations to determine some of the matrix elements or

integrals needed to carry out their procedures. Totally empirical methods attempt to describe

the internal electronic energy of a system as a function of geometrical degrees of freedom

(e.g., bond lengths and angles) in terms of analytical 'force fields' whose parameters have

been determined to 'fit' known experimental data on some class of compounds. Examples

of such parameterized force fields were presented in Section III. A of Chapter 16.

C. Strengths and Weaknesses

Each of these tools has advantages and limitations.     Ab initio     methods involve

intensive computation and therefore tend to be limited, for practical reasons of computer

time, to smaller atoms, molecules, radicals, and ions. Their CPU time needs usually vary

with basis set size (M) as at least M4; correlated methods require time proportional to at

least M5 because they involve transformation of the atomic-orbital-based two-electron

integrals to the molecular orbital basis. As computers continue to advance in power and

memory size, and as theoretical methods and algorithms continue to improve,    ab initio    

techniques will be applied to larger and more complex species. When dealing with systems

in which qualitatively new electronic environments and/or new bonding types arise, or

excited electronic states that are unusual,    ab initio     methods are essential. Semi-empirical or

empirical methods would be of little use on systems whose electronic properties have not

been included in the data base used to construct the parameters of such models.



On the other hand, to determine the stable geometries of large molecules that are

made of conventional chemical units (e.g., CC, CH, CO, etc. bonds and steric and

torsional interactions among same), fully empirical force-field methods are usually quite

reliable and computationally very fast. Stable geometries and the relative energetic stabilities

of various conformers of large macromolecules and biopolymers can routinely be predicted

using such tools if the system contains only conventional bonding and common chemical

building blocks. These empirical potentials usually do not contain sufficient flexibility (i.e.,

their parameters and input data do not include enough knowledge) to address processes that

involve rearrangement of the electronic configurations. For example, they can not treat:

1. Electronic transitions, because knowledge of the optical oscillator strengths and of the

energies of excited states is absent in most such methods;

2. Concerted chemical reactions involving simultaneous bond breaking and forming,

because to do so would require the force-field parameters to evolve from those of the

reactant bonding to those for the product bonding as the reaction proceeds;

3. Molecular properties such as dipole moment and polarizability, although in certain fully

empirical models, bond dipoles and lone-pair contributions have been incorporated

(although again only for conventional chemical bonding situations).

Semi-empirical techniques share some of the strengths and weaknesses of    ab initio    

and of fully empirical methods. They treat at least the valence electrons explicitly, so they

are able to address questions that are inherently electronic such as electronic transitions,

dipole moments, polarizability, and bond breaking and forming. Some of the integrals

involving the Hamiltonian operator and the atomic basis orbitals are performed    ab initio    ;

others are obtained by fitting to experimental data. The computational needs of semi-

empirical methods lie between those of the    ab initio     methods and the force-field techniques.

As with the empirical methods, they should never be employed when qualitatively new

electronic bonding situations are encountered because the data base upon which their

parameters were determined contain, by assumption, no similar bonding cases.




