Review Exercises

1. For the given orbital occupations (configurations) of the following systems, determine
all possible states (all possible allowed combinations of spin and space states). Thereisno
need to form the determinental wavefunctions simply label each state with its proper term
symbol. One method commonly used is Harry Grays "box method" found in Electrons
and Chemical Bonding.

a) CH» 1392239 210by23aq 11bq 1
b.) B2 154215225 ¢22s21p12pyt

c.) Oo 1542152254225 21p*3s ¢21pg2
d) Ti 1s22s22p63s23p64s23d14dl

e) Ti 1522522p63523p64523d2

Exercises

1. Show that the configuration (determinant) corresponding to the Lit 1s(a)ls(a) state
vanishes.

2. Construct the 3 triplet and 1 singlet wavefunctions for the Li* 1s12sl configuration.
Show that each state is a proper eigenfunction of 2 and S; (use raising and lowering

operators for )
3. Construct wavefunctions for each of the following states of CH>:

a) 1By (1a122a 21022331 11b, 1)

b.) 3B1(1ay22821b2238111b11)

c.) A1 (18122321b22352)
4. Construct wavefunctions for each state of the 1s22s23s21p2 configuration of NH.
5. Construct wavefunctions for each state of the 1s12s!3s! configuration of Li.

6. Determine all term symbols that arise from the 1s22s22p23d1 configuration of the excited
N atom.

7. Caculate the energy (using Slater Condon rules) associated with the 2p valence electrons
for the following states of the C atom.

i. 3P(M =1,Mg=1),
ii. 3P(M_=0,M s=0),
iii. 1S(M_ =0,M s=0), and
iv. ID(M_ =0,M s=0).
8. Calculate the energy (using Slater Condon rules) associated with the p valence electrons
for the following states of the NH molecule.
i. 1D (M =2, Mg=0),
ii. 1S (M =0, Ms=0), and
iii. 3S (M =0, Mg=0).

Problems

1. Let usinvestigate the reactions:
i. CH2(1A7) ® H+C, and
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ii. CH2(3B1) ® Ha+C,
under an assumed Cyy, reaction pathway utilizing the following information:

29.2 kcal/mole 32.7 kcal/mole
C atom: 3P33,%%%%%%® D%U%LALYLALL%LY%LE 1S

C(P)+Hy ® CH»(3B;) DE =-78.8 kca/mole

C(AD) + H» ® CHy(tA;) DE =-97.0 kcal/mole

IP (H2) > IP (2s carbon).

a Write down (first in terms of 2p, , , orbitals and then in terms of 2p

X,Y,Z
orbitals) the:
. three Slater determinant (SD) wavefunctions belonging to

the 3P state all of which haveMg =1,
ii. five 1D SD wavefunctions, and
iii. one 1S SD wavefunction.
b. Using the coordinate system shown below, label the hydrogen orbitalssg, sy
and the carbon 2s, 2py, 2py, 2pz, orbitals as a, b1(x), ba(y), or ap. Do the samefor thes,
s, s”, s, n, and pp orhitals of CHy.

P

c. Draw an orhital correlation diagram for the CHo, ® Hy + Creactions. Try to
represent the relative energy orderings of the orbitals correctly.

d. Draw (on graph paper) a configuration correlation diagram for CH»(3B1) ® Ho
+ C showing all configurations which arise from the C(3P) + H2 products. You can
assume that doubly excited configurations lie much (~100 kcal/mole) above their parent
configurations.

e. Repeat step d. for CHo(tA;) ® Ha + C again showing all configurations which
arise from the C(1D) + H> products.

f. Do you expect the reaction C(3P) + Ho ® CHo to have alarge activation
barrier? About how large? What state of CH3 is produced in thisreaction? Would
distortions away from Cp, symmetry be expected to raise of lower the activation barrier?
Show how one could estimate where along the reaction path the barrier top occurs.

g. Would C(1D) + H, ® CH2 be expected to have alarger or smaller barrier than

you found for the 3P C reaction?
2. The decomposition of the ground-state singlet carbene,

to produce acetylene and 1D carbon is known to occur with an activation energy equal to
the reaction endothermicity. However, when triplet carbene decomposes to acetylene and
ground-state (triplet) carbon, the activation energy exceeds this reaction’'s endothermicity.



Construct orbital, configuration, and state correlation diagrams which permit you to explain
the above observations. Indicate whether single configuration or configuration interaction
wavefunctions would be required to describe the above singlet and triplet decomposition
processes.

3. We want to carry out a configuration interaction calculation on Hy at R=1.40 au. A

minimal basis consisting of normalized 1s Slater orbitals with z=1.0 givesrise to the
following overlap (S), one-electron (h), and two-€electron atomic integrals:

<1sallsg> =0.753° S,
<1salhllsa> =-1.110, <1sglh|lsa> =-0.968,
<1splsalhjlsalsa> =0.625° <AAJAA>

<AABB> =0.323, <ABJAB> = 0.504, and
<AAJAB> = 0.426.

a The normalized and orthogonal molecular orbitals we will use for thisminimal
basiswill be determined purely by symmetry:
1

Sq=(2+25) 2(1sa + Lsg) , and
1
Su=(2+2S) (1sa - 1sp) .
Show that these orbitals are indeed orthogonal.

b. Evaluate (using the one- and two- electron atomic integrals given above) the
unique one- and two- eectron integrals over this molecular orbital basis (thisiscalled a

transformation from the ao to the mo basis). For example, evaluate <ujh|us , <uujuus ,
<gujgus , etc.

c. Using the two 185 configurations s 42, and s2, show that the elements of the

2x2 configuration interaction Hamiltonian matrix are -1.805, 0.140, and -0.568.

d. Using this configuration interaction matrix, find the configuration interaction
(ClI) approximation to the ground and excited state energies and wavefunctions.

e. Evaluate and make arough sketch of the polarized orbitals which result from the

above ground state s g2 and s 2 Cl wavefunction.

Solutions
Review Exercises

1. a. For non-degenerate point groups one can simply multiply the representations
(since only one representation will be obtained):

a A bp=Dby
Constructing a"box" in this case is unnecessary since it would only contain asingle row.
Two unpaired electrons will result in asinglet (S=0, Ms=0), and three triplets (S=1,
Ms=1; S=1, Ms=0; S=1, Ms=-1). The stateswill be: 3B1(Ms=1), 3B1(Ms=0), 3B1(Ms=-

1), and 1B1(Mg=0).
1 b. Remember that when coupling non-equivalent linear molecule angular momenta,
one simple adds the individual L, values and vector couples the electron spin. So, in this

case (1py12p 1), we have M| values of 1+1, 1-1, -1+1, and -1-1 (2, 0, 0, and -2). The
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term symbol D is used to denote the spatially doubly degenerate level (M| =+2) and there

aretwo digtinct spatially non-degenerate levels denoted by the term symbol S (M =0)
Again, two unpaired electrons will result in asinglet (S=0, Ms=0), and three triplets (S=1,
Ms=1;S=1, M s=0;S=1, Ms=-1). The states generated are then:

1D (M_=2); one state (Ms=0),

1D (M =-2); one state (Ms=0),

3D (M =2); three states (Ms=1,0, and -1),

3D (M =-2); three states (Ms=1,0, and -1),

1S (M_=0); one state (Ms=0),

1S (M_=0); one state (Ms=0),

3S (M =0); three states (Ms=1,0, and -1), and
3S (M =0); three states (Ms=1,0, and -1).

1 c. Constructing the "box" for two equivalent p electrons one obtains:
ML 2 1 0
Ms
! Ip1ap-1al
0 lp1ap1b] lp1ap-1b],
Ip-12p1b|

From this"box" one obtains six states:
1D (M =2); one state (Ms=0),
1D (M =-2); one state (Ms=0),
1S (M_=0); one state (Ms=0),
3S (M =0); three states (Ms=1,0, and -1).

1 d. It is not necessary to construct a'box™ when coupling non-equivalent angular
momenta since the vector coupling results in arange from the sum of the two individual

angular momentato the absolute value of their difference. Inthiscase, 3d14dl, L=4, 3, 2,

1, 0, and S=1,0. Theterm symbolsare: 3G, 1G, 3F, 1F, 3D, 1D, 3P, 1P, 3S, and 1S. The

L and S angular momenta can be vector coupled to produce further splitting into levels.
J=L+S..|L-S.

Denoting J as aterm symbol subscript one can identify all the levels and subsequent (2J +

1) states:

3Gs (11 states),
3G4 (9 states),
3G3 (7 states),
1G4 (9 states),
3F4 (9 states),
3F3 (7 states),
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3F5 (5 states),
1F3 (7 states),
3D3 (7 states),
3Dy, (5 states),
3Dq (3 states),
1Dy (5 states),
3P, (5 states),
3Py (3 states),
3Py (1 state),
1Py (3 states),
33, (3 states), and
15y (1 state).
1 e. Construction of a"box" for the two equivalent d el ectrons generates (note the
"box" has been turned side ways for convenience):
Ms 1 0
ML
4 ldba dob|
3 doadhal dpadib],  |dpbdaal
2 Idbadoal dadbl,  [dz2bdoal,
chadab]
1 |[d1adoal, |dbad.ja| |diadgb, |dibdpal,
ldbad.ib|,  |dobdaal|
0 dadoal, Ihadial |ldadzbl,  Idabdzal,

lhad.1ib|,  [dibdaal,
|doa dob

Theterm symbols are: 1G, 3F, 1D, 3P, and 1S. The L and S angular momenta can be
vector coupled to produce further splitting into levels:

1G4 (9 states),

3F4 (9 states),
3F3 (7 states),
3F5 (5 states),

1Dy (5 states),

3P, (5 states),
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3P, (3 states),
3Py (1 state), and
155 (1 state).

Exercises

1. Constructing the Slater determinant corresponding to the "state” 1s(a)1s(a) with the
rows labeling the orbitals and the columns labeling the electron gives:

1 I 1sa(l) 1sa(2) |
llsalsa|= —: :
V2l 1sa(1) 1sa(2) |
1
=—(1lsa(1)lsa(2) - 1sa(1l)1sa(2
\/—2( (Disa(2) (D1sa(2)
=0
2. Starting with the Mg=1 3S state (which in a"box" for this M =0, M s=1 case would
contain only one product function; [1sa2sa|) and applying S. gives:
S.35(S=1,Mgs=1) =+1(1+1) - 1(1- 1) h33(S=1,Ms=0)
= m/2 35(S=1,Ms=0)

= (S.(l) + S_(2)) |1sa2sa|
=S (1)|1sa2sa| + S.(2)|1sa2sa |

Al 0. 1@ 6
h\/ +10- 3% - 10 |1sb2sa

22
14 .6 1d ;06
+hv2é2 + 1@ %, 12’ |1sa2sb|
=M (|lsb2sa| + [1sa2sb|)
So, hy2 35(S=1,Mg=0) = I (|1sb2sa| + |1sa2sb])
35(S=1,Mg=0) = \/—1_2 ([lsb2sa| + |1sa2sb)

Thethree triplet states are then:
35(S=1,Mgs=1)= [1sa2sa|,

35(S=1,Ms=0) = —= (|1sb2sa| + |1sa2sb]) , and
\/—2( )

35(S=1,Mg=-1) = |1sb2sb|.
The singlet state which must be constructed orthogonal to the three singlet states (and in
particular to the 3S(S=1,M s=0) state) can be seen to be:

15(S=0,M s=0) :\Tg(|1sbzsa| _ |1sa2sb)) .



Applying $2 and S; to each of these states gives:
S;[sa2sa] = (SA1) + SA2)) [isa2sal
=S/(1)|1sa2sa| + S(2))|1sa2sa|
— py 80 2o
%0 |1sa2sa|+ 1 &0 |1sa2sa

=h |1sa2sa|
S?|1sa2sa| =(SS++S2+NS) [1sa2sa]
=S.Si|1sa2sa| + SA1sa2sa| + N Sy|lsa2sa |
=0+h 2|lsa2sa|+ h 21sa2sa|
=2h 2 |1sa2sa|
1 1
S;—= (|1sh2sa| + |1sa2sh|) = 1) + SA2)) —= (|1sb2sa| + |1sa2sb
A | + | ) =(SAD) + S42) (I |+ )
1
=— 1) + S(2)y |lsh2sa
75 (54D + 542 | |
1
+T(SZ(1) + SZ(Z)) |1sa 2sb|

P &0+ 1y ?é‘ij lish2sa

\/‘ze e2g

+ﬁgﬁ g%g i 00 % 152 25|

—Oh—(|1sb25a| + |1sa2sb|)
V2

(|1sb2sa| + |1sa23b|) =(SS:++SA2+h SZ) (|1sb2sa| + [1sa2sb|)

\/_ V2

=S.S; — (|1h2sa| + |1sa2sb

:\/—1_2( S(S+(1) + S+(2)lsh2sa] + S(S+(1) + S+(2)[1sa2sb])

1 .
=—8&5 h|lsa2sal + S. h |1sa2sa
\/-2$ I I I %

—on \/—1_2( (S(1) + S(2)[1sa2sal)

1 .
=2 h —=&h|1lb2sa| + A|lsa2sb
\/-ﬁil I I 3

1
=2h2-—=(|1sb2sa| + |1sa2sb
\/—2(| | + | )
S, 02| = (SA1) + SA2)) [1sb2sh]
= S,(1)|1sb2sb]| + S,(2))|1sb2sb|
—h 2%3 [1sh2sb| + 11 3 20 0 |1sh2b|
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= - [1sh2sh]
S2[1sh2sh| = (S:+S.+S2-N'Sy) |Lsb2sh|
= S,S [1sh2sh| + S2[1sh2sh| - 1 S,|1sb2sb|
= 0+ 7 2 |1sh2sb| + 11 2|1sh2sb|
= 217 2 [1sh2sb|

Sz\/—1_2(|1sb25a| - [1sa2sbl) = (Sy(1) + SA2)) \/—1_(|1sb25a| - |1sa2sb])

f (SAD) + S2) [1sb2sal

-T(Sz(l) + SZ(Z)) |1sa2sb|
\/‘ze e2 8+ n e2£ Hso2sal

80 , g el
\/_Zgﬁ e2g+ A S |1sa 2sb|

—Oh— |1sb2sa| - |1sa2sb
A )

82\Tl_z(|lsb23a| - |1sa2sb]) =(S.S++S2+h Sz)\/—_2(|13b25a| - |1sa2sh))

3.
irreducible representations, the spin coupling isidentical to exercise 2 and gives the resullt:

3.

3.
4. Asshown in review exercise 1c, for two equivalent p electrons one obtains six states:

- 1 ]
—S-S+\/_2(|1sb23a| |1sa 2sbl)
:\/—1_2( S(S+(1) + S+(2))[1sh25a] - S.(S+(1) + S+(2))1sa2sb])

_i i "
—\/_2$. i |lsa2sa| - S. h |[1sa2sa (3
—on \/—1_2( (S(1) + S(2))[1sa2sal)

—0n \/—1_§ﬂ13b25a| - Mjisa2sbi

1
=0h 2—=(|1sb2sa| - |1sa2sh))
\/_

a. Once the spatial symmetry has been determined by multiplication of the

1
—(|3aqalbib| - |3a1blbia
\/—Z(I ajalbib| - [3aiblbial)
b. There are three states here (again analogous to exercise 2):
1) [Ba1albia|,
1
2.) —=(|3xyalbib| + |3a1blbial) , and
)\/—2(|al 1b| + [3azb1bsal)

3.) |3a1b1b1b]|
C. |3a1a3a1b|
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1D (M_=2); one state (Ms=0),
1D (M =-2); one state (Ms=0),
1S (M =0); one state (Ms=0), and

3S (M =0); three states (Ms=1,0, and -1).
By inspecting the "box" in review exercise 1c, it should be fairly straightforward to write
down the wavefunctions for each of these:

1D (ML=2); |p1ap1b|
1D (M=-2); If-lap-lbl
1S (M =0);: —=(|p1bp-1a| - |p1ap-1b
(ML )\/—2(|p1 p-1a| - |p1ap-1b|)
3S (M.=0, Ms=1); [p1ap-1a|
1
3S (M =0, Ms=0); —( |p1bp-1a| + |p1ap-1b
(ML s)\/—z(lplpll |p1ap-1b|)
3S (ML=0, M s=-1); [p1bp-1b|

5. We can conveniently couple another s electron to the states generated from the 1s12st
configuration in exercise 2:

35(L=0, S=1) with 3s(L=0, S=3 ) giving;
L=0, S=5 , 5 : 45 (4 states) and 2 (2 states)
1§(L=0, S=0) with 3s{L=0, S=3 ) giving:

L=0, S=5 ; 25 (2 states)
Constructing a"box" for this case would yield:

My 0
Ms
g |1sa2sa3sa|
% |1sa2sa3sb|, |1sa2sb3sa|, |1sb2sa3sa|

One can immediately identify the wavefunctions for two of the quartets (they are single
entries):

4S(S=% M s=% ): |1sa2sa3sa|
45(S=3 Ms=-3): [1sh2sb3sb|
Applying S. to 48(822 M SZ% ) yields:



3,3 3 1
SAS(S=3 Ms=3) =h\[3G + 1) - 3G - 1) *S(S=3 Ms=5)
=3 453 ,Ms%)
S|lsa2sa3sa|=M (|1sb2sa3sa| + |1sa2sh3sa| + |1sa2sa3sb)
3 1 1
So, 4S(S:§ Ms=5) :\/—é(|1$b23a3sa| + |1sa2sh3sa| + |1sa2sa3sb)
Applying S: to 4S(S=g M S:_§) yields:
SUS(S=3 Ms=3) =[G + 1) - -S(5+ 1) S(S=3 Ms=3)
2 VS= 2\2 2\2 25T
= V3 45(S=5 Ms}%)
St|1sb2sb3sb| =1 (|1sa2sb3sb| + |1sb2sa3sb| + |1sb2sb3sal)
3 1 1
So, 4S(S:§ ,Ms:-ﬁ) :\/—_3(|1$a25b35b| + |1sh2sa3sb| + |1sh2sb3sal)

It only remains to construct the doublet states which are orthogonal to these quartet states.
Recall that the orthogonal combinations for systems having three equal components (for

example when symmetry adapting the 3 sp2 hybridsin Cp, or D3, symmetry) give results
of +++,+2- -, and 0+ -. Notice that the quartets are the + + + combinations and
therefore the doubl ets can be recognized as:

25(S=5 Ms=3) :\/—16(|1sb25a3sa| + |1sa2sb3sa| - 2|1sa2sa3sh))

1 1 1
25(S=5 Mg=5) = —
S(5=5 Ms73) = =
28(82% ,MS:-%) :\/_i6(|15a23b3sb| + |1sb2sa3sb| - 2|1sb2sb3sa )

|1sb2sa3sa| - |1sa2sb3sa| + O|1sa2sa3sbl)

25(S=5 Ms=-3) = \/—13(|1%125b3sb|  |1sb2sa3sb| + O[1sb2sh3sal)

6. Asillustrated in this chapter a p2 configuration (two equivalent p electrons) gives rise to
the term symbols: 3P, 1D, and 1S. Coupling an additional electron (3dl) to this p?
configuration will give the desired 1s22s22p23d* term symbols:

3p(L=1,S=1) with 2D(L=2,5=3 ) generates;
L=3,2,1, and S=% , % with term symbols 4F, 2F,4D, 2D,4P, and 2P,
1D(L=2,5=0) with 2D(L=2,S=3 ) generates;

L=4,3,2,1,0, and S:% with term symbols 2G, 2F, 2D, 2P, and 2S,

1S(L.=0,5=0) with 2D(L:Z,S:%) generates;

L=2 and S= with term symbol 2D.

7. The notation used for the Slater Condon rules will be the same as used in the text:
(&) zero (spin orbital) difference;
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7.

<|F + G|> :é_ <filffi> + _é._ & if jloff if > - <fifjloff jf i>4
i i>]
=afi + & (Gijij - 9iji)
i
(b.) one (spin orbital) difference (fp* fp);
<|F + G|> =<fpfff y> + & &Fofjloff pf > - <Fpfjlof if p>§
rpip
=fpp+ & (Gpipj - Ipijp)
it pip’
(c.) two (spin orbital) differences (fp* fyandfqt fq);
<|F + G|> = <f pf C]|g|f p‘f q'> - <f pf qlglf q‘f p'>
= Ypapq - Ypagp
(d.) three or more (spin orbital) differences;
<|[F+G|> =0
i. 3A(M_=1,Ms=1) = |p1apoa|

<lIpzapoalH|papea > =
Error!. Using the Slater Condon rule (a.) above (SCa):

7.

<|10H|10}> =f13 +foo + 91010 - 91001
i 3P(ML=0M s=0) = \/—12( Ipap.1b| + |p1bp.aal)
<3P(M__=0,M g=0)|H]3P(M__=0,M 5=0)>
= 3(<Ipap.oHiprap-ibl> + <lprap-ibHipibp-sal>
+ <pibp-1alHipap.ib[> + <lpibp-1a[Hlpibp.1al> )

Evaluating each matrix element gives:
<|p1ap-1b|H|prap-1b> =f1a1a + f-1b-1b + 91a-1b1a-1b - Y1a-1b-1b1a (SCa)

=fnn+f11+0111.1-0

<[p1ap-1ib|H|pibp1al> = g1a-1bib-1a - Y1a-1b-1a1b (SCC)

=0-91111

<|pibp-1a|H|p1ap-1b> = gib-1a1a-1b - Y1b-1a-1b1a (SCC)

=0-901-1-11

<l|pibp-1a|H|pibp-1a[> =f1p1p + f-1a-1a + 91b-1a1b-1a - Y1b-1a-1a1b (SCA)

=f11+f11+01-12-1-0

Substitution of these expressions give:

<3P(M_=0,M g=0)|H[3P(M__=0,M 5=0)>

1
=5 (fir+f11+01111-91-1-11- 91111
+fn+fa1+9110-0)
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=f11+f11+01-12.1- 01-1-11

1
7. iii. 1S(M =0,M g=0); \/—é(lpoa pob| - [prap-1b| - [p-1ap1bl)

<1S(M( =0,M 5=0)|H[1S(M_=0,M 5=0)>

= (<IpoapoblHipoapob P> - <lpoapoblHipap.ibl>
- <|poapob|H|p-1ap1b[> - <|p1ap-1b|H|poa pob|>
+ <|[p1ap.1b|H|p1ap-1b[> + <|p1ap.1b|H[p.1ap1b[>
- <|p-1ap1b[H|poapob[> + <|p.1a p1b|H|p1ap-1b[>

+ <|p.1apiblHip1apabl>)
Evaluating each matrix element gives.

<|poa pob|H|poa pob|> = foaoa *+ fobob + 90a 0boa 0b - 90a 0boboa (SCa)
=foo + foo + 9oooo - O
<|poapob|H|p1ap-1b[> = <|p1ap-1b|H|poa pob[>

= g0aObla-1b - 90a0b-1b1a (SCC)
=0oo01-1-0

<|poapob|H|p-1ap1b[> = <|p.1a p1b|H|poapob[>

= goa Ob- 1a 1b - 90aOblb- 1a (SCC)
=0doo-11-0

<|p1ap-1b|H|prap-1b> =f1a1a + f-1b-1b + 91a-1b1a-1b - Y1a-1b-1b1a (SCa)
=fnn+f11+0111.1-0
<l|p1ap-1b|H|p-1ap1b[> = <|p.1ap1b|H[p1ap-1b[>

= 0la-1b-1a1b - 91a-1bib-1a (SCC)
=01-1-11-0

<|p.1apib|H|p-1ap1b> =f.1a-1a * f1bib + 9-1a 1b- 1a1b - 9-1a 1b1b- 1a (SCA)

o =fi1+fii+01111-0
Substitution of these expressions give:

<1S(M_=0,M s=0)|HIS(M|_=0,M 5=0)>
1
= §(foo +foo + 90000 - 9001-1 - 9oo-11 - Joor-1 + f11 + .11

. +01-11-1+ 91-1-11-9oo-11 + 91111+ g +fn + 9-11-11)
= §(2foo +2f11 + 2f.1-1 + doooo - 49001-1 + 201-11-1 + 291-1-11)

. 1
7. iv. ID(M_=0,M s=0) :\/_6(2|p03-p0b| + |p1ap-1b| + |p-1ap1b))

Evaluating <'D(M_ =0,M s=0)|H[1D(M_=0,M s=0)> we note that all the Slater Condon matrix
elements generated are the same as those evaluated in part iii. (the signsfor the
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wavefunction components and the multiplicative factor of two for one of the components,
however, are different).

<1D(M|=0,M s=0)|HD(M =0,M s=0)>

1
= 3(41‘00 + 4fo0 + 490000 + 29001-1 + 29oo-11 + 2doo1-1 + f11
+f11+ 01121+ 91-1-11 + 2doo-11 + Q1-1-11 + Fepa + f1a

+ 9-11-11)
1
= g(8foo + 2612+ 211+ 490000 + 89001-1 + 201-11-1 + 201-1-11)
8. i. ID(M_=2,M s=0) = |p1ap1b]

<ID(M =2,M s=0)|HD(M_=2,M 5=0)>

= <|p1ap1ib[Hlp1apib[>

=f1a1a + f1bib + O1a1bla1b - J1a1bibia (SCa)
=fa+f11+01111-0
=2f11+ 01111

" 1
8. ii. 1S(M_.=0,M s=0) = \/—-2( Ip1ap-1b| - [pabp-1al)
<3S(M=0,M s=0)|HPFS(M_=0,M s=0)>
1
= §(<Ip1ap-1bIH|plap-1bI> - <lp1ap-1bJHjp1bp-1a[>

- <|p1bp-1a|Hp1ap-1b> + <|p1bp-1a|Hjp1bp-1al>)

Evaluating each matrix element gives.
<l|p1ap-1b|Hlp1ap-1b[> =f1a1a +f-10-10 + 91a-1b1a-1b - 91a-1b-1b1a (SCa)

=f11+f11+091-111-0
<l|piap-1b[H|pibp-1a[> = g1a-1b1b-1a - 91a-10-1a 1b (SCC)

=0-01-1-11
<|pibp-1a[Hlp1ap-1b[> = gip-1a1a-1b - 91b-1a-1b1a (SCC)

=0-01-1-11
<l|pibp-1a|Hlp1bp-1a[> =f1p1p + f-1a-1a + 91b-1a1b-1a - 91b-1a-1a1b (SCa)

. =fi+f11+01121-0
Substitution of these expressions give:

<3S(ML=0,M s=0)|H[FS(M_=0,M 5=0)>
1
=5 (fu+fi1+0r110+ g1t grran + faa +faa+ 91110)
=fu+fr1+0graat %1—1—11
8. iii. 35(M_=0,Ms=0) = —=(|p1ap-1b| + |p1bp-1a))
\V2
<3S(M=0,M s=0)|HPFS(M_=0,M s=0)>
1
= §(<Ip1ap-1bIHIp1ap-1bI> + <|p1ap-1b|Hjp1bp-1a >
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+ <|p1bp-1a|Hjpzap-1b[> + <|p1bp-1a[Hip1bp-1a[> )

Evaluating each matrix element gives.
<l|p1ap-1b|Hlp1ap-1b[> =f1a1a +f-10-1b + 91a-1b1a-1b - 91a-1b-1b1a (SCa)

=fi1+f11+091-1111-0
<l|piap-1b[H|pibp-1a[> = g1a-1b1b-1a - 91a-10-1a 1b (SCC)

=0-01-1-11
<|pibp-1a[Hlp1ap-1b[> = gip-1a1a-1b - 91b-1a-1b1a (SCC)

=0-01-1-11
<l|pibp-1a|Hlp1bp-1a[> =f1p1p + f-1a-1a + 9ib-121b-1a - 91b-1a-1a1b (SCa)

. =fi+f11+01121-0
Substitution of these expressions give:

<3S(ML=0,M s=0)|H[FS(M_=0,M 5=0)>

1
=5 (fun+f11+01110- 9111 91+ faa +fa+ 91110)
=fn+fi11+01110- 91111

Problems
1 a All the Slater determinants have in common the |1sa 1sh2sa 2sb| "core" and
hence this component will not be written out explicitly for each case.
3PML=1Ms=1)  =|p1apoal
1 .
= |\/_—2(px +ipy) a(pyal
1 .
=—(|pxapza| + i|pyapza
\/—2(|px pAa| + i|pyapAl)
3P(M_ =0Ms=1) = |plla p-1a| .
= |=(px +ipy) a—=(px - ipy) @
I \/é(px Py) ﬁ(px py) al
1 : .
=5(Ixapxal - ilpxapyal + ilpyapxal + [pyapyal)
1 . .
:E(O - ilpxapyal - ilpxapyal + 0)
1 ..
= 5(-2ilpxapyal)
= -ilpxapyal
3PML=-1Ms=1)  =|p1apoa

I
=[x imy) 2Pzl

_1 -

= @( Ixapzal - i|pyapzal)
Asyou can see, the symmetries of each of these states cannot be labeled with asingle
irreducible representation of the Cpy point group. For example, |pxap-2a|isxz (B1) and



Ipyapza|isyz (Bp) and hence the 3P(M| =1,M s=1) state is acombination of B1 and B»

symmetries. But, the three 3P(M_,M s=1) functions are degenerate for the C atom and any
combination of these three functions would also be degenerate. Therefore we can choose
new combinations which can be labeled with "pure” Cyy, point group labels.

3P(xz,Ms=1) = [pxap-A|
=L 3pM =1L Ms=1) + 3P(M_=-1Ms=1)) =3B;
\/_2( )

3P(yx,Ms=1) = |py161 Pxa|
= I—( 3P(M=0,M s=1) = 3A,

3P(yzMs=1) = |pyapz|
= %( 3p(ML=1,Ms=1) - 3P(M_ =-1Ms=1)) =3B,
|

7

Now we can do likewise for the five degenerate 1D states:
IDML=2Ms=0)  =|p1apib]
1 . 1 .
= |=(px +ipy) a—=(px + ipy) b
I \/-Z(px Py) \/-Z(px py) bl

1 . _
=5(Ipxapxbl| + ilpxapybl + ilpyapxbl - |pyapybl)
1ID(M=-2,M s=0) :Ipilap-lbl .
= =(px - ipy) a—=(px - ipy) b
I \/-Z(px Py) \/-Z(px py) b

1 , .
= 5(Ipxapxb| - ilpxapybl - ilpyapxbl - [pyapybl)

1
=—(|ppap1b] - bpia
\/—Z(Ipo p1b| - [pobpial)

_1 1 i ] 1 - "
= \/_Zgﬂpz)a \/_Z(px + ipy)b| - |(p2)b \/-z(px + 'Py)a|g

1p(M =1,M s=0)

1 . .
=5(lp2apxb| + i|pzapyb| - [pzbpxal - i|pzbpyal)

1D(ML=-1,Ms=0) =\/—1_2( Ipoap.1b| - |pobp-1al)
N P 1,
= 5KPIa (0 )bl - [P (px - ipy)ald

1 . .
=5(lp2pxb| - ilpzapyb| - [pZbpxal + i|pzbpyal)
1
ID(ML=0Ms=0)  =-=(2|poapob| + |p1ap-1b| + |p-1ap1bl)
\6

- \/_1—?(2|pza p.b] + ]lé(m + ipy)a\/—l_zmx -ip,)b|
* FPx-ipy) a(px +ipy) bl)

1
=—(2|p,apb
\/—6(|pzpz|

117
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1 . .

*+5(Ipxapxbl - ilpxapyb| + ilpyapxb| + |pyapybl)
1 . .

+5(Ip@pxbl + ilpxapybl - ilpyapxb| + [pyapybl) )
1

= —(2|papb| + |pxapxb| + [pvapyb
\/—6(|pzpz| Ipxapxb| + |pyapybl) )

Analogous to the three 3P states we can aso choose combinations of the five degenerate 1D
states which can be labeled with "pure” Cyy, point group labels:
ID(xx-yy,Ms=0) = [pxapxbl - Ipyapybl

=(1D(M_.=2,Ms=0) + ID(M| =-2,Ms=0)) =1A;
1D(yx,Ms=0) = Ipfa pybl + Ipyapxbl

= I—( ID(M =2,Ms=0) - ID(M_=-2,M s=0)) = 1A,
1D(zx,Ms=0) = |papxb| - lpLopxal

= (DM =1,Ms=0) + ID(M =-1,Ms=0)) =1B;
1D(zy,Ms=0) = |papyb| - Ipbpyal

= {(IDML=1Mg=0) - DM =-1Mg=0)) =18

1

1D(2z2+x0ckyy Ms=0) = —=(2pap2] + IPxapsbl + Ipyapyb) )

=1D(M_ =0,M g=0) = 1A;
The only state left isthe 1S:;

15(M| =0,M 5=0) :\/—13( Ipoapob] - |p1ap-1b| - |p-12p1b)
= \/_1;3(|pzapzb| - I\zl_z(px + ipy)av—l-z(Px - ipy)b|
: |\172(px +ipy) a(x + ipy) b
=\T§(|pzapzb|
_%( Ipkapxbl - ilpxapybl + ilpyapxb| + [pyapybl)
_%( IPc@pxbl + ilpxapybl - ilpyapxbl + Ipyapybl) )

1
=\/—§( lPzapzbl| - [pxapxbl - [pyapybl) )

Each of the components of this state are A, and hence this state has
A1 symmetry.

1. b. Forming SALC-AQOs from the C and H atomic orbitals would generate the
following:
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I

1s THis =sg=a; Hjs-Hjis =5y

H H H H ’
H H H g H
Cs =y Cop =2y Cop = by Cop = by

z y X

The bonding, nonbonding, and antibonding orbitals of CH» can beillustrated in the

following manner:

s=a s =b, Py =
S*_bz



Orbital-correlation diagram for thereaction C + H, ----- > CH,, (bent)

—_— e e e -

su(by) b(antibonding)

_ - -~~~ a(antibonding)

e
- =

~—ll by(2p,)
@) y —--TTsTTTTTT T~.l a&(non-bonding)
\b;Z bonding)
____________________ a(bonding)
So(@)
C+H, CH,, (bent)
1 d. - e It isnecessary to determine how the wavefunctions found in part a. correlate

with states of the CH2 molecule:

3P(xz,Ms=1); 3B1 = 5¢25%pxp; %% ® S2n%pps*

3P(yx,M s=1); 3A2 = s¢2s%pxpy % %® S2n2pps

3P(yz,Ms=1); 3B2 = s¢?s?pyp; %:%® s2n?ss*

ID(xx-yy,Ms=0); 1A1 %%:® s2n2p,2 - s2n?s2

1D(yx,Ms=0); 1A %:%:® s2nspy

1D(zx,Ms=0); 1B1 %%:® s2n?s*p,

1ID(zy,Ms=0); 1B2 %:%:® s2n?s*s

1D(2zz+xx+yy,Ms=0); 1A1 %%:® 252n2s*2 + s2n2p,y2 + s2n?s2
Note, the C + H» state to which the lowest 1A1 (s2n?s2) CH> state decomposes would be
sg?s?py2. This state (s g2s2py?) cannot be obtained by asimple combination of the 1D

states. In order to obtain pure s¢2s?py? it is necessary to combine 1ISwith 1D. For
example,

s220y2 = 5(V6 1D(0,0) - 2v/3 15(0,0)) -5(1D(2,0) + 1D(-2,0)) -
Thisindicates that a CCD must be drawn with a barrier near the 1D asymptote to represent

the fact that 1LA1 CH> correlates with amixture of 1D and 1S carbon plus hydrogen. The C
+ Hy state to which the lowest 3B (s2ns2pp) CH> state decomposes would be s g2spy2px.
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3 2 2
B,(s n°s*p,)
381
2 2
Sg Spy Px
1
C('D) +H, 3
A A 11 1 1 1 B
(B2"A1"A17A2 By)
3Bz(szsnzs*)
29.2 Kcal/mole i
v _CCP +H,
A 3, 35 3
(B1B>7A3)
3 2 2
._Ax(ssnpy)
78.8 Kcal/mole
Aq
\ 1A1(stzn2)
97.0 Kcal/mole 3 2 2
vy B1(s"s"npy)
1 f. If you follow the 3B, component of the C(3P) + H» (since it leads to the ground-

state products) to 3B1 CH2 you must go over an approximately 20 Kcal/mole barrier. Of

course this path produces 3B, CH» product. Distortions away from Cp, symmetry, for
exampleto Cs symmetry, would make the a; and by orbitalsidentical in symmetry ().

The by orbitals would maintain their identity going to a" symmetry. Thus3B; and 3A;
(both 3A™ in Cg symmetry and odd under reflection through the molecular plane) can mix.
The system could thus follow the 3A, component of the C(3P) + H surface to the place
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(marked with acircle on the CCD) where it crosses the 3B surface upon which it then
moves and continues to products. As aresult, the barrier would be lowered.

Y ou can estimate when the barrier occurs (late or early) using thermodynamic
information for the reaction (i.e. slopes and asymptotic energies). For example, an early
barrier would be obtained for a reaction with the characteristics.

Energy — RN

Progress of Reaction

and alate barrier would be obtained for areaction with the characteristics:

Energy 7

Progress of Reaction

This relation between reaction endothermicity or exothermicity is known as the Hammond

postulate. Note that the C(3P1) + H2 --> CH 2 reaction of interest here (see the CCD) has
an early barrier.

1. g. Thereaction C(1D) + Hy ---> CH2 (YA1) should have no symmetry barrier (this

can be recognized by following the 1A; (C(1D) + H») reactants down to the 1A; (CH»)

products on the CCD).
2. This problem in many respectsis analogousto problem 1.

The 3B surface certainly requires atwo configuration Cl wavefunction; the s2s2npy
(P2py2spx) and thes2n2pys* (p2s?pypz). The 1A1 surface could use the s2s2n2 (p2s2py2)
only but once again there is no combination of 1D determinants which gives purely this
configuration (p2s2py?). Thus mixing of both 1D and 1S determinants are necessary to



yield the required p2s2py2 configuration. Hence even the 1A; surface would require a
multiconfigurational wavefunction for adequate description.

| + C > -G
@ y
H z
Orbital-correlation diagram for the reaction C,H, + C ----- > C3H,

-

- - ==~ "by(antibonding)s* o
- _- " @(antibonding)s* ¢

~ <~ _ _bybonding)s
a(bonding)s ¢

CH, +C CsH,

Configuration correlation diagram for the reaction CoHo + C ---> C3Ho.
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2 2 3 2 2
pspy Pk °B,; B1(s'n"s*p,)
3Bz(szsnzs*)
//
3 2 2
As(s sn
C(lD) + C2H2 2( pp)
) 22 21
ps py Al 3
Ea Bl
E,>DE (for °B,)
CCP) + CoH, i '
2 3
P S PxP; Bl 3
2 3 DE "B
P s pxpy A2
2 3
ps pypZ BZ SBl(SZSanp)
\ 2 2
E,=DE (for 1A1) \lAl(s s n2)
3. a

1 1

<sglsg> =< (2+28)—2( 1sa + 1sp) |(2+28)—2( 1sp + 1sp) >

= (2+2S) 1 (<1sallsa> + <lsallss> + <1sgllsa> + <1sgllss>)
= (0.285)((1.000) + (0.753) + (0.753) + (1.000))

=0.999 » 1
1 1

<sgls,> =< (2+2S)—2( 1sa + 1sg) |(2-2S)—2( 1sp - 1sp) >

1 1
= (2+25) 2(2-28) *(<1sallsa> + <1sallse>

+ <1sp|lsa> + <1sp|lse>)
(()1.423)(0.534)((1.000) - (0.753) + (0.753) - (1.000))

1 1

Ssusu> =< (2:29) 2(1sa - 1sp) [(2-25) 2(1sa - 1sg)>

= (2-25) Y<lspllsa> - <Isallss> - <Ispllsa> + <1spllse>)
= (2.024)((1.000) - (0.753) - (0.753) + (1.000))
= 1.000
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3. b.
1 1

<sghlsg> =< (2+2S)'5( 1sp + 1sg) |h|(2+23)'5( 1sp + 1sg) >
= (2+29) "1 (<1salhllsa> + <1salhllss>

+ <lsglh|lsa> + <1sglhllss>)
= (0.285)((-1.110) + (-0.968) + (-0.968) + (-1.110))
=-1.184

1 1
<syhlsy> =< (2-29) ?(1sa - 1sp) ||(2-2S) Z(1sp - 1sp) >

=(2-25) "1 (<1salh|lsa> - <1salhilss>

- <1splhjlsa> + <1sglh|lss>)
= (2.024)((-1.110) + (0.968) + (0.968) + (-1.110))
=-0.575

<SgSg|h|SgSg> o <gg|gg> = (2+28) -1(2+28) -1.
<( Isp + 155)(1sA + 1SB) |( Isp + 1sB)(lsA + 1sB)>

= (2+2S) 2: (<AAIAA> + <AAAB> + <AABA> + <AABB> +
<ABJAA> + <AB|AB> + <AB|BA> + <AB|BB> +
<BA|AA> + <BAJAB> + <BA|BA> + <BAIBB> +
<BBJAA> + <BB|AB> + <BB|BA> + <BB|BB>)

= (0.081) ( (0.625) + (0.426) + (0.426) + (0.323) +
(0.426) + (0.504) + (0.323) + (0.426) +
(0.426) + (0.323) + (0.504) + (0.426) +
(0.323) + (0.426) + (0.426) + (0.625) )
= 0.564

<uujuus = (2-2S) "}(2-2S)-1 -
<( 1sp - 155)(1SA - 1sB) |( 1sp - 155)(1SA - 1sB)>

= (2-2S) -2- (<AAJAA> - <AAJAB> - <AABA> + <AA|BB> -
<AB|AA> + <ABJAB> + <AB|BA> - <AB|BB> -
<BA|AA> + <BAJAB> + <BA|BA> - <BABB> +
<BBJAA> - <BB|AB> - <BB|BA> + <BB|BB>)

= (4.100) ( (0.625) - (0.426) - (0.426) + (0.323) -
(0.426) + (0.504) + (0.323) - (0.426) -
(0.426) + (0.323) + (0.504) - (0.426) +
(0.323) - (0.426) - (0.426) + (0.625) )
= 0.582

<ggluus = (2+2S) -1(2-2S) -1 -
<(1sa + 1sp)(1sa + 1sp)l(1sa - 1sg)(1sa - 1sg)>
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= (2+2S) 1(2-25) -1 -
(<AAAA> - <AAJAB> - <AABA> + <AA|BB> +
<AB|AA> - <ABJ|AB> - <AB|BA> + <AB|BB> +
<BAJAA> - <BAIAB> - <BA|BA> + <BA|BB> +
<BB|AA> - <BB|AB> - <BB|BA> + <BB|BB>)

= (0.285)(2.024) ((0.625) - (0.426) - (0.426) + (0.323) +
(0.426) - (0.504) - (0.323) + (0.426) +
(0.426) - (0.323) - (0.504) + (0.426) +

(0.323) - (0.426) - (0.426) + (0.625))
= 0.140

<gujgus = (2+2S) -}(2-25) -1 -
<( Isp + lsB)(lsA - lsB) |( Isp + lsB) (1SA - lsB) >

= (2+2S) 1(2-25) -1 -
(<AAAA> - <AAJAB> + <AABA> - <AA|BB> -
<ABJAA> + <AB|AB> - <AB|BA> + <AB|BB> +
<BAJAA> - <BA|AB> + <BAIBA> - <BA|BB> -
<BBJAA> + <BB|AB> - <BB|BA> + <BB|BB>)

= (0.285)(2.024) ((0.625) - (0.426) + (0.426) - (0.323) -
(0.426) + (0.504) - (0.323) + (0.426) +
(0.426) - (0.323) + (0.504) - (0.426) -

(0.323) + (0.426) - (0.426) + (0.625))
= 0.557

Note, that <gg|gu> = <uujug> = 0 from symmetry considerations, but this can be easily
verified. For example,
1 3

<gglgu> =(2+28)-5(2-23)'5 i

<( Isp + 153)(1SA + 1SB) |( Isp + 155)(1SA - 1sB)>
1 3
= (242S) 2(2-2S) 2 -
(<AAAA> - <AAJAB> + <AABA> - <AA|BB> +
<ABJAA> - <ABJAB> + <ABI|BA> - <AB|BB> +
<BAJAA> - <BA|AB> + <BAIBA> - <BAIBB> +
<BBJAA> - <BBJAB> + <BB|BA> - <BB|BB>)

= (0.534)(2.880) ((0.625) - (0.426) + (0.426) - (0.323) +
(0.426) - (0.504) + (0.323) - (0.426) +
(0.426) - (0.323) + (0.504) - (0.426) +
(0.323) - (0.426) + (0.426) - (0.625))
= 0.000

3. ¢. We can now set up the configuration interaction Hamiltonian matrix. The
elements are evaluated by using the Slater-Condon rules as shown in the text.

H11 = <sgasgb|H[sgasgb>



= 2fsgsg + gsgsgsgs
=2(-1.184) + 0.564 = -1.804
H21 = Hi2 = <sgasgb|H|suasub>

=0s SoSusu

=0.140
Hoo = <spasyb|H[syas b>

=2f
SLSu gsusususu

= 2(-0 575) +0.582 = -0.568
3. d. Solving this eigenvalue problem:

I -1.804-e 0140 |
! =0
L' 0140 -0.568-e]
(-1.804 - €)(-0.568 - €) - (0.140)2=0
1.025 + 1.804e + 0.568e + €2 - 0.0196 = 0
e+ 2.372e+1.005=0

_-2.372 + \/(2.372)2 - 4(1)(1.005)
(2)(2)
-1.186 + 0.634

-1.820, and -0.552.
Solving for the coefficients:

€-1.804-e 0.140

0.140 -0.568 - e
For thefirst eigenvalue this becomes.
¢ -1.804 + 1.820 0.140 0é
e ue
e 0.140 -0.568 + 1.820 ué
0016 0.140 ueCl 0 é ¢ 0 0
e u=¢ U
e 0140 1252 ueCu €eou
(0.140)(Cq) + (1.252)(C2) =0
C1=-8943C,
C12 + C22 =1 (from normalization)
(-8.943Cp)2+Cx2=1
80.975C»2=1
C>=0.111, C1 =-0.994
For the second eigenvalue this becomes:
-1.804 + 0.552 0.140

0.140 -0.568 + 0.552
(-1252 0140 3¢ C1y ol;,

e 0.140 -0.016 He Co H eO H

(-1.252)(Cq) + (0.140)(Cp) = 0

D:D> (D!

DD D:DXD
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C1=0112Co
C12 + C»2 =1 (from normalization)
(0.112Cp)2+Cx2=1

1.0125C»2=1
C2=0.994,C;=0.111
3. e. The polarized orbitals, R, , are given by:

C2
Re=5g2\[Z s
0.111
Rs =Sg*\[pg0g Su

Ri = Sg + 0.334 Su

R+ =sg+ 0.334 s (l€ft polarized)
R.=sg- 0.334 sy (right polarized)

E, Left FPolarized E_ Right Polarized

Section 4 Exercises, Problems, and Solutions

Exercises:

1. Consider the molecules CCl4, CHCI 3, and CH2Clo.

a. What kind of rotor are they (symmetric top, etc; do not bother with oblate, or
near-prolate, etc.)

b. Will they show pure rotational spectra?

c. Assume that ammonia shows a pure rotational spectrum. |f the rotational

constants are 9.44 and 6.20 cnr'1, use the energy expression:
E=(A-B)K2+B JJ+ 1),

to calculate the energies (in cmrl) of the first three lines (i.e., those with lowest K, J
quantum number for the absorbing level) in the absorption spectrum (ignoring higher order
termsin the energy expression).
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2. The molecule 11B 160 has a vibrational frequency we = 1885 cnr, arotational constant

Be=1.78 cm-1, and a bond energy from the bottom of the potential well of Dg =8.28 eV.

Useintegral atomic massesin the following:
a. In the approximation that the molecule can be represented as a Morse oscillator,

calculate the bond length, Re in angstroms, the centrifugal distortion constant, Dein cnm?,
the anharmonicity constant, wexe in cnr?, the zero-point corrected bond energy, D8 inev,
the vibration rotation interaction constant, aein cnrl, and the vibrational state specific

rotation constants, Bp and Bz in cnrl. Use the vibration-rotation energy expression for a
Morse oscillator:

E=hweV + 1/2) - hwexeV + 1/2)2 + ByJ(J + 1) - DeJ?(J + 1)2, where

- 2 3
6B¢ N 6\ Be3hwexe’ and Dg = 4Bg

hwe hwe hwe?
b. Will this molecule show a pure rotation spectrum? A vibration-rotation

spectrum? Assume that it does, what are the energies (in cmrl) of the first three linesin the
P branch (Dv = +1, DJ=-1) of the fundamental absorption?

BV = Be- ae(V + 1/2), de=

3. Consider trans-CoH>Clo. The vibrational norma modes of this molecule are shown
below. What isthe symmetry of the molecule? Label each of the modes with the
appropriate irreducible representation.

O
A
At PR
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Problems:

1. Suppose you are given two molecules (oneis CH» and the other is CH»>™ but you don't
know which iswhich). Both molecules have Cyy symmetry. The CH bond length of
molecule 1 is1.121 A and for moleculell itis1.076 A. The bond angle of moleculel is

104° and for molecule |l it is136°.

R y
b
a. Using a coordinate system centered on the C nucleus as shown above (the
moleculeisin the YZ plane), compute the moment of inertiatensors of both species (I and
I1). The definitions of the components of the tensor are, for example:

o= AMi(Y2 + 2j2) - M(Y2+22)

J
Iy =-Q MiXjyj - MXY

J
Here, m; isthe mass of the nucleusj, M isthe mass of the entire molecule, and X, Y, Z are
the coordinates of the center of mass of the molecule. Use A for distances and amu's for
Masses.
b. Find the principal moments of inertial; < I < I for both compounds (in amu

A2 units) and convert these valuesinto rotational constants A, B, and C in cm-1 using, for
example,

A =h(8pZclyl.

c. Both compounds are "nearly prolate tops' whose energy levels can be well

approximated using the prolate top formula

E=(A-B)K2+B JJ+1),
if one usesfor the B constant the average of the B and C valued determined earlier. Thus,
take B and C values (for each compound) and average them to produce an effective B

constant to use in the above energy formula. Write down (in cmL units) the energy
formulafor both species. What values are Jand K allowed to assume? What isthe
degeneracy of the level labeled by agiven Jand K?

d. Draw apicture of both compounds and show the directions of the three principle
axes (a,b,c). On these pictures show the kind of rotational motion associated with the
guantum number K.

e. Given that the electronic transition moment vector th connecting species| and ||
isdirected dong the Y axis, what are the selection rules Jand K?
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f. Suppose you are given the photoelectron spectrum of CHz . In this spectrum Jj
= J; + L transitions are called R-branch absorptions and those obeying J = J; - 1 are called
P-branch transitions. The spacing between lines can increase or decrease as functions of J;
depending on the changes in the moment of inertiafor the trangition. 1f spacings grow
closer and closer, we say that the spectrum exhibits a so-called band head formation. In the
photoel ectron spectrum that you are given, arotational analysis of the vibrationa linesin
this spectrum is carried out and it is found that the R-branches show band head formation
but the P-branches do not. Based on thisinformation, determine which compound | or 11

isthe CHy anion. Explain you reasoning.
g. At what J value (of the absorbing species) does the band head occur and at what
rotational energy difference?

2. Let us consider the vibrational motions of benzene. To consider al of the vibrational
modes of benzene we should attach a set of displacement vectorsinthex, y, and z
directions to each atom in the molecule (giving 36 vectorsin al), and evaluate how these
transform under the symmetry operations of Dg. For this problem, however, let's only
inquire about the C-H stretching vibrations.

a. Represent the C-H stretching motion on each C-H bond by an outward-directed
vector on each H atom, designated r;:

Iy
)
r
2\ H / I'e
H H
H H
e ~ re
rs H
Ig

These vectors form the basis for areducible representation. Evauate the charactersfor this
reducible representation under the symmetry operations of the Dgp group.

b. Decompose the reducible representation you obtained in part a. into its
irreducible components. These are the symmetries of the various C-H stretching
vibrational modesin benzene.

c. Thevibrational state with zero quantain each of the vibrational modes (the
ground vibrational state) of any molecule always belongs to the totally symmetric
representation. For benzene the ground vibrational state istherefore of A1g symmetry. An
excited state which has one quantum of vibrational excitation in amode which is of agiven
symmetry species has the same symmetry species as the mode which is excited (because
the vibrational wave functions are given as Hermite polynomials in the stretching
coordinate). Thus, for example, excitation (by one quantum) of avibrational mode of Ay
symmetry gives awavefunction of Ay symmetry. To resolve the question of what
vibrational modes may be excited by the absorption of infrared radiation we must examine
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the x, y, and z components of the transition dipole integral for initial and final state wave
functionsy andy f, respectively:

O Ryelxdyi 2L ISyt ly lyi 2 and [Sye | z]yi 2. .
Using the information provided above, which of the C-H vibrational modes of benzene will
be infrared-active, and how will the transitions be polarized? How many C-H vibrations
will you observe in the infrared spectrum of benzene?

d. A vibrational mode will be active in Raman spectroscopy only if one of the
following integrals is nonzero:
ISyelxy lyi 2L ISyelxzlyi 21 <yrlyzlyi 2l

<yeD@lyi 21 I<yely?lyi 2|, and [<yg| 2 |yi 2|
Using the fact that the quadratic operators transform according to the irreducible
representations:

(x2+y?,22) P Agg

(xz,yz) P Eig

(x2-y2, xy) b Egg
Determine which of the C-H vibrational modes will be Raman-active.

e. Arethere any of the C-H stretching vibrational motions of benzene which cannot
be observed in either infrared of Raman spectroscopy? Give the irreducible representation

label for these unobservable modes.
3. Intreating the vibrational and rotational motion of a diatomic molecule having reduced

mass m equilibrium bond length re and harmonic force constant k, we are faced with the
following radial Schrodinger equation:

-h2 " + 1)h2
Pt s
a. Show that the substitution R = r-1F leads to:

2 e, JQ+ 1)h?
2m 2nr2

b. Taking r = re+ Dr and expanding (1 + X)2=1-2x + 3x2 + ...,

JJ + 1)h2
2

1
R+5 k(r-re2R=ER
F+l k(r-re2 F=EF

2 CL

show that the so-called vibration-rotation coupling term can be approximated

JU+ Dh & - 2Dr + 30 2 Keep terms only through order Dr2.

mZ & e &g
c. Show that, through terms of order Dr2, the above equation for F can be
rearranged to yield anew eguation of the form:
D P 4 SR(r-fg2F=gE - o X D07,
2m 2 r-fo g

(for small Dr) by

DS F
Zmez (4]
Give explicit expressions for how the modified force constant k , bond length re, and

energy shift D depend on J, k, re, and m
d. Given the above modified vibrational problem, we can now conclude that the
modified energy levels are:
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.. 2
E= 5%4.1'0 +M_D_
mé 29 2Mre?

Explain how the conclusion is "obvious', how for J= 0, k =k , and D = 0, we obtain the
usua harmonic oscillator energy levels. Describe how the energy levels would be expected
to vary as Jincreases from zero and explain how these changes arise from changesin k and
re Explainintermsof physical forcesinvolved in the rotating-vibrating molecule why re
and k are changed by rotation.

Solutions
Exercises:

1 a. CCly istetrahedral and therefore is a spherical top. CHCI3 has Cz, symmetry
and therefore is a symmetric top. CH2Clo has Cy, symmetry and thereforeis an

asymmetric top.
b. CCl 4 has such high symmetry that it will not exhibit pure rotational spectra.

CHCI3 and CH2Cl> will both exhibit pure rotation spectra.
c. NHz isasymmetric top (oblate). Use the given energy expression,

E=(A-B)K2+B JJ+1),
A =6.20cml, B = 9.44 cml, selection rulesDJ = +1, and the fact that % lies along the
figure axis such that DK =0, to give:

DE =2B (J+ 1) = 2B, 4B, and 6B (J=0, 1, and 2).
S0, lines are at 18.88 cmrl, 37.76 cml, and 56.64 cm-1.

2. To convert between cm-1 and energy, multiply by hc = (6.62618x10-34]
$e€)(2.997925x1010cm sec'l) = 1.9865x1023 Jcm.
Let all quantitiesin cm1 be designated with a bar,

3
e.g. é“e =1.78cm L,

3 2
a hCée = n
2NRe2

h

\’ ZHhC%e
_ mpmo _ (11)(16) 27
m= Mg + mg ~ (11 + 16) x 1.66056x10-4/ kg

= 1.0824x1026 kg.
S
hcBle = ho(1.78 cmrl) = 3.5359x10°23 J
R.= 1.05459x10-34 J sec

o=
V(2)1.0824x10-26 kg.3.5359x10-23 J
Re=1.205x10-10m=1.205 A

Re:




_BS ¥ _4BS _@arscm?y3

e = = 6.35x106 cnrl
w2 w2  (1885cm )2

De

%,
_hwe? v we? _ (1885 cmrl)2

et WeXe = — = = 1330 cm-L
" a0 ° 4 (4)(66782.2 cmrd)
e
hwe hweXe %o % \%‘e V\igxe
0 _ O _
D =DY -5 + ¢ DY =B - oF + 8
_ 1885 _ 13.3
= 667822 ~5~ + 5=

=65843.0cm1=8.16¢€V.

-6B¢ 6\ B
A= e e“NWeXe
hwe hwe

3, 3 ?/
¥ _ B2 6\ Bidwike

S Yy
We We
% _ (-6)(1.78)2 . 6\(1.78)3(13.3
a.4e = ( (?1.(8855) + ( (18)85() ) =0.0175 Cm'l.
34 34 ?/4
Bo=Be-ag1/2) , By = Bs - ax(1/2) = 1.78 - 0.0175/2
=177cm1

A 3

B1=Be-ag32), B1 = Bs - 4«(3/2) = 1.78- 0.0175(L5)

=1.75cm?
b. The molecule has a dipole moment and so it should have a pure rotational
spectrum. In addition, the dipole moment should change with R and so it should have a
vibration rotation spectrum.

Thefirst threelines correspondtoJ=1® 0,J=2® 1,J=3® 2

E=hweV + 1/2) - hwex(V + 1/2)2 + ByJ(J + 1) - DeJ2(J + 1)2

DE = h We - 2h WeXe - BoJ(d + 1) + B1J(J- 1) - 4DeJ3

BE = Wi - 2Wike - By JJ+ 1) + By JJ- 1) - 4D B3

BE = 1885- 2(13.3) - 1.773(J+ 1) + 1.75]J- 1) - 4(6.35x10-6)3
= 1858.4- 1.77)(J + 1) + 1.75]J- 1) - 2.54x10°5R

BEQ=1) =18549cml

BEu=2) =1851.3cml

BEQ=3) =1847.7cml

3. The C2H>Cl> molecule has a sy plane of symmetry (plane of molecule), aCy axis (* to
plane), and inversion symmetry, this resultsin Cop symmetry. Using Cop symmetry labels
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the modes can be labeled as follows: n1, n2, N3, N4, and ns are g, ng and n7 are a,, ngis
bg, and ng, n1o, N11, and nio are by,

Problems:
1.
Z
R _/S y
H 9 TH

Moleculel Moleculell

Rcy=1121A RcH = 1.076 A

PHcH = 104° PHcH = 136°

yH = R Sin (g/2) = +0.8834 yH = +0.9976

zH = R Cos (g/2) = -0.6902 7 = -0.4031
Center of Mass(COM):

clearly, X =Y =0,

7 =12(0) - 2RCO(A/2) _ ; 1986 7 =-0.0576

14

a  la=amy2+ 2 -M(Y2+22)
j
Iy =-Q MiXjyj - MXY
j

e = 2(1.121)2 - 14(-0.0986)2 lex = 2(1.076)2 - 14(-0.0576)2
=2.377 = 2.269

lyy = 2(0.6902)2 - 14(-0.0986)2 Iy = 2(0.4031)2 - 14(-0.0576)2
= 0.8167 = 0.2786

|22 = 2(0.8834)2 | 2= 2(0.9976)2
= 1.561 = 1.990

IXZ: Iyz: Ixy =0
b. Since the moment of inertiatensor is aready diagonal, the principal moments of
inertia have aready been determined to be

(la<lp<lo):
Iyy<|zz<|xx Iyy<IZZ<IXX
0.8167 < 1.561 < 2.377 0.2786 < 1.990 < 2.269

h _ 6.626x10-27 X6.02x1023

8p2cl, 8p2(3x1010)1, ~ (1x10-8)2

A=1684 oo
a

Using the formula: A =
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similarly, B = 16|f4 crl and C = 16|'f4 cnrl.
So,
Moleculel Moleculell
yb A=20.62 y b A =60.45
zb B=10.79 zb B=8.46
xp C=7.08 xpb C=742

c. Averaging B + C:
B=(B+C)/l2=894 B=(B+C)l2=7.94
A-B=1168 A-B=5251

Using the prolate top formula:
E=(A-B)K2+B JJ+1),
Moleculel Moleculell
E =11.68K2 + 8.94)(J + 1) E =5251K2 + 7.94JJ+ 1)
Levels: J=0,1,2,...andK =0,1, ... J
For agiven level defined by Jand K, there are M j degeneraciesgiven by:  (2J+ 1) x
i1l for K = O
l

U
%2 for K1 O;V)
d.

Moleculel Moleculell

7z => Ib 7 => Ib
el V4.
< (—y=k < - c\(" y=>1,

H H H H

e Since fh is along Y, DK = 0 since K describes rotation about the y axis.
ThereforeDJ= £1

f. Assumemolecule | isCH> and molecule |l isCHo. Then,
DE = EJj (CH>) - EJi (CH2), where:

E(CHp) = 52.51K2 + 7.94)(J + 1), and E(CH2) = 11.68K2 + 8.94)(J + 1)
For R-branches: } = Jj + 1, DK = 0:
DER = E3(CH2) - E4(CH 2)
=794 +D(J+1+1)-894%(J +1)
=i+ 1D{7.94(J +1+1)-8.943}
= (J + D{(7.94- 8.94)J; + 2(7.94)}
=(J + D{-J; + 15.88}
For P-branches: J = J; - 1, DK = 0:

DEp = Ej (CH2) - E3(CH2)
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=794 -1)(-1+1)-8943(% + 1)

=J{7.94(J - 1) - 8.94(J; + 1)}

= J{(7.94- 8.94)J, - 7.94 - 8.94}

=Ji{-Jj - 16.88}
Thisindicates that the R branch lines occur at energies which grow closer and closer
together as Jincreases (since the 15.88 - J, term will cancel). The P branch lines occur at
energies which lie more and more negative (i.e. to the left of the origin). So, you can

predict that if molecule| isCH» and molecule Il is CH2 then the R-branch has a band head
and the P-branch does not. Thisis observed therefore our assumption was correct:

molecule | isCH2 and molecule |l is CH».

g. The band head occurs when d(EJER) - 0.
d(DE d
(dJ_R) =gl + -3 +15.88}] =0
= %(-Ji2 - J +15.88J + 15.88) =0
=-2J+14.88=0

\ J=7.44, soJ=7or8.
AtJ=7.44.

DER = (J+ 1){-J + 15.88}
DER = (7.44 + 1){-7.44 + 15.88} = (8.44)(8.44) = 71.2 cm-L above

the origin.
2 a
Dsn| E 2Cs 2C3 Cp 3Co' 3Co" 1 2S3 2Sg sSh 3sg 3sv
Aig| 1 1 1 1 1 1 1 1 1 1 1 1 X2+y2 72
Azg| 1 1 1 1 -1 -1 1 1 1 1 -1 -1 R2
Big| 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
Bog| 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1
Eigl2 1 -1 2 0 0 2 1 -1 -2 0 0|RuR| (zy2)
Exgl2 -1 -1 2 O O 2 -1 -1 2 O 0] (X2-y2,xy
Atul 1 1 1 1 1 i -1 -1 -1 -1 -1 -1
Aoyl 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 z
Biul 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1
Boul 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1
Fiul2 12 -1 2 o o0 -2 -1 1 2 0 0| xy
Eoul2 -2 -1 2 o 0 -2 1 1 -2 0 O
Gu| 6 O O O 0] 2 0] 0] 0O 6 2 0]

b. The number of irreducible representations may be found by using the following
formula:
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1 o]
nirrep = aa Craj(R)Cirrep(R) )

R
where g = the order of the point group (24 for Dgp).

ALy = @l Gen(R)-Arg(R)
R

= 2—14 {(DED+O)(D)+O)(D+D)(0)(2)

+(3)(O)(D+(3)(2(1)+(L)(0)(1)+(2)(0)(1)
+()(O)(D)+D)(B)(D)+()(A(1)+(3)(O) (D)}

NAgg = 214 {(WED+)O)(D)+(O)(D+D)(0)(2)

+(3)(0)(-1)+(3)(2)(-1)+(1)(0)(1)+(2)(0)(1)
0 +O)(D)+D)(O)(D+B)(A(-D+I)(O)(-1)}

NByg = 2—14 {(D)(E)(D)+(O)(-D)+(2(0)(D)+(D)(0)(-1)

+(3)(0)(1)+(3)(2(-+(L)(0)(1)+(2)(0)(-1)
+(2)(O)(D)+D)(O)(-D)+(3)(A(D)+(3)(O)(-1)}

NBog = 2—14 {(DE)D)+O)(-D+(2(0)(D)+(D)(0)(-1)

+(3)(0)(-1)+(3)(2(H+(L)(0)(1)+(2)(0)(-1)
+(2)(O)(D)+D)(O)-D+(3)(A(-1H)+(3)(O)(1)}

NEqg = 2—14 {(DOE+)O)(D)+(2O)(-D)+D)(0)(-2)

+(3)(0)(0)+(3)(2)(0)+(1)(0)(2)+(2)(0)(1)
0 +(2)(O)(-D+D)(6)(-2)+(3)(2)(0)+(3)(0)(0)}

NEpg = 2—14 {(DOE+)O)(-D)+(O)(-D+(1)(0)(2)

+(3)(0)(0)+(3)(2(0)+(1)(0)(2)+(2)(0)(-1)
. +(2)(O)(-D+D)(6)(2)+(3)(2)(0)+(3)(0)(0)}

NA1y = 2i4 {(DED+)O)(D)+(2O)(D+D)(0)(2)

+3)(O)(D+(3((D)+(1)(0)(-1)+(2)(0)(-1)
0 +O)(-D+HD(O)-D+(3)(A(-D+()(O)(-1)}

NA, = 214 {(WED+Q)O)(D)+(O)N(D+D)(O)(2)

+3)(O)(-D+I)((-1+(1)(0)(-1)+(2)(0)(-1)
0 +)O)(-DHD(O)(-D+(3)(A(D)+)(O)(1)}

gy, = 2—14 {(D)(E)(D)+(O)(-D)+(2(0)(D)+(D)(0)(-1)

+(3)(0)(1)+()(Q(-D+(1)(0)(-1)+(2)(0)(1)
0 +(2)(O)-D)+D)(O)(D)+(3)(A(-1)+(3)(O)(1)}
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NByy = 2—14 {(WED+Q)O)(-1D+O)(D)+D)(0)(-1)

+(3)(O)(-D+3)((D+(1)(0)(-1)+(2)(0)(1)
+()O)(-D+HD(B)(D)+(3)(A(D)+)(O)(-1)}

NEy, = 2—14 {(1)(6)(2+(2(0)(1)+(A(O)(-D)+(1)(0)(-2)

+(3)(0)(0)+(3)(2)(0)+(1)(0)(-2)+(2)(0)(-1)
+(2)(0)(D+(1)(6)(2+(3)(2)(0)+(3)(0)(0)}

NEy, = 2—14 {(D)(E)(2+(O)(-D+(2(O)(-D)+HD)(O)(2)

+(3)(0)(0)+(3)(2)(0)+(1)(0)(-2)+(2)(0) (1)
+(2)(0)(D+(D)(6)(-2)+(3)(2)(0)+(3)(0)(0)}

We seethat Go., = A1gA ExgA BayA Eqy

c.xandy P Ejy,zP Ay, so,theground state Ayg level can be excited to the
degenerate E1, level by coupling through the x or y transition dipoles. Therefore Eqy is
infrared activeand " polarized.

d. (x2+y2,29) b Aqg, (xz,y2z) P Eig, (X2-y2, xy) P Epg,s0, the ground state

A1g level can be excited to the degenerate Eog level by coupling through the x2 - y2 or xy
transitions or be excited to the degenerate A1 level by coupling through the xz or yz
trangtions. Therefore A1g and Exg are Raman active..

e. The Bo, modeisnot IR or Raman active.

d 1
3. a gFrd =F ri-r2fF
d :
I’ZE(FF':L) =rF-F

d d -1 o - ' "
aFg?zaF(Fr o =F-F+rF
So,
- d 10 = F_
2m2 dr ?2 dr ( ) - om )
Rewriting the radial Schrédinger equation with the substitution: R = r-1F gives:
-h2 d 8?2 d(Fr-1o J(J + 1)h2
2m2 dl‘ e dr ﬂ 2m2
Using the above derived identity gives:
-h2F J(J + 1)h?2
2m ' 2n2
Cancelling out an r-L:
Vi 2
-h= =T JJ+ 1)h
2m 2nr2

(Frd +% k(r - re2 (Fr-l) = E (Fr-

(Frd +— k(r - re2 (Fr-h) = E (Fr-1)

1
F+5 k(r-re?F=EF
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2..
b Lo 1 1 ,Lla 2D 303
? (et DR @ D 18 o i2g
€L T Ten
So,

2 2 2

JO+1h2 JJI+ Dh2es 2Dr  3Dr%p

2m2 2me2 le rez g

c¢. Using this substitution we now have:
-2 2 255
-2 e, J0+ DhZes  2Dr  3Dr 0 F+% K -TeR F=EF
2m 2nTe2 g e ré o

Now, regroup the termswhich are linear and quadraticinDr =r - rg

2 2
% kDr2+Mi Drz_Mg Dr

20 rd 2 Te
2 o 2 o
:§k+J(J+1)h 39Dr2_86(3+1)h ggDr
2ml  rdo 2m2  Teg
Now, we must complete the square:
aDr2 - bDr = &P - bet b2
- 289 4da-

So,

JJ+1)h2 1 02
& . JJ+1)h2 3@% om? e =
g k + r-

2me? reZég 1, ,dJ+1h? 3=
= + == - =
2 2 ré

&(J + 1)h2 182

2meg  Teg
1,,30+102 3
2 2Mmf 1l

Now, redefine the first term as% k , second term as (r - T ¢)2, and the third term as -D

giving:

1 .2
§k§-r68 -D
From:
-h2 2 24
lF"+Mﬁ_g+ ﬂgF+%k(r_re)2F:EF,
2m 2m 2 e ré @
-2 2 2 2D Dr2¢ 0
e W DNT RO DT e 20, SO0, Lvodl F=EF,
2m 2m 2 o2 & o 2 P

and making the above substitution resultsin:
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_h2 2
l =T JJ+ 1)h
2m 2nT

or,

2 0o
F+Sk @-rd) - D, F=EF,

-2 2 '

T pedre-rg2r= - MDD, o p

2m g 2NTe2 @

d. Since the above is nothing but a harmonic oscillator differential equation in x

with force constant k and equilibrium bond length T ¢ we know that:

-h2
-he = +%k(r -Te) 2F = eF, hasenergy levels:
2m
e=h\/£§% + %0 1V=01 1’ 2'
me 1%}
So,
2
£+p. 0+ D2 _
Zmez
tells usthat:

. 2
E= Kiﬁ + 1‘0 +M -D.
mé  2e 22

AsJincreases, I' e increases because of the centrifugal force pushing the two atoms apart.

On the other hand k increases which indicates that the molecule finds it more difficult to
stretch against both the centrifugal and Hooke's law (spring) Harmonic forcefield. The

J(J + 1)h2
2Mre?

Harmonic oscillator part h’\/E g@ + %g (which has aforce constant k which increases with J) .
m

total energy level (labeled by Jand v) will equal arigid rotor component plusa

Section 5 Exercises, Problems, and Solutions
Exercises.
1. Time dependent perturbation theory provides an expression for the radiative lifetime of
an excited eectronic state, given by tg:
_ 3hAc3
R— ’
AEi - EDImiP

wherei refersto the excited state, f refers to the lower state, and nj; is the transition dipole.
a. Evaluate the z-component of the transition dipole for the

2pz ® 1strangtion in ahydrogenic atom of nuclear charge Z, given:
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3 2 A
Y1s=i§gz e ,and Ysz:—l %gz r Cosq e 220
\p n2p
Express your answer in units of eag.
b. Use symmetry to demonstrate that the x- and y-components of nj; are zero, i.e.
<2p7ex|1s> =<2pjey|1s> =0.
c. Cdculate theradiative lifetimet g of ahydrogenlike atom in its 2p; state. Use the

2
relation €2 = ﬂ%o to simplify your results.

2. Consider a case in which the complete set of states{f i} for a Hamiltonian is known.

a If the systemisinitialy in the state m at time t=0 when a constant perturbation V
is suddenly turned on, find the probability amplitudes Cy(2)(t) and Cn(3)(t), to second order
in'V, that describe the system being in adifferent state k or the same state m at timet.

b. If the perturbation is turned on adiabatically, what are Ci(A(t) and Cm(2(t)?
Here, consider that theinitia timeistg ® -¥, and the potential isV eht, where the positive

parameter h is allowed to approach zero h® 0 in order to describe the adiabatically (i.e.,
slowly) turned on perturbation.

c. Compare the results of parts a. and b. and explain any differences.

d. Ignorefirst order contributions (assume they vanish) and evaluate the transition

ratesgt |IC(A(t) for the results of part b. by taking the limit h ® 0*, to obtain the
adiabatic results.

3. If asystemisinitially in astate m, conservation of probability requires that the total
probability of transitions out of state m be obtainable from the decrease in the probability of
being in state m. Provethisto the lowest order by using the results of exercise 2, i.e.

show that: [CmP=1- & [CkP.
kim
Problems:

1. Consider an interaction or perturbation which is carried out suddenly (instantaneously,

e.g., within an interval of time Dt which is small compared to the natural period wpm™L
corresponding to the transition from state m to state n), and after that is turned off
adiapaticaly (i.e., extremely slowly asV et). Thetransition probability in this caseis
given as.

| [snivim>P

P2Wnm?2
where V corresponds to the maximum value of the interaction when it isturned on. This
formula alows one to calculate the transition probabilities under the action of sudden
perturbations which are small in absolute value whenever perturbation theory is applicable.
Let's use this "sudden approximation"” to calculate the probability of excitation of an
electron under a sudden change of the charge of the nucleus. Consider the reaction:

3 3
lH® 2He + €,

Tnm
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and assume the tritium atom hasitselectroninitialy inalsorbital. a Calculatethe

transition probability for the transition 1s® 2sfor this reaction using the above formula
for the transition probability.
b. Suppose that at timet = O the system isin a state which corresponds to the

wavefunctionj m, which is an eigenfunction of the operator Hg. At t = 0, the sudden
change of the Hamiltonian occurs (now denoted as H and remains unchanged). Calculate

the same 1s® 2strangition probability asin part a., only this time as the square of the
magnitude of the coefficient, A1s2s using the expansion:

Y (1,0) =j m(r) = & Anmy n(r) , Where Apm = 8] m(r)y n(r)dSr
n

Note, that the eigenfunctions of H arey , with eigenvalues E,. Compare this"exact" value
with that obtained by perturbation theory in part a.

2. The methyl iodide moleculeis studied using microwave (pure rotational) spectroscopy.
The following integral governs the rotational selection rulesfor transitions labeled J, M, K

® J, M’ K"
_en) ] J
1=<o)..[&-F D) >
The dipole moment @1 lies dlong the molecule's C3 symmetry axis. Let the electric field of

thelight ®  define the lab-fixed Z-direction.

a. Using the fact that Cosb = Dlog , show that

= epiay g L 2

b. What restrictions does this result place on DJ = J - J? Explain physically why
the K quantum number can not change.

3. Consider the molecule BO.

a. What are the total number of possible electronic states which can be formed by
combination of ground state B and O atoms?

b. What electron configurations of the molecule are likely to be low in energy?
Consider all reasonable orderings of the molecular orbitals. What are the states
corresponding to these configurations?

¢. What are the bond orders in each of these states?

d. The true ground state of BO is2S. Specify the +/- and u/g symmetries for this
state.

e. Which of the excited states you derived above will radiate to the 2S ground state?
Consider electric dipole, magnetic dipole, and electric quadrupole radiation.

f. Doesionization of the molecule to form a cation lead to a stronger, weaker, or
equivaent bond strength?

0. Assuming that the energies of the molecular orbitals do not change upon
ionization, what are the ground state, the first excited state, and the second excited state of
the positiveion?

h. Considering only these states, predict the structure of the photoel ectron spectrum
you would obtain for ionization of BO.



4.
712 cm ™t
ng (HCN)
n_ (HCN
5 ( )
3317 cm™L
2n,, (HCN)
N [rom AM~

1 1 1 1 L 1 1 1 rl 1 1 1
600 cm "1 800 cm -1 1300 cm't 1500 cm-1 3200 cm-1 3600 cm T

The above figure shows part of the infrared absorption spectrum of HCN gas. The

molecule has a CH stretching vibration, a bending vibration, and a CN stretching vibration.

a. Areany of the vibrations of linear HCN degenerate?
b. To which vibration does the group of peaks between 600

cnrl and 800 cnrl belong?

¢. To which vibration does the group of peaks between 3200 cm-L and 3400 cnrl
belong?

d. What are the symmetries (s, p, d) of the CH stretch, CN stretch, and bending
vibrational motions?

e. Starting with HCN in its 0,0,0 vibrational level, which fundamental transitions
would beinfrared active under parallel polarized light (i.e., z-axis polarization):

i.000 ® 001?
ii. 000 ® 1007

iii. 000 ® 0107
f. Which transitions would be active when perpendicular polarized light is used?

g. Why does the 712 cnrl transition have a Q-branch, whereas that near 3317 cmrl
has only P- and R-branches?

Solutions

Exercises:
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1 a. Evaluate the z-component of ng;:

3 -Zr
N = <2pzer Cogy|1s>, wherey 15= ﬁgz e  andy 20, = 1 e
Vb n2p
Zr
Cosq e 2%

5 3 -Zr -Zr
myj = —— E@ L a@ < cosy 2% fer Cosgle D >

ey 2r 2r
= 0" <r Cosg e2® |er Cogle 0 >
4p\/‘2e80z SQ | Sef
¥ p o AT

-_¢© a,z_o @r2dr68|n dqédj &2 e 220 ¢ 2 g Cos?
4p\/_2e30 q qOJ q

¥
SZr p

é
& a&o Oer4e 28szolr@Sm Cos2qd
4p\/_2 p q qdq

Using integral equation 4 to mtegrate over r and equatl on 17 to integrate over q we obtain:

Ip
op &' _4 a%o Cos%!
4p\/‘2 P s0g aé-’,_ edg !

a;z_o42304 &6 (.1)3 - (1)3
4p\/_2 P a0p 3575 e3ﬂ(( D*-(1)7)
e 28 _exp 28 e
== — == —— =07449 =
\/_2 357 Z \/_235 Z
b. Examine the symmetry of the integrands for <2p,| e x [1s> and <2pj ey |1s>.
Consider reflection in the xy plane:

Function Symmetry
2p; -1
X +1
1s +1
y +1

Under this operation the integrand of <2p,| e x |1s> is(-1)(1)(1) = -1 (it is antisymmetric)
and hence<2pz ex |1s> = 0.
Similarly, under this operation the integrand of <2p,| ey |1s>is
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(-1)(1)(1) =-1 (it isaso antisymmetric) and hence <2pz ey |1s> = 0.

_ 3h4c3
"TAE - E3miR
E = Eap, = -%L 72 ?:2%202
Ef= Ejg=-Z2 g%g
Ei-E = g ‘;—ig Z2

Making the substitutions for E; -
3nic3

t
R
48 &0’ e %7 0 \2355

3h4c3
3 axb § 26 ae23020 216
gac?z €22 o (2)310
_ h4o3 38 q
e8 7428’

Insertinge’—:%z80 we obtain:
_ h4c3 38 a9 meag? _ 383 a° m
T Rp8z498 28 pnaz4
c3 a° m
h4 z4

= 25,6280 &= x
&Z%a

(2.998x1010 cm sec-1)3(0.529177x10-8 cm)S5(9.109x10-28 g)4

= 25.6289

Ef and |mi| in the expression for t g we obtain:

(1.0546x1027 g cm? sec'1)4

= 1.595x10"9 sec x ?el—('j
&%
So, for example:
Atom tr
H 1.595 ns
Het 99.7 ps
Lj+2 19.7 ps
Bet3 6.23 ps
Net9 159 fs
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2. aH=Ho+IH(®), H() = Va(t), Ho k=Eq k Wk =Ex/h

ih‘"—y =Hy
qit
o H .
lety (rt) =ihd G (1) je"™it and insert into the above expression:
j
. 2 A . NI | it . 2 -jwit ' .
ihal % - iwgH e™iY =ind gMe™i (Ho+ 1 H(®)j j
j j
éhé + Ejg - cjE - cjl H'H e'iwjtj i=0

[o]
a
J
a &nd<mj> - il <mH|>H eVit=0
G j
j
i m

e—int - é. ql Hlmj e—IWJt

J
So,

Em=TA Gl Hpy e@imt
ih j
Going back afew equations and multiplying from the left by | k instead of j ,, we obtain:

o L
A §hE<k> - cjl <kH'j>H ¢it=0
j

iny €Wkl = § gl H'yy e™it

J
So,

&= ié Gl H'g g Wikt
Now, let:
cn=cm@+cn®l +cn@1 2+ ...
o=@+l +¢ 2+ ...
and substituting into above we obtain:

O+ E O +&,@124 . = %}5 (6O + ¢ + N2+ ]
j
| H y €10imt

first order:

Em@=0p cn®=1

second order:

o .
ém(l):la GO H' m e iwjm)t
ih
J
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(n+1)st order:
o .
():<m(n) = la q(n-l) H'mj e Wjm)t
ih j
Similarly:
first order:
E@=0b gam©@=0
second order:
° .
(>:<k(1) = ia GO H'y e i (Wjk)t

h .
M

(n+1)st order:
o .
E:(k(n) = ia q(n-l) H'kj e-l(ij)t

ih j
So,
E.0=L ¢ O mewmmt=L
ih ih
cmD(t) :iédt' Vmm _ Vinmt
ih g ih
and similarly,
=1 O, eWmot=L p  aitvmi
ih ih
t
ot -1 Vkm Bdt eiWmk)t :M[ elWmit _ 1]
ih 0 Wi
X 2=LQ 6 Hpy eiOvim)t
ih j
En@= 3§ il’iﬂ[ glWmt _ 1] H'mi e—i(w,-m)t+1met H'om
. ihhwpy in ih
jtm
VR t
cn@ = é imédt' gl Wjm)t [e—i(wmj)t' - 1] _meme gtdt’
ih hwm 0 h2
jtm
t
= a Médt'[l - elWwjm)ty Nm_”ﬂzg
. ih2wm 0 h2
jtm
_ 8 VimVm eimt- 10 MmmP 2
iN2W iwm 8 n2 2

jtm
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a V|me ( |(W]m)t 1) + VJmeJ t- Ime|2 t2

. h2wyi2 o ih2wip 2h2
fmo Jlm :
Similarly,
&= —a g H'y e Wikt
ih j
= a L —J—[ elWmt . 1] He ki gl Wikt +
. i AWy
jtm
L Vmmt L ciwmkgt
ih ih
t
V|ka| Wikt T o (Wmidt'
oA(t) = gdt' e Wikt [ Wmjt _ 1]
. ih? Wmj 0
Jlm
mevkmgtdt el(ka)t
[ 2
_ 2 VimVkj ag i Wmjtwim)t _ 1 ] giWjkyt _ 10
N2 -IWmk -iwk @
h2 & &iwmk  -(iwmk)?e00
: é,ijij sl (Wmk)t _ 1 ) e Wikt - 16
2w Wmk Wk @
jrm
+ YromVim g iwmigral - 1 g
hZka e él kaﬂD
_ 2 VimVij giWmkt - 1 glWjkt 10
“ A B -E € En- Bk E-Ex o
jtm
+ VimmVkm |(wmk)t3é — 0+ Lu
h(Em - Ek) e ¢ wmko wmkl

So, the overall amplitudes ¢y, and cy, to second order are:
Cn(t) =1+ Vimmt é. VimVmj t+
ih tm in(Em - Ej)

é V|me (e AWjm)t _ 1) - Ime|2 t2
hz(Em E])2 2h2

jl
o(t) = (Em E)[e'(ka)t 1] +
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meVkm [1 e |(ka)t] meVkm t -i(ka)t +

(Em - Ek)? TEm- B0y hi
é. VimVj grivmigt - 1 giWjk)t 10
Em- E; & Em- Ex E-Ex o
jtm

b. The perturbation equations still hold:

%@)1aqmnH -Wmﬁ-w>_aqmnHkyMw

|I’1J |‘r‘1J

S0, cm(® =1and (® =0

ém(l):_l H'mm

ih
t ot
@=L v Bt ent = Ymme
in oy inh
Ew=L g, eitvmiot
ih
t
OK(l)Zl Vim Bt e1Wmk+h)t' = Vikm [ elWmkthyf)
ih Y in(-iwmkth)
— Vim [ e—i(wmk+h)t]
Em - Ex + ihh
ém(Z): é'l ij e—i(wmj+h)t ij eht e—i(wjm)t+
ihEp - Ej + ihh
Im
t
1Vmm € e
ih ihh
t ) t
o= &LV ey Nomf ey
ihEm - Ei + ihh h<h
jl m m J '¥ -¥
= é" ijij : Ime| e2ht
in2h(Em - Ej + |hh) 2h2h?
Im
ék(z) = é 'l Vim e'i(ij+h)t H'kj e—i(ij)t +
 ihEm- Ej+ ihh
Jtm
1 Vmm et

Hlkm e—I(ka)t
ih ihh
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t
CE éli VimVkj BeiWmict2hyt gpr
iNEm - Ej + ihh _y

jtm
t
VmmVkm ée-i(wmk+2h)t'dt.
h2h ¥
- VjmVig e Wmk*+2hjt VimVim € (Wmk*2n)t
i m(Em - Ej + ihh)(Em - Ex + 2ihh) ihh(Em - Ex + 2ihh)
Therefore, to second order:
an( =1+ Y00, 8 S et
ihh j in2h(Em - Ej + ihh)
(t) = &[ gl (Wmk+hy]
in(-iwmk+h)

c. In part a. the c(2(t) grow linearly with time (for Vmm = 0) whilein part b. they
remain finitefor h > 0. Theresult in part a. is due to the sudden turning on of the field.

: el +2hyt T
V] ka] e iWmk ) I 2

o
d. lek®P=Ta - —
: j (Em- Ej+ ihh)(Em - Ex + 2ihh)!
ij’ (Em-E+ihh)(Em-Ej-ihh)(Em-Ex+2ihh)(Em-Ex-2ihh)
é Vi Vkj'VimVjm e4ht
i [(EnrE)(Em-Ep)+inh(E-Ey)+h2h (En-Ex)2+4n2h2)
4h ViV VimVim
[(Em-Ej)(Em-Ej)+ihh(Ej-Ej")+h?h2] (Em-Ex)?+4h2h?)
Now, look at thellmlt ash® 0*:
d
G |x(DP* 0Owhen Em = B
lim 4h
h® 0" (g, -Ex)2+4n2n2)
So, the final result isthe 2"d order golden rule expression:

2 o VimVii i2
90P 2 dEmBy i, 18—
t; (§- Em-ihh)y

t|q<(t)|2 a
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3. For the sudden perturbation case:

GO =1+ &' —AmVm_ [ itiimt 1 4 @it - 1] +O(V3)
j (Em - EJ)2
lcnB =1+ é' _VJ'm_VmJ'_[e'i(ij)t + elWjimt _ 2] + O(V3)
j (Em - Ej)2
()R = M[ eiWmikgt - elwWmigt 1+ 2] 4 O(V3)
(Em - Ek)2
1- &' laR=1-34 'M[ elWmik)t - elWmigt 1+ 2] 4+ O(v3)
ki m k (Em - Ek)2
a2 &0 VikmVmk o iwmit . aiWmiot
=1+ Q' —KMIMK [ giwmkt 4 elWmi)t - 2] + O(v3)
k (Em - Ek)2
\ toorder V2, [cm(HR=1- & " Jac(t)R, with no assumptions made regarding Vmm.
k

For the adiabatic perturbation case:

e ; .e2ht : . ~2ht U
m®R=1+ Q's VimVmi€ — + - VimVmi€ — +O(V3)
i méthh(Em - Ej + ihh) -ih2h(Em - Ej - |hh)(J

_ 14 601' 1 g 1 ] 1 Bijijeth+O(V3)
i mihZhé(Em-Ej+ihh) (Em-g-ihh)g
o e 9 u

—1+ 3" 1° 2ihh G VimVimeht + O(v3)

) €
o  itehelEnrE))2+h%n%g

€ VimVmie2ht U
SERP-A LT Gl PG
o(EnE)2+h?h7g

jrm

()P = —kmVmk__ g2ht . 3
(Em-Ei)2+h2h2

\ toorder V2, [cm(HR=1- & " Jac(t)R, with no assumptions made regarding Vm for this

k
case aswell.
Problems:
< >[2
1. a. Tnm » M
h2Wnm?2

evaluating <1s|V|2s> (using only the radial portions of the 1s and 2s wavefunctions since
the spherical harmonics will integrate to unity) where V = (e2,r):
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3 -Zr -Zr
_ 0D aollaéoz Zro?oz
< =%
1sV|2s> 02é6() " 3 eon g?t 200 r2dr
2 288 -32r a2 22
<1gV|2s> = 0 229 gr - 2 & 220 gr
gV|2s> = \/‘eao 68 re dr 8 80 drrJ
Using integral equation 4 for thetwo mtegratl ons we obtain:
_2&ZsPe 1 aZp
<1lgV|2s> =
sV V2 &0g Aaé 92302’3&
eezaora e280ﬂu

2 Z5> % a2

< = e—
1sVies> \[2 €08 &3272 3872
3 A 22-~2 - 9233-20
<1gv|2s> = 2 O _8(3)2 - 2% i =2~
V2609 & 3372 0 V227
Now,
722 722 722 372¢2

n_-n22a) ,Els—'ﬁ 1E28_ 880 EZS Els 880

So,
8z

s
_&f22Tagp 26722652 211

Tom = = =
"M sz22  (93a?zé 3822
€809

=0.312 (for 2 =1)

L 3 -Zr
i =i = (0% a
b. jm() =] 1s Zéaoz eV Yoo

The orthogonality of the spherical harmonics results in only s-states having non-zero values
for Anm. We can then drop the Y g (integrating thisterm will only result in unity) in
determining the value of A1s2s.

3 -Zr
1l LDy . 216 200
\2 &g & 2200 ©
Remember forj 15Z = 1 and foryZSZ 2

-Zr -(Z+1)r

1 a.Z_oz Z+Drs ;"2
A = ~26&?.02 E et ig an 2
nm V280 @ & " o redr

yn(r)=y2s=

A 2 aLl % T (Z+1)
= — 02 + 62, 2&) - :0 2
am \/2620 ﬂé30ﬂ8 © ? ES ﬂrdr
5 3 1 36 -(3Z+1)r 6(Z+1)r3 -(3Z+Dr
_ 2 EDETLDR 2 290 _ 9z )re EY a
Anm V00 & ggSr e dr - 5 5 e dr(J

Evaluating these integrals using integral equation 4 we obtain:



3 3
_ 2 @A Re 2 &tly (3 g

M= 28%p & 2 g §a§z+1o e220p 37+1M
ee 20 g @20 g H
3
Anm = _6Ez‘0232+102 Q 2o - (2+1) —— (3)24803u
\/_2@8017j e g e(32+1)3 (3Z+1)4u

3
A = _aéoZaZ“LloZ € -25393 U
M= \/2¢%00 ¢ @ o 9(32+1)4ﬁ

3
3 2
A = -2 [25Z(z+1)]
(3Z+1)4
The transition probability is the square of this amplitude:
2
® ey
= 1173 3
Tom = @2 LA D70 2UZHZA)E _ (o (o 7 = 1),

(3Z+1)% o (32+1)8
The difference in these two results (parts a. and b.) will become negligible at large values
of Z when the perturbation becomes less significant asin the case of Z = 1.

2. ® isalong  (1ab fixed), and T isalong z (the C-| molecule fixed bond). Theangle
between Z and zish:

% @1 = enCosb = eanE) (abg)
So,

1=<o).. (@ -Fp ®-fhD? . sinbdbdgda

OMK

= errBDM,K,DOO DMK Sinbdbdgda.
Now use:
o) .
J* 1 N AT sk NS T 11 A *
Dy Do = QA <IM'10[jm> D'mn<jn|J K'10>*,
jmn
to obtain:
= em@ <JIM'10[jm>*<jn|JK'10> *§ D D) Sinbdbdgda.
jmn
Now use:
St ) o _8p%
8D Dy Sinbdbdgda = 57 djdmmdicn,
to obtain:
8p2 o o .
| = ey a <JM'10|jm>"<jn|J'K"'10> "djdmmdkn
jmn
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2
= emg%l <IM'10[IM><JIK |J'K'10>.
We use:
K = §)@-1+K) 2 1 g
<IK|IK'10> = \2FF1(-i)( )g‘OKB
and,
vk = §)@-1+M)ged 1 g

<M 10JIM> = \/2F1(-i)( &l sV

to give:

2 . .
| = arig%\/Zﬁl(-i)(J'-l+M)§;ll, SO VRFIH)EO @ o g
= errng(_i)(J‘-1+M+J'-l+K)§/~|]: é i/l 8&1 é i o

- J1J 145
= engp2(-)MHOE B 0B
The 3-Jsymbolsvanish unless: K'+ 0 =K and M' + 0 = M.
So,

| = en8p2(-i)(M+K)$T' g “JA 8§ g [3 8 chimdic.
b. @13,&,8 andglgig vanishunlessJ =J+1,J J-1

\ DJ=%1,0
The K quantum number can not change because the dipole moment lies along the
molecule's C3 axis and the light's electric field thus can exert no torque that twists the
molecule about this axis. Asaresult, the light can not induce transitions that excite the
molecul€e's spinning motion about this axis.

3. a. B atom: 122s22p?, 2P ground state L = 1, S= % , gives a degeneracy
((2L+1)(2S+1)) of 6.

O atom: 1s22s22p4, 3P ground state L = 1, S= 1, gives a degeneracy
((2L+1)(2S+1)) of 9.
The total number of states formed is then (6)(9) = 54.

b. We need only consider the p orbitalsto find the low lying molecular states:

6s
4 N
‘s N
‘s N
7 N
/,/' \\\
1 ¢$/ 2p T ” i |
- 1
~ 2
2p N 2p
AN
. 1p .-
N -
~—
5s

Which, in redity look like this:
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Thisisthe correct ordering to give a2S+ ground state. The only low-lying electron
configurations are 1p35s2 or 1p45s1. Theselead to2P and 2S™* states, respectively.

c. The bond ordersin both states are 2% )

d. The 2S is + and g/u cannot be specified since this is a heteronuclear molecule.

e. Only one excited state, the 2P, is spin-allowed to radiate to the 2S*. Consider

symmetries of transition moment operators that arise in the E1, E2 and M1 contributionsto
the transition rate

Electric dipolealowed: z® S*, x,y ® P,\ the2P ® 2S* isdectric dipole alowed viaa
perpendicular band.

Magnetic dipolealowed: R, ® S-,Rxy ® P,\ the2P ® 2S* ismagnetic dipole
allowed.

Electric quadrupole allowed: x2+y2, z2® S*, xy,yz® P,x2-y2, xy ® D\ the?P ®
2S5+ iselectric quadrupole allowed as well.

f. Since ionization will remove a bonding el ectron, the BO* bond is weaker than the
BO bond.

g. The ground state BO* is 1S* corresponding to a 1p4 electron configuration. An
electron configuration of 1p3 5s1 leadsto a3P and alP state. The3P will belower in
energy. A 1p2 5s2 configuration will lead to higher lying states of 3S-, 1D, and 1S+,

h. There should be 3 bands corresponding to formation of BO* in the1S+, 3P, and

1p states. Since each of these involves removing a bonding electron, the Franck-Conden
integrals will be appreciable for several vibrational levels, and thus a vibrational
progression should be observed.

4, a. The bending (p) vibration is degenerate.
b. H---C°N
Y
bending fundamental
c. H---C°N
Y
stretching fundamental
d. CH stretch (nzinfigure) iss, CN stretchis s, and HCN (n2 in figure) bend is
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e. Under z (s) light the CN stretch and the CH stretch can be excited, sincey g = s,
y1 =S and z =s provides coupling.

f. Under x,y (p) light the HCN bend can be excited, sinceypg=s, y1=p and X,y
= p provides coupling.

g. The bending vibration is active under (x,y) perpendicular polarized light. DJ =
0, +1 arethe selection rulesfor ~ transitions. The CH stretching vibration is active under
(2) || polarized light. DJ= %1 are the selection rulesfor || transitions.

Section 6 Exercises, Problems, and Solutions

Review Exercises:

1. Contrast Slater type orbitals (STOs) with Gaussian type orbitals (GTOs).

Exercises:

1. By expanding the molecular orbitals{f x} aslinear combinations of atomic orbitals

{cn, .
fk: aCm(Cm

m

show how the canonical Hartree-Fock (HF) equations:
Ffi=gfj

reduce to the matrix eigenvalue-type equation of the form given in the text:
[¢] [e]
a FmCni = &g SmCni

n n
where:
Frm = <cnjh|cn> + é_ §gdk<cmcd|g|cnck> - gdkex<cmcd|g|ckcn>§,
dk
Sm =<¢,c,>, % = & CaiCxi ,
i=occ

and 9, &= écdicki :

. occ and
same spin

Note that the sum over i in 9, and 9, & isasum over spin orbitals. In addition, show
that this Fock matrix can be further reduced for the closed shell caseto:

> u
Frm = <Crflhlcn> + é. Pdk§<cmcdlglcnck> - % <Cmcd|glckcn>8 )
dk
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where the charge bond order matrix, P, is defined to be:
Pak = & 2CaiCxi

i=occ
where the sum over i hereisasum over orbitals not spin orbitals.

2. Show that the HF total energy for a closed-shell system may be written in terms of
integrals over the orthonormal HF orbitals as:

occ occ
E(SCR =2a <fuhfi> +a [2<klfgkl> - <kljglk>] +
K Kl
o Znén
a R,
nen

3. Show that the HF total energy may alternatively be expressed as:

O8C . o ZnZ
ESCh=a &+ <fuhf>g+ a 7,
k nmen

where the e, refer to the HF orbital energies.

Problems:

1. This problem will be concerned with carrying out an SCF calculation for the HeH*

moleculeinthe 1Sg*(1s 2) ground state. The one- and two-€lectron integrals (in atomic
units) needed to carry out this SCF calculation at R = 1.4 a.u. using Slater type orbitals
with orbital exponents of 1.6875 and 1.0 for the He and H, respectively are:

S11=1.0, Sy = 1.0, S12 =0.5784,
h11 =-2.6442,hoo = -1.7201,h12 = -1.5113,

01111 = 1.0547, 01121 = 0.4744, O1212 = 0.5664,
02211 = 0.2469, 02221 = 0.3504, 02222 = 0.6250,

where 1 refersto 1gqeand 2 to 1s4. Note that the two-€electron integrals are given in Dirac
notation. Partsa. - d. should be done by hand. Any subsequent parts can make use of the
QMIC software provided.

a. Using f 1 » 1syefor theinitia guess of the occupied molecular orbital, form a
2x2 Fock matrix. Use the equation derived abovein question 1 for Fpm.
b. Solve the Fock matrix elgenvalue equations given above to obtain the orbital

energies and an improved occupied molecular orbital. In so doing, note that <f 4f 1> =1=

C1TSC1 gives the needed normalization condition for the expansion coefficients of thef 1 in
the atomic orbital basis.

c. Determine the total SCF energy using the result of exercise 3 above at this step of
the iterative procedure. When will this energy agree with that obtained by using the
alternative expression for E(SCF) given in exercise 2?

d. Obtain the new molecular orbital, f 1, from the solution of the matrix eigenvalue
problem (part b).



e. A new Fock matrix and related total energy can be obtained with thisimproved

choice of molecular orbital, f 1. This process can be continued until a convergence criterion
has been satisfied. Typical convergence criteriainclude: no significant change in the
molecular orbitals or the total energy (or both) from one iteration to the next. Perform this

iterative procedure for the HeH* system until the differencein total energy between two

successive iterationsis less than 105 a.u.

f. Show, by comparing the difference between the SCF total energy at one iteration
and the converged SCF total energy, that the convergence of the above SCF approach is
primarily linear (or first order).

0. Isthe SCF total energy calculated at each iteration of the above SCF procedure
(viaexercise 3) an upper bound to the exact ground-state total energy?

h. Using the converged self-consistent set of molecular orbitals, f 1 and f 5,
calculate the one- and two-€electron integrals in the molecular orbital basis. Using the

equations for E(SCF) in exercises 2 and 3 calculate the converged values of the orbital
energies making use of these integrals in the mo basis.

i. Does this SCF wavefunction giverise (at R® ¥ ) to proper dissociation products?

2. This problem will continue to address the same HeH* molecular system as above,
extending the analysisto include "correlation effects.” We will use the one- and two-

electron integrals (same geometry) in the converged (to 10-> au) SCF molecular orbital
basis which we would have obtained after 7 iterations above. The converged mos you
would have obtained in problem 1 are:

¢ -0.89997792 ¢ 0.83233180

f1=2¢ fo=g

1=¢ a 2=¢ v
& -0.15843012 U & 1.21558030 U

a. Carry out atwo configuration CI calculation using the 1s2 and 2s2
configurations first by obtaining an expression for the CI matrix elements Hijj (i,j = 1s2

2s2) in terms of one- and two-€lectron integrals, and secondly by showing that the
resultant Cl matrix is (ignoring the nuclear repulsion term):

é'4'2720 0.1261 0

g 0.1261 -2.0149 H
b. Obtain the two CI energies and eigenvectors for the matrix found in part a.
c. Show that the lowest energy Cl wavefunction is equivalent to the following two-
determinant (single configuration) wavefunction:

1 & el 15 et Loi taed 1ot L oiu
S&eff1 + b*fppneeff - bfodoi + ieff1 - b poaeeff + b2f2dbid
1 1

involving the polarized orbitals: aa fi1£ bE fo, wherea=0.9984 and b = 0.0556.
d. Expand the CI list to 3 configurations by adding the 1s2s to the original 1s2 and

2s2 configurations of part aabove. First, express the proper singlet spin-coupled 1s2s
configuration as a combination of Slater determinants and then compute al elements of this
3x3 matrix.

e. Obtain all eigenenergies and corresponding normalized eigenvectors for this CI
problem.
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f. Determine the excitation energies and transition moments for HeH* using the full
Cl result of part e above. The nonvanishing matrix elements of the dipole operator r(X,y,z)
inthe atomic basis are:

<1sH[z[LsHe> = 0.2854 and <1sH|z[lsy> = 1.4.
First determine the matrix elements of r in the SCF orbital basis then determine the
excitation energies and transition moments from the ground state to the two excited singlet

states of HeH*.
g. Now turning to perturbation theory, carry out a RSPT calculation of the first-

order wavefunction 152> for the case in which the zeroth-order wavefunction is taken
to be the 1s2 Slater determinant. Show that the first-order wavefunction is given by:

|1s2>0 = -0.0442[252>.

h. Why does the |1s 2s > configuration not enter into the first-order wavefunction?

i. Normalize the resultant wavefunction that contains zeroth- plusfirst-order parts
and compare it to the wavefunction obtained in the two-configuration CI study of part b.

j. Show that the second-order RSPT correlation energy, E, of HeH* is-0.0056
au. How does this compare with the correlation energy obtained from the two-
configuration CI study of part b?

3. Using the QMIC programs, calculate the SCF energy of HeH* using the same geometry
asin problem 1 and the STO3G basis set provided in the QMIC basis set library. How
does this energy compare to that found in problem 1? Run the calculation again with the 3-
21G basis basis provided. How does this energy compare to the STO3G and the energy
found using STOs in problem 1?

4. Generate SCF potential energy surfaces for HeH* and Ho using the QM IC software
provided. Usethe 3-21G basis set and generate points for geometriesof R = 1.0, 1.2,
14,1.6,1.8, 2.0, 2.5, and 10.0. Plot the energies vs. geometry for each system. Which
system dissociates properly?

5. Generate Cl potential energy surfaces for the 4 states of Ha resulting from a CAS

calculation with 2 electronsin the lowest 2 SCF orbitals (1sg and 1s). Usethe same
geometries and basis set asin problem 4. Plot the energies vs. geometry for each system.

Properly label and characterize each of the states (e.g., repulsive, dissociate properly, etc.).

Solutions

Review Exercises:

1. Slater type orbitals (STOs) are "hydrogen-like" in that they have anormalized form of:
oy 1 1 P> ole)
RzZOS 1 & -1 e
Y - [
whereas gaussian type orbitals GTOs have the form:

-ar2
N rl e( a) Yim(.f),
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although in most quantum chemistry computer programs they are specified in so-called
"cartesan” form as:

(-ar?)
N' x&ybzCe ,
where a, b, and ¢ are guantum numbers each ranging from zero upward in unit steps.
So, STOs give "better” overall energies and properties that depend on the shape of the
wavefunction near the nuclei (e.g., Fermi contact ESR hyperfine constants) but they are
more difficult to use (two-electron integrals are more difficult to evaluate; especially the 4-
center variety which have to be integrated numerically). GTOs on the other hand are easier
to use (more easily integrable) but improperly describe the wavefunction near the nuclear
centers because of the so-called cusp condition (they have zero Slope at R = 0, whereas 1s
STOs have non-zero slopes there).

Exercises.
1 Ffi=gfj=hfi+a [J- Kj fi

J
L et the closed shell Fock potentia be written as:
Vij = é (2<ikfjk> - <ik|kj>y , and the 1e- component as:
k

hij:< fi|'%N2-6°l ﬁ If; > , and the delta as:
A

dij = <i> ,sothat: hjj + Vjj = dije.
[} [} [}
using: fi=aA CiCryy » fj= A CpiCn »and fy = a CykCgq » and transforming from themo to ao

m n g
basis we obtain:

vi= & CriCqkCrjCk@<ink> - <ngkn>{
krmonk
= & (CuC)(CriCrp@<nuink> - <ngkn>§
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dj = <il> =@ (CriSunCh)) -
mm
So, hijj + Vijj = dijg becomes:

a (CriCnj) hom + a (CriCnj) Vmm = a (CriSmCn)) § -
m m m
& (CiSmCn) & -8 (CiCr) hm-& (CyCpp) Vim =0for all i
m m m
a Crif§Smm - him - VimfCpyj =0foral i
m
Therefore,
a gm + Vim - §S,, - HCp =0
n

Thisis FC = SCE.

2. The Slater Condon rule for zero (spin orbital) difference with N electronsin N spin
orbitasis:

N N
E=<|H + G|> =& <fjnfi> + & &fifjlgfifj> - <fifjloff jfi>§
i I>]

=ahi +a (gijij - giji)
i 1>}

1,
=ahi +5& (Giij - ijji)
[
If all orbitals are doubly occupied and we carry out the spin integration we obtain:
occ occ
E=2ahi + & (29 - Gijji) »
[
wherei and j now refer to orbitals (not spin-orbitals).

3. If the occupied orbitals obey Ff k = exf k , then the expression for E in problem 2 above
can be rewritten as.

oce
o OCC f5) OCC

E=aA (?ii + & (20iij - Gijjiy+ + & hi
i € J g

We recognize the closed shell Fock operator expression and rewrite this as:
occ occ oce
E=gFi + ghi = a(e + hj)
[ [ i

Problems:



1. We will use the QMIC software to do this problem. Letsjust start from the beginning.

Get the starting "guess' mo coefficients on disk. Using the program MOCOEFS it asks us

for thefirst and second mo vectors. Weinput 1, O for the first mo (this means that the first

mo is 1.0 times the He 1s orbital plus 0.0 timesthe H 1sorbital; this bonding mo is more

likely to be heavily weighted on the atom having the higher nuclear charge) and O, 1 for the
5 1.0 00
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second. Our beginning mo-ao array looks like: 8 g andisplaced ondisk in afilewe

€00 1040

choose to call "mocoefs.dat”. We also put the ao integrals on disk using the program
RW_INTS. It asksfor the unique one- and two- electron integrals and places a canonical
list of these on disk in afile we chooseto call "ao_integrals.dat”. At thispointitis useful
for usto step back and look at the set of equations which we wish to solve: FC = SCE.
The QMIC software does not provide us with a so-called generalized eigenvalue solver
(one that contains an overlap matrix; or metric), so in order to use the diagonalization
program that is provided we must transform this equation (FC = SCE) to one that looks
like (FC' = CE). We do that in the following manner:

1 141 1
Since Sis symmetric and positive definitewe canfindan S2 suchthat S2S 2 =1,S2S

4

=S 2 etc.
rewrite FC = SCE by inserting unity between FC and multiplying the whole equation on
1
theleftby S2. Thisgives:
1 01,1 1 1

= — = = +=
S2FS2S 2C=S2SCE=S 2CE.
11
L etting: F=S2FS?
41
C' =S 2C, and inserting these expressions above give:
FC' =CE
Note, that to get the next iterations mo coefficients we must calculate C from C:
1 1
+_ —
C' =S 2C, so, multiplying through on the left by S 2 gives:
1 1,1

S2¢C'=S252C=C
Thiswill be the method we will use to solve our fock equations.
1

Find S-E by using the program FUNCT_MAT (this program generates a function of a
matrix). This program will ask for the elements of the S array and write to disk afile
1

(name of your choice ... agood name might be "shalf") containing the S 2 array. Now we
are ready to begin the iterative Fock procedure.

a. Calculate the Fock matrix, F, using program FOCK which reads in the mo
coefficients from "mocoefs.dat” and the integrals from "ao_integrals.dat" and writes the
resulting Fock matrix to a user specified file (a good filename to use might be something
like "fock1").

11 1

b. Calculate F = S-E FS_E using the program UTMATU which readsin F and S_E
from files on the disk and writes F' to a user specified file (a good filename to use might be
something like "fock1p"). Diagonalize F' using the program DIAG. This program reads
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in the matrix to be diagonalized from a user specified filename and writes the resulting

eigenvectorsto disk using auser specified filename (a good filename to use might be

something like "coef1p™). Y ou may wish to choose the option to write the eigenvalues

(Fock orbital energies) to disk in order to use them at alater timein program FENERGY .
1

Calculate C by back transforming e.g. C =S 2 C'. Thisisaccomplished by using the
program MATXMAT which readsin two matrices to be multiplied from user specified files
and writes the product to disk using a user specified filename (a good filename to use might
be something like "mocoefs.dat").

c. The QMIC program FENERGY calculates the total energy, using the result of
exercises2 and 3;

a 2<Kk|hlk> + 2<kl|kl> - <kl |Ik> + é Z”z” and
Kl men

& act<khlo+ & T

k m

nen
Thisisthe conclusion of one iteration of the Fock procedure ... you may continue by going
back to part a. and proceeding onward.
d. and e. Results for the successful convergence of this system using the supplied
QMIC softwareisasfollows (thisis alot of bloody detail but will give the user assurance
that they are on the right track; alternatively one could switch to the QMIC program SCF
and allow that program to iteratively converge the Fock equations):

Q -2.644200 -1.511300
e -1.511300 -1.720100 u

[t el enid

The one-electron AO integrals:

The two-electron AO integrals:
1111 1054700

2111 0.4744000
2121 0.5664000
2211 0.2469000
2221 0.3504000
2 222 0.6250000
¢ 1.000000 0.000000 |,
The"initid" MO-AO coefficients: & u
€ 0.000000 1.000000 u
¢ 1.000000 0.578400 |,
AO overlap matrix (S): e 1]
€ 0.578400 1.000000 U
1 ~ 1.168032 -0.3720709
S g i
€ -0.3720709 1.168031 u

kkhkkkkkkkkkhkhkhkx

ITERATION 1

kkhkkkkkkkkkhkhkhkx
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é 1.000000 0.0000000

The charge bond order matrix: e 1]
€ 0.0000000 0.0000000 u

5 -1.589500 -1.036900

The Fock matrix (F): é H
€ -1.036900 -0.8342001 u

1 1 ¢ -1.382781 -0.5048679
S2FS?2 & ¥
& -0.5048678 -0.4568883 U

The eigenvalues of this matrix (Fock orbital energies) are:
[ -1.604825 -0.2348450 ]

1
Thelr corresponding eigenvectors (C' = Sz * C) are:

5 -0.9153809 -0.4025888 |,

e -0.4025888 0.9153810 H

D:DxD

1
The "new" MO-AO coefficients(C=S 2 * C):
é -0.9194022 -0.8108231
é
€ -0.1296498 1.218985

The one-electron MO integrals:

é -2.624352 -0.1644336

e
€ -0.1644336 -1.306845
The two-electron MO integrals:

1111 09779331
2111 01924623
2121 05972075
2211 01170838
2 2 21 -0.0007945194
2222 06157323

The closed shell Fock energy from formula:

A 2<kjhlk> + 2<KI[kI> - <kI[Ilk> + Q Zgr‘rzn” = -2.84219933

ki m>n

from formula:
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A act+<khk>+ A& ZR—”r‘rZr:‘ - -2.80060530
k men
the differenceis: -0.04159403
*kkkkhkkhkkhkkkkhkkkk
ITERATION 2

kkhkkkkkkkkk khkhkx

X

¢ 0.8453005 0.1192003 0
e
€ 0.1192003 0.01680906 H

The charge bond order matrix:

5 -1.624673 -1.083623 Q

The Fock matrix: 8 1]
€-1.083623 -0.8772071 U

¢-1.396111 -0.5411037 0
e
€ -0.5411037 -0.4798213 H

N
.
NI~

S2FS

The eigenvalues of this matrix (Fock orbital energies) are:
[ -1.646972 -0.2289599 ]

1

Their corresponding eigenvectors (C' = Sz * C) are:
g -0.9072427 -0.4206074 |,

e 1]
€ -0.4206074 0.9072427 U

1
The"new" MO-AO coefficients(C=S 2 * C):

é -0.9031923 -0.8288413 0
g’ -0.1537240 1.216184 H

The one-electron MO integrals:

é -2.617336 -0.1903475 0

g‘ -0.1903475 -1.313861 H

The two-electron MO integrals:
1111 09626070

2111 0.1949828
2121 0.6048143



2211 0.1246907

2221 0.003694540

2222 0.6158437

The closed shell Fock energy from formula:

Znén

Rm

& 2<klhjk> + 2<KI[KI> - <kI[Ik> + § -2.84349298

ki me>n

from formula:

Znén
Rm

a ec+<khk>+ = -2.83573675

k nen

the differenceis: -0.00775623

kkhkkkkkkkkkhkhkkx

ITERATION 3

kkhkkkkkkkkkhkhkkx

¢ 0.8157563 0.1388423

e
€ 0.1388423 0.02363107 H

The charge bond order matrix:
5 -1.631153 -1.091825 0

The Fock matrix: % g
€-1.091825 -0.8853514 U

¢ -1.398951 -0.5470731 )
&
€ -0.5470730 -0.4847007 0

N
.
NI~

S2FS

The eigenvalues of this matrix (Fock orbital energies) are:

[ -1.654745 -0.2289078 ]

1
Their corresponding eigenvectors (C' = Sz * C) are:

¢ -0.9058709 -0.4235546 |,
e 1]
€ -0.4235545 0.9058706 U

1
The"new" MO-AO coefficients(C=S 2 * C):

5 -0.9004935 -0.8317733 0
¢ -0.1576767 1.215678 H

D:DxD

The one-electron MO integrals:
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é -2.616086 -0.1945811

€
€ -0.1945811 -1.315112
The two-electron MO integrals:

1111 09600707
2111 0.1953255
2121 0.6060572
2211 01259332
2221 0.004475587
2222 06158972

The closed shell Fock energy from formula:
Zln

é 2<k|h]k> + 2<kl|kI> - <kl|Ik> + é R = -2.84353018
ki nen
from formula:
a ea+<khk>+ & ZR”fn” = -2.84225041
k nen
the differenceis: -0.00127077
*kkkkhkkhkkhkkkkhkkk
ITERATION 4

kkhkkkkkkkkkhkhkkx

¢ 0.8108885 0.1419869 |
U

The charge bond order matrix: e
€ 0.1419869 0.02486194 U
5 -1.632213 -1.093155 0

The Fock matrix: % g
€ -1.093155 -0.8866909 U

P ¢ -1.309426 -0.5480287
S2FS2 é g
€ -0.5480287 -0.4855191 u

The eigenvalues of this matrix (Fock orbital energies) are:
[ -1.656015 -0.2289308 ]

1
Their corresponding eigenvectors (C' = Sz * C) are:



é -0.9056494 -0.4240271 ;

e
€ -0.4240271 0.9056495

o

1
The"new" MO-AO coefficients(C=S 2 * C):

5 -0.9000589 -0.8322428

¢ -0.1583111 1.215595 H

MD:DxD

The one-electron MO integras.

5 -2.615881 -0.1952594 0
u

e -0.1952594 -1.315315 u

MD:DxD

Thetwo-electron MO integras.

1111 0959615
2111 0.1953781
2121 0.6062557
2211 01261321
2221 0.004601604
2 22 2 0.6159065

The closed shell Fock energy from formula:

a  2<klhk> + 2<KI|kI> - <kl|lk> + & ZR—”r‘rZ;‘ = -2.84352922
Kl men
from formula
a ac+<khk>+ & ZR”fn” = -2.84332418
k men
the differenceis: -0.00020504
ITERATION 5
¢ 0.8101060 0.1424893
The charge bond order matrix: e u
€ 0.1424893 0.02506241 U

5 -1.632385 -1.093368

The Fock matrix: e
€ -1.093368 -0.8869066

YTNC/

u
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1 1 ¢ -1.399504 -0.5481812 0
S2FS2 e q
€ -0.5481813 -0.4856516 u

The eigenvalues of this matrix (Fock orbital energies) are:
[ -1.656219 -0.2289360 ]

1
Thelr corresponding eigenvectors (C' = STz * C) are:

5 -0.9056138 -0.4241026 0

e -0.4241028 0.9056141 H

D:DxD

1

The"new" MO-AO coefficients(C=S 2 * C):
é -0.8999892 -0.8323179

e 1]
€ -0.1584127 1.215582 U

The one-electron MO integrals:

¢ -2.615847 -0.1953674

e
€ -0.1953674 -1.315348
The two-electron MO integrals:

1111 09595956
2111 0.1953862
2121 0.6062872
2211 01261639
2221 0.004621811
2222 06159078

The closed shell Fock energy from formula:

Z
a 2<klhlk>+2<kikI> - <kl[lk>+ Fg*fn” = -2.84352779
ki men
from formula:
A act+<khk>+ A& ZR—”r‘rZr:‘ - -2.84349489
k men
the differenceis: -0.00003290

kkhkkkkkkkkkhkhkhkx

ITERATION 6
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kkkkkkkkkhkkkk*k

é 0.8099805 0.1425698

The charge bond order matrix: e u
€ 0.1425698 0.02509460 U
¢ -1.632412 -1.093402 |
The Fock matrix: e g
€-1.093402 -0.8869413 U
1 1 ¢ -1.399517 -0.5482056
S2FSz2 e 1]
€ -0.5482056 -0.4856730 U
The eigenvalues of this matrix (Fock orbital energies) are:
[ -1.656253 -0.2289375 ]
AL
Their corresponding eigenvectors (C'=S 2 * C) are:
¢ -0.9056085 -0.4241144
e
€ -0.4241144 0.9056086 H
1
The "new" MO-AOQ coefficients(C=S 2 * C'):
¢ -0.8999786 -0.8323296 |,
e u
€ -0.1584283 1.215580 u
The one-electron MO integrals:
¢ -2.615843 -0.1953846
e 1]
€ -0.1953846 -1.315353 U
The two-electron MO integrals:
1111 0.9595859
2111 01953878
2121 0.6062925
2211 01261690
2221 0.004625196
2222 0.6159083
The closed shell Fock energy from formula:
0 o ZnZn _
a 2<klhk> + 2<kl|kI> - <kl|lk>+ a Rm -2.84352827

ki m>n
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from formula:

A act+<khk>+ A& ZR—”r‘rZr:‘ - -2.84352398
k men
the differenceis: -0.00000429
*kkkkhkkhkkhkkkkhkkkk
ITERATION 7

kkhkkkkkkkkk khkhkx

¢ 0.8099616 0.1425821 0

e
€ 0.1425821 0.02509952 H

The charge bond order matrix:
5 -1.632416 -1.093407 0

The Fock matrix: 8 1]
€ -1.093407 -0.8869464 U

¢ -1.399519 -0.5482093 0
e
€ -0.5482092 -0.4856761 H

N
.
NI~

S2FS

The eigenvalues of this matrix (Fock orbital energies) are:

[ -1.656257 -0.2289374 ]

1

Their corresponding eigenvectors (C' = Sz * C) are:
¢ -0.9056076 -0.4241164

e 1]
€ -0.4241164 0.9056077 U

1
The"new" MO-AO coefficients(C=S 2 * C):

5 -0.8999770 -0.8323317 0
e u
€ -0.1584310 1.215580 U

XD

The one-electron MO integrals:

é -2.615843 -0.1953876 0
Q
o]

€
€ -0.1953876 -1.315354
The two-electron MO integrals:
1111 0.9595849

2111 0.1953881
2121 0.6062936



2211 0.1261697

2221 0.004625696

2222 0.6159083

The closed shell Fock energy from formula:

Znén

Rm

& 2<klhjk> + 2<KI[KI> - <kI[Ik> + § -2.84352922

ki me>n

from formula:

Znén
Rm

a ec+<khk>+ = -2.84352827

k nen

the differenceis: -0.00000095

kkhkkkkkkkkkhkhkkx

ITERATION 8

kkhkkkkkkkkkhkhkkx

¢ 0.8099585 0.1425842 0

u

The charge bond order matrix: e
€ 0.1425842 0.02510037 U

5 -1.632416 -1.093408 0

The Fock matrix: % g
€ -1.093408 -0.8869470 U

¢ -1.399518 -0.5482103 0
e
€ -0.5482102 -0.4856761 H

N
.
NI~

S2FS

The eigenvalues of this matrix (Fock orbital energies) are:

[ -1.656258 -0.2289368 ]

1
Their corresponding eigenvectors (C' = Sz * C) are:

¢ -0.9056074 -0.4241168 |,
e 1]
€ -0.4241168 0.9056075 U

1
The"new" MO-AO coefficients(C=S 2 * C):

5 -0.8999765 -0.8323320 0
e -0.1584315 1.215579 H

D:DxD

The one-electron MO integrals:

173



174

é -2.615842 -0.1953882

e
€ -0.1953882 -1.315354

The two-electron MO integrals:

1111 09595841
2111 0.1953881
2121 0.6062934
2211 01261700
2221 0.004625901
2222 0.6159081

The closed shell Fock energy from formula:
Zln

A 2<kjhjk> + 2<KI[KI> - <kI[Ik> + Q R = -2:84352827
Kl men

from formula
a e+<khk>+ Q ZR”r'an” = -2.84352827
k men

the differenceis. 0.00000000
f. Inlooking at the energy convergence we see the following:

Iter Formula 1 Formula 2

1 -2.84219933 -2.80060530

2 -2.84349298 -2.83573675

3 -2.84353018 -2.84225941

4 -2.84352922 -2.84332418

5 -2.84352779 -2.84349489

6 -2.84352827 -2.84352398

7 -2.84352922 -2.84352827

8 -2.84352827 -2.84352827

f. If you look at the energy differences (SCF at iteration n - SCF converged) and
plot this data versus iteration number, and do a 5th order polynomial fit, we see the
following:



y =0.144 - 0.153x + 0.063x"2 - 0.013x”*3 + 0.001x*4 R = 1.00

0.05
0.04 1
—
>
5 0.03 -
S
L
(@]
()]
. 0.02 1
o
=
g
O 0.01 1
()]
0.00
0

Iteration

In looking at the polynomial fit we see that the convergenceis primarily linear since the
coefficient of the linear term is much larger than those of the cubic and higher terms.

0. The converged SCF total energy calculated using the result of exercise 3isan
upper bound to the ground state energy, but, during the iterative procedure it isnot. At
convergence, the expectation value of the Hamiltonian for the Hartree Fock determinant is
given by the equation in exercise 3.

h. The one- and two- electron integralsin the MO basis are given above (see part e
iteration 8). The orbital energies are found using the result of exercise 2 and 3 to be:

=3 o Znén
E(SCF)=a & +<khk>+ Q R
k nmen
E(SCF) = & 2<kihlk> + 2<kIkI> - <kl[lk> + & ZR_nfnn
Kl n

occ

so, e =<klhk>+ & (2<kl|kl> - <kl|lk>)
I

e1 = hyp + 2<11|11> - <11]11>
-2.615842 + 0.9595841
-1.656258
e = hpp + 2<21|21> - <21]|12>
-1.315354 + 2*0.6062934 - 0.1261700
-0.2289372
i. Yes, the 1s2 configuration does dissociate properly because at at R® ¥ the lowest

energy stateis He + H*, which also has a 1s2 orbital occupancy (i.e., 1s? on He and 10

on HY).
2. At convergence the mo coefficients are:
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-0.8999765 -0.8323320
— Q U _ Q U
f1= u fo=¢ u
e -0.1584315 u € 1.215579 u
and theintegralsinthisMO basis are:
h11 =-2.615842 hp1 =-0.1953882 hoo =-1.315354

01111 = 0.9595841  go111 = 0.1953881  go121 = 0.6062934
O2211 = 0.1261700  goo21 = 004625901  goo2o = 0.6159081

e <132|H|1$2> <152|H|252> u é Zh]_]_ + 01111 01122 U
aH= a =e 1]
€ <2s2H|1s2> <2s?Hjps2> & € gu 2h + g2222 U
g 2%-2.615842 + 0.9595841 0.1261700
=¢
é 0.1261700 2*-1.315354 + 0.6159081 H
¢ -4.272100 0.126170 0

€ 0.126170 -2.014800
b. The eigenvaluesare E1 = -4.279131 and E» = -2.007770. The corresponding

eigenvectors are:

g 99123 y 4 0.05503438
= u,Cr=¢ ]
e 0.05563439 U € 0.99845140 U
C.
16 1 5 el L o7 ieet 1 5 el L 57U
58 G &elf 1 + b2fogneetf1 - b2foghi + &elf1 - b2 ogmeddf1 + b2 odbi i
seel 1 el 15 &l 1 el 1

1 6ees (o)
=——&af1 + b2fpelf1 - b%fog+ &Pf1 - b2felf1 + b2 xali(ab - ba)
22

:\/—1_2(af1f1 - bfof5) (ab - ba)

= alf1af 1b| - b|f 2af 2b| .
(note from part b. a=0.9984 and b = 0.0556)

d. The third configuration |1sZs|:\/—1_2[ [1a2b| - |1b2a]) ,

Adding this configuration to the previous 2x2 Cl resultsin the following 3x3 'full’ CI:
4 <Is?H|1s2> <1s?H|2s2> <1s2H|1s2s>

] e Y e e’

e
H:g <2s2H[1s2> <2s2H|]2s2> <2s2H|1s2s>

é<1sZs|H|132> <2s2H[1s2s> <1s2s|H|1s2s> U

8 2h + gun 01122 \/i-z[ 2h12 + 292111 l;|

u

=e 91122 2h2 + 92222 é[ 2hy2 + 292221] u

1 1 L
S— 2hip + 292111) —F[ 22 + 292221] hag + hoo + 92121 + g2om1

e 1 V5 ] u
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Evaluating the new matrix el ements:
Hiz=Hgz =V2* (-0.1953882 + 0.1953881) = 0.0

Haz = Hap = V2 *(-0.1953882 + 0.004626) = -0.269778
Hagz = -2.615842 - 1.315354 + 0.606293 + 0.126170
= -3.198733
£-4272100 0126170 00

= g 0.126170 -2.014800 -0.269778 H

0.0 -0.269778 -3.198733
e. Theeigenvalues are E1 = -4.279345, E» = -3.256612 and E3 = -1.949678. The
corresponding eigenvectors are:

g-0.99825280 EI 3-0.02605343 B 3-0.05302767 H
C1= 2 0.05732290 7, Co= < -0.20969283 7, C3= £ -0.97608540 7
0.01431085 8 -0.97742000 H 8 0.21082004

f. We need the non-vanishing matrix elements of the dipole operator in the mo
basis. These can be obtained by calculating them by hand. They are more easily obtained

by using the TRANS program. Put the 1e ao integrals on disk by running the program
RW_INTS. Inthiscaseyou areinserting z11 = 0.0, zp1 = 0.2854, and zp» = 1.4 (insert

0.0 for all the 2e integrals) ... call the output file "ao_dipole.ints’ for example. The
converged MO-AO coefficients should be in afile ("mocoefs.dat” isfine). The
transformed integrals can be written to afile (name of your choice) for example
"mo_dipole.ints’. These matrix elements are;

z11 = 0.11652690, zo1 = -0.54420990, z2» = 1.49117320
The excitation energiesare E, - E; = -3.256612 - -4.279345 = 1.022733, and E3 - E; = -
1.949678.- -4.279345 = 2.329667.
Using the Slater-Conden rules to obtain the matrix elements between configurations we get:

g <Is 271s2>  <1s?2z2s2> <1s?7|1s2s> U
z= g <2s27|1s2>  <2s?z|2s2>  <2s?jz|ls2s> H
€ <1s2sfz[1s2> <252|z|1525> <1s2s|7|ls2s> a
2711 0 122121
S \/-2[ 1 U
U
e 1 Vd
0 2799 = 2212
-¢ 73242 g
8 2717 22171 z11 + Z22
\/‘2[ ] \/‘[ ] U
g 0.2330%4 0 -0.769629 H
= 2.982346 -0.769629
8 -0.769629 -0.769629 1.607700 H
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Now, <Y 1|z]Y 2> = C1THC», (this can be accomplished with the program UTMATU)

3-0.99825280 EIT g 0.233054 0 -0.769629 83-0.02605343 EI
=< 005732290 & 2 0 2982346 -0.769629 = = -0.20969283
0.01431085 -0.769629 -0.769629 1.607700 -0.97742000
=-.757494
and, <Y 1|z]Y 3> = C1TH,C3
3—0.99825280 EIT g 0.233054 0 -0.769629 EI £ -0.05302767 EI
=< 005732200 & C 0 2982346 -0.769629 = = -0.97608540
0.01431085 -0.769629 -0.769629 1.607700 0.21082004
=0.014322

0. Using the converged coefficients the orbital energies obtained from solving the
Fock equations are e; = -1.656258 and ey = -0.228938. The resulting expression for the
RSPT first-order wavefunction becomes:

|152>(1) 92211 |252>

2(e2 - e1)
o) — 0.126170 5
152> = 2(-0.228938 + 1.656258) [2s2>
|15s2>® = .0,0441982|252>

h. Asyou can see from part c., the matrix element <1s2|H|1s2s> = 0 (thisisalso a
result of the Brillouin theorem) and hence this configuration does not enter into the first-
order wavefunction.

i. [0> = |152> - 0.0441982[252>. To normalize we divide by:

\[[ 1+ (0.0441982)7 = 1.0009762

|0> = 0.999025|152> - 0.044155|252>
In the 2x2 CI we obtained:

|0> = 0.99845123| 152> - 0.05563439|252>

j. The expression for the 2"d order RSPT is:

£ = . P _ 0.1261702
" e, - o)  X-0.228938 + 1.656258)

=-0.005576 au
Comparing the 2x2 Cl energy obtained to the SCF result we have:
-4.279131 - (-4.272102) = -0.007029 au

3. STO totd energy: -2.8435283

STOS3G total energy  -2.8340561

3-21Gtotal energy  -2.8864405
The STOS3G orbitals were generated as a best fit of 3 primitive gaussians (giving 1 CGTO)
tothe STO. So, STO3G can at best reproduce the STO result. The 3-21G orbitals are
more flexible since there are 2 CGTOs per atom. This gives 4 orbitals (more parametersto
optimize) and alower tota energy.



R HeH* Energy H2 Energy
1.0 |-2.812787056 -1.071953297
1.2 |-2.870357513 -1.113775015
1.4 |-2.886440516 -1.122933507
1.6 |-2.886063576 -1.115567684
1.8 | -2.880080938 -1.099872589
2.0 [-2.872805595 -1.080269098
2.5 |-2.856760263 -1.026927710
10.0 |-2.835679293 -0.7361705303

Plotting total energy vs. geometry for HeH*:

Total Energy (au)

-2.80

-2.82 1 T

-2.84 A

-2.86 A

-2.88 T

-2.90 T T

R (au)

Plotting total energy vs. geometry for Ho:

10

12
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2

4 6
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Internuclear Distance (au)

For HeH* at R = 10.0 au, the eigenvalues of the converged Fock matrix and the
corresponding converged MO-AO coefficients are:

-.1003571E+01 -.4961988E+00 .5864846E+00 .1981702E+01
4579189E+00 -.8245406E-05 .1532163E-04 .1157140E+01
.6572777E+00 -.4580946E-05 -.6822942E-05 -.1056716E+01

-.1415438E-05 .3734069E+00 .1255539E+01 -.1669342E-04
1112778E-04 .7173244E+00 -.1096019E+01 .2031348E-04

Notice that thisindicatesthat orbital 1 isacombination of the s functions on He only
(dissociating properly to He + H).

For H; at R = 10.0 au, the eigenvalues of the converged Fock matrix and the
corresponding converged MO-AO coefficients are:

-.2458041E+00 -.1456223E+00 .1137235E+01 .1137825E+01
.1977649E+00 -.1978204E+00 .1006458E+01 -.7903225E+00
.5632566E+00 -.5628273E+00 -.8179120E+00 .6424941E+00
.1976312E+00 .1979216E+00 .7902887E+00 .1006491E+01
.5629326E+00 .5631776E+00 -.6421731E+00 -.8181460E+00

Notice that thisindicatesthat orbital 1 isacombination of the s functions on both H atoms
(dissociating improperly; equal probabilities of Hy dissociating to two neutral atoms or to a
proton plus hydride ion).

5. The H2 CI result:

180

R 1sg+ 3Su+ 1Su+ 1sg+
1.0 |-1.074970 -0.5323429 -0.3997412 0.3841676
1.2 |-1.118442 -0.6450778 -0.4898805 0.1763018
1.4 1-1.129904 -0.7221781 -0.5440346 0.0151913
1.6 |-1.125582 -0.7787328 -0.5784428 -0.1140074
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1.8 [-1.113702 -0.8221166 -0.6013855 -0.2190144
2.0 1-1.098676 -0.8562555 -0.6172761 -0.3044956
2.5 | -1.060052 -0.9141968 -0.6384557 -0.4530645
5.0 |-0.9835886 -0.9790545 -0.5879662 -0.5802447
7.5 |-0.9806238 -0.9805795 -0.5247415 -0.5246646
10.0 | -0.980598 -0.9805982 -0.4914058 -0.4913532
0.0
-0.2
-0.4
is'b I B State 1
3 -0.6 1 ¢ State 2
E B State 3
i ¢ State 4
S -0.8 A
(@]
|_
-1.0 A = N
-1.2 T T

Internuclear Distance (au)

For H; at R = 1.4 au, the eigenvalues of the Hamiltonian matrix and the corresponding
determinant amplitudes are:

determinant -1.129904 -0.722178 -0.544035 0.015191
l1sgalsgbl 0.99695 0.00000 0.00000 0.07802
lIsgbls al 0.00000 0.70711 0.70711 0.00000
l1sgals bl 0.00000 0.70711 -0.70711 0.00000
I1s als bl -0.07802 0.00000 0.00000 0.99695

This shows, as expected, the mixing of the first 1Sg+ (1s42) and the 2nd 1Sg* (1s2)
determinants, the

35, = (ﬁ( llsgblsyal + |[1sgalsybl) ),

and thelS,*=

1
(\/—z(l13

gblsual - [1sgalsybl) ).

Also notice that the first 1Sg+ state is the bonding (0.99695 - 0.07802) combination (note
specifically the + - combination) and the second 1Sg+ state is the antibonding combination
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(note specifically the + + combination). The + + combination always gives a higher energy
than the + - combination. Also notice that the 1st and 2nd states (1Sg4* and 3S*) are
dissociating to two neutral atoms and the 3rd and 4th states (1Sg* and 3S,*) are

dissociating to proton/anion combinations. The difference in these energiesis the
ionization potential of H minus the electron affinity of H.



