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    Review Exercises

1. For the given orbital occupations (configurations) of the following systems, determine
all possible states (all possible allowed combinations of spin and space states).  There is no
need to form the determinental wavefunctions simply label each state with its proper    term
   symbol   .  One method commonly used is Harry Grays "box method" found in     Electrons
   and Chemical Bonding    .

a.) CH2 1a122a121b223a111b11

b.) B2 1σg21σu22σg22σu21πu12πu1

c.) O2 1σg21σu22σg22σu21πu43σg21πg2

d.) Ti 1s22s22p63s23p64s23d14d1

e.) Ti 1s22s22p63s23p64s23d2

    Exercises   

1. Show that the configuration (determinant) corresponding to the Li+ 1s(α)1s(α) state
vanishes.
2. Construct the 3 triplet and 1 singlet wavefunctions for the Li+ 1s12s1 configuration.
Show that each state is a proper eigenfunction of S2 and Sz (use raising and lowering

operators for S2)
3. Construct wavefunctions for each of the following states of CH2:

a.) 1B1 (1a122a121b223a111b11)

b.) 3B1(1a122a121b223a111b11)

c.) 1A1 (1a122a121b223a12)

4. Construct wavefunctions for each state of the 1σ22σ23σ21π2 configuration of NH.

5. Construct wavefunctions for each state of the 1s12s13s1 configuration of Li.
6. Determine all term symbols that arise from the 1s22s22p23d1 configuration of the excited
N atom.
7. Calculate the energy (using Slater Condon rules) associated with the 2p valence electrons
for the following states of the C atom.

  i. 3P(ML=1,MS=1),

 ii. 3P(ML=0,MS=0),

iii. 1S(ML=0,MS=0), and

iv. 1D(ML=0,MS=0).

8. Calculate the energy (using Slater Condon rules) associated with the π valence electrons
for the following states of the NH molecule.

  i. 1∆ (ML=2, MS=0),

 ii. 1Σ (ML=0, MS=0), and

iii. 3Σ (ML=0, MS=0).

    Problems

1. Let us investigate the reactions:
 i. CH2(1A1)  →  H2 + C , and
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ii. CH2(3B1)  →  H2 + C ,
under an assumed C2v reaction pathway utilizing the following information:

C atom: 3P →
29.2 kcal/mole

  1D →
32.7 kcal/mole

  1S
C(3P) + H2  →  CH2(3B1)   ∆E = -78.8 kcal/mole

C(1D) + H2  →  CH2(1A1)   ∆E = -97.0 kcal/mole

IP (H2) > IP (2s carbon).
a. Write down (first in terms of 2p1,0,-1 orbitals and then in terms of 2px,y,z

orbitals) the:
  i. three Slater determinant (SD) wavefunctions belonging      to

the 3P state all of which have MS = 1,

 ii. five 1D SD wavefunctions, and
iii. one 1S SD wavefunction.

b. Using the coordinate system shown below, label the hydrogen orbitals σg, σu

and the carbon 2s, 2px, 2py, 2pz, orbitals as a1, b1(x), b2(y), or a2.  Do the same for the σ,

σ, σ*, σ*, n, and pπ orbitals of CH2.

C

H

H

z

y

x

c. Draw an orbital correlation diagram for the CH2  →  H2 + C reactions.  Try to
represent the relative energy orderings of the orbitals correctly.

d. Draw (on graph paper) a configuration correlation diagram for CH2(3B1)  →  H2

+ C showing    all    configurations which arise from the C(3P) + H2 products.  You can
assume that doubly excited configurations lie much (~100 kcal/mole) above their parent
configurations.

e. Repeat step d. for CH2(1A1)  →  H2 + C again showing    all    configurations which

arise from the C(1D) + H2 products.

f. Do you expect the reaction C(3P) + H2  →  CH2 to have a large activation
barrier?  About how large?  What state of CH2 is produced in this reaction?  Would
distortions away from C2v symmetry be expected to raise of lower the activation barrier?
Show how one could estimate where along the reaction path the barrier top occurs.

g. Would C(1D) + H2  →  CH2 be expected to have a larger or smaller barrier than

you found for the 3P C reaction?
2. The decomposition of the ground-state singlet carbene,. .

  ,
to produce acetylene and 1D carbon is known to occur with an activation energy equal to
the reaction endothermicity.  However, when triplet carbene decomposes to acetylene and
ground-state (triplet) carbon, the activation energy exceeds this reaction's endothermicity.
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Construct orbital, configuration, and state correlation diagrams which permit you to explain
the above observations.  Indicate whether single configuration or configuration interaction
wavefunctions would be required to describe the above singlet and triplet decomposition
processes.
3. We want to carry out a configuration interaction calculation on H2 at R=1.40 au.  A

minimal basis consisting of normalized 1s Slater orbitals with ζ=1.0 gives rise to the
following overlap (S), one-electron (h), and two-electron atomic integrals:

< >1sA|1sB   = 0.753 ≡ S,

< >1sA|h|1sA   = -1.110,   < >1sB|h|1sA   = -0.968,

< >1sA1sA|h|1sA1sA   = 0.625 ≡ < >AA|AA  

< >AA|BB   = 0.323, < >AB|AB   = 0.504, and

< >AA|AB   = 0.426.
a. The normalized and orthogonal molecular orbitals we will use for this minimal

basis will be determined purely by symmetry:

σg = ( )2+2S
-1
2
( )1sA +  1sB  , and

σu = ( )2+2S
-1
2
( )1sA -  1sB  .

Show that these orbitals are indeed orthogonal.
b. Evaluate (using the one- and two- electron atomic integrals given above) the

unique one- and two- electron integrals over this molecular orbital basis (this is called a
transformation from the ao to the mo basis).  For example, evaluate < >u|h|u  , < >uu|uu  ,

< >gu|gu  , etc.

c. Using the two 1Σg
+  configurations σg2, and σu2, show that the elements of the

2x2 configuration interaction Hamiltonian matrix are -1.805, 0.140, and -0.568.
d. Using    this    configuration interaction matrix, find the configuration interaction

(CI) approximation to the ground and excited state energies and wavefunctions.
e. Evaluate and make a rough sketch of the polarized orbitals which result from the

above ground state σg2 and σu2 CI wavefunction.

Solutions
    Review Exercises

1. a. For non-degenerate point groups one can simply multiply the representations
(since only one representation will be obtained):

 a1 ⊗ b1 = b1
Constructing a "box" in this case is unnecessary since it would only contain a single row.
Two unpaired electrons will result in a singlet (S=0, MS=0), and three triplets (S=1,

MS=1; S=1, MS=0; S=1, MS=-1).  The states will be: 3B1(MS=1), 3B1(MS=0), 3B1(MS=-

1), and 1B1(MS=0).
1. b. Remember that when coupling non-equivalent linear molecule angular momenta,
one simple adds the individual Lz values and vector couples the electron spin.  So, in this

case (1πu12πu1), we have ML values of 1+1, 1-1, -1+1, and -1-1 (2, 0, 0, and -2).  The
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term symbol ∆ is used to denote the spatially doubly degenerate level (ML=±2) and there

are two distinct spatially non-degenerate levels denoted by the term symbol Σ (ML=0)
Again, two unpaired electrons will result in a singlet (S=0, MS=0), and three triplets (S=1,
MS=1;S=1, MS=0;S=1, MS=-1).  The states generated are then:

1∆ (ML=2); one state (MS=0),
1∆ (ML=-2); one state (MS=0),
3∆ (ML=2); three states (MS=1,0, and -1),
3∆ (ML=-2); three states (MS=1,0, and -1),
1Σ (ML=0); one state (MS=0),
1Σ (ML=0); one state (MS=0),
3Σ (ML=0); three states (MS=1,0, and -1), and
3Σ (ML=0); three states (MS=1,0, and -1).

1. c. Constructing the "box" for two equivalent π electrons one obtains:

                 ML
MS

2 1 0

1 |π1απ-1α|

0 |π1απ1β| |π1απ-1β|,

|π-1απ1β|

From this "box" one obtains six states:
1∆ (ML=2); one state (MS=0),
1∆ (ML=-2); one state (MS=0),
1Σ (ML=0); one state (MS=0),
3Σ (ML=0); three states (MS=1,0, and -1).

1. d. It is not necessary to construct a "box" when coupling non-equivalent angular
momenta since the vector coupling results in a range from the sum of the two individual
angular momenta to the absolute value of their difference.  In this case, 3d14d1, L=4, 3, 2,
1, 0, and S=1,0.  The term symbols are: 3G, 1G, 3F, 1F, 3D, 1D, 3P, 1P, 3S, and 1S.  The
L and S angular momenta can be vector coupled to produce further splitting into levels:

J = L + S ... |L - S|.
Denoting J as a term symbol subscript one can identify all the levels and subsequent (2J +
1) states:

3G5 (11 states),
3G4 (9 states),
3G3 (7 states),
1G4 (9 states),
3F4 (9 states),
3F3 (7 states),
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3F2 (5 states),
1F3 (7 states),
3D3 (7 states),
3D2 (5 states),
3D1 (3 states),
1D2 (5 states),
3P2 (5 states),
3P1 (3 states),
3P0 (1 state),
1P1 (3 states),
3S1 (3 states), and
1S0 (1 state).

1. e. Construction of a "box" for the two equivalent d electrons generates (note the
"box" has been turned side ways for convenience):

                         MS
ML

1 0

4 |d2αd2β|

3 |d2αd1α| |d2αd1β|, |d2βd1α|

2 |d2αd0α| |d2αd0β|, |d2βd0α|,

|d1αd1β|

1 |d1αd0α|, |d2αd-1α| |d1αd0β|, |d1βd0α|,

|d2αd-1β|, |d2βd-1α|

0 |d2αd-2α|, |d1αd-1α| |d2αd-2β|, |d2βd-2α|,

|d1αd-1β|, |d1βd-1α|,

|d0αd0β|

The term symbols are: 1G, 3F, 1D, 3P, and 1S.  The L and S angular momenta can be
vector coupled to produce further splitting into levels:

1G4 (9 states),
3F4 (9 states),
3F3 (7 states),
3F2 (5 states),
1D2 (5 states),
3P2 (5 states),
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3P1 (3 states),
3P0 (1 state), and
1S0 (1 state).

    Exercises

1. Constructing the Slater determinant corresponding to the "state" 1s(α)1s(α) with the
rows labeling the orbitals and the columns labeling the electron gives:

|1sα1sα| = 
1

2!







1sα(1) 1sα(2)

1sα(1) 1sα(2)
 

     = 
1

2
 ( )1sα(1)1sα(2) - 1sα(1)1sα(2)  

     = 0
2. Starting with the MS=1 3S state (which in a "box" for this ML=0, MS=1 case would

contain only one product function; |1sα2sα|) and applying S- gives:

S- 3S(S=1,MS=1) = 1(1 + 1) - 1(1 - 1) h∼ 3S(S=1,MS=0)

= h∼ 2  3S(S=1,MS=0)

= ( )S-(1) + S-(2)   |1sα2sα|

= S-(1)|1sα2sα| + S-(2)|1sα2sα|

= h∼ 
1
2



1

2 +  1  -  
1
2



1

2 -  1   |1sβ2sα|

 + h∼ 
1
2



1

2 +  1  -  
1
2



1

2 -  1   |1sα2sβ|

= h∼ ( )|1sβ2sα|  + |1sα2sβ|  

So, h∼ 2  3S(S=1,MS=0) = h∼ ( )|1sβ2sα|  + |1sα2sβ|  

       3S(S=1,MS=0) = 
1

2
 ( )|1sβ2sα|  + |1sα2sβ|  

The three triplet states are then:
3S(S=1,MS=1)= |1sα2sα|,

3S(S=1,MS=0) = 
1

2
 ( )|1sβ2sα|  + |1sα2sβ|  , and

3S(S=1,MS=-1) = |1sβ2sβ|.
The singlet state which must be constructed orthogonal to the three singlet states (and in
particular to the 3S(S=1,MS=0) state) can be seen to be:

1S(S=0,MS=0) = 
1

2
 ( )|1sβ2sα| - |1sα2sβ|  .
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Applying S2 and Sz to each of these states gives:

Sz |1sα2sα| = ( )Sz(1) + Sz(2)   |1sα2sα|

= Sz(1)|1sα2sα| + Sz(2))|1sα2sα|

= h∼ 




1

2   |1sα2sα| + h∼ 




1

2   |1sα2sα|

= h∼  |1sα2sα|

S2 |1sα2sα| = (S-S+ + Sz2 + h∼ Sz) |1sα2sα|

= S-S+|1sα2sα| + Sz2|1sα2sα| + h∼ Sz|1sα2sα|

= 0 + h∼ 2 |1sα2sα| + h∼ 2|1sα2sα|

= 2h∼ 2 |1sα2sα|

Sz 
1

2
 ( )|1sβ2sα|  + |1sα2sβ|   = ( )Sz(1) + Sz(2)  

1

2
 ( )|1sβ2sα|  + |1sα2sβ|  

= 
1

2
 ( )Sz(1) + Sz(2)   |1sβ2sα|

+ 
1

2
 ( )Sz(1) + Sz(2)   |1sα2sβ|

= 
1

2
 




h∼ 





-

1
2  +  h∼ 





1

2   |1sβ2sα|

+ 
1

2
 




h∼ 





1

2  +  h∼ 




-

1
2   |1sα2sβ|

= 0h∼ 
1

2
 ( )|1sβ2sα|  + |1sα2sβ|  

S2 
1

2
 ( )|1sβ2sα|  + |1sα2sβ|   = (S-S+ + Sz2 + h∼ Sz)

1

2
 ( )|1sβ2sα|  + |1sα2sβ|  

= S-S+ 
1

2
 ( )|1sβ2sα|  + |1sα2sβ|  

= 
1

2
( )S-(S+(1) + S+(2))|1sβ2sα|  +  S -(S+(1) + S+(2))|1sα2sβ|  

= 
1

2
 S-  h∼ |1sα2sα|  +  S -  h∼ |1sα2sα|  

= 2 h∼ 
1

2
( )(S-(1) + S-(2))|1sα2sα|  

= 2 h∼ 
1

2
 h∼|1sβ2sα|  +  h∼|1sα2sβ|  

= 2 h∼ 2 
1

2
( )|1sβ2sα|  + |1sα2sβ|  

Sz |1sβ2sβ| = ( )Sz(1) + Sz(2)   |1sβ2sβ|

= Sz(1)|1sβ2sβ| + Sz(2))|1sβ2sβ|

= h∼ 




-

1
2   |1sβ2sβ| + h∼ 





-

1
2   |1sβ2sβ|
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= -h∼  |1sβ2sβ|

S2 |1sβ2sβ| = (S+S- + Sz2 - h∼ Sz) |1sβ2sβ|

= S+S-|1sβ2sβ| + Sz2|1sβ2sβ| - h∼ Sz|1sβ2sβ|

= 0 + h∼ 2 |1sβ2sβ| + h∼ 2|1sβ2sβ|

= 2h∼ 2 |1sβ2sβ|

Sz 
1

2
 ( )|1sβ2sα| - |1sα2sβ|   = ( )Sz(1) + Sz(2)  

1

2
 ( )|1sβ2sα| - |1sα2sβ|  

= 
1

2
 ( )Sz(1) + Sz(2)   |1sβ2sα|

- 
1

2
 ( )Sz(1) + Sz(2)   |1sα2sβ|

= 
1

2
 




h∼ 





-

1
2  +  h∼ 





1

2   |1sβ2sα|

- 
1

2
 




h∼ 





1

2  +  h∼ 




-

1
2   |1sα2sβ|

= 0h∼ 
1

2
 ( )|1sβ2sα| - |1sα2sβ|  

S2 
1

2
 ( )|1sβ2sα| - |1sα2sβ|   = (S-S+ + Sz2 + h∼ Sz)

1

2
 ( )|1sβ2sα| - |1sα2sβ|  

= S-S+ 
1

2
 ( )|1sβ2sα| - |1sα2sβ|  

= 
1

2
( )S-(S+(1) + S+(2))|1sβ2sα|  -  S -(S+(1) + S+(2))|1sα2sβ|  

= 
1

2
 S-  h∼ |1sα2sα|  -  S -  h∼ |1sα2sα|  

= 0 h∼ 
1

2
( )(S-(1) + S-(2))|1sα2sα|  

= 0 h∼ 
1

2
 h∼|1sβ2sα|  -  h∼|1sα2sβ|  

= 0 h∼ 2 
1

2
( )|1sβ2sα| - |1sα2sβ|  

3. a. Once the spatial symmetry has been determined by multiplication of the
irreducible representations, the spin coupling is identical to exercise 2 and gives the result:

1

2
( )|3a1α1b1β| - |3a1β1b1α|  

3. b. There are three states here (again analogous to exercise 2):
1.) |3a1α1b1α|,

2.) 
1

2
( )|3a1α1b1β| + |3a1β1b1α|  , and

3.) |3a1β1b1β|

3. c. |3a1α3a1β|

4. As shown in review exercise 1c, for two equivalent π electrons one obtains six states:
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1∆ (ML=2); one state (MS=0),
1∆ (ML=-2); one state (MS=0),
1Σ (ML=0); one state (MS=0), and
3Σ (ML=0); three states (MS=1,0, and -1).

By inspecting the "box" in review exercise 1c, it should be fairly straightforward to write
down the wavefunctions for each of these:

1∆ (ML=2); |π1απ1β|
1∆ (ML=-2); |π-1απ-1β|

1Σ (ML=0); 
1

2
( )|π1βπ-1α|  -  |π1απ-1β|  

3Σ (ML=0, MS=1); |π1απ-1α|

3Σ (ML=0, MS=0); 
1

2
( )|π1βπ-1α|  + |π1απ-1β|  

3Σ (ML=0, MS=-1); |π1βπ-1β|

5. We can conveniently couple another s electron to the states generated from the 1s12s1

configuration in exercise 2:
3S(L=0, S=1) with 3s1(L=0, S=

1
2 ) giving:

L=0, S=
3
2  , 

1
2  ; 4S (4 states) and 2S (2 states).

1S(L=0, S=0) with 3s1(L=0, S=
1
2 ) giving:

L=0, S=
1
2  ; 2S (2 states).

Constructing a "box" for this case would yield:

                                              ML
MS

0

3
2 |1sα2sα3sα|

1
2 |1sα2sα3sβ|, |1sα2sβ3sα|, |1sβ2sα3sα|

One can immediately identify the wavefunctions for two of the quartets (they are single
entries):

4S(S=
3
2 ,MS=

3
2 ): |1sα2sα3sα|

4S(S=
3
2 ,MS=-

3
2 ): |1sβ2sβ3sβ|

Applying S- to 4S(S=
3
2 ,MS=

3
2 ) yields:
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S-4S(S=
3
2 ,MS=

3
2 ) = h∼ 

3
2(

3
2 +  1 )  -  

3
2(

3
2 - 1)  4S(S=

3
2 ,MS=

1
2 )

      = h∼ 3  4S(S=
3
2 ,MS=

1
2 )

S-|1sα2sα3sα| = h∼ ( )|1sβ2sα3sα|  + |1sα2sβ3sα|  + |1sα2sα3sβ|  

So, 4S(S=
3
2 ,MS=

1
2 ) = 

1

3
 ( )|1sβ2sα3sα|  + |1sα2sβ3sα|  + |1sα2sα3sβ|  

Applying S+ to 4S(S=
3
2 ,MS=-

3
2 ) yields:

S+4S(S=
3
2 ,MS=-

3
2 ) = h∼ 

3
2(

3
2 +  1)  -  -

3
2(-

3
2 + 1)  4S(S=

3
2 ,MS=-

1
2 )

      = h∼ 3  4S(S=
3
2 ,MS=-

1
2 )

S+|1sβ2sβ3sβ| = h∼ ( )|1sα2sβ3sβ|  + |1sβ2sα3sβ|  + |1sβ2sβ3sα|  

So, 4S(S=
3
2 ,MS=-

1
2 ) = 

1

3
 ( )|1sα2sβ3sβ|  + |1sβ2sα3sβ|  + |1sβ2sβ3sα|  

It only remains to construct the doublet states which are orthogonal to these quartet states.
Recall that the orthogonal combinations for systems having three equal components (for
example when symmetry adapting the 3 sp2 hybrids in C2v or D3h symmetry) give results
of + + +, +2 - -, and 0 + -.  Notice that the quartets are the + + + combinations and
therefore the doublets can be recognized as:
2S(S=

1
2 ,MS=

1
2 ) = 

1

6
 ( )|1sβ2sα3sα|  + |1sα2sβ3sα| - 2|1sα2sα3sβ|  

2S(S=
1
2 ,MS=

1
2 ) = 

1

2
 ( )|1sβ2sα3sα| - |1sα2sβ3sα| + 0|1sα2sα3sβ|  

2S(S=
1
2 ,MS=-

1
2 ) = 

1

6
 ( )|1sα2sβ3sβ|  + |1sβ2sα3sβ| - 2|1sβ2sβ3sα|  

2S(S=
1
2 ,MS=-

1
2 ) = 

1

3
 ( )|1sα2sβ3sβ| - |1sβ2sα3sβ| + 0|1sβ2sβ3sα|  

6. As illustrated in this chapter a p2 configuration (two equivalent p electrons) gives rise to
the term symbols: 3P, 1D, and 1S.  Coupling an additional electron (3d1) to this p2

configuration will give the desired 1s22s22p23d1 term symbols:
3P(L=1,S=1) with 2D(L=2,S=

1
2 ) generates;

L=3,2,1, and S=
3
2 , 

1
2  with term symbols 4F, 2F,4D, 2D,4P, and 2P,

1D(L=2,S=0) with 2D(L=2,S=
1
2 ) generates;

L=4,3,2,1,0, and S=
1
2  with term symbols 2G, 2F, 2D, 2P, and 2S,

1S(L=0,S=0) with 2D(L=2,S=
1
2 ) generates;

L=2 and S=
1
2  with term symbol 2D.

7. The notation used for the Slater Condon rules will be the same as used in the text:
(a.) zero (spin orbital) difference;
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< >|F + G|   = ∑
i
 < >φi|f|φi   + ∑

i>j
  < >φiφj|g|φiφj  -  < >φiφj|g|φjφi  

        = ∑
i

fii  + ∑
i>j

 ( )gijij -  g ijji  

(b.) one (spin orbital) difference (φp ≠ φp');

< >|F + G|   = < >φp|f|φp'   + ∑
j≠p;p'

  < >φpφj|g|φp'φj  -  < >φpφj|g|φjφp'  

        = fpp' + ∑
j≠p;p'

 ( )gpjp'j -  g pjjp'  

(c.) two (spin orbital) differences (φp ≠ φp' and φq ≠ φq');

< >|F + G|   = < >φpφq|g|φp'φq'   - < >φpφq|g|φq'φp'  

        = gpqp'q' - gpqq'p'
(d.) three or more (spin orbital) differences;

< >|F + G|   = 0

7. i. 3P(ML=1,MS=1) = |p1αp0α|

< >|p1αp0α|H|p1αp0α|   =

Error!.  Using the Slater Condon rule (a.) above (SCa):
< >|10|H|10|   = f11 + f00 + g1010 - g1001

7. ii. 3P(ML=0,MS=0) = 
1

2
( )|p1αp-1β|  + |p1βp-1α|  

< >3P(ML=0,MS=0)|H|3P(ML=0,MS=0)  

 = 
1
2(< >|p1αp-1β|H|p1αp-1β|  + < >|p1αp-1β|H|p1βp-1α|  

     + < >|p1βp-1α|H|p1αp-1β|   + < >|p1βp-1α|H|p1βp-1α|  )
Evaluating each matrix element gives:

< >|p1αp-1β|H|p1αp-1β|   = f1α1α + f-1β-1β + g1α-1β1α-1β - g1α-1β-1β1α (SCa)

= f11 + f-1-1 + g1-11-1 - 0

< >|p1αp-1β|H|p1βp-1α|   = g1α-1β1β-1α - g1α-1β-1α1β (SCc)

= 0 - g1-1-11

< >|p1βp-1α|H|p1αp-1β|   = g1β-1α1α-1β - g1β-1α-1β1α (SCc)

= 0 - g1-1-11

< >|p1βp-1α|H|p1βp-1α|   = f1β1β + f-1α-1α + g1β-1α1β-1α - g1β-1α-1α1β (SCa)

= f11 + f-1-1 + g1-11-1 - 0
Substitution of these expressions give:

< >3P(ML=0,MS=0)|H|3P(ML=0,MS=0)  

 = 
1
2 (f11 + f-1-1 + g1-11-1 - g1-1-11 - g1-1-11 

 + f11 + f-1-1 + g1-11-1)
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 = f11 + f-1-1 + g1-11-1 - g1-1-11

7. iii. 1S(ML=0,MS=0); 
1

3
(|p0αp0β| - |p1αp-1β| - |p-1αp1β|) 

< >1S(ML=0,MS=0)|H|1S(ML=0,MS=0)  

 = 
1
3(< >|p0αp0β|H|p0αp0β|  - < >|p0αp0β|H|p1αp-1β|  

     - < >|p0αp0β|H|p-1αp1β|   - < >|p1αp-1β|H|p0αp0β|  

     + < >|p1αp-1β|H|p1αp-1β|   + < >|p1αp-1β|H|p-1αp1β|  

     - < >|p-1αp1β|H|p0αp0β|   + < >|p-1αp1β|H|p1αp-1β|  

     + < >|p-1αp1β|H|p-1αp1β|  )
Evaluating each matrix element gives:

< >|p0αp0β|H|p0αp0β|   = f0α0α + f0β0β + g0α0β0α0β - g0α0β0β0α (SCa)

= f00 + f00 + g0000 - 0

< >|p0αp0β|H|p1αp-1β|   = < >|p1αp-1β|H|p0αp0β|  

= g0α0β1α-1β - g0α0β-1β1α (SCc)
= g001-1 - 0

< >|p0αp0β|H|p-1αp1β|   = < >|p-1αp1β|H|p0αp0β|  

= g0α0β−1α1β - g0α0β1β−1α (SCc)
= g00-11 - 0

< >|p1αp-1β|H|p1αp-1β|   = f1α1α + f-1β-1β + g1α-1β1α-1β - g1α-1β-1β1α (SCa)

= f11 + f-1-1 + g1-11-1 - 0

< >|p1αp-1β|H|p-1αp1β|   = < >|p-1αp1β|H|p1αp-1β|  

= g1α-1β-1α1β - g1α-1β1β-1α (SCc)
= g1-1-11 - 0

< >|p-1αp1β|H|p-1αp1β|   = f-1α−1α + f1β1β + g-1α1β−1α1β - g-1α1β1β−1α (SCa)

= f-1-1 + f11 + g-11-11 - 0
Substitution of these expressions give:

< >1S(ML=0,MS=0)|H|1S(ML=0,MS=0)  

 = 
1
3(f00 + f00 + g0000 - g001-1 - g00-11 - g001-1 + f11 + f-1-1 

 + g1-11-1 + g1-1-11 - g00-11 + g1-1-11 + f-1-1 + f11 + g-11-11)
 = 

1
3(2f00 + 2f11 + 2f-1-1 + g0000 - 4g001-1 + 2g1-11-1 + 2g1-1-11) 

7. iv. 1D(ML=0,MS=0) = 
1

6
( )2|p0αp0β|  + |p1αp-1β|  + |p-1αp1β|  

Evaluating < >1D(ML=0,MS=0)|H|1D(ML=0,MS=0)   we note that all the Slater Condon matrix

elements generated are the same as those evaluated in part iii. (the signs for the
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wavefunction components and the multiplicative factor of two for one of the components,
however, are different).

< >1D(ML=0,MS=0)|H|1D(ML=0,MS=0)  

 = 
1
6(4f00 + 4f00 + 4g0000 + 2g001-1 + 2g00-11 + 2g001-1 + f11 

 + f-1-1 + g1-11-1 + g1-1-11 + 2g00-11 + g1-1-11 + f-1-1 + f11

 + g-11-11)
 = 

1
6(8f00 + 2f11 + 2f-1-1 + 4g0000 + 8g001-1 + 2g1-11-1 + 2g1-1-11) 

8. i. 1∆(ML=2,MS=0) = |π1απ1β|

< >1∆(ML=2,MS=0)|H|1∆(ML=2,MS=0)  

 = < >|π1απ1β|H|π1απ1β|  

 = f1α1α + f1β1β + g1α1β1α1β - g1α1β1β1α (SCa)
 = f11 + f11 + g1111 - 0
 = 2f11 + g1111

8. ii. 1Σ(ML=0,MS=0) = 
1

2
( )|π1απ-1β|  -  |π1βπ-1α|  

< >3Σ(ML=0,MS=0)|H|3Σ(ML=0,MS=0)  

 = 
1
2(< >|π1απ-1β|H|π1απ-1β|  - < >|π1απ-1β|H|π1βπ-1α|  

     - < >|π1βπ-1α|H|π1απ-1β|   + < >|π1βπ-1α|H|π1βπ-1α|  )
Evaluating each matrix element gives:

< >|π1απ-1β|H|π1απ-1β|   = f1α1α + f-1β-1β + g1α-1β1α-1β - g1α-1β-1β1α (SCa)

= f11 + f-1-1 + g1-11-1 - 0

< >|π1απ-1β|H|π1βπ-1α|   = g1α-1β1β-1α - g1α-1β-1α1β (SCc)

= 0 - g1-1-11

< >|π1βπ-1α|H|π1απ-1β|   = g1β-1α1α-1β - g1β-1α-1β1α (SCc)

= 0 - g1-1-11

< >|π1βπ-1α|H|π1βπ-1α|   = f1β1β + f-1α-1α + g1β-1α1β-1α - g1β-1α-1α1β (SCa)

= f11 + f-1-1 + g1-11-1 - 0
Substitution of these expressions give:

< >3Σ(ML=0,MS=0)|H|3Σ(ML=0,MS=0)  

 = 
1
2 (f11 + f-1-1 + g1-11-1+ g1-1-11+ g1-1-11 + f11 + f-1-1 + g1-11-1) 

 = f11 + f-1-1 + g1-11-1+ g1-1-11

8. iii. 3Σ(ML=0,MS=0) = 
1

2
( )|π1απ-1β|  + |π1βπ-1α|  

< >3Σ(ML=0,MS=0)|H|3Σ(ML=0,MS=0)  

 = 
1
2(< >|π1απ-1β|H|π1απ-1β|  + < >|π1απ-1β|H|π1βπ-1α|  
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     + < >|π1βπ-1α|H|π1απ-1β|   + < >|π1βπ-1α|H|π1βπ-1α|  )
Evaluating each matrix element gives:

< >|π1απ-1β|H|π1απ-1β|   = f1α1α + f-1β-1β + g1α-1β1α-1β - g1α-1β-1β1α (SCa)

= f11 + f-1-1 + g1-11-1 - 0

< >|π1απ-1β|H|π1βπ-1α|   = g1α-1β1β-1α - g1α-1β-1α1β (SCc)

= 0 - g1-1-11

< >|π1βπ-1α|H|π1απ-1β|   = g1β-1α1α-1β - g1β-1α-1β1α (SCc)

= 0 - g1-1-11

< >|π1βπ-1α|H|π1βπ-1α|   = f1β1β + f-1α-1α + g1β-1α1β-1α - g1β-1α-1α1β (SCa)

= f11 + f-1-1 + g1-11-1 - 0
Substitution of these expressions give:

< >3Σ(ML=0,MS=0)|H|3Σ(ML=0,MS=0)  

 = 
1
2 (f11 + f-1-1 + g1-11-1- g1-1-11- g1-1-11 + f11 + f-1-1 + g1-11-1) 

 = f11 + f-1-1 + g1-11-1- g1-1-11

    Problems   

1. a. All the Slater determinants have in common the |1sα1sβ2sα2sβ| "core" and
hence this component will not be written out explicitly for each case.
3P(ML=1,MS=1) = |p1αp0α|

= |
1

2
(px + ipy) α(pz)α|

= 
1

2
( )|pxαpzα| + i|pyαpzα|  

3P(ML=0,MS=1) = |p1αp-1α|

= |
1

2
(px + ipy) α 1

2
(px - ipy) α|

= 
1
2( )|pxαpxα| - i|pxαpyα| + i|pyαpxα|  + |pyαpyα|  

= 
1
2( )0 - i|pxαpyα| - i|pxαpyα|  +  0  

= 
1
2( )-2i|pxαpyα|  

= -i|pxαpyα|
3P(ML=-1,MS=1) = |p-1αp0α|

= |
1

2
(px - ipy) α(pz)α|

= 
1

2
( )|pxαpzα| - i|pyαpzα|  

As you can see, the symmetries of each of these states cannot be labeled with a single
irreducible representation of the C2v point group.  For example, |pxαpzα| is xz (B1) and
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|pyαpzα| is yz (B2) and hence the 3P(ML=1,MS=1) state is a combination of B1 and B2

symmetries.  But, the three 3P(ML,MS=1) functions are degenerate for the C atom and any
combination of these three functions would also be degenerate.  Therefore we can choose
new combinations which can be labeled with "pure" C2v point group labels.
3P(xz,MS=1) = |pxαpzα|

 = 
1

2
( )3P(ML=1,MS=1) + 3P(ML=-1,MS=1)   = 3B1

3P(yx,MS=1) = |pyαpxα|

  = 
1
i ( )3P(ML=0,MS=1)   = 3A2

3P(yz,MS=1) = |pyαpzα|

  = 
1

i 2
( )3P(ML=1,MS=1) - 3P(ML=-1,MS=1)   = 3B2

Now we can do likewise for the five degenerate 1D states:
1D(ML=2,MS=0) = |p1αp1β|

= |
1

2
(px + ipy) α 1

2
(px + ipy) β|

= 
1
2( )|pxαpxβ| + i|pxαpyβ| + i|pyαpxβ|  - |pyαpyβ|  

1D(ML=-2,MS=0) = |p-1αp-1β|

= |
1

2
(px - ipy) α 1

2
(px - ipy) β|

= 
1
2( )|pxαpxβ| - i|pxαpyβ| - i|pyαpxβ|  - |pyαpyβ|  

1D(ML=1,MS=0) = 
1

2
( )|p0αp1β|  - |p0βp1α|  

= 
1

2



|(pz)α

1

2
(px + ipy)β| - |(pz)β

1

2
(px + ipy)α|  

= 
1
2( )|pzαpxβ| + i|pzαpyβ|  - |pzβpxα| - i|pzβpyα|  

1D(ML=-1,MS=0) = 
1

2
( )|p0αp-1β|  - |p0βp-1α|  

= 
1

2



|(pz)α

1

2
(px -  ipy)β| - |(pz)β

1

2
(px -  ipy)α|  

= 
1
2( )|pzαpxβ| - i|pzαpyβ|  - |pzβpxα| + i|pzβpyα|  

1D(ML=0,MS=0) = 
1

6
( )2|p0αp0β|  + |p1αp-1β|  + |p-1αp1β|  

= 
1

6
(2|pzαpzβ| + |

1

2
(px + ipy)α 1

2
(px - ipy)β| 

 + |
1

2
(px - ipy) α 1

2
(px + ipy) β|)

= 
1

6
(2|pzαpzβ| 
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 + 
1
2( )|pxαpxβ| - i|pxαpyβ| + i|pyαpxβ|  + |pyαpyβ|  

 + 
1
2( )|pxαpxβ| + i|pxαpyβ| - i|pyαpxβ|  + |pyαpyβ|  )

= 
1

6
( )2|pzαpzβ|  + |pxαpxβ|  + |pyαpyβ|  )

Analogous to the three 3P states we can also choose combinations of the five degenerate 1D
states which can be labeled with "pure" C2v point group labels:
1D(xx-yy,MS=0) = |pxαpxβ| - |pyαpyβ|

 = ( )1D(ML=2,MS=0) + 1D(ML=-2,MS=0)   = 1A1
1D(yx,MS=0) = |pxαpyβ| + |pyαpxβ|

 = 
1
i ( )1D(ML=2,MS=0) - 1D(ML=-2,MS=0)   = 1A2

1D(zx,MS=0) = |pzαpxβ| - |pzβpxα|

  = ( )1D(ML=1,MS=0) + 1D(ML=-1,MS=0)   = 1B1
1D(zy,MS=0) = |pzαpyβ| - |pzβpyα|

  = 
1
i ( )1D(ML=1,MS=0) - 1D(ML=-1,MS=0)   = 1B2

1D(2zz+xx+yy,MS=0) = 
1

6
( )2|pzαpzβ|  + |pxαpxβ|  + |pyαpyβ|  )

  = 1D(ML=0,MS=0) = 1A1

The only state left is the 1S:
1S(ML=0,MS=0) = 

1

3
( )|p0αp0β|  - |p1αp-1β|  - |p-1αp1β|  

= 
1

3
(|pzαpzβ| - |

1

2
(px + ipy)α 1

2
(px - ipy)β| 

 - |
1

2
(px - ipy) α 1

2
(px + ipy) β|)

= 
1

3
(|pzαpzβ| 

 - 
1
2( )|pxαpxβ| - i|pxαpyβ| + i|pyαpxβ|  + |pyαpyβ|  

 - 
1
2( )|pxαpxβ| + i|pxαpyβ| - i|pyαpxβ|  + |pyαpyβ|  )

= 
1

3
( )|pzαpzβ|  - |pxαpxβ|  - |pyαpyβ|  )

Each of the components of this state are A1 and hence this state has
A1 symmetry.
1. b. Forming SALC-AOs from the C and H atomic orbitals would generate the
following:
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H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H1s + H1s = σg = a1 H1s - H1s = σu = b2

C2s = a1 C2p = a1 C2p = b2 C2p = b1
z xy

The bonding, nonbonding, and antibonding orbitals of CH2 can be illustrated in the
following manner:

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

σ = a1 σ = b2 n = a1 pπ = b1

σ* = a1 σ* = b2

1. c.
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Orbital-correlation diagram for the reaction C + H2  -----> CH2 (bent)

a1(bonding)

b2(antibonding)
a1(antibonding)

b1(2pπ)

a1(non-bonding)

b2(bonding)

CH2 (bent)C + H2

σg(a1)

2s(a1)

σu(b2)

2px(b1)     2py(b2)     2pz(a1)

1. d. - e. It is necessary to determine how the wavefunctions found in part a. correlate
with states of the CH2 molecule:

3P(xz,MS=1); 3B1 = σg2s2pxpz → σ2n2pπσ*
3P(yx,MS=1); 3A2 = σg2s2pxpy → σ2n2pπσ
3P(yz,MS=1); 3B2 = σg2s2pypz → σ2n2σσ*
1D(xx-yy,MS=0); 1A1 → σ2n2pπ2 - σ2n2σ2

1D(yx,MS=0); 1A2 → σ2n2σpπ
1D(zx,MS=0); 1B1 → σ2n2σ*pπ
1D(zy,MS=0); 1B2 → σ2n2σ*σ
1D(2zz+xx+yy,MS=0); 1A1 → 2σ2n2σ*2 + σ2n2pπ2 + σ2n2σ2

Note, the C + H2 state to which the lowest 1A1 (σ2n2σ2) CH2 state decomposes would be

σg2s2py2.  This state (σg2s2py2) cannot be obtained by a simple combination of the 1D

states.  In order to obtain pure σg2s2py2 it is necessary to combine 1S with 1D.  For
example,

σg2s2py2 = 
1
6( )6  1D(0,0) - 2 3  1S(0,0)   - 

1
2( )1D(2,0) + 1D(-2,0)  .

This indicates that a CCD must be drawn with a barrier near the 1D asymptote to represent
the fact that 1A1 CH2 correlates with a mixture of 1D and 1S carbon plus hydrogen.  The C

+ H2 state to which the lowest 3B1 (σ2nσ2pπ) CH2 state decomposes would be σg2spy2px.
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(3B1
3B2

3A2)

(1B2
1A1

1A1
1A2

1B1)

C(1D) + H2

   29.2 Kcal/mole

1A1(σ
2
σ

2
n2)

3B1(σ2σ2npπ)

3A2(σ
2
σn2pπ)

3B2(σ
2
σn2σ∗)

3B1(σ
2
n2σ∗pπ)

3B1

C(3P) + H2

σg
2
spy

2px

3B1
3B1

3B2

3A2

1A1

78.8 Kcal/mole

97.0 Kcal/mole

1. f. If you follow the 3B1 component of the C(3P) + H2 (since it leads to the ground-

state products) to 3B1 CH2 you must go over an approximately 20 Kcal/mole barrier.  Of

course this path produces 3B1 CH2 product.  Distortions away from C2v symmetry, for
example to Cs symmetry, would make the a1 and b2 orbitals identical in symmetry (a').

The b1 orbitals would maintain their identity going to a'' symmetry.  Thus 3B1 and 3A2

(both 3A'' in Cs symmetry and     odd     under reflection through the molecular plane) can mix.

The system could thus follow the 3A2 component of the C(3P) + H2 surface to the place



122

(marked with a circle on the CCD) where it crosses the 3B1 surface upon which it then
moves and continues to products.  As a result, the barrier would be lowered.

You can estimate when the barrier occurs (late or early) using thermodynamic
information for the reaction (i.e. slopes and asymptotic energies).  For example, an early
barrier would be obtained for a reaction with the characteristics:

Progress of Reaction

Energy

and a late barrier would be obtained for a reaction with the characteristics:

Progress of Reaction

Energy

This relation between reaction endothermicity or exothermicity is known as the Hammond
postulate.  Note that the C(3P1) + H2 --> CH2 reaction of interest here (see the CCD) has
an early barrier.
1. g. The reaction C(1D) + H2 ---> CH2 (1A1) should have no symmetry barrier (this

can be recognized by following the 1A1 (C(1D) + H2) reactants down to the 1A1 (CH2)
products on the CCD).
2. This problem in many respects is analogous to problem 1.
The 3B1 surface certainly requires a two configuration CI wavefunction; the σ2σ2npx

(π2py2spx) and the σ2n2pxσ* (π2s2pxpz).  The 1A1 surface could use the σ2σ2n2 (π2s2py2)

only but once again there is no combination of 1D determinants which gives purely this
configuration (π2s2py2).  Thus mixing of both 1D and 1S determinants are necessary to
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yield the required π2s2py2 configuration.  Hence even the 1A1 surface would require a
multiconfigurational wavefunction for adequate description.

C:

H

H

H

C

C

H

x

z

y
+      C

n

σ∗CC

σCC

σ∗CC

σCC

2px(b1)     2py(b2)     2pz(a1)

π*(b2)

2s(a1)

π(a1)

C2H2 + C C3H2 

b2(bonding)

a1(non-bonding)

b1(2pπ)

a1(antibonding)
b2(antibonding)

a1(bonding)

Orbital-correlation diagram for the reaction C2H2 + C -----> C3H2

Configuration correlation diagram for the reaction C2H2 + C ---> C3H2.
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Ea 
3B1

∆E 3B1

Ea > ∆E  (for 3B1)

Ea = ∆E  (for 1A1)

π
2
s2pypz

3B2

π
2
s2pxpy

3A2

π
2
s2pxpz

3B1

π
2
s2py

2  1A1

C(1D) + C2H2

1A1(σ
2
σ

2
n2)

3B1(σ2σ2npπ)

3A2(σ
2
σn2pπ)

3B2(σ
2
σn2σ∗)

3B1(σ
2
n2σ∗pπ)

3B1

C(3P) + C2H2

π
2
spy

2px

3. a.

< >σg|σg   = < ( )2+2S
-1
2
( )1sA +  1sB  |( )2+2S

-1
2
( )1sA +  1sB >  

 = ( )2+2S  -1 (< >1sA|1sA   + < >1sA|1sB   + < >1sB|1sA   + < >1sB|1sB  )

 = (0.285)((1.000) + (0.753) + (0.753) + (1.000))
 = 0.999 ≈ 1

< >σg|σu   = < ( )2+2S
-1
2
( )1sA +  1sB  |( )2-2S

-1
2
( )1sA -  1sB >  

 = ( )2+2S
-1
2( )2-2S

-1
2(< >1sA|1sA  + < >1sA|1sB  

 + < >1sB|1sA   + < >1sB|1sB  )

 = (1.423)(0.534)((1.000) - (0.753) + (0.753) - (1.000))
 = 0

< >σu|σu   = < ( )2-2S
-1
2
( )1sA -  1sB  |( )2-2S

-1
2
( )1sA -  1sB >  

 = ( )2-2S  -1(< >1sA|1sA   - < >1sA|1sB   - < >1sB|1sA   + < >1sB|1sB  )

 = (2.024)((1.000) - (0.753) - (0.753) + (1.000))
 = 1.000
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3. b.

< >σg|h|σg   = < ( )2+2S
-1
2
( )1sA +  1sB  |h|( )2+2S

-1
2
( )1sA +  1sB >  

 = ( )2+2S  -1 (< >1sA|h|1sA   + < >1sA|h|1sB  

 + < >1sB|h|1sA   + < >1sB|h|1sB  )

 = (0.285)((-1.110) + (-0.968) + (-0.968) + (-1.110))
 = -1.184

< >σu|h|σu   = < ( )2-2S
-1
2
( )1sA -  1sB  |h|( )2-2S

-1
2
( )1sA -  1sB >  

 = ( )2-2S  -1 (< >1sA|h|1sA   - < >1sA|h|1sB  

 - < >1sB|h|1sA   + < >1sB|h|1sB  )

 = (2.024)((-1.110) + (0.968) + (0.968) + (-1.110))
 = -0.575

< >σgσg|h|σgσg   ≡ < >gg|gg   = ( )2+2S  -1( )2+2S  -1 .

< >( )1sA +  1sB ( )1sA +  1sB |( )1sA +  1sB ( )1sA +  1sB  

 = ( )2+2S  -2. (< >AA|AA   + < >AA|AB   + < >AA|BA   + < >AA|BB   +

  < >AB|AA   + < >AB|AB   + < >AB|BA   + < >AB|BB   +

  < >BA|AA   + < >BA|AB   + < >BA|BA   + < >BA|BB   +

  < >BB|AA   + < >BB|AB   + < >BB|BA   + < >BB|BB  )
 = (0.081) ( (0.625) + (0.426) + (0.426) + (0.323) +

(0.426) + (0.504) + (0.323) + (0.426) +
(0.426) + (0.323) + (0.504) + (0.426) +
(0.323) + (0.426) + (0.426) + (0.625) )

 = 0.564

< >uu|uu   = ( )2-2S  -1( )2-2S  -1 .

< >( )1sA -  1sB ( )1sA -  1sB |( )1sA -  1sB ( )1sA -  1sB  

 = ( )2-2S  -2. (< >AA|AA   - < >AA|AB   - < >AA|BA   + < >AA|BB   -

  < >AB|AA   + < >AB|AB   + < >AB|BA   - < >AB|BB   -

  < >BA|AA   + < >BA|AB   + < >BA|BA   - < >BA|BB   +

  < >BB|AA   - < >BB|AB   - < >BB|BA   + < >BB|BB  )
 = (4.100) ( (0.625) - (0.426) - (0.426) + (0.323) -

(0.426) + (0.504) + (0.323) - (0.426) -
(0.426) + (0.323) + (0.504) - (0.426) +
(0.323) - (0.426) - (0.426) + (0.625) )

 = 0.582

< >gg|uu   = ( )2+2S  -1( )2-2S  -1 .

< >( )1sA +  1sB ( )1sA +  1sB |( )1sA -  1sB ( )1sA -  1sB  
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 = ( )2+2S  -1( )2-2S  -1 .
(< >AA|AA   - < >AA|AB   - < >AA|BA   + < >AA|BB   +

< >AB|AA   - < >AB|AB   - < >AB|BA   + < >AB|BB   +

< >BA|AA   - < >BA|AB   - < >BA|BA   + < >BA|BB   +

< >BB|AA   - < >BB|AB   - < >BB|BA   + < >BB|BB  )
 = (0.285)(2.024) ((0.625) - (0.426) - (0.426) + (0.323) +

 (0.426) - (0.504) - (0.323) + (0.426) +
 (0.426) - (0.323) - (0.504) + (0.426) +
 (0.323) - (0.426) - (0.426) + (0.625))

 = 0.140

< >gu|gu   = ( )2+2S  -1( )2-2S  -1 .

< >( )1sA +  1sB ( )1sA -  1sB |( )1sA +  1sB ( )1sA -  1sB  

 = ( )2+2S  -1( )2-2S  -1 .
(< >AA|AA   - < >AA|AB   + < >AA|BA   - < >AA|BB   -

< >AB|AA   + < >AB|AB   - < >AB|BA   + < >AB|BB   +

< >BA|AA   - < >BA|AB   + < >BA|BA   - < >BA|BB   -

< >BB|AA   + < >BB|AB   - < >BB|BA   + < >BB|BB  )
 = (0.285)(2.024) ((0.625) - (0.426) + (0.426) - (0.323) -

 (0.426) + (0.504) - (0.323) + (0.426) +
 (0.426) - (0.323) + (0.504) - (0.426) -
 (0.323) + (0.426) - (0.426) + (0.625))

 = 0.557
Note, that < >gg|gu   = < >uu|ug   = 0 from symmetry considerations, but this can be easily
verified.  For example,

< >gg|gu   = ( )2+2S
-1
2( )2-2S

-3
2  .

< >( )1sA +  1sB ( )1sA +  1sB |( )1sA +  1sB ( )1sA -  1sB  

 = ( )2+2S
-1
2( )2-2S

-3
2  .

(< >AA|AA   - < >AA|AB   + < >AA|BA   - < >AA|BB   +

< >AB|AA   - < >AB|AB   + < >AB|BA   - < >AB|BB   +

< >BA|AA   - < >BA|AB   + < >BA|BA   - < >BA|BB   +

< >BB|AA   - < >BB|AB   + < >BB|BA   - < >BB|BB  )
 = (0.534)(2.880) ((0.625) - (0.426) + (0.426) - (0.323) +

 (0.426) - (0.504) + (0.323) - (0.426) +
 (0.426) - (0.323) + (0.504) - (0.426) +
 (0.323) - (0.426) + (0.426) - (0.625))

 = 0.000
3. c. We can now set up the configuration interaction Hamiltonian matrix.  The
elements are evaluated by using the Slater-Condon rules as shown in the text.

H11 = < >σgασgβ|H|σgασgβ  
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      = 2fσgσg
 + gσgσgσgσg

      = 2(-1.184) + 0.564 = -1.804

H21 = H12 = < >σgασgβ|H|σuασuβ  

      = gσgσgσuσu
      = 0.140

H22 = < >σuασuβ|H|σuασuβ  

      = 2fσuσu
 + gσuσuσuσu

      = 2(-0.575) + 0.582 = -0.568
3. d. Solving this eigenvalue problem:









-1.804 - ε 0.140

0.140 -0.568 - ε
  = 0

(-1.804 - ε)(-0.568 - ε) - (0.140)2 = 0

1.025 + 1.804ε + 0.568ε + ε2 - 0.0196 = 0

ε2 + 2.372ε + 1.005 = 0

ε = 
-2.372 ± (2.372)2 - 4(1)(1.005)

(2)(1)  

  = -1.186 ± 0.634
  = -1.820, and -0.552.

Solving for the coefficients:









-1.804 - ε 0.140

0.140 -0.568 - ε
 






C1

C2
  = 







0

0
 

For the first eigenvalue this becomes:







-1.804 + 1.820 0.140

0.140 -0.568 + 1.820
 






C1

C2
  = 







0

0
 







0.016 0.140

0.140 1.252
 






C1

C2
  = 







0

0
 

(0.140)(C1) + (1.252)(C2) = 0
C1 = -8.943 C2

C12 + C22 = 1 (from normalization)

(-8.943 C2)2 + C22 = 1

80.975 C22 = 1
C2 = 0.111, C1 = -0.994

For the second eigenvalue this becomes:







-1.804 + 0.552 0.140

0.140 -0.568 + 0.552
 






C1

C2
  = 







0

0
 







-1.252 0.140

0.140 -0.016
 






C1

C2
  = 







0

0
 

(-1.252)(C1) + (0.140)(C2) = 0
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C1 = 0.112 C2

C12 + C22 = 1 (from normalization)

(0.112 C2)2 + C22 = 1

1.0125 C22 = 1
C2 = 0.994, C1 = 0.111

3. e. The polarized orbitals, R± , are given by:

R± = σg ± 
C2
C1

  σu

R± = σg ± 
0.111
0.994  σu

R± = σg ± 0.334 σu

R+ = σg + 0.334 σu (left polarized)

R- = σg − 0.334 σu (right polarized)

Section 4 Exercises, Problems, and Solutions

    Exercises:

1. Consider the molecules CCl4, CHCl3, and CH2Cl2.
a. What kind of rotor are they (symmetric top, etc; do not bother with oblate, or

near-prolate, etc.)
b. Will they show pure rotational spectra?
c. Assume that ammonia shows a pure rotational spectrum.  If the rotational

constants are 9.44 and 6.20 cm-1, use the energy expression:
E = (A - B) K2 + B J(J + 1),

to calculate the energies (in cm-1) of the first three lines (i.e., those with lowest K, J
quantum number for the absorbing level) in the absorption spectrum (ignoring higher order
terms in the energy expression).
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2. The molecule 11B 16O has a vibrational frequency ωe = 1885 cm-1, a rotational constant

Be = 1.78 cm-1, and a bond energy from the bottom of the potential well of D0
e  = 8.28 eV.

Use integral atomic masses in the following:
a. In the approximation that the molecule can be represented as a Morse oscillator,

calculate the bond length, Re in angstroms, the centrifugal distortion constant, De in cm-1,

the anharmonicity constant, ωexe in cm-1, the zero-point corrected bond energy, D0
0  in eV,

the vibration rotation interaction constant, αe in cm-1, and the vibrational state specific

rotation constants, B0 and B1 in cm-1.  Use the vibration-rotation energy expression for a
Morse oscillator:

E = h
_
 ωe(v + 1/2) - h

_
 ωexe(v + 1/2)2 + BvJ(J + 1) - DeJ2(J + 1)2, where

Bv = Be - αe(v + 1/2), αe = 
-6Be2

h
_ωe

  + 
6 Be3h

_ωexe

h
_ωe

 , and De = 
4Be3

h
_ωe2

 .

b. Will this molecule show a pure rotation spectrum?  A vibration-rotation
spectrum?  Assume that it does, what are the energies (in cm-1) of the first three lines in the
P branch (∆v = +1, ∆J = -1) of the fundamental absorption?

3. Consider trans-C2H2Cl2.  The vibrational normal modes of this molecule are shown
below.  What is the symmetry of the molecule?  Label each of the modes with the
appropriate irreducible representation.
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    Problems:   

1. Suppose you are given two molecules (one is CH2 and the other is  CH2
- but you don't

know which is which).  Both molecules have C2v symmetry.  The CH bond length of
molecule I is 1.121 Å and for  molecule II it is 1.076 Å.  The bond angle of molecule I is
104° and for molecule II it is 136°.

R

θ HH

y

z

C

a. Using a coordinate system centered on the C nucleus as shown above (the
molecule is in the YZ plane), compute the moment of inertia tensors of both species (I and
II).  The definitions of the components of the tensor are, for example:

Ixx = ∑
j

mj(yj2 +  z j2)  - M(Y2 + Z2)

Ixy = -∑
j

mjxjyj  - MXY

Here, mj is the mass of the nucleus j, M is the mass of the entire molecule, and X, Y, Z are
the coordinates of the center of mass of the molecule.  Use Å for distances and amu's for
masses.

b. Find the principal moments of inertia Ia < Ib < Ic for both compounds ( in amu

Å2 units) and convert these values into rotational constants A, B, and C in cm-1 using, for
example,

A = h(8π2cIa)-1.
c. Both compounds are "nearly prolate tops" whose energy levels can be well

approximated using the prolate top formula:
E = (A - B) K2 + B J(J + 1),

   if    one uses for the B constant the average of the B and C valued determined earlier.  Thus,
take B and C values (for each compound) and average them to produce an effective B
constant to use in the above energy formula.  Write down (in cm-1 units) the energy
formula for both species.  What values are J and K allowed to assume?  What is the
degeneracy of the level labeled by a given J and K?

d. Draw a picture of both compounds and show the directions of the three principle
axes (a,b,c).  On these pictures show the kind of rotational motion associated with the
quantum number K.

e. Given that the electronic    transition     moment vector µ→  connecting species I and II
is directed along the Y axis, what are the selection rules J and K?
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f. Suppose you are given the photoelectron spectrum of CH2
-.  In this spectrum Jj

= Ji + 1 transitions are called R-branch absorptions and those obeying Jj = Ji - 1 are called
P-branch transitions.  The spacing between lines can increase or decrease as functions of Ji
depending on the changes in the moment of inertia for the transition.  If spacings grow
closer and closer, we say that the spectrum exhibits a so-called band head formation.  In the
photoelectron spectrum that you are given, a rotational analysis of the vibrational lines in
this spectrum is carried out and it is found that the R-branches show band head formation
but the P-branches do not.  Based on this information, determine which compound I or II

is the CH2
- anion.  Explain you reasoning.

g. At what J value (of the absorbing species) does the band head occur and at what
rotational energy difference?

2. Let us consider the vibrational motions of benzene.  To consider all of the vibrational
modes of benzene we should attach a set of displacement vectors in the x, y, and z
directions to each atom in the molecule (giving 36 vectors in all), and evaluate how these
transform under the symmetry operations of D6h.  For this problem, however, let's only
inquire about the C-H stretching vibrations.

a. Represent the C-H stretching motion on each C-H bond by an outward-directed
vector on each H atom, designated ri:

H

H

H

H

H

H

r2

r3

r4

r5

r6

r1

These vectors form the basis for a reducible representation.  Evaluate the characters for this
reducible representation under the symmetry operations of the D6h group.

b. Decompose the reducible representation you obtained in part a. into its
irreducible components.  These are the symmetries of the various C-H stretching
vibrational modes in benzene.

c. The vibrational state with zero quanta in each of the vibrational modes (the
ground vibrational state) of any molecule always belongs to the totally symmetric
representation.  For benzene the ground vibrational state is therefore of A1g symmetry.  An
excited state which has one quantum of vibrational excitation in a mode which is of a given
symmetry species has the same symmetry species as the mode which is excited (because
the vibrational wave functions are given as Hermite polynomials in the stretching
coordinate).  Thus, for example, excitation (by one quantum) of a vibrational mode of A2u
symmetry gives a wavefunction of A2u symmetry.  To resolve the question of what
vibrational modes may be excited by the absorption of infrared radiation we must examine
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the x, y, and z components of the transition dipole integral for initial and final state wave
functions ψi and ψf, respectively:

|< ψf | x | ψi >| , |< ψf | y | ψi >| , and |< ψf | z | ψi >| .
Using the information provided above, which of the C-H vibrational modes of benzene will
be infrared-active, and how will the transitions be polarized?  How many C-H vibrations
will you observe in the infrared spectrum of benzene?

d. A vibrational mode will be active in Raman spectroscopy only if one of the
following integrals is nonzero:

|< ψf | xy | ψi >| , |< ψf | xz | ψi >| , |< ψf | yz | ψi >| ,

|< ψf | x2 | ψi >| , |< ψf | y2 | ψi >| , and |< ψf | z2 | ψi >| .
Using the fact that the quadratic operators transform according to the irreducible
representations:

(x2 + y2, z2) ⇒ A1g

(xz, yz) ⇒ E1g

(x2 - y2, xy) ⇒ E2g
Determine which of the C-H vibrational modes will be Raman-active.

e. Are there any of the C-H stretching vibrational motions of benzene which cannot
be observed in either infrared of Raman spectroscopy?  Give the irreducible representation
label for these unobservable modes.
3. In treating the vibrational and rotational motion of a diatomic molecule having reduced
mass µ, equilibrium bond length re and harmonic force constant k, we are faced with the
following radial Schrödinger equation:

-h2

2µr2
 
d
dr 



r2  dR

dr   + 
J(J + 1)h-2

2µr2
  R + 

1
2  k(r - re)2 R = E R

a. Show that the substitution R = r-1F leads to:

-h2

2µ
  F'' + 

J(J + 1)h-2

2µr2
  F + 

1
2  k(r - re)2 F = E F

b. Taking r = re + ∆r and expanding (1 + x)-2 = 1 - 2x + 3x2 + ...,

show that the so-called vibration-rotation coupling term 
J(J + 1)h-2

2µr2
  can be approximated

(for small ∆r) by 
J(J + 1)h-2

2µre2
 








1  -  
2∆r
re

 +  
3∆r2

re2
 .  Keep terms only through order ∆r2.

c. Show that, through terms of order ∆r2, the above equation for F can be
rearranged to yield a new equation of the form:

-h-2

2µ
  F'' + 

1
2 k- (r - re- ) 2 F = 









E -  
J(J + 1)h-2

2µre2
 +  ∆   F

Give explicit expressions for how the modified force constant k-  , bond length re-  , and

energy shift ∆ depend on J, k, re, and µ.
d. Given the above modified vibrational problem, we can now conclude that the

modified energy levels are:
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E = h- k-

µ
 




v  +  

1
2   + 

J(J + 1)h-2

2µre2
  - ∆.

Explain how the conclusion is "obvious", how for J = 0, k = k-  , and ∆ = 0, we obtain the
usual harmonic oscillator energy levels.  Describe how the energy levels would be expected
to vary as J increases from zero and explain how these changes arise from changes in k and
re.  Explain in terms of physical forces involved in the rotating-vibrating molecule why re
and k are changed by rotation.

Solutions
    Exercises:   

1. a. CCl4 is tetrahedral and therefore is a spherical top.  CHCl3 has C3v symmetry
and therefore is a symmetric top.  CH2Cl2 has C2v symmetry and therefore is an
asymmetric top.

b. CCl4 has such high symmetry that it will not exhibit pure rotational spectra.
CHCl3 and CH2Cl2 will both exhibit pure rotation spectra.

c. NH3 is a symmetric top (oblate).  Use the given energy expression,

E = (A - B) K2 + B J(J + 1),

A = 6.20 cm-1, B = 9.44 cm-1, selection rules ∆J = ±1, and the fact that µ0
→  lies along the

figure axis such that ∆K = 0, to give:

∆E = 2B (J + 1) = 2B, 4B, and 6B (J = 0, 1, and 2).

So, lines are at 18.88 cm-1, 37.76 cm-1, and 56.64 cm-1.

2. To convert between cm-1 and energy, multiply by hc = (6.62618x10-34J
sec)(2.997925x1010cm sec-1) = 1.9865x1023 J cm.
Let all quantities in cm-1 be designated with a bar,

e.g. Be


  = 1.78 cm-1.

a. hcBe


  = 
h
_2

2µRe2
  

Re = 
h
_

2µhcBe


  , 

µ = 
mBmO

mB +  m O
  = 

(11)(16)
(11 + 16)  x 1.66056x10 -27 kg

   = 1.0824x10-26 kg.

hcBe


  = hc(1.78 cm-1) = 3.5359x10-23 J

Re = 
1.05459x10 -34 J sec

(2)1.0824x10-26 kg.3.5359x10-23 J
  

Re = 1.205x10-10 m = 1.205 Å
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De = 
4Be3

h
_ωe2

  , De


  = 
4Be

3

ωe
2

   = 
(4)(1.78 cm-1)3

(1885 cm-1)2
  = 6.35x10-6 cm-1

ωexe = 
h
_ωe2

4D0
e

  , ωexe


  = 
ωe
2

4D0
e

   = 
(1885 cm-1)2

(4)(66782.2 cm-1)
  = 13.30 cm-1.

D0
0  = D0

e  - 
h
_ωe
2   + 

h
_ωexe

4   , D0
0


  = D0

e


  - 
ωe


2   + 
ωexe



4  

   = 66782.2 - 
1885

2   + 
13.3

4  

   = 65843.0 cm-1 = 8.16 eV.

αe = 
-6Be2

h
_ωe

  + 
6 Be3h

_ωexe

h
_ωe

 

αe


  = 
-6Be

2

ωe
   + 

6 Be
3ωexe



ωe
  

αe


  = 
(-6)(1.78)2

(1885)   + 
6 (1.78)3(13.3)

(1885)   = 0.0175 cm-1.

B0 = Be - αe(1/2) , B0


  = Be


  - αe


(1/2)  = 1.78 - 0.0175/2

  = 1.77 cm-1

B1 = Be - αe(3/2) , B1


  = Be


  - αe


(3/2)  = 1.78 - 0.0175(1.5)

  = 1.75 cm-1

b. The molecule has a dipole moment and so it should have a pure rotational
spectrum.  In addition, the dipole moment should change with R and so it should have a
vibration rotation spectrum.
The first three lines correspond to J = 1 → 0, J = 2 → 1, J = 3 → 2

E = h
_
 ωe(v + 1/2) - h

_
 ωexe(v + 1/2)2 + BvJ(J + 1) - DeJ2(J + 1)2

∆E = h
_
 ωe - 2h

_
 ωexe - B0J(J + 1) + B1J(J - 1) - 4DeJ3

∆E


  = ωe


  - 2ωexe


  - B0


 J(J + 1) + B1


 J(J - 1) - 4De


 J3

∆E


  = 1885 - 2(13.3) - 1.77J(J + 1) + 1.75J(J - 1) - 4(6.35x10-6)J3

     = 1858.4 - 1.77J(J + 1) + 1.75J(J - 1) - 2.54x10-5J3

∆E


(J = 1)   = 1854.9 cm-1

∆E


(J = 2)   = 1851.3 cm-1

∆E


(J = 3)   = 1847.7 cm-1

3. The C2H2Cl2 molecule has a σh plane of symmetry (plane of molecule), a C2 axis (⊥ to
plane), and inversion symmetry, this results in C2h symmetry.  Using C2h symmetry labels
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the modes can be labeled as follows: ν1, ν2, ν3, ν4, and ν5 are ag, ν6 and ν7 are au, ν8 is

bg, and ν9, ν10, ν11, and ν12 are bu.

    Problems:   

1.

R

θ HH

y

z

C

Molecule I Molecule II
RCH = 1.121 Å RCH = 1.076 Å

∠HCH = 104° ∠HCH = 136°
yH = R Sin (θ/2) = ±0.8834 yH = ±0.9976

zH = R Cos (θ/2) = -0.6902 zH = -0.4031
Center of Mass(COM):

clearly, X = Y = 0,

Z = 
12(0) - 2RCos(θ/2)

14   = -0.0986 Z = -0.0576

a. Ixx = ∑
j

mj(yj2 +  z j2)  - M(Y2 + Z2)

Ixy = -∑
j

mjxjyj  - MXY

Ixx = 2(1.121)2 - 14(-0.0986)2 Ixx = 2(1.076)2 - 14(-0.0576)2

      = 2.377       = 2.269
Iyy = 2(0.6902)2 - 14(-0.0986)2 Iyy = 2(0.4031)2 - 14(-0.0576)2

      = 0.8167       = 0.2786
Izz = 2(0.8834)2 Izz = 2(0.9976)2

     = 1.561      = 1.990
Ixz = Iyz = Ixy = 0

b. Since the moment of inertia tensor is already diagonal, the principal moments of
inertia have already been determined to be
(Ia < Ib < Ic):
Iyy < Izz < Ixx Iyy < Izz < Ixx
0.8167 < 1.561 < 2.377 0.2786 < 1.990 < 2.269

Using the formula: A = 
h

8π2cIa
  = 

6.626x10 -27

8π2(3x1010)Ia
  X 

6.02x1023

(1x10-8)2
 

   A = 
16.84

Ia
  cm-1
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similarly, B = 
16.84

Ib
  cm-1, and C = 

16.84
Ic

  cm-1.

So,
Molecule I Molecule II
y ⇒ A = 20.62 y ⇒ A = 60.45

z ⇒ B = 10.79 z ⇒ B = 8.46

x ⇒ C = 7.08 x ⇒ C = 7.42
c. Averaging B + C:

B = (B + C)/2 = 8.94 B = (B + C)/2 = 7.94
A - B = 11.68 A - B = 52.51
Using the prolate top formula:

E = (A - B) K2 + B J(J + 1),
Molecule I Molecule II
E = 11.68K2 + 8.94J(J + 1) E = 52.51K2 + 7.94J(J + 1)
Levels: J = 0,1,2,... and K = 0,1, ... J
For a given level defined by J and K, there are MJ degeneracies given by: (2J + 1) x









2 for  K ≠ 0

1 for  K = 0
 

d.
Molecule I Molecule II

HH

C

z => Ib

y => Ia

HH

y => Ia

z => Ib

C

e. Since µ→  is along Y, ∆K = 0 since K describes rotation about the y axis.

Therefore ∆J = ±1

f.     Assume    molecule I is CH2
- and molecule II is CH2.  Then,

∆E = EJj
(CH2) - EJi

(CH2
-), where:

E(CH2) = 52.51K2 + 7.94J(J + 1), and E(CH2
-) = 11.68K2 + 8.94J(J + 1)

For R-branches: Jj = Ji + 1, ∆K = 0:

∆ER = EJj
(CH2) - EJi

(CH2
-)

= 7.94(Ji + 1)(Ji + 1 + 1) - 8.94Ji(Ji + 1)
= (Ji + 1){7.94(Ji + 1 + 1) - 8.94Ji}
= (Ji + 1){(7.94- 8.94)Ji + 2(7.94)}
= (Ji + 1){-Ji + 15.88}

For P-branches: Jj = Ji - 1, ∆K = 0:

∆EP = EJj
(CH2) - EJi

(CH2
-)
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= 7.94(Ji - 1)(Ji - 1 + 1) - 8.94Ji(Ji + 1)
= Ji{7.94(Ji - 1) - 8.94(Ji + 1)}
= Ji{(7.94- 8.94)Ji - 7.94 - 8.94}
= Ji{-Ji - 16.88}

This indicates that the R branch lines occur at energies which grow closer and closer
together as J increases (since the 15.88 - Ji term will cancel).  The P branch lines occur at
energies which lie more and more negative (i.e. to the left of the origin).  So, you can

predict that if molecule I is CH2
- and molecule II is CH2 then the R-branch has a band head

and the P-branch does not.  This is observed therefore our assumption was correct:

molecule I is CH2
- and molecule II is CH2.

g. The band head occurs when 
d(∆ER)

dJ   = 0.

d(∆ER)
dJ   = 

d
dJ [(Ji + 1){-Ji + 15.88}] = 0

  = 
d
dJ(-Ji2 - Ji + 15.88Ji + 15.88)  = 0

  = -2Ji + 14.88 = 0

∴ Ji = 7.44,  so J = 7 or 8.
At J = 7.44:

∆ER = (J + 1){-J + 15.88}

∆ER = (7.44 + 1){-7.44 + 15.88} = (8.44)(8.44) = 71.2 cm-1 above 
the origin.

2. a.

D6h  E 2C6 2C3 C2 3C2' 3C2"  i 2S3 2S6 σh 3σd 3σv

A1g  1  1  1  1  1  1  1  1  1  1  1  1 x2+y2,z2

A2g  1  1  1  1 -1 -1  1  1  1  1 -1 -1 Rz
B1g  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1
B2g  1 -1  1 -1 -1  1  1 -1  1 -1 -1  1
E1g  2  1 -1 -2  0  0  2  1 -1 -2  0  0 (Rx,Ry) (xz,yz)
E2g  2 -1 -1  2  0  0  2 -1 -1  2  0  0 (x2-y2,xy)
A1u  1  1  1  1  1  1 -1 -1 -1 -1 -1 -1
A2u  1  1  1  1 -1 -1 -1 -1 -1 -1  1  1 z
B1u  1 -1  1 -1  1 -1 -1  1 -1  1 -1  1
B2u  1 -1  1 -1 -1  1 -1  1 -1  1  1 -1
E1u  2  1 -1 -2  0  0 -2 -1  1  2  0  0 (x,y)
E2u  2 -1 -1  2  0  0 -2  1  1 -2  0  0
ΓC-H 6 0 0 0 0 2 0 0 0 6 2 0

b. The number of irreducible representations may be found by using the following
formula:
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nirrep = 
1
g∑

R

χred(R)χirrep(R) ,

where g = the order of the point group (24 for D6h).

nA1g = 
1
24∑

R

ΓC-H(R).A1g(R) 

= 
1
24 {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)

       +(3)(0)(1)+(3)(2)(1)+(1)(0)(1)+(2)(0)(1)
       +(2)(0)(1)+(1)(6)(1)+(3)(2)(1)+(3)(0)(1)}
= 1

nA2g = 
1
24 {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)

      +(3)(0)(-1)+(3)(2)(-1)+(1)(0)(1)+(2)(0)(1)
      +(2)(0)(1)+(1)(6)(1)+(3)(2)(-1)+(3)(0)(-1)}
= 0

nB1g = 
1
24 {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)

      +(3)(0)(1)+(3)(2)(-1)+(1)(0)(1)+(2)(0)(-1)
      +(2)(0)(1)+(1)(6)(-1)+(3)(2)(1)+(3)(0)(-1)}
= 0

nB2g = 
1
24 {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)

      +(3)(0)(-1)+(3)(2)(1)+(1)(0)(1)+(2)(0)(-1)
      +(2)(0)(1)+(1)(6)(-1)+(3)(2)(-1)+(3)(0)(1)}
= 0

nE1g = 
1
24 {(1)(6)(2)+(2)(0)(1)+(2)(0)(-1)+(1)(0)(-2)

      +(3)(0)(0)+(3)(2)(0)+(1)(0)(2)+(2)(0)(1)
      +(2)(0)(-1)+(1)(6)(-2)+(3)(2)(0)+(3)(0)(0)}
= 0

nE2g = 
1
24 {(1)(6)(2)+(2)(0)(-1)+(2)(0)(-1)+(1)(0)(2)

      +(3)(0)(0)+(3)(2)(0)+(1)(0)(2)+(2)(0)(-1)
      +(2)(0)(-1)+(1)(6)(2)+(3)(2)(0)+(3)(0)(0)}
= 1

nA1u = 
1
24 {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)

      +(3)(0)(1)+(3)(2)(1)+(1)(0)(-1)+(2)(0)(-1)
      +(2)(0)(-1)+(1)(6)(-1)+(3)(2)(-1)+(3)(0)(-1)}
= 0

nA2u = 
1
24 {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)

      +(3)(0)(-1)+(3)(2)(-1)+(1)(0)(-1)+(2)(0)(-1)
      +(2)(0)(-1)+(1)(6)(-1)+(3)(2)(1)+(3)(0)(1)}
= 0

nB1u = 
1
24 {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)

      +(3)(0)(1)+(3)(2)(-1)+(1)(0)(-1)+(2)(0)(1)
      +(2)(0)(-1)+(1)(6)(1)+(3)(2)(-1)+(3)(0)(1)}
= 0
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nB2u = 
1
24 {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)

      +(3)(0)(-1)+(3)(2)(1)+(1)(0)(-1)+(2)(0)(1)
      +(2)(0)(-1)+(1)(6)(1)+(3)(2)(1)+(3)(0)(-1)}
= 1

nE1u = 
1
24 {(1)(6)(2)+(2)(0)(1)+(2)(0)(-1)+(1)(0)(-2)

      +(3)(0)(0)+(3)(2)(0)+(1)(0)(-2)+(2)(0)(-1)
      +(2)(0)(1)+(1)(6)(2)+(3)(2)(0)+(3)(0)(0)}
= 1

nE2u = 
1
24 {(1)(6)(2)+(2)(0)(-1)+(2)(0)(-1)+(1)(0)(2)

      +(3)(0)(0)+(3)(2)(0)+(1)(0)(-2)+(2)(0)(1)
      +(2)(0)(1)+(1)(6)(-2)+(3)(2)(0)+(3)(0)(0)}
= 0

We see that ΓC-H = A1g⊕E2g⊕B2u⊕E1u

c. x and y ⇒ E1u , z ⇒ A2u , so, the ground state A1g level can be excited to the
degenerate E1u level by coupling through the x or y transition dipoles.  Therefore E1u is

infrared active and ⊥ polarized.

d. (x2 + y2, z2) ⇒ A1g, (xz, yz) ⇒ E1g, (x2 - y2, xy) ⇒ E2g ,so, the ground state

A1g level can be excited to the degenerate E2g level by coupling through the x2 - y2 or xy
transitions or be excited to the degenerate A1g level by coupling through the xz or yz
transitions.  Therefore A1g and E2g are Raman active..

e. The B2u mode is not IR or Raman active.

3. a.
d
dr (F r-1)  = F' r-1 - r-2 F

r2 d
dr (F r-1)  = r F' - F

d
dr 



r2  d

dr (F  r -1)   = F' - F' + r F''

So,

-h-2

2µr2
 
d
dr 



r2  d

dr (Fr-1)   = 
-h-2

2µ
 
F ' '
r   .

Rewriting the radial Schrödinger equation with the substitution: R = r-1F gives:

-h2

2µr2
 
d
dr 



r2  d(Fr-1)

dr   + 
J(J + 1)h-2

2µr2
 (Fr-1)  + 

1
2  k(r - re)2 (Fr-1) = E (Fr-1)

Using the above derived identity gives:

-h-2

2µ
 
F ' '
r   + 

J(J + 1)h-2

2µr2
 (Fr-1)  + 

1
2  k(r - re)2 (Fr-1) = E (Fr-1)

Cancelling out an r-1:

-h-2

2µ
  F'' + 

J(J + 1)h-2

2µr2
  F + 

1
2  k(r - re)2 F = E F
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b. 
1

r2
  = 

1

(re +  ∆r)2
  = 

1

re2








1  +  
∆r
re

2
  ≈ 

1

re2
 








1  -  
2∆r
re

 +  
3∆r2

re2
 

So,

J(J + 1)h-2

2µr2
  ≈ 

J(J + 1)h-2

2µre2
 








1  -  
2∆r
re

 +  
3∆r2

re2
 

c. Using this substitution we now have:

-h-2

2µ
  F'' + 

J(J + 1)h-2

2µre2
 








1  -  
2∆r
re

 +  
3∆r2

re2
  F + 

1
2  k(r - re)2 F = E F

Now, regroup the terms which are linear and quadratic in ∆r = r - re:

1
2  k∆r2 + 

J(J + 1)h-2

2µre2
 
3

re2
  ∆r2 - 

J(J + 1)h-2

2µre2
 
2
re

  ∆r

= 






1

2 k  +  
J(J + 1)h-2

2µre2
 

3

re2
  ∆r2 - 







J(J + 1)h-2

2µre2
 

2
re

  ∆r

Now, we must complete the square:

a∆r2 - b∆r = a




∆r  -  

b
2a

2
  - 

b2

4a  .

So,







1

2 k  +  
J(J + 1)h-2

2µre2
 

3

re2
 





∆r  -  

J(J + 1)h-2

2µre2
 

1
re

1
2 k  +  

J(J + 1)h-2

2µre2
 

3

re2

2

  -







J(J + 1)h-2

2µre2
 

1
re

2

1
2 k  +  

J(J + 1)h-2

2µre2
 

3

re2

 

Now, redefine the first term as 
1
2 k-  , second term as (r - r- e)2, and the third term as -∆

giving:
1
2k-   r  -  r-e

2
  - ∆

From:

-h-2

2µ
  F'' + 

J(J + 1)h-2

2µre2
 








1  -  
2∆r
re

 +  
3∆r2

re2
  F + 

1
2  k(r - re)2 F = E F,

-h-2

2µ
  F'' + 

J(J + 1)h-2

2µre2
  F + 







J(J + 1)h-2

2µre2
 








-  
2∆r
re

 +  
3∆r2

re2
 +  

1
2 k∆r2   F = E F,

and making the above substitution results in:
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-h-2

2µ
  F'' + 

J(J + 1)h-2

2µre2
  F + 



1

2k-   r  -  r-e
2
 -  ∆   F = E F,

or,

-h-2

2µ
  F'' + 

1
2 k- (r - r-e) 2 F = 









E -  
J(J + 1)h-2

2µre2
 +  ∆   F.

d. Since the above is nothing but a harmonic oscillator differential equation in x

with force constant k-   and equilibrium bond length r- e, we know that:

-h-2

2µ
  F'' + 

1
2 k- (r - r-e) 2 F = ε F, has energy levels:

ε = h- k-

µ
 




v  +  

1
2   , v = 0, 1, 2, ...

So,

E + ∆.- 
J(J + 1)h-2

2µre2
  = ε

tells us that:

E = h- k-

µ
 




v  +  

1
2   + 

J(J + 1)h-2

2µre2
  - ∆.

As J increases, r- e increases because of the centrifugal force pushing the two atoms apart.

On the other hand k-   increases which indicates that the molecule finds it more difficult to
stretch against both the centrifugal and Hooke's law (spring) Harmonic force field.  The

total energy level (labeled by J and v) will equal a rigid rotor component 
J(J + 1)h-2

2µre2
  plus a

Harmonic oscillator part h- k-

µ
 




v  +  

1
2  (which has a force constant k-  which increases with J) .

Section 5 Exercises, Problems, and Solutions

    Exercises:

1. Time dependent perturbation theory provides an expression for the radiative lifetime of
an excited electronic state, given by τR:

τR = 
3h-4c3

4(Ei -  E f)3|µfi|2
  ,

where i refers to the excited state, f refers to the lower state, and µfi is the transition dipole.
a. Evaluate the z-component of the transition dipole for the

2pz → 1s transition in a hydrogenic atom of nuclear charge Z, given:
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ψ1s = 
1

π
 




Z

a0

3
2  e 

-Zr
a0   , and ψ2pz = 

1

4 2π
 




Z

a0

5
2  r Cosθ e 

-Zr
2a0  .

Express your answer in units of ea0.

b. Use symmetry to demonstrate that the x- and y-components of µfi are zero, i.e.
<2pz| e x |1s> = <2pz| e y |1s> = 0.

c. Calculate the radiative lifetime τR of a hydrogenlike atom in its 2pz state. Use the

relation e2 = 
h-2

mea0
  to simplify your results.

2. Consider a case in which the complete set of states {φk} for a Hamiltonian is known.
a. If the system is initially in the state m at time t=0 when a constant perturbation V

is suddenly turned on, find the probability amplitudes Ck(2)(t) and Cm(2)(t), to second order
in V, that describe the system being in a different state k or the same state m at time t.

b. If the perturbation is turned on adiabatically, what are Ck(2)(t) and Cm(2)(t)?

Here, consider that the initial time is t0 → -∞, and the potential is V eηt, where the positive

parameter η is allowed to approach zero η→ 0 in order to describe the adiabatically (i.e.,
slowly) turned on perturbation.

c. Compare the results of parts a. and b. and explain any differences.
d. Ignore first order contributions (assume they vanish) and evaluate the transition

rates 
d
dt |Ck(2)(t)|2 for the results of part b. by taking the limit η → 0+, to obtain the

adiabatic results.

3. If a system is initially in a state m, conservation of probability requires that the total
probability of transitions out of state m be obtainable from the decrease in the probability of
being in state m.  Prove this to the lowest order by using the results of exercise 2, i.e.

show that: |Cm|2 = 1 - ∑
k≠m

|Ck|2 .

    Problems:   

1. Consider an interaction or perturbation which is carried out suddenly (instantaneously,
e.g., within an interval of time ∆t which is small compared to the natural period ωnm-1

corresponding to the transition from state m to state n), and after that is turned off
adiabatically (i.e., extremely slowly as V eηt).  The transition probability in this case is
given as:

Tnm ≈ 
|<n|V|m>|2

h-2ωnm2
 

where V corresponds to the maximum value of the interaction when it is turned on.  This
formula allows one to calculate the transition probabilities under the action of sudden
perturbations which are small in absolute value whenever perturbation theory is applicable.
Let's use this "sudden approximation" to calculate the probability of excitation of an
electron under a sudden change of the charge of the nucleus.  Consider the reaction:

1
3 H → 

2
3 He+ + e-,
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and assume the tritium atom has its electron initially in a 1s orbital.  a. Calculate the
transition probability for the transition 1s → 2s for this reaction using the above formula
for the transition probability.

b. Suppose that at time t = 0 the system is in a state which corresponds to the
wavefunction ϕm, which is an eigenfunction of the operator H0.  At t = 0, the sudden
change of the Hamiltonian occurs (now denoted as H and remains unchanged).  Calculate
the same 1s → 2s transition probability as in part a., only this time as the square of the
magnitude of the coefficient, A1s,2s using the expansion:

Ψ(r,0) = ϕm(r) = ∑
n

Anmψn(r) , where Anm = ⌡⌠ϕm(r)ψn(r)d3r 

Note, that the eigenfunctions of H are ψn with eigenvalues En.  Compare this "exact" value
with that obtained by perturbation theory in part a.

2. The methyl iodide molecule is studied using microwave (pure rotational) spectroscopy.
The following integral governs the rotational selection rules for transitions labeled J, M, K
→ J', M', K':

I = <D
M'K'
J '     | ε→ . µ→ |D

MK
J    >.

The dipole moment µ→  lies along the molecule's C3 symmetry axis.  Let the electric field of

the light ε→  define the lab-fixed Z-direction.

a. Using the fact that Cosβ = D
00
1*  , show that

I = 8π2µε(-1)(M+K) M 0 M
J'  1 J   K 0 K

J'  1 J   δM'MδK'K

b. What restrictions does this result place on ∆J = J' - J? Explain physically why
the K quantum number can not change.

3. Consider the molecule BO.
a. What are the total number of possible electronic states which can be formed by

combination of ground state B and O atoms?
b. What electron configurations of the molecule are likely to be low in energy?

Consider all reasonable orderings of the molecular orbitals.  What are the states
corresponding to these configurations?

c. What are the bond orders in each of these states?
d. The true ground state of BO is 2Σ.  Specify the +/- and u/g symmetries for this

state.
e. Which of the excited states you derived above will radiate to the 2Σ ground state?

Consider electric dipole, magnetic dipole, and electric quadrupole radiation.
f. Does ionization of the molecule to form a cation lead to a stronger, weaker, or

equivalent bond strength?
g. Assuming that the energies of the molecular orbitals do not change upon

ionization, what are the ground state, the first excited state, and the second excited state of
the positive ion?

h. Considering only these states, predict the structure of the photoelectron spectrum
you would obtain for ionization of BO.
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4.

-1600 cm                       800 cm                          1300 cm               1500 cm         3200 cm       3600 cm-1 -1 -1 -1 -1

2ν    (HCN)  2

ν     (HCN)3

3317 cm-1

ν   (HCN)
2

712 cm -1

The above figure shows part of the infrared absorption spectrum of HCN gas.  The
molecule has a CH stretching vibration, a bending vibration, and a CN stretching vibration.

a. Are any of the vibrations of linear HCN degenerate?
b. To which vibration does the group of peaks between 600

cm-1 and 800 cm-1 belong?
c. To which vibration does the group of peaks between 3200 cm-1 and 3400 cm-1

belong?
d. What are the symmetries (σ, π, δ) of the CH stretch, CN stretch, and bending

vibrational motions?
e. Starting with HCN in its 0,0,0 vibrational level, which fundamental transitions

would be infrared active under parallel polarized light (i.e., z-axis polarization):
  i. 000 → 001?

 ii. 000 → 100?

iii. 000 → 010?
f. Which transitions would be active when perpendicular polarized light is used?
g. Why does the 712 cm-1 transition have a Q-branch, whereas that near 3317 cm-1

has only P- and R-branches?

Solutions
    Exercises:   
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1. a. Evaluate the z-component of µfi:

µfi = <2pz|e r Cosθ |1s>, where ψ1s = 
1

π
 




Z

a0

3
2  e 

-Zr
a0   , and ψ2pz = 

1

4 2π
 




Z

a0

5
2  r

Cosθ e 

-Zr
2a0  .

µfi = 
1

4 2π
 




Z

a0

5
2 

1

π
 




Z

a0

3
2 <r Cosθ e 

-Zr
2a0 |e r Cosθ |e 

-Zr
a0  >

    = 
1

4π 2
 




Z

a0

4
  <r Cosθ e 

-Zr
2a0 |e r Cosθ |e 

-Zr
a0  >

    = 
e

4π 2
 




Z

a0

4
 ⌡⌠
0

∞

r2dr⌡⌠
0

π

Sinθdθ⌡⌠
0

2π

dϕ





r2 e  

-Zr
2a0 e  

-Zr
a0   Cos2θ

    = 
e

4π 2
  2π 





Z

a0

4
 ⌡
⌠

0

∞







r4 e  

-3Zr
2a0 dr ⌡⌠

0

π

SinθCos2θdθ 

Using integral equation 4 to integrate over r and equation 17 to integrate over θ we obtain:

    = 
e

4π 2
  2π 





Z

a0

4
 

4!





3Z

2a0

5 




-1

3   Cos3θ



π

0
 

    = 
e

4π 2
  2π 





Z

a0

4
 
25a054!

35Z5
 




-1

3  ( )(-1)3 -  (1)3  

    = 
e

2
 
28a0

35Z
  = 

ea0
Z  

28

235
   = 0.7449 

ea0
Z  

b. Examine the symmetry of the integrands for <2pz| e x |1s> and <2pz| e y |1s>.
Consider reflection in the xy plane:

Function Symmetry
2pz -1
x +1
1s +1
y +1

Under this operation the integrand of <2pz| e x |1s> is (-1)(1)(1) = -1 (it is antisymmetric)
and hence <2pz| e x |1s> = 0.
Similarly, under this operation the integrand of <2pz| e y |1s> is
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(-1)(1)(1) = -1 (it is also antisymmetric) and hence <2pz| e y |1s> = 0.

c. τR = 
3h-4c3

4(Ei -  E f)3|µfi|2
  ,

Ei = E2pz = -
1
4  Z2 



e2

2a0
 

Ef = E1s = -Z2 



e2

2a0
 

Ei - Ef = 
3
8 



e2

a0
  Z2

Making the substitutions for Ei - Ef and |µfi| in the expression for τR we obtain:

τR = 
3h-4c3

4



3

8 



e2

a0
 Z2

3
 












ea0

Z  
28

235

2
  ,

    = 
3h-4c3

4  
33

83
 






e6

a03
 Z6 







e2a02

Z2
 

216

(2)310
 

 ,

    = 
h-4c3  38  a0

 e8 Z4 2 8
 ,

Inserting e2 = 
h-2

mea0
  we obtain:

τR = 
h-4c3  38  a0 me4a04

 h-8 Z4 2 8
  = 

38

28
 
c3  a05  me4

 h-4 Z4
  

    = 25.6289 
c3  a05  me4

 h-4 Z4
  

     = 25,6289 




1

Z4
  x

(2.998x1010 cm sec-1)3(0.529177x10-8 cm)5(9.109x10-28 g)4

(1.0546x10-27 g cm2 sec-1)4
 

      = 1.595x10-9 sec x 




1

Z4
 

So, for example:

Atom τR
H 1.595 ns

He+ 99.7 ps

Li+2 19.7 ps

Be+3 6.23 ps

Ne+9 159 fs
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2. a. H = H0 + λH'(t), H'(t) = Vθ(t), H0ϕk = Ekϕk, ωk = Ek/h-  

ih-
∂ψ
∂t

  = Hψ

let ψ(r,t) = ih-∑
j

cj(t)ϕje
-iω jt  and insert into the above expression:

ih-∑
j

  c⋅ j -  iωjcj   e-iω jtϕj = ih-∑
j

cj(t)e
-iω jt(H0 + λH'(t)) ϕj

∑
j

  ih-c⋅ j +  E jcj -  c jEj -  c jλH'   e-iω jtϕj = 0

∑
j

  ih-c⋅ j<m|j> -  c jλ<m|H'|j>   e-iω jt = 0

ih-c⋅  m e-iωmt = ∑
j

cjλH'mj  e
-iω jt

So,

c⋅  m
 = 

1

ih-
∑
j

cjλH'mj  e
-i(ω jm)t

Going back a few equations and multiplying from the left by ϕk instead of ϕm we obtain:

∑
j

  ih-c⋅ j<k|j> -  c jλ<k|H'|j>   e-iω jt = 0

ih-c⋅  k e-iωkt = ∑
j

cjλH'kj  e
-iω jt

So,

c⋅  k
 = 

1

ih-
∑
j

cjλH'kj  e
-i(ω jk)t

Now, let:
cm = cm(0) + cm(1)λ + cm(2)λ2 + ...

ck = ck(0) + ck(1)λ + ck(2)λ2 + ...
and substituting into above we obtain:

c⋅  m(0) + c⋅  m(1)λ + c⋅  m(2)λ2 + ... = 
1

ih-
∑
j

[cj(0) +  c j(1)λ +  c j(2)λ2 + . . . ]  

λH'mj e
-i(ω jm)t

first order:

c⋅  m(0) = 0 ⇒ cm(0) = 1
second order:

c⋅  m(1) = 
1

ih-
∑

j

cj(0) H ' mj e
-i(ω jm)t 
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(n+1)st order:

c⋅  m(n) = 
1

ih-
∑

j

cj(n-1) H ' mj e
-i(ω jm)t 

Similarly:
first order:

c⋅  k(0) = 0 ⇒ ck≠m(0) = 0
second order:

c⋅  k(1) = 
1

ih-
∑

j

cj(0) H ' kj e
-i(ω jk)t 

(n+1)st order:

c⋅  k(n) = 
1

ih-
∑

j

cj(n-1) H ' kj e
-i(ω jk)t 

So,

c⋅  m(1) = 
1

ih-
  cm(0) H'mm e-i(ωmm)t = 

1

ih-
  H'mm

cm(1)(t) = 
1

ih-
 ⌡⌠
0

t

dt' Vmm  = 
Vmmt

ih-
 

and similarly,

c⋅  k(1) = 
1

ih-
  cm(0) H'km e-i(ωmk)t = 

1

ih-
  H'km e-i(ωmk)t

ck(1)(t) = 
1

ih-
  Vkm ⌡⌠

0

t

dt' e-i(ωmk)t'  = 
Vkm

h-ωmk

[ ]e-i(ωmk)t -  1  

c⋅  m(2) = 
1

ih-
∑

j

cj(1) H ' mj e
-i(ω jm)t 

c⋅  m(2) = ∑
j≠m

 1

ih-
 
Vjm

h-ωmj

[ ]e-i(ωmj)t -  1  H'mj e
-i(ω jm)t + 

1

ih-
 
Vmmt

ih-
  H'mm

cm(2) = ∑
j≠m

 1

ih-
 
VjmVmj

h-ωmj

 ⌡⌠
0

t

dt' e-i(ω jm)t' [ ]e-i(ωmj)t' -  1   - 
VmmVmm

h-2
 ⌡⌠
0

t

t'dt' 

= ∑
j≠m

 
VjmVmj

ih-2ωmj

 ⌡⌠
0

t

dt'[ ]1 -  e -i(ω jm)t'   - 
|Vmm|2

h-2
 
t2
2 

= ∑
j≠m

 
VjmVmj

ih-2ωmj

 








t  -  
e-i(ω jm)t -  1

-iωjm
  - 

|Vmm|2

h-2
 
t2
2 
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= ∑
j≠m

'
VjmVmj

h-2ωmj2
 ( )e-i(ω jm)t -  1   + ∑

j≠m

'  
VjmVmj

ih-2ωmj

  t - 
|Vmm|2  t2

2h-2
 

Similarly,

c⋅  k(2) = 
1

ih-
∑

j

cj(1) H ' kj e
-i(ω jk)t 

= ∑
j≠m

 1

ih-
 
Vjm

h-ωmj

[ ]e-i(ωmj)t -  1  H'kj e
-i(ω jk)t +

 
1

ih-
 
Vmmt

ih-
  H'km e

-i(ωmk)t

ck(2)(t) = ∑
j≠m

'  
VjmVkj

ih-2ωmj

 ⌡⌠
0

t

dt' e-i(ω jk)t' [ ]e-i(ωmj)t' -  1  

 - 
VmmVkm

h-2
 ⌡⌠
0

t

t'dt' e-i(ωmk)t'

= ∑
j≠m

'
VjmVkj

ih-2ωmj

 






e-i(ωmj+ωjm)t -  1

-iωmk
 -  

e-i(ω jk)t -  1

-iωjk
  

- 
VmmVkm

h-2
 




e-i(ωmk)t'





t'

-iωmk
 -  

1

-(iωmk)2

t

0
 

= ∑
j≠m

'
VjmVkj

h-2ωmj

 






e-i(ωmk)t -  1

ωmk
 -  

e-i(ω jk)t -  1

ωjk
  

+ 
VmmVkm

h-2ωmk

 




e-i(ωmk)t'





t'

i  -  
1

ωmk

t

0
 

= ∑
j≠m

'
VjmVkj
Em -  E j

 






e-i(ωmk)t -  1

Em -  E k
 -  

e-i(ω jk)t -  1
Ej -  E k

  

+ 
VmmVkm

h- (Em -  E k)
 




e-i(ωmk)t





t

i -  
1

ωmk
 +  

1

ωmk
 

So, the overall amplitudes cm, and ck, to second order are:

cm(t) = 1 + 
Vmmt

ih-
  + ∑

j≠m

'  
VjmVmj

ih- (Em -  E j)
  t +

 ∑
j≠m

'
VjmVmj

h-2(Em -  E j)2
 ( )e-i(ω jm)t -  1   - 

|Vmm|2  t2

2h-2
 

ck(t) = 
Vkm

(Em -  E k)
[ ]e-i(ωmk)t -  1   +
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VmmVkm

(Em -  E k)2
 [ ]1 -  e -i(ωmk)t   + 

VmmVkm
(Em -  E k) 

t

h- i
  e-i(ωmk)t +

 ∑
j≠m

'
VjmVkj
Em -  E j

 






e-i(ωmk)t -  1

Em -  E k
 -  

e-i(ω jk)t -  1
Ej -  E k

  

b. The perturbation equations still hold:

c⋅  m(n) = 
1

ih-
∑

j

cj(n-1) H ' mj e
-i(ω jm)t  ; c⋅  k(n) = 

1

ih-
∑

j

cj(n-1) H ' kj e
-i(ω jk)t 

So, cm(0) = 1 and ck(0) = 0

c⋅  m(1) = 
1

ih-
  H'mm

cm(1) = 
1

ih-
  Vmm ⌡⌠

-∞

t

dt' eηt  = 
Vmmeηt

ih-η
 

c⋅  k(1) = 
1

ih-
  H'km e-i(ωmk)t

ck(1) = 
1

ih-
  Vkm ⌡⌠

-∞

t

dt' e-i(ωmk+η)t'  = 
Vkm

ih- (-iωmk+η)
[ ]e-i(ωmk+η)t  

= 
Vkm

Em -  E k + ih-η
[ ]e-i(ωmk+η)t  

c⋅  m(2) = ∑
j≠m

' 1

ih-
 

Vjm

Em -  E j + ih-η
 e-i(ωmj+η)t Vmj eηt e-i(ω jm)t +

1

ih-
 
Vmm eηt 

ih-η
  Vmm eηt

cm(2) = ∑
j≠m

' 1

ih-
 

VjmVmj

Em -  E j + ih-η
 ⌡⌠

-∞

t

e2ηt'dt'   - 
|Vmm|2 

h-2η
 ⌡⌠

-∞

t

e2ηt'dt'  

 = ∑
j≠m

'
VjmVmj

ih-2η(Em -  E j + ih-η)
  e2ηt - 

|Vmm|2 

2h-2η2
  e2ηt

c⋅  k(2) = ∑
j≠m

' 1

ih-
 

Vjm

Em -  E j + ih-η
  e-i(ωmj+η)t H'kj e

-i(ω jk)t +

 
1

ih-
 
Vmm eηt

ih-η
  H'km e

-i(ωmk)t



151

ck(2) = ∑
j≠m

' 1

ih-
 

VjmVkj

Em -  E j + ih-η
 ⌡⌠

-∞

t

e-i(ωmk+2η)t'dt'  -

VmmVkm

h-2η
 ⌡⌠

-∞

t

e-i(ωmk+2η)t'dt' 

= ∑
j≠m

'
VjmVkj e

-i(ωmk+2η)t

(Em -  E j + ih-η)(Em -  E k + 2ih-η)
  - 

VmmVkm e
-i(ωmk+2η)t

ih-η(Em -  E k + 2ih-η)
 

Therefore, to second order:

cm(t) = 1 + 
Vmmeηt

ih-η
  +  ∑

j

 
VjmVmj

ih-2η(Em -  E j + ih-η)
  e2ηt

ck(t) = 
Vkm

ih- (-iωmk+η)
[ ]e-i(ωmk+η)t  

 +  ∑
j

 
VjmVkj e

-i(ωmk+2η)t

(Em -  E j + ih-η)(Em -  E k + 2ih-η)
 

c. In part a. the c(2)(t) grow linearly with time (for Vmm = 0) while in part b. they

remain finite for η > 0.  The result in part a. is due to the sudden turning on of the field.

d. |ck(t)|2 = 











∑
j

 
VjmVkj e

-i(ωmk+2η)t

(Em -  E j + ih-η)(Em -  E k + 2ih-η)

2
 

 = ∑
jj'

 
VkjVkj'VjmVj'm e -i(ωmk+2η)tei(ωmk+2η)t

(Em-Ej+ih-η)(Em-Ej'-ih-η)(Em-Ek+2ih-η)(Em-Ek-2ih-η)
 

 = ∑
jj'

 
VkjVkj'VjmVj'm e4ηt

[(Em-Ej)(Em-Ej')+ih-η(Ej-Ej')+h-2η2]((Em-Ek)2+4h-2η2)
 

d
dt |ck(t)|2 =  ∑

jj'

 
4η VkjVkj'VjmVj'm

[(Em-Ej)(Em-Ej')+ih-η(Ej-Ej')+h-2η2]((Em-Ek)2+4h-2η2)
 

Now, look at the limit as η → 0+:
d
dt |ck(t)|2 ≠ 0 when Em = Ek

lim
η→0+ 

4η

((Em-Ek)2+4h-2η2)
  α δ(Em-Ek)

So, the final result is the 2nd  order golden rule expression:

d
dt |ck(t)|2 

2π

h-
 δ(Em-Ek) lim

η→0+ 







∑

j

 
VjmVkj

(Ej -  E m -  ih-η)

2
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3. For the sudden perturbation case:

|cm(t)|2 = 1 + ∑
j

'  
VjmVmj

(Em -  E j)2
 [ ]e-i(ω jm)t -  1  +  e i(ω jm)t -  1   + O(V3)

|cm(t)|2 = 1 + ∑
j

'  
VjmVmj

(Em -  E j)2
 [ ]e-i(ω jm)t +  e i(ω jm)t -  2   + O(V3)

|ck(t)|2 = 
VkmVmk

(Em -  E k)2
[ ]-e-i(ωmk)t -  e i(ωmk)t +  2   + O(V3)

1 - ∑
k≠m

'  |ck(t)|2 = 1 - ∑
k

'
VkmVmk

(Em -  E k)2
[ ]-e-i(ωmk)t -  e i(ωmk)t +  2   + O(V3)

 = 1 + ∑
k

'
VkmVmk

(Em -  E k)2
[ ]e-i(ωmk)t +  e i(ωmk)t -  2   + O(V3)

∴ to order V2, |cm(t)|2 = 1 - ∑
k

'  |ck(t)|2, with no assumptions made regarding Vmm.

For the adiabatic perturbation case:

|cm(t)|2 = 1 + ∑
j≠m

'






VjmVmje2ηt

ih-2η(Em -  E j + ih-η)
 +  

VjmVmje2ηt

-ih-2η(Em -  E j -  ih-η)
  + O(V3)

= 1 + ∑
j≠m

' 1

ih-2η





1

(Em-Ej+ih-η)
 -  

1

(Em-Ej-ih-η)
 VjmVmje2ηt + O(V3)

= 1 + ∑
j≠m

' 1

ih-2η





-2ih-η

(Em-Ej)2+h-2η2
 VjmVmje2ηt + O(V3)

= 1 - ∑
j≠m

'






VjmVmje2ηt

(Em-Ej)2+h-2η2
  + O(V3)

|ck(t)|2 = 
VkmVmk

(Em-Ek)2+h-2η2
  e2ηt + O(V3)

∴ to order V2, |cm(t)|2 = 1 - ∑
k

'  |ck(t)|2, with no assumptions made regarding Vmm for this

case as well.

    Problems:   

1. a. Tnm ≈ 
|<n|V|m>|2

h-2ωnm2
 

evaluating <1s|V|2s> (using only the radial portions of the 1s and 2s wavefunctions since
the spherical harmonics will integrate to unity) where V = (e2,r):
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<1s|V|2s> = ⌡
⌠2





Z

a0

3
2  e 

-Zr
a0  

1
r 

1

2
 




Z

a0

3
2 





1  -  

Zr
2a0

  e 

-Zr
2a0  r2dr

<1s|V|2s> = 
2

2
 




Z

a0

3
 








⌡⌠  r e  

-3Zr
2a0  d r  -  ⌡⌠ Zr2

2a0
 e  

-3Zr
2a0  dr  

Using integral equation 4 for the two integrations we obtain:

<1s|V|2s> = 
2

2
 




Z

a0

3
 









1





3Z

2a0

2 -  




Z

2a0
 

2





3Z

2a0

3  

<1s|V|2s> = 
2

2
 




Z

a0

3
 






22a02

32Z2
 -  

23a02

33Z2
 

<1s|V|2s> = 
2

2
 




Z

a0

3
 






(3)22a02  - 23a02

33Z2
  = 

8Z

227a0
 

Now,

En = -
Z2e2

n22a0
  , E1s = -

Z2e2

2a0
  , E2s = -

Z2e2

8a0
  , E2s - E1s = 

3Z2e2

8a0
  

So,

Tnm = 




8Z

227a0

2





3Z2

8a0

2
  = 

26Z226a02

(2)38a02Z4
  = 

211

38Z2
  = 0.312 (for Z = 1)

b. ϕm(r) = ϕ1s = 2




Z

a0

3
2  e 

-Zr
a0   Y00

The orthogonality of the spherical harmonics results in only s-states having non-zero values
for Anm.  We can then drop the Y00 (integrating this term will only result in unity) in
determining the value of A1s,2s.

ψn(r) = ψ2s = 
1

2
 




Z

a0

3
2 





1  -  

Zr
2a0

  e 

-Zr
2a0  

Remember for ϕ1s Z = 1 and for ψ2s Z = 2

Anm = ⌡
⌠2





Z

a0

3
2  e 

-Zr
a0 1

2
 




Z+1

a0

3
2 





1  -  

(Z+1)r
2a0

  e 

-(Z+1)r
2a0   r2dr

Anm = 
2

2



Z

a0

3
2




Z+1

a0

3
2⌡⌠  e 

-(3Z+1)r
2a0  





1  -  

(Z+1)r
2a0

  r2dr

Anm = 
2

2



Z

a0

3
2




Z+1

a0

3
2








⌡⌠ r2  e  

-(3Z+1)r
2a0  d r  -  ⌡

⌠(Z+1)r3

2a0
 e  

-(3Z+1)r
2a0  dr  

Evaluating these integrals using integral equation 4 we obtain:
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Anm = 
2

2



Z

a0

3
2




Z+1

a0

3
2 









2





3Z+1

2a0

3 -  




Z+1

2a0
 

(3)(2)





3Z+1

2a0

4  

Anm = 
2

2



Z

a0

3
2




Z+1

a0

3
2 







24a03

(3Z+1)3
 -  (Z+1) 

(3)24a03

(3Z+1)4
 

Anm = 
2

2



Z

a0

3
2




Z+1

a0

3
2 







-25a03

(3Z+1)4
 

Anm = -2 
[ ]23Z(Z+1)

3
2

(3Z+1)4
 

The transition probability is the square of this amplitude:

Tnm = 










-2 
[ ]23Z(Z+1)

3
2

(3Z+1)4

2

  = 
211Z3(Z+1)3

(3Z+1)8
  = 0.25 (for Z = 1).

The difference in these two results (parts a. and b.) will become negligible at large values
of Z when the perturbation becomes less significant as in the case of Z = 1.

2. ε→  is along Z (lab fixed), and µ→  is along z (the C-I molecule fixed bond).  The angle

between Z and z is β:

ε→ . µ→  = εµCosβ = εµD
00
1* (αβγ) 

So,

I = <D
M'K'
J '     | ε→ . µ→ |D

MK
J    > = ⌡

⌠
D

M'K'
J '    ε→. µ→D

MK
J    Sinβdβdγdα

       = εµ⌡⌠D
M'K'
J '    D

00
1* D

MK
J    Sinβdβdγdα.

Now use:

D
M'n'
J'*  D

00
1*   = ∑

jmn

<J'M'10|jm>*D
mn
j* <jn|J'K'10> *,

to obtain:

I = εµ ∑
jmn

<J'M'10|jm>*<jn|J'K'10> *⌡⌠D
mn
j *   D

MK
J    Sinβdβdγdα.

Now use:

⌡⌠D
mn
j *   D

MK
J    Sinβdβdγdα = 

8π2

2J+1  δJjδMmδΚn,

to obtain:

I = εµ
8π2

2J+1 ∑
jmn

<J'M'10|jm>*<jn|J'K'10> *δJjδMmδΚn
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  = εµ
8π2

2J+1 <J'M'10|JM><JK|J'K'10>.

We use:

<JK|J'K'10> = 2J+1(-i)(J'-1+K)  K' 0 K
J'  1 J  

and,

<J'M'10|JM> = 2J+1(-i)(J'-1+M) M' 0 M
J'  1 J  

to give:

I = εµ
8π2

2J+1 2J+1(-i)(J'-1+M) M' 0 M
J'  1 J  2J+1(-i)(J'-1+K)  K' 0 K

J'  1 J  

  = εµ8π2(-i)(J'-1+M+J'-1+K) M' 0 M
J'  1 J   K' 0 K

J'  1 J  

  = εµ8π2(-i)(M+K) M' 0 M
J'  1 J   K' 0 K

J'  1 J  

The 3-J symbols vanish unless: K' + 0 = K and M' + 0 = M.
So,

I = εµ8π2(-i)(M+K) M 0 M
J'  1 J   K 0 K

J'  1 J  δM'MδK'K.

b.  M 0 M
J'  1 J   and  K 0 K

J'  1 J   vanish unless J' = J + 1, J, J - 1

∴ ∆J = ±1, 0
The K quantum number can not change because the dipole moment lies along the
molecule's C3 axis and the light's electric field thus can exert no torque that twists the
molecule about this axis. As a result, the light can not induce transitions that excite the
molecule's spinning motion about this axis.

3. a. B atom: 1s22s22p1, 2P ground state L = 1, S = 
1
2 , gives a degeneracy

((2L+1)(2S+1)) of 6.
O atom: 1s22s22p4, 3P ground state L = 1, S = 1, gives a degeneracy

((2L+1)(2S+1)) of 9.
The total number of states formed is then (6)(9) = 54.

b. We need only consider the p orbitals to find the low lying molecular states:

2π

1π

6σ

5σ

 2p2p

Which, in reality look like this:
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5σ

6σ

1π

2π

This is the correct ordering to give a 2Σ+ ground state.  The only low-lying electron

configurations are 1π35σ2 or 1π45σ1.  These lead to 2Π and 2Σ+ states, respectively.

c. The bond orders in both states are 2
1
2 .

d. The 2Σ is + and g/u cannot be specified since this is a heteronuclear molecule.

e. Only one excited state, the 2Π, is spin-allowed to radiate to the 2Σ+.  Consider
symmetries of transition moment operators that arise in the E1, E2 and M1 contributions to
the transition rate
Electric dipole allowed: z → Σ+, x,y → Π, ∴ the 2Π → 2Σ+ is electric dipole allowed via a
perpendicular band.
Magnetic dipole allowed: Rz → Σ-, Rx,y → Π, ∴ the 2Π → 2Σ+ is magnetic dipole
allowed.
Electric quadrupole allowed: x2+y2, z2 → Σ+, xy,yz → Π, x2-y2, xy → ∆ ∴ the 2Π →
2Σ+ is electric quadrupole allowed as well.

f. Since ionization will remove a bonding electron, the BO+ bond is weaker than the
BO bond.

g. The ground state BO+ is 1Σ+ corresponding to a 1π4 electron configuration.  An

electron configuration of 1π3 5σ1 leads to a 3Π and a 1Π state.  The 3Π will be lower in

energy.  A 1π2 5σ2 configuration will lead to higher lying states of 3Σ-, 1∆, and 1Σ+.

h. There should be 3 bands corresponding to formation of BO+ in the 1Σ+, 3Π, and
1Π states.  Since each of these involves removing a bonding electron, the Franck-Conden
integrals will be appreciable for several vibrational levels, and thus a vibrational
progression should be observed.

4. a. The bending (π) vibration is degenerate.

b. H---C≡N

        ⇑
bending fundamental

c. H---C≡N

        ⇑
stretching fundamental

d. CH stretch (ν3 in figure) is σ, CN stretch is σ, and HCN (ν2 in figure) bend is

π.
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e. Under z (σ) light the CN stretch and the CH stretch can be excited, since ψ0 = σ,

ψ1 = σ and z = σ provides coupling.

f. Under x,y (π) light the HCN bend can be excited, since ψ0 = σ, ψ1 = π and x,y

= π provides coupling.

g. The bending vibration is active under (x,y) perpendicular polarized light.  ∆J =

0, ±1 are the selection rules for ⊥ transitions.  The CH stretching vibration is active under

(z) || polarized light.  ∆J = ±1 are the selection rules for || transitions.

Section 6 Exercises, Problems, and Solutions

    Review Exercises:

1. Contrast Slater type orbitals (STOs) with Gaussian type orbitals (GTOs).

    Exercises:

1. By expanding the molecular orbitals {φk} as linear combinations of atomic orbitals

{χµ},

φk = ∑
µ

cµkχµ 

show how the canonical Hartree-Fock (HF) equations:
F φi = εi φj

reduce to the matrix eigenvalue-type equation of the form given in the text:

∑
ν

FµνCνi  = εi∑
ν

SµνCνi 

where:

Fµν = < >χµ| |h χν   + ∑
δ κ

 






γ

δκ< >χµχδ| |g χνχκ  -  γ
δκ

ex< >χµχδ| |g χκχν  ,

Sµν = < >χµ|χν  , γδκ = ∑
i=occ

CδiCκi ,

and γδκ
ex = ∑

i= occ and
same spin

CδiCκi .

Note that the sum over i in γδκ and γδκ
ex is a sum over spin orbitals.  In addition, show

that this Fock matrix can be further reduced for the closed shell case to:

Fµν = < >χµ| |h χν   + ∑
δ κ

  Pδκ





< >χµχδ| |g χνχκ  -  1

2
 < >χµχδ| |g χκχν   ,
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where the charge bond order matrix, P, is defined to be:
Pδκ = ∑

i=occ

2CδiCκi  ,

where the sum over i here is a sum over orbitals not spin orbitals.

2. Show that the HF total energy for a closed-shell system may be written in terms of
integrals over the orthonormal HF orbitals as:

E(SCF) = 2 ∑
k

occ
 < >φk| |h φk   + ∑

kl

occ
  [ ]2< >kl| |gkl  -  < >kl| |glk   +

 ∑
µ>ν

 
ZµZν
Rµν

 .

3. Show that the HF total energy may alternatively be expressed as:

E(SCF) = ∑
k

occ
  εk +  < >φk| |h φk   + ∑

µ>ν

 
ZµZν
Rµν

 ,

where the εk refer to the HF orbital energies.

    Problems:

1. This problem will be concerned with carrying out an SCF calculation for the HeH+

molecule in the 1Σg+(1σ2) ground state.  The one- and two-electron integrals (in atomic
units) needed to carry out this SCF calculation at R = 1.4 a.u. using Slater type orbitals
with orbital exponents of 1.6875 and 1.0 for the He and H, respectively are:

S11 = 1.0, S22 = 1.0, S12 = 0.5784,
h11 = -2.6442,h22 = -1.7201,h12 = -1.5113,
g1111 = 1.0547, g1121 = 0.4744, g1212 = 0.5664,
g2211 = 0.2469, g2221 = 0.3504, g2222 = 0.6250,

where 1 refers to 1sHe and 2 to 1sH.  Note that the two-electron integrals are given in Dirac
notation.  Parts a. - d.  should be done by hand.  Any subsequent parts can make use of the
QMIC software provided.

a. Using φ1 ≈ 1sHe for the initial guess of the occupied molecular orbital, form a
2x2 Fock matrix.  Use the equation derived above in question 1 for Fµν.

b. Solve the Fock matrix eigenvalue equations given above to obtain the orbital

energies and an improved occupied molecular orbital.  In so doing, note that < >φ1|φ1   = 1 =

C1TSC1 gives the needed normalization condition for the expansion coefficients of the φ1 in
the atomic orbital basis.

c. Determine the total SCF energy using the result of exercise 3 above at this step of
the iterative procedure.  When will this energy agree with that obtained by using the
alternative expression for E(SCF) given in exercise 2?

d. Obtain the new molecular orbital, φ1, from the solution of the matrix eigenvalue
problem (part b).



159

e. A new Fock matrix and related total energy can be obtained with this improved
choice of molecular orbital, φ1.  This process can be continued until a convergence criterion
has been satisfied.  Typical convergence criteria include: no significant change in the
molecular orbitals or the total energy (or both) from one iteration to the next.  Perform this
iterative procedure for the HeH+ system until the difference in total energy between two
successive iterations is less than 10-5 a.u.

f. Show, by comparing the difference between the SCF total energy at one iteration
and the converged SCF total energy, that the convergence of the above SCF approach is
primarily linear (or first order).

g. Is the SCF total energy calculated at each iteration of the above SCF procedure
(via exercise 3) an upper bound to the exact ground-state total energy?

h. Using the converged self-consistent set of molecular orbitals, φ1 and φ2,
calculate the one- and two-electron integrals in the molecular orbital basis.  Using the
equations for E(SCF) in exercises 2 and 3 calculate the converged values of the orbital
energies making use of these integrals in the mo basis.

i. Does this SCF wavefunction give rise (at R→∞) to proper dissociation products?

2. This problem will continue to address the same HeH+ molecular system as above,
extending the analysis to include "correlation effects."  We will use the one- and two-
electron integrals (same geometry) in the    converged     (to 10-5 au) SCF molecular orbital
basis which we would have obtained after 7 iterations above.  The    converged     mos you
would have obtained in problem 1 are:

φ1 = 






-0.89997792

-0.15843012
 φ2 = 







-0.83233180

1.21558030
 

a. Carry out a two configuration CI calculation using the 1σ2 and 2σ2

configurations first by obtaining an expression for the CI matrix elements Hij (i,j = 1σ2,

2σ2) in terms of one- and two-electron integrals, and secondly by showing that the
resultant CI matrix is (ignoring the nuclear repulsion term):







-4.2720 0.1261

0.1261 -2.0149
 

b. Obtain the two CI energies and eigenvectors for the matrix found in part a.
c. Show that the lowest energy CI wavefunction is equivalent to the following two-

determinant (single configuration) wavefunction:

1
2 

















a
1
2φ1 +  b

1
2φ2 α





a
1
2φ1 -  b

1
2φ2 β  +  











a
1
2φ1 -  b

1
2φ2 α





a
1
2φ1 +  b

1
2φ2 β  

involving the polarized orbitals:  a
1
2 φ1 ± b

1
2 φ2 , where a = 0.9984 and b = 0.0556.

d. Expand the CI list to 3 configurations by adding the 1σ2σ to the original 1σ2 and

2σ2 configurations of part a above.  First, express the proper singlet spin-coupled 1σ2σ
configuration as a combination of Slater determinants and then compute all elements of this
3x3 matrix.

e. Obtain all eigenenergies and corresponding normalized eigenvectors for this CI
problem.
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f. Determine the excitation energies and transition moments for HeH+ using the full
CI result of part e above.  The nonvanishing matrix elements of the dipole operator r(x,y,z)
in the atomic basis are:

< >1sH| |z1sHe   = 0.2854 and < >1sH| |z1sH   = 1.4.

First determine the matrix elements of r in the SCF orbital basis then determine the
excitation energies and transition moments from the ground state to the two excited singlet
states of HeH+.

g. Now turning to perturbation theory, carry out a RSPT calculation of the first-

order wavefunction |1σ2>(1) for the case in which the zeroth-order wavefunction is taken

to be the 1σ2 Slater determinant.  Show that the first-order wavefunction is given by:

|1σ2>(1) = -0.0442|2σ2>.

h. Why does the |1σ2σ> configuration not enter into the first-order wavefunction?
i. Normalize the resultant wavefunction that contains zeroth- plus first-order parts

and compare it to the wavefunction obtained in the two-configuration CI study of part b.

j. Show that the second-order RSPT correlation energy, E(2), of HeH+ is -0.0056
a.u.  How does this compare with the correlation energy obtained from the two-
configuration CI study of part b?

3. Using the QMIC programs, calculate the SCF energy of HeH+ using the same geometry
as in problem 1 and the STO3G basis set provided in the QMIC basis set library.  How
does this energy compare to that found in problem 1?  Run the calculation again with the 3-
21G basis basis provided.  How does this energy compare to the STO3G and the energy
found using STOs in problem 1?

4. Generate SCF potential energy surfaces for HeH+ and H2 using the QMIC software
provided.  Use the 3-21G basis set and generate points for geometries of R = 1.0, 1.2,
1.4, 1.6, 1.8, 2.0, 2.5, and 10.0.  Plot the energies vs. geometry for each system.  Which
system dissociates properly?

5. Generate CI potential energy surfaces for the 4 states of H2 resulting from a CAS

calculation with 2 electrons in the lowest 2 SCF orbitals (1σg and 1σu).  Use the same
geometries and basis set as in problem 4.  Plot the energies vs. geometry for each system.
Properly label and characterize each of the states (e.g., repulsive, dissociate properly, etc.).

Solutions
    Review Exercises:

1. Slater type orbitals (STOs) are "hydrogen-like" in that they have a normalized form of:







2ζ

ao

n+1
2 





1

(2n)!

1
2  rn-1 e



-ζr

ao   Yl,m(θ,φ),

whereas gaussian type orbitals GTOs have the form:

N rl e
( )-αr2

  Yl,m(θ,φ),
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although in most quantum chemistry computer programs they are specified in so-called
"cartesian" form as:

N' xaybzc e
( )-αr2

 ,
where a, b, and c are quantum numbers each ranging from zero upward in unit steps.
So, STOs give "better" overall energies and properties that depend on the shape of the
wavefunction near the nuclei (e.g., Fermi contact ESR hyperfine constants) but they are
more difficult to use (two-electron integrals are more difficult to evaluate; especially the 4-
center variety which have to be integrated numerically).  GTOs on the other hand are easier
to use (more easily integrable) but improperly describe the wavefunction near the nuclear
centers because of the so-called cusp condition (they have zero slope at R = 0, whereas 1s
STOs have non-zero slopes there).

    Exercises:

1. F φi = εi φj = h φi + ∑
j

 [ ]Jj -  K j   φi

Let the closed shell Fock potential be written as:

Vij = ∑
k

 ( )2< >ik|jk  -  < >ik|kj   , and the 1e- component as:

hij = <  φi| - 
1
2
 ∇2 - ∑

A

 
ZA

|r  - RA|  |φj >  , and the delta as:

δij = < >i|j   , so that: hij + Vij = δijεi.

using: φi = ∑
µ

Cµiχµ  , φj = ∑
ν

Cνjχν  , and φk = ∑
γ

Cγ kχγ   , and transforming from the mo to ao

basis we obtain:

Vij = ∑
kµγνκ

  CµiCγ kCνjCκk 2< >µγ|νκ  -  < >µγ|κν  

      = ∑
kµγνκ

 (Cγ kCκk)(CµiCνj) 2< >µγ|νκ  -  < >µγ|κν  

      = ∑
µν

 (CµiCνj) Vµν where,

Vµν = ∑
γκ

  Pγκ 2< >µγ|νκ  -  < >µγ|κν  , and Pγκ  = ∑
k

 (Cγ kCκk) ,

hij = ∑
µν

 (CµiCνj) hµν , where

hµν = <  χµ| - 1
2
 ∇2 - ∑

A

 
ZA

|r  - RA|  |
χν >  , and
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δij = < >i|j   = ∑
µν

 (CµiSµνCνj) .

So, hij + Vij = δijεj becomes:

∑
µν

 (CµiCνj) hµν + ∑
µν

 (CµiCνj) Vµν = ∑
µν

 (CµiSµνCνj) εj ,

∑
µν

 (CµiSµνCνj) εj - ∑
µν

 (CµiCνj) hµν - ∑
µν

 (CµiCνj) Vµν = 0 for all i,j

∑
µν

  Cµi εjSµν -  h µν -  Vµν  Cνj = 0 for all i,j

Therefore,

∑
ν

  hµν +  V µν -  εjSµν -   Cνj = 0

This is FC = SCE.

2. The Slater Condon rule for zero (spin orbital) difference with N electrons in N spin
orbitals is:

E = < >|H + G|   = ∑
i

N
 < >φi|h|φi   + ∑

i>j

N
  < >φiφj|g|φiφj  -  < >φiφj|g|φjφi  

        = ∑
i

hii  + ∑
i>j

 ( )gijij -  g ijji  

        = ∑
i

hii  + 
1
2∑

ij
 ( )gijij -  g ijji  

If all orbitals are doubly occupied and we carry out the spin integration we obtain:

E = 2 ∑
i

occ
hii  + ∑

ij

occ
 ( )2gijij -  g ijji  ,

where i and j now refer to orbitals (not spin-orbitals).

3. If the occupied orbitals obey Fφk = εkφk ,  then the expression for E in problem 2 above
can be rewritten as.

E = ∑
i

occ

  








hii +  ∑
j

occ
 ( )2gijij -  g ijji   + ∑

i

occ
hii 

We recognize the closed shell Fock operator expression and rewrite this as:

E = ∑
i

occ
Fii  + ∑

i

occ
hii  = ∑

i

occ
( )εi +  h ii  

    Problems:
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1. We will use the QMIC software to do this problem.  Lets just start from the beginning.
Get the starting "guess" mo coefficients on disk.  Using the program MOCOEFS it asks us
for the first and second mo vectors.  We input 1, 0 for the first mo (this means that the first
mo is 1.0 times the He 1s orbital plus 0.0 times the H 1s orbital; this bonding mo is more
likely to be heavily weighted on the atom having the higher nuclear charge) and 0, 1 for the

second.  Our beginning mo-ao array looks like:  






1.0 0.0

0.0 1.0
  and is placed on disk in a file we

choose to call "mocoefs.dat".  We also put the ao integrals on disk using the program
RW_INTS.  It asks for the unique one- and two- electron integrals and places a canonical
list of these on disk in a file we choose to call "ao_integrals.dat".  At this point it is useful
for us to step back and look at the set of equations which we wish to solve: FC = SCE.
The QMIC software does not provide us with a so-called generalized eigenvalue solver
(one that contains an overlap matrix; or metric), so in order to use the diagonalization
program that is provided we must transform this equation (FC = SCE) to one that looks
like (F'C' = C'E).  We do that in the following manner:

Since S is symmetric and positive definite we can find an S
-1
2  such that S

-1
2 S

+1
2  = 1, S

-1
2 S

= S
+1

2 , etc.
rewrite FC = SCE by inserting unity between FC and multiplying the whole equation on

the left by S
-1
2 .  This gives:

S
-1
2 FS

-1
2 S

+1
2 C = S

-1
2 SCE = S

+1
2 CE.

Letting: F' = S
-1
2 FS

-1
2 

C' = S
+1

2 C, and inserting these expressions above give:
F'C' = C'E

Note, that to get the next iterations mo coefficients we must calculate C from C':

C' = S
+1

2 C, so, multiplying through on the left by S
-1
2  gives:

S
-1
2 C' = S

-1
2 S

+1
2 C = C

This will be the method we will use to solve our fock equations.

Find S
-1
2  by using the program FUNCT_MAT (this program generates a function of a

matrix).  This program will ask for the elements of the S array and write to disk a file

(name of your choice ... a good name might be "shalf") containing the S
-1
2  array.  Now we

are ready to begin the iterative Fock procedure.
a. Calculate the Fock matrix, F, using program FOCK which reads in the mo

coefficients from "mocoefs.dat" and the integrals from "ao_integrals.dat" and writes the
resulting Fock matrix to a user specified file (a good filename to use might be something
like "fock1").

b. Calculate F' = S
-1
2 FS

-1
2  using the program UTMATU which reads in F and S

-1
2  

from files on the disk and writes F' to a user specified file (a good filename to use might be
something like "fock1p").  Diagonalize F' using the program DIAG.  This program reads
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in the matrix to be diagonalized from a user specified filename and writes the resulting
eigenvectors to disk using a user specified filename (a good filename to use might be
something like "coef1p").  You may wish to choose the option to write the eigenvalues
(Fock orbital energies) to disk in order to use them at a later time in program FENERGY.

Calculate C by back transforming e.g. C = S
-1
2 C'.  This is accomplished by using the

program MATXMAT which reads in two matrices to be multiplied from user specified files
and writes the product to disk using a user specified filename (a good filename to use might
be something like "mocoefs.dat").

c. The QMIC program FENERGY calculates the total energy, using the result of
exercises 2 and 3;

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

 , and

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

 .

This is the conclusion of one iteration of the Fock procedure ... you may continue by going
back to part a. and proceeding onward.

d. and e. Results for the successful convergence of this system using the supplied
QMIC software is as follows (this is alot of bloody detail but will give the user assurance
that they are on the right track; alternatively one could switch to the QMIC program SCF
and allow that program to iteratively converge the Fock equations):

The one-electron AO integrals: 






-2.644200 -1.511300

-1.511300 -1.720100
 

The two-electron AO integrals:

   1  1  1  1    1.054700
   2  1  1  1    0.4744000
   2  1  2  1    0.5664000
   2  2  1  1    0.2469000
   2  2  2  1    0.3504000
   2  2  2  2    0.6250000

The "initial" MO-AO coefficients: 






1.000000 0.000000

0.000000 1.000000
 

AO overlap matrix (S):






1.000000 0.578400

0.578400 1.000000
 

S 
-
1
2  







1.168032 -0.3720709

-0.3720709 1.168031
 

**************
ITERATION 1
**************
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The charge bond order matrix: 






1.000000 0.0000000

0.0000000 0.0000000
 

The Fock matrix (F): 






-1.589500 -1.036900 

-1.036900 -0.8342001
 

S 
-
1
2  F S 

-
1
2  







-1.382781 -0.5048679

-0.5048678 -0.4568883
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.604825 -0.2348450  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:







-0.9153809 -0.4025888

-0.4025888  0.9153810
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):







-0.9194022 -0.8108231

-0.1296498  1.218985
 

The one-electron MO integrals:







-2.624352 -0.1644336

-0.1644336 -1.306845 
 

The two-electron MO integrals:

   1  1  1  1    0.9779331
   2  1  1  1    0.1924623
   2  1  2  1    0.5972075
   2  2  1  1    0.1170838
   2  2  2  1   -0.0007945194
   2  2  2  2    0.6157323

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84219933

from formula:
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∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.80060530

the difference is: -0.04159403

**************
ITERATION 2
**************

The charge bond order matrix: 






0.8453005  0.1192003

0.1192003 0.01680906
 

The Fock matrix: 






-1.624673 -1.083623 

-1.083623 -0.8772071
 

S 
-
1
2  F S 

-
1
2  







-1.396111 -0.5411037

-0.5411037 -0.4798213
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.646972 -0.2289599  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:







-0.9072427 -0.4206074

-0.4206074  0.9072427
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):







-0.9031923 -0.8288413

-0.1537240  1.216184 
 

The one-electron MO integrals:







-2.617336 -0.1903475

-0.1903475 -1.313861 
 

The two-electron MO integrals:

   1  1  1  1    0.9626070
   2  1  1  1    0.1949828
   2  1  2  1    0.6048143
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   2  2  1  1    0.1246907
   2  2  2  1    0.003694540
   2  2  2  2    0.6158437

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84349298

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.83573675

the difference is: -0.00775623

**************
ITERATION 3
**************

The charge bond order matrix: 






0.8157563 0.1388423 

0.1388423 0.02363107
 

The Fock matrix: 






-1.631153 -1.091825 

-1.091825 -0.8853514
 

S 
-
1
2  F S 

-
1
2  







-1.398951 -0.5470731

-0.5470730 -0.4847007
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.654745 -0.2289078  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:







-0.9058709 -0.4235546

-0.4235545  0.9058706
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):







-0.9004935 -0.8317733

-0.1576767  1.215678 
 

The one-electron MO integrals:
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-2.616086 -0.1945811

-0.1945811 -1.315112 
 

The two-electron MO integrals:

   1  1  1  1    0.9600707
   2  1  1  1    0.1953255
   2  1  2  1    0.6060572
   2  2  1  1    0.1259332
   2  2  2  1    0.004475587
   2  2  2  2    0.6158972

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84353018

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84225941

the difference is: -0.00127077

**************
ITERATION 4
**************

The charge bond order matrix: 






0.8108885 0.1419869 

0.1419869 0.02486194
 

The Fock matrix: 






-1.632213 -1.093155 

-1.093155 -0.8866909
 

S 
-
1
2  F S 

-
1
2  







-1.399426 -0.5480287

-0.5480287 -0.4855191
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.656015 -0.2289308  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:
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-0.9056494 -0.4240271

-0.4240271  0.9056495
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):







-0.9000589 -0.8322428

-0.1583111  1.215595 
 

The one-electron MO integrals:







-2.615881 -0.1952594

-0.1952594 -1.315315 
 

The two-electron MO integrals:

   1  1  1  1    0.9596615
   2  1  1  1    0.1953781
   2  1  2  1    0.6062557
   2  2  1  1    0.1261321
   2  2  2  1    0.004601604
   2  2  2  2    0.6159065

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84352922

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84332418

the difference is: -0.00020504

**************
ITERATION 5
**************

The charge bond order matrix: 






0.8101060 0.1424893 

0.1424893 0.02506241
 

The Fock matrix: 






-1.632385 -1.093368 

-1.093368 -0.8869066
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S 
-
1
2  F S 

-
1
2  







-1.399504 -0.5481812

-0.5481813 -0.4856516
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.656219 -0.2289360  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:







-0.9056138 -0.4241026

-0.4241028  0.9056141
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):







-0.8999892 -0.8323179

-0.1584127  1.215582 
 

The one-electron MO integrals:







-2.615847 -0.1953674

-0.1953674 -1.315348 
 

The two-electron MO integrals:

   1  1  1  1    0.9595956
   2  1  1  1    0.1953862
   2  1  2  1    0.6062872
   2  2  1  1    0.1261639
   2  2  2  1    0.004621811
   2  2  2  2    0.6159078

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84352779

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84349489

the difference is: -0.00003290

**************
ITERATION 6
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**************

The charge bond order matrix: 






0.8099805 0.1425698 

0.1425698 0.02509460
 

The Fock matrix: 






-1.632412 -1.093402 

-1.093402 -0.8869413
 

S 
-
1
2  F S 

-
1
2  







-1.399517 -0.5482056

-0.5482056 -0.4856730
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.656253 -0.2289375  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:







-0.9056085 -0.4241144

-0.4241144  0.9056086
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):







-0.8999786 -0.8323296

-0.1584283  1.215580 
 

The one-electron MO integrals:







-2.615843 -0.1953846

-0.1953846 -1.315353 
 

The two-electron MO integrals:

   1  1  1  1    0.9595859
   2  1  1  1    0.1953878
   2  1  2  1    0.6062925
   2  2  1  1    0.1261690
   2  2  2  1    0.004625196
   2  2  2  2    0.6159083

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84352827
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from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84352398

the difference is: -0.00000429

**************
ITERATION 7
**************

The charge bond order matrix: 






0.8099616 0.1425821 

0.1425821 0.02509952
 

The Fock matrix: 






-1.632416 -1.093407 

-1.093407 -0.8869464
 

S 
-
1
2  F S 

-
1
2  







-1.399519 -0.5482093

-0.5482092 -0.4856761
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.656257 -0.2289374  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:







-0.9056076 -0.4241164

-0.4241164  0.9056077
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):







-0.8999770 -0.8323317

-0.1584310  1.215580 
 

The one-electron MO integrals:







-2.615843 -0.1953876

-0.1953876 -1.315354 
 

The two-electron MO integrals:

   1  1  1  1    0.9595849
   2  1  1  1    0.1953881
   2  1  2  1    0.6062936
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   2  2  1  1    0.1261697
   2  2  2  1    0.004625696
   2  2  2  2    0.6159083

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84352922

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84352827

the difference is: -0.00000095

**************
ITERATION 8
**************

The charge bond order matrix: 






0.8099585 0.1425842 

0.1425842 0.02510037
 

The Fock matrix: 






-1.632416 -1.093408 

-1.093408 -0.8869470
 

S 
-
1
2  F S 

-
1
2  







-1.399518 -0.5482103

-0.5482102 -0.4856761
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.656258 -0.2289368  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:







-0.9056074 -0.4241168

-0.4241168  0.9056075
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):







-0.8999765 -0.8323320

-0.1584315  1.215579 
 

The one-electron MO integrals:
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-2.615842 -0.1953882

-0.1953882 -1.315354 
 

The two-electron MO integrals:

   1  1  1  1    0.9595841
   2  1  1  1    0.1953881
   2  1  2  1    0.6062934
   2  2  1  1    0.1261700
   2  2  2  1    0.004625901
   2  2  2  2    0.6159081

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84352827

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84352827

the difference is: 0.00000000
f. In looking at the energy convergence we see the following:

Iter Formula 1 Formula 2
1 -2.84219933 -2.80060530
2 -2.84349298 -2.83573675
3 -2.84353018 -2.84225941
4 -2.84352922 -2.84332418
5 -2.84352779 -2.84349489
6 -2.84352827 -2.84352398
7 -2.84352922 -2.84352827
8 -2.84352827 -2.84352827

f. If you look at the energy differences (SCF at iteration n - SCF converged) and
plot this data versus iteration number, and do a 5th order polynomial fit, we see the
following:
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y = 0.144 - 0.153x + 0.063x^2 - 0.013x^3 + 0.001x^4   R = 1.00

In looking at the polynomial fit we see that the convergence is primarily linear since the
coefficient of the linear term is much larger than those of the cubic and higher terms.

g. The converged SCF total energy calculated using the result of exercise 3 is an
upper bound to the ground state energy, but, during the iterative procedure it is not.  At
convergence, the expectation value of the Hamiltonian for the Hartree Fock determinant is
given by the equation in exercise 3.

h. The one- and two- electron integrals in the MO basis are given above (see part e
iteration 8).  The orbital energies are found using the result of exercise 2 and 3 to be:

E(SCF) = ∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

 

E(SCF) = ∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

 

so, εk = <k|h|k> + ∑
l

occ
(2<kl|kl> - <kl|lk>) 

ε1 = h11 + 2<11|11> - <11|11>
    = -2.615842 + 0.9595841
    = -1.656258
ε2 = h22 + 2<21|21> - <21|12>
    = -1.315354 + 2*0.6062934 - 0.1261700
    = -0.2289372
i. Yes, the 1σ2 configuration does dissociate properly because at at R→∞the lowest

energy state is He + H+, which also has a 1σ2 orbital occupancy (i.e., 1s2 on He and 1s0

on H+).
2. At convergence the mo coefficients are:
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φ1 = 






-0.8999765

-0.1584315
 φ2 = 







-0.8323320

 1.215579 
 

and the integrals in this MO basis are:
h11 = -2.615842 h21 = -0.1953882 h22 = -1.315354
g1111 = 0.9595841 g2111 = 0.1953881 g2121 = 0.6062934
g2211 = 0.1261700 g2221 = 004625901 g2222 = 0.6159081

a. H = 








<1σ2|H|1σ2> <1σ2|H|2σ2>

<2σ2|H|1σ2> <2σ2|H|2σ2>
  = 







2h11 +  g 1111 g1122

g1122 2h22 +  g 2222
 

 = 






2*-2.615842 + 0.9595841 0.1261700

0.1261700 2*-1.315354 + 0.6159081
 

 = 






-4.272100 0.126170

0.126170 -2.014800
 

b. The eigenvalues are E1 = -4.279131 and E2 = -2.007770.  The corresponding
eigenvectors are:

C1 = 






-.99845123

0.05563439
 , C2 = 







0.05563438

0.99845140
 

c.

1
2 

















a
1
2φ1 +  b

1
2φ2 α





a
1
2φ1 -  b

1
2φ2 β  +  











a
1
2φ1 -  b

1
2φ2 α





a
1
2φ1 +  b

1
2φ2 β  

 = 
1

2 2
 











a
1
2φ1 +  b

1
2φ2 





a
1
2φ1 -  b

1
2φ2  +  





a
1
2φ1 -  b

1
2φ2 





a
1
2φ1 +  b

1
2φ2  (αβ - βα) 

 = 
1

2
( )aφ1φ1 -  b φ2φ2  (αβ - βα) 

 = a| |φ1αφ1β   - b| |φ2αφ2β  .
(note from part b. a = 0.9984 and b = 0.0556)

d. The third configuration |1σ2σ| = 
1

2
[ ]|1α2β|  - |1β2α|  ,

Adding this configuration to the previous 2x2 CI results in the following 3x3 'full' CI:

H = 









<1σ2|H|1σ2> <1σ2|H|2σ2> <1σ2|H|1σ2σ>

<2σ2|H|1σ2> <2σ2|H|2σ2> <2σ2|H|1σ2σ>

<1σ2σ|H|1σ2> <2σ2|H|1σ2σ> <1σ2σ|H|1σ2σ>

 

 = 









2h11 +  g 1111 g1122
1

2
[ ]2h12 +  2g2111

g1122 2h22 +  g 2222
1

2
[ ]2h12 +  2g2221

1

2
[ ]2h12 +  2g2111

1

2
[ ]2h12 +  2g2221 h11 +  h 22 +  g 2121 +  g 2211
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Evaluating the new matrix elements:

H13 = H31 = 2 *(-0.1953882 + 0.1953881) = 0.0

H23 = H32 = 2 *(-0.1953882 + 0.004626) = -0.269778
H33 = -2.615842 - 1.315354 + 0.606293 + 0.126170
      = -3.198733

 = 







-4.272100 0.126170 0.0

0.126170 -2.014800 -0.269778

0.0 -0.269778 -3.198733

 

e. The eigenvalues are E1 = -4.279345, E2 = -3.256612 and E3 = -1.949678.  The
corresponding eigenvectors are:

C1 = 







-0.99825280

0.05732290

0.01431085

 , C2 = 







-0.02605343

-0.20969283

-0.97742000

 , C3 = 







-0.05302767

-0.97608540

0.21082004

 

f. We need the non-vanishing matrix elements of the dipole operator in the mo
basis.  These can be obtained by calculating them by hand.  They are more easily obtained
by using the TRANS program.  Put the 1e- ao integrals on disk by running the program
RW_INTS.  In this case you are inserting z11 = 0.0, z21 = 0.2854, and z22 = 1.4 (insert

0.0 for all the 2e- integrals) ... call the output file "ao_dipole.ints" for example.  The
converged MO-AO coefficients should be in a file ("mocoefs.dat" is fine).  The
transformed integrals can be written to a file (name of your choice) for example
"mo_dipole.ints".  These matrix elements are:

z11 = 0.11652690, z21 = -0.54420990, z22 = 1.49117320
The excitation energies are E2 - E1 = -3.256612 - -4.279345 = 1.022733, and E3 - E1 = -
1.949678.- -4.279345 = 2.329667.
Using the Slater-Conden rules to obtain the matrix elements between configurations we get:

Hz = 









<1σ2|z|1σ2> <1σ2|z|2σ2> <1σ2|z|1σ2σ>

<2σ2|z|1σ2> <2σ2|z|2σ2> <2σ2|z|1σ2σ>

<1σ2σ|z|1σ2> <2σ2|z|1σ2σ> <1σ2σ|z|1σ2σ>

 

    = 









2z11 0 1

2
[ ]2z12

0 2z22
1

2
[ ]2z12

1

2
[ ]2z12

1

2
[ ]2z12 z11 +  z 22

 

    = 







0.233054 0 -0.769629

0 2.982346 -0.769629

-0.769629 -0.769629 1.607700
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Now, <Ψ1|z|Ψ2> = C1THzC2, (this can be accomplished with the program UTMATU)

 = 







-0.99825280

0.05732290

0.01431085

 

T

 







0.233054 0 -0.769629

0 2.982346 -0.769629

-0.769629 -0.769629 1.607700

 







-0.02605343

-0.20969283

-0.97742000

 

 = -.757494
and, <Ψ1|z|Ψ3> = C1THzC3

 = 







-0.99825280

0.05732290

0.01431085

 

T

 







0.233054 0 -0.769629

0 2.982346 -0.769629

-0.769629 -0.769629 1.607700

 







-0.05302767

-0.97608540

0.21082004

 

 = 0.014322
g. Using the converged coefficients the orbital energies obtained from solving the

Fock equations are ε1 = -1.656258 and ε2 = -0.228938.  The resulting expression for the
RSPT first-order wavefunction becomes:

|1σ2>(1) = - 
g2211

2(ε2 -  ε1)
  |2σ2>

|1σ2>(1) = - 
0.126170

2(-0.228938 + 1.656258)  |2σ2>
|1σ2>(1) = -0.0441982|2σ2>
h. As you can see from part c., the matrix element <1σ2|H|1σ2σ> = 0 (this is also a

result of the Brillouin theorem) and hence this configuration does not enter into the first-
order wavefunction.

i. |0> = |1σ2> - 0.0441982|2σ2>.  To normalize we divide by:

[ ]1 + (0.0441982)2   = 1.0009762

|0> = 0.999025|1σ2> - 0.044155|2σ2>
In the 2x2 CI we obtained:

|0> = 0.99845123|1σ2> - 0.05563439|2σ2>
j. The expression for the 2nd order RSPT is:

E(2) = - 
|g2211|2

2(ε2 -  ε1)
  = - 

0.1261702

2(-0.228938 + 1.656258) 

= -0.005576 au
Comparing the 2x2 CI energy obtained to the SCF result we have:
-4.279131 - (-4.272102) = -0.007029 au

3. STO total energy: -2.8435283
STO3G total energy -2.8340561
3-21G total energy -2.8864405

The STO3G orbitals were generated as a best fit of 3 primitive gaussians (giving 1 CGTO)
to the STO.  So, STO3G can at best reproduce the STO result.  The 3-21G orbitals are
more flexible since there are 2 CGTOs per atom.  This gives 4 orbitals (more parameters to
optimize) and a lower total energy.
4.
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R HeH+ Energy H2 Energy

1.0 -2.812787056 -1.071953297
1.2 -2.870357513 -1.113775015
1.4 -2.886440516 -1.122933507
1.6 -2.886063576 -1.115567684
1.8 -2.880080938 -1.099872589
2.0 -2.872805595 -1.080269098
2.5 -2.856760263 -1.026927710
10.0 -2.835679293 -0.7361705303

Plotting total energy vs. geometry for HeH+:
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Plotting total energy vs. geometry for H2:
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For HeH+ at R = 10.0 au, the eigenvalues of the converged Fock matrix and the
corresponding converged MO-AO coefficients are:

-.1003571E+01 -.4961988E+00  .5864846E+00  .1981702E+01
 .4579189E+00 -.8245406E-05  .1532163E-04  .1157140E+01
 .6572777E+00 -.4580946E-05 -.6822942E-05 -.1056716E+01
-.1415438E-05  .3734069E+00  .1255539E+01 -.1669342E-04
 .1112778E-04  .7173244E+00 -.1096019E+01  .2031348E-04

Notice that this indicates that orbital 1 is a combination of the s functions on He only
(dissociating properly to He + H+).

For H2 at R = 10.0 au, the eigenvalues of the converged Fock matrix and the
corresponding converged MO-AO coefficients are:

-.2458041E+00 -.1456223E+00  .1137235E+01  .1137825E+01
 .1977649E+00 -.1978204E+00  .1006458E+01 -.7903225E+00
 .5632566E+00 -.5628273E+00 -.8179120E+00  .6424941E+00
 .1976312E+00  .1979216E+00  .7902887E+00  .1006491E+01
 .5629326E+00  .5631776E+00 -.6421731E+00 -.8181460E+00

Notice that this indicates that orbital 1 is a combination of the s functions on both H atoms
(dissociating improperly; equal probabilities of H2 dissociating to two neutral atoms or to a
proton plus hydride ion).

5. The H2 CI result:

R 1Σg+ 3Σu+ 1Σu+ 1Σg+

  1.0 -1.074970 -0.5323429 -0.3997412  0.3841676
  1.2 -1.118442 -0.6450778 -0.4898805  0.1763018
  1.4 -1.129904 -0.7221781 -0.5440346  0.0151913
  1.6 -1.125582 -0.7787328 -0.5784428 -0.1140074
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  1.8 -1.113702 -0.8221166 -0.6013855 -0.2190144
  2.0 -1.098676 -0.8562555 -0.6172761 -0.3044956
  2.5 -1.060052 -0.9141968 -0.6384557 -0.4530645
  5.0 -0.9835886 -0.9790545 -0.5879662 -0.5802447
  7.5 -0.9806238 -0.9805795 -0.5247415 -0.5246646
10.0 -0.980598 -0.9805982 -0.4914058 -0.4913532
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For H2 at R = 1.4 au, the eigenvalues of the Hamiltonian matrix and the corresponding
determinant amplitudes are:

determinant -1.129904 -0.722178 -0.544035 0.015191

|1σgα1σgβ|  0.99695  0.00000  0.00000  0.07802

|1σgβ1σuα|  0.00000  0.70711  0.70711  0.00000

|1σgα1σuβ|  0.00000  0.70711 -0.70711  0.00000

|1σuα1σuβ| -0.07802  0.00000  0.00000  0.99695

This shows, as expected, the mixing of the first 1Σg+ (1σg2) and the 2nd 1Σg+ (1σu2)
determinants, the

3Σu+ = ( 1

2
( )|1σgβ1σuα|  + |1σgα1σuβ|  ),

and the 1Σu+=  ( 1

2
( )|1σgβ1σuα|  - |1σgα1σuβ|  ).

Also notice that the first 1Σg+ state is the bonding (0.99695 - 0.07802) combination (note

specifically the + - combination) and the second 1Σg+ state is the antibonding combination
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(note specifically the + + combination).  The + + combination always gives a higher energy
than the + - combination.  Also notice that the 1st and 2nd states (1Σg+ and 3Σu+) are

dissociating to two neutral atoms and the 3rd and 4th states (1Σg+ and 3Σu+) are
dissociating to proton/anion combinations.  The difference in these energies is the
ionization potential of H minus the electron affinity of H.


