
Section 3 Electronic Configurations, Term Symbols, and
States

Introductory Remarks- The Orbital, Configuration, and State Pictures of Electronic

Structure

One of the goals of quantum chemistry is to allow practicing chemists to use

knowledge of the electronic states of fragments (atoms, radicals, ions, or molecules) to

predict and understand the behavior (i.e., electronic energy levels, geometries, and

reactivities) of larger molecules. In the preceding Section, orbital correlation diagrams were

introduced to connect the orbitals of the fragments along a 'reaction path' leading to the

orbitals of the products. In this Section, analogous connections are made among the

fragment and product electronic states, again labeled by appropriate symmetries. To realize

such connections, one must first write down N-electron wavefunctions that possess the

appropriate symmetry; this task requires combining symmetries of the occupied orbitals to

obtain the symmetries of the resulting states.

Chapter 8

Electrons are Placed into Orbitals to Form Configurations, Each of Which Can be Labeled

by its Symmetry. The Configurations May "Interact" Strongly if They Have Similar

Energies.

I. Orbitals Do Not Provide the Complete Picture; Their Occupancy By the N Electrons

Must Be Specified

Knowing the orbitals of a particular species provides one information about the

sizes, shapes, directions, symmetries, and energies of those regions of space that are

   available    to the electrons (i.e., the complete set of orbitals that are available). This

knowledge does     not    determine into which orbitals the electrons are placed. It is by

describing the electronic configurations (i.e., orbital occupancies such as 1s22s22p2 or

1s22s22p13s1) appropriate to the energy range under study that one focuses on how the

electrons occupy the orbitals. Moreover, a given configuration may give rise to several

energy levels whose energies differ by chemically important amounts.  for example, the

1s22s22p2 configuration of the Carbon atom produces nine degenerate 3P states, five

degenerate 1D states, and a single 1S state.  These three energy levels differ in energy by

1.5 eV and 1.2 eV, respectively.



II. Even N-Electron Configurations Are Not Mother Nature's True Energy States

Moreover, even single-configuration descriptions of atomic and molecular structure

(e.g., 1s22s22p4 for the Oxygen atom) do not provide fully correct or highly accurate

representations of the respective electronic wavefunctions.  As will be shown in this

Section and in more detail in Section 6, the picture of N electrons occupying orbitals to

form a configuration is based on a so-called "mean field" description of the coulomb

interactions among electrons. In such models, an electron at r is viewed as interacting with

an "averaged" charge density arising from the N-1 remaining electrons:

Vmean field = ⌡⌠ρ
N-1

(r') e2/|r-r'|  dr'  .

Here ρ
N-1

(r') represents the probability density for finding electrons at r', and e2/|r-r'| is

the mutual coulomb repulsion between electron density at r and r'. Analogous mean-field

models arise in many areas of chemistry and physics, including electrolyte theory (e.g., the

Debye-Hückel theory), statistical mechanics of dense gases (e.g., where the Mayer-Mayer

cluster expansion is used to improve the ideal-gas mean field model), and chemical

dynamics (e.g., the vibrationally averaged potential of interaction).

In each case, the mean-field model forms only a starting point from which one

attempts to build a fully correct theory by effecting systematic corrections (e.g., using

perturbation theory) to the mean-field model. The ultimate value of any particular mean-

field model is related to its accuracy in describing experimental phenomena. If predictions

of the mean-field model are far from the experimental observations, then higher-order

corrections (which are usually difficult to implement) must be employed to improve its

predictions. In such a case, one is motivated to search for a better model to use as a starting

point so that lower-order perturbative (or other) corrections can be used to achieve chemical

accuracy (e.g., ± 1 kcal/mole).

In electronic structure theory, the single-configuration picture (e.g., the 1s22s22p4

description of the Oxygen atom) forms the mean-field starting point; the configuration

interaction (CI) or perturbation theory techniques are then used to systematically improve

this level of description.

The single-configuration mean-field theories of electronic structure neglect

   correlations    among the electrons. That is, in expressing the interaction of an electron at r



with the N-1 other electrons, they use a probability density ρ
N-1

(r') that is independent of

the fact that another electron resides at r. In fact, the so-called conditional probability

density for finding one of N-1 electrons at r', given that an electron is at r certainly

depends on r.  As a result, the mean-field coulomb potential felt by a 2px orbital's electron

in the 1s22s22px2py single-configuration description of the Carbon atom is:

Vmean field = 2⌡⌠|1s(r')|2  e2/|r-r'|  dr'  

+ 2⌡⌠|2s(r')|2  e2/|r-r'|  dr' 

+ ⌡⌠|2py(r')|2  e2/|r-r'|  dr'  .

In this example, the density ρ
N-1

(r') is the sum of the charge densities of the orbitals

occupied by the five other electrons

2 |1s(r')|2 + 2 |2s(r')|2 + |2py(r')|2 , and is not dependent on the fact that an electron

resides at r.

III. Mean-Field Models

The Mean-Field Model, Which Forms the Basis of Chemists' Pictures of Electronic

Structure of Molecules, Is Not Very Accurate

The magnitude and "shape" of such a mean-field potential is shown below for the

Beryllium atom. In this figure, the nucleus is at the origin, and one electron is placed at a

distance from the nucleus equal to the maximum of the 1s orbital's radial probability

density (near 0.13 Å). The radial coordinate of the second is plotted as the abscissa; this

second electron is arbitrarily constrained to lie on the line connecting the nucleus and the

first electron (along this direction, the inter-electronic interactions are largest). On the

ordinate, there are two quantities plotted: (i) the Self-Consistent Field (SCF) mean-field

potential ⌡⌠|1s(r')|2  e2/|r-r'|  dr' , and (ii) the so-called Fluctuation potential (F), which is

the true coulombic e2/|r-r'| interaction potential minus the SCF potential.
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As a function of the inter-electron distance, the fluctuation potential decays to zero

more rapidly than does the SCF potential. For this reason, approaches in which F is treated

as a perturbation and corrections to the mean-field picture are computed perturbatively

might be expected to be rapidly convergent (whenever perturbations describing long-range

interactions arise, convergence of perturbation theory is expected to be slow or not

successful). However, the magnitude of F is quite large and remains so over an appreciable

range of inter-electron distances.

The resultant corrections to the SCF picture are therefore quite large when measured

in kcal/mole. For example, the differences ∆E between the true (state-of-the-art quantum

chemical calculation) energies of interaction among the four electrons in Be and the SCF

mean-field estimates of these interactions are given in the table shown below in eV (recall

that 1 eV = 23.06 kcal/mole).

Orb. Pair 1sα1sβ 1sα2sα 1sα2sβ 1sβ2sα 1sβ2sβ 2sα2sβ
∆E in eV 1.126 0.022 0.058 0.058 0.022 1.234

To provide further insight why the SCF mean-field model in electronic structure

theory is of limited accuracy, it can be noted that the average value of the kinetic energy

plus the attraction to the Be nucleus plus the SCF interaction potential for one of the 2s

orbitals of Be with the three remaining electrons in the 1s22s2 configuration is:

< 2s| -h2/2me ∇2 - 4e2/r + VSCF |2s> = -15.4 eV;



the analogous quantity for the 2p orbital in the 1s22s2p configuration is:

< 2p| -h2/2me ∇2 - 4e2/r + V'SCF |2p> = -12.28 eV;

the corresponding value for the 1s orbital is (negative and) of even larger magnitude. The

SCF average coulomb interaction between the two 2s orbitals of 1s22s2 Be is:

⌡⌠|2s(r)|2 |2s(r')|2 e2/|r-r'|  dr dr'   = 5.95 eV.

This data clearly shows that corrections to the SCF model (see the above table)

represent significant fractions of the inter-electron interaction energies (e.g., 1.234 eV

compared to 5.95- 1.234 = 4.72 eV for the two 2s electrons of Be), and that the inter-

electron interaction energies, in turn, constitute significant fractions of the total energy of

each orbital (e.g., 5.95 -1.234 eV = 4.72 eV out of -15.4 eV for a 2s orbital of Be).

The task of describing the electronic states of atoms and molecules from first

principles and in a chemically accurate manner (± 1 kcal/mole) is clearly quite formidable.

The orbital picture and its accompanying SCF potential take care of "most" of the

interactions among the N electrons (which interact via long-range coulomb forces and

whose dynamics requires the application of quantum physics and permutational symmetry).

However, the residual fluctuation potential, although of shorter range than the bare

coulomb potential, is large enough to cause significant corrections to the mean-field picture.

This, in turn, necessitates the use of more sophisticated and computationally taxing

techniques (e.g., high order perturbation theory or large variational expansion spaces) to

reach the desired chemical accuracy.

Mean-field models are obviously approximations whose accuracy must be

determined so scientists can know to what degree they can be "trusted". For electronic

structures of atoms and molecules, they require quite substantial corrections to bring them

into line with experimental fact. Electrons in atoms and molecules undergo dynamical

motions in which their coulomb repulsions cause them to "avoid" one another at every

instant of time, not only in the average-repulsion manner that the mean-field models

embody. The inclusion of instantaneous spatial correlations among electrons is necessary to

achieve a more accurate description of atomic and molecular electronic structure.

IV. Configuration Interaction (CI) Describes the Correct Electronic States



The most commonly employed tool for introducing such spatial correlations into

electronic wavefunctions is called configuration interaction (CI); this approach is described

briefly later in this Section and in considerable detail in Section 6.

Briefly, one employs the (in principle, complete as shown by P. O. Löwdin, Rev.

Mod. Phys.     32    , 328 (1960)) set of N-electron configurations that (i) can be formed by

placing the N electrons into orbitals of the atom or molecule under study, and that (ii)

possess the spatial, spin, and angular momentum symmetry of the electronic state of

interest. This set of functions is then used, in a linear variational function, to achieve, via

the CI technique, a more accurate and dynamically correct description of the electronic

structure of that state. For example, to describe the ground 1S state of the Be atom, the

1s22s2 configuration (which yields the mean-field description) is augmented by including

other configurations such as 1s23s2 , 1s22p2, 1s23p2, 1s22s3s, 3s22s2, 2p22s2 , etc., all

of which have overall 1S spin and angular momentum symmetry. The excited 1S states are

also combinations of all such configurations. Of course, the ground-state wavefunction is

dominated by the |1s22s2| and excited states contain dominant contributions from |1s22s3s|,

etc. configurations. The resultant CI wavefunctions are formed as shown in Section 6  as

linear combinations of all such configurations.

To clarify the physical significance of mixing such configurations, it is useful to

consider what are found to be the two most important such configurations for the ground
1S state of the Be atom:

Ψ ≅ C1 |1s22s2| - C2 [|1s22px2| +|1s22py2| +|1s22pz2 |].

As proven in Chapter 13.III, this two-configuration description of Be's electronic structure

is equivalent to a description is which two electrons reside in the 1s orbital (with opposite,

α and β spins) while the other pair reside in 2s-2p hybrid orbitals (more correctly,

polarized orbitals) in a manner that instantaneously correlates their motions:

Ψ ≅ 1/6 C1 |1s2{[(2s-a2px)α(2s+a2px)β - (2s-a2px)β(2s+a2px)α]

    +[(2s-a2py)α(2s+a2py)β - (2s-a2py)β(2s+a2py)α]

    +[(2s-a2pz)α(2s+a2pz)β -  (2s-a2pz)β(2s+a2pz)α]}|,



where a = 3C2/C1  . The so-called polarized orbital pairs

(2s ± a 2px,y, or z) are formed by mixing into the 2s orbital an amount of the 2px,y, or z

orbital, with the mixing amplitude determined by the ratio of C2 to C1 . As will be detailed

in Section 6, this ratio is proportional to the magnitude of the coupling <|1s22s2

|H|1s22p2| > between the two configurations and inversely proportional to the energy

difference [<|1s22s2|H|1s22s2|> - <|1s22p2|H|1s22p2|>] for these configurations. So, in

general, configurations that have similar energies (Hamiltonian expectation values) and

couple strongly give rise to strongly mixed polarized orbital pairs. The result of forming

such polarized orbital pairs are described pictorially below.

Polarized Orbital 2s and 2p z Pairs 

2s - a 2pz

2s + a 2pz

2s and 2pz

In each of the three equivalent terms in this wavefunction, one of the valence

electrons moves in a 2s+a2p orbital polarized in one direction while the other valence

electron moves in the 2s-a2p orbital polarized in the opposite direction. For example, the

first term [(2s-a2px)α(2s+a2px)β - (2s-a2px)β(2s+a2px)α] describes one electron

occupying a 2s-a2px  polarized orbital while the other electron occupies the 2s+a2px

orbital. In this picture, the electrons reduce their mutual coulomb repulsion by occupying

    different    regions of space; in the SCF mean-field picture, both electrons reside in the same

2s region of space. In this particular example, the electrons undergo    angular correlation     to

"avoid" one another. The fact that equal amounts of x, y, and z orbital polarization appear

in Ψ is what preserves the 1S symmetry of the wavefunction.

The fact that the CI wavefunction



Ψ ≅ C1 |1s22s2| - C2 [|1s22px2 |+|1s22py2| +|1s22pz2 |]

mixes its two configurations with     opposite sign     is of significance. As will be seen later in

Section 6, solution of the Schrödinger equation using the CI method in which two

configurations (e.g., |1s22s2| and |1s22p2|) are employed gives rise to two solutions. One

approximates the ground state wave function; the other approximates an excited state. The

former is the one that mixes the two configurations with opposite sign.

To understand why the latter is of higher energy, it suffices to analyze a function of

the form

Ψ'  ≅ C1 |1s22s2|  + C2 [|1s22px2| +|1s22py2| +|1s22pz2| ]

in a manner analogous to above. In this case, it can be shown that

Ψ'  ≅ 1/6 C1 |1s2{[(2s-ia2px)α(2s+ia2px)β - (2s-ia2px)β(2s+ia2px)α]

+[(2s-ia2py)α(2s+ia2py)β - (2s-ia2py)β(2s+ia2py)α] 

+[(2s-ia2pz)α(2s+ia2pz)β -  (2s-ia2pz)β(2s+ia2pz)α]|}.

There is a fundamental difference, however, between the polarized orbital pairs introduced
earlier φ± = (2s ± a2px,y,or z) and the corresponding functions φ' ± = (2s ± ia2px,y,or z)

appearing here. The probability densities embodied in the former

|φ±|2 = |2s|2 + a2 |2px,y,or z |2 ± 2a(2s 2px,y,or z)

describe constructive (for the + case) and destructive (for the - case) superposition of the
probabilities of the 2s and 2p orbitals. The probability densities of φ' ± are

|φ' ±|2 = (2s ± ia2px,y,or z)*(2s ± ia2px,y,or z)

= |2s|2 + a2 |2px,y,or z |2 .



These densities are identical to one another and do not describe polarized orbital densities.

Therefore, the CI wavefunction which mixes the two configurations with like sign, when
analyzed in terms of orbital pairs, places the electrons into orbitals φ' ±=(2s ± ia2px,y,or z)

whose densities do not permit the electrons to avoid one another. Rather, both orbitals have

the same spatial density |2s|2 + a2

|2px,y,or z |2 , which gives rise to higher coulombic interaction energy for this state.

V. Summary

In summary, the dynamical interactions among electrons give rise to instantaneous

spatial correlations that must be handled to arrive at an accurate picture of atomic and

molecular structure. The simple, single-configuration picture provided by the mean-field

model is a useful starting point, but improvements are often needed.

In Section 6, methods for treating electron correlation will be discussed in greater detail.

For the remainder of this Section, the primary focus is placed on forming proper N-

electron wavefunctions by occupying the orbitals available to the system in a manner that

guarantees that the resultant N-electron function is an eigenfunction of those operators that

commute with the N-electron Hamiltonian.

For polyatomic molecules, these operators include point-group symmetry operators

(which act on    all    N electrons) and the spin angular momentum (S2 and Sz) of    all    of the

electrons taken as a whole (this is true in the absence of spin-orbit coupling which is treated

later as a perturbation). For linear molecules, the point group symmetry operations involve

rotations Rz of all N electrons about the principal axis, as a result of which the total angular

momentum Lz of the N electrons (taken as a whole) about this axis commutes with the

Hamiltonian, H. Rotation of all N electrons about the x and y axes does not leave the total

coulombic potential energy unchanged, so Lx and Ly do not commute with H. Hence for a

linear molecule, Lz , S2, and Sz  are the operators that commute with H. For atoms, the

corresponding operators are L2, Lz, S2, and Sz (again, in the absence of spin-orbit

coupling) where each operator pertains to the total orbital or spin angular momentum of the

N electrons.

To construct N-electron functions that are eigenfunctions of the spatial symmetry or

orbital angular momentum operators as well as the spin angular momentum operators, one

has to "couple" the symmetry or angular momentum properties of the individual spin-

orbitals used to construct the N-electrons functions. This coupling involves forming direct

product symmetries in the case of polyatomic molecules that belong to finite point groups,



it involves vector coupling orbital and spin angular momenta in the case of atoms, and it

involves vector coupling spin angular momenta and axis coupling orbital angular momenta

when treating linear molecules. Much of this Section is devoted to developing the tools

needed to carry out these couplings.


