
Chapter 7

The Most Elementary Molecular Orbital Models Contain Symmetry, Nodal Pattern, and

Approximate Energy Information

I. The LCAO-MO Expansion and the Orbital-Level Schrödinger Equation

In the simplest picture of chemical bonding, the valence molecular orbitals φi are

constructed as linear combinations of valence atomic orbitals χµ according to the LCAO-

MO formula:

φi = Σµ Ciµ χµ.

The core electrons are not explicitly included in such a treatment, although their effects are

felt through an electrostatic potential

V that has the following properties:

i.  V contains contributions from all of the nuclei in the molecule exerting coulombic

attractions on the electron, as well as coulombic repulsions and exchange interactions

exerted by the other electrons on this electron;

ii.  As a result of the (assumed) cancellation of attractions from distant nuclei and

repulsions from the electron clouds (i.e., the core, lone-pair, and valence orbitals) that

surround  these distant nuclei, the effect of V on any particular mo φi depends primarily on

the atomic charges and local bond polarities of the atoms over which φi  is delocalized.

As a result of these assumptions, qualitative molecular orbital models can be

developed in which one assumes that each mo φi obeys a one-electron Schrödinger

equation

h φi = εi φi.

Here the orbital-level hamiltonian h contains the kinetic energy of motion of the electron

and the potential V mentioned above:

[ - h2/2me ∇2 + V] φi = εi φi .



Expanding the mo φi in the LCAO-MO manner, substituting this expansion into the above

Schrödinger equation, multiplying on the left by χ*ν, and integrating over the coordinates

of the electron generates the following orbital-level eigenvalue problem:

Σµ <χν |- h2/2me ∇2 + V|χµ> Ciµ = εi Σµ <χν |χµ> Ciµ.

If the constituent atomic orbitals {χµ} have been orthonormalized as discussed earlier in

this chapter, the overlap integrals <χν |χµ> reduce to δµ,ν.

II. Determining the Effective Potential V

In the most elementary models of orbital structure, the quantities that explicitly

define the potential V are not computed from first principles as they are in so-called    ab initio    

methods (see Section 6). Rather, either experimental data or results of    ab initio    

calculations are used to determine the parameters in terms of which V is expressed. The

resulting empirical or semi-empirical methods discussed below differ in the sophistication

used to include electron-electron interactions as well as in the manner experimental data or

   ab initio     computational results are used to specify V.

If experimental data is used to parameterize a semi-empirical model, then the model

should not be extended beyond the level at which it has been parameterized. For example,

experimental bond energies, excitation energies, and ionization energies may be used to

determine molecular orbital energies which, in turn, are summed to compute total energies.

In such a parameterization it would be incorrect to subsequently use these mos to form a

wavefunction, as in Sections 3 and 6, that goes beyond the simple 'product of orbitals'

description. To do so would be inconsistent because the more sophisticated wavefunction

would duplicate what using the experimental data (which already contains mother nature's

electronic correlations) to determine the parameters had accomplished.

Alternatively, if results of    ab initio     theory at the single-configuration orbital-product

wavefunction level are used to define the parameters of a semi-empirical model, it would

then be proper to use the semi-empirical orbitals in a subsequent higher-level treatment of

electronic structure as done in Section 6.

A. The Hückel Parameterization of V

In the most simplified embodiment of the above orbital-level model, the following

additional approximations are introduced:



1.  The diagonal values <χµ|- h2 /2me ∇2 + V|χµ>, which are usually denoted αµ,

are taken to be equal to the energy of an electron in the atomic orbital χµ and, as such, are

evaluated in terms of atomic ionization energies (IP's) and electron affinities (EA's):

<χµ|- h2/2me ∇2 + V |χµ> = -IPµ,

for atomic orbitals that are occupied in the atom, and

<χµ|- h2/2me ∇2 + V |χµ> = -EAµ,

for atomic orbitals that are not occupied in the atom.

These approximations assume that contributions in V arising from coulombic

attraction to nuclei other than the one on which χµ is located, and repulsions from the core,

lone-pair, and valence electron clouds surrounding these other nuclei cancel to an extent

that

<χµ| V | χµ> contains only potentials from the atom on which χµ sits.

It should be noted that the IP's  and EA's of valence-state orbitals are not identical

to the experimentally measured IP's and EA's of the corresponding atom, but can be

obtained from such information. For example, the 2p valence-state IP (VSIP) for a Carbon

atom is the energy difference associated with the hypothetical process

C(1s22s2px2py2pz) ==> C+(1s22s2px2py) .

If the energy differences for the "promotion" of C

C(1s22s22px2py) ==> C(1s22s2px2py2pz) ; ∆EC

and for the promotion of C+

C+(1s22s22px) ==> C+(1s22s2px2py) ; ∆EC+

are known, the desired VSIP is given by:

IP2pz
 = IPC  + ∆EC+  - ∆EC .



The EA of the 2p orbital is obtained from the

C(1s22s22px2py) ==> C-(1s22s22px2py2pz)

energy gap, which means that EA2pz
 = EA

C
 . Some common IP's of valence 2p orbitals in

eV are as follows: C (11.16), N (14.12), N+ (28.71), O (17.70), O+ (31.42), F+ (37.28).

2.  The off-diagonal elements <χν |- h2/2me ∇2 + V |χµ> are

taken as zero if χµ  and χν belong to the same atom because the atomic orbitals are

assumed to have been constructed to diagonalize the one-electron hamiltonian appropriate to

an electron moving in that atom. They are set equal to a parameter denoted βµ,ν if χµ and

χν reside on neighboring atoms that are chemically bonded. If χµ and χν reside on atoms

that are not bonded neighbors, then the off-diagonal matrix element is set equal to zero.

3. The geometry dependence of the βµ,ν parameters is often approximated by

assuming that βµ,ν is proportional to the overlap Sµ,ν between the corresponding atomic

orbitals:

βµ,ν = βoµ,ν Sµ,ν .

Here βoµ,ν is a constant (having energy units) characteristic of the bonding interaction

between χµ  and χν; its value is usually determined by forcing the molecular orbital

energies obtained from such a qualitative orbital treatment to yield experimentally correct

ionization potentials, bond dissociation energies, or electronic transition energies.

The particular approach described thus far forms the basis of the so-called      Hückel

     model   . Its implementation requires knowledge of the atomic αµ and β0µ,ν values, which

are eventually expressed in terms of experimental data, as well as a means of calculating the

geometry dependence of the βµ,ν 's (e.g., some method for computing overlap matrices

Sµ,ν ).

B. The Extended Hückel Method

It is well known that bonding and antibonding orbitals are formed when a pair of

atomic orbitals from neighboring atoms interact. The energy splitting between the bonding



and antibonding orbitals depends on the overlap between the pair of atomic orbitals. Also,

the energy of the antibonding orbital lies higher above the arithmetic mean Eave = EA + EB

of the energies of the constituent atomic orbitals (EA and EB) than the bonding orbital lies

below Eave . If overlap is ignored, as in conventional Hückel theory (except in

parameterizing the geometry dependence of βµ,ν), the differential destabilization of

antibonding orbitals compared to stabilization of bonding orbitals can not be accounted for.

By parameterizing the off-diagonal Hamiltonian matrix elements in the following

overlap-dependent manner:

hν ,µ = <χν |- h2/2me ∇2 + V |χµ> = 0.5 K (hµ,µ + hν ,ν) Sµ,ν  ,

and explicitly treating the overlaps among the constituent atomic orbitals {χµ} in solving

the orbital-level Schrödinger equation

Σµ <χν |- h2/2me ∇2 + V|χµ> Ciµ = εi Σµ <χν |χµ> Ciµ,

Hoffmann introduced the so-called extended Hückel method. He found that a value for K=

1.75 gave optimal results when using Slater-type orbitals as a basis (and for calculating the

Sµ,ν). The diagonal hµ,µ elements are given, as in the conventional Hückel method, in

terms of valence-state IP's and EA's. Cusachs later proposed a variant of this

parameterization of the off-diagonal elements:

hν ,µ = 0.5 K (hµ,µ + hν ,ν) Sµ,ν (2-|Sµ,ν |).

For first- and second-row atoms, the 1s or (2s, 2p) or (3s,3p, 3d) valence-state ionization

energies (αµ's), the number of valence electrons (#Elec.) as well as the orbital exponents

(es , ep and ed) of Slater-type orbitals used to calculate the overlap matrix elements Sµ,ν

corresponding are given below.



Atom # Elec. es=ep ed αs(eV) αp(eV) αd(eV)

H 1 1.3 -13.6

Li 1 0.650 -5.4 -3.5

Be 2 0.975 -10.0 -6.0

B 3 1.300 -15.2 -8.5

C 4 1.625 -21.4 -11.4

N 5 1.950 -26.0 -13.4

O 6 2.275 -32.3 -14.8

F 7 2.425 -40.0 -18.1

Na 1 0.733 -5.1 -3.0

Mg 2 0.950 -9.0 -4.5

Al 3 1.167 -12.3 -6.5

Si 4 1.383 1.383 -17.3 -9.2 -6.0

P 5 1.600 1.400 -18.6 -14.0 -7.0

S 6 1.817 1.500 -20.0 -13.3 -8.0

Cl 7 2.033 2.033 -30.0 -15.0 -9.0

In the Hückel or extended Hückel methods no    explicit    reference is made to electron-
electron interactions although such contributions are absorbed into the V potential, and
hence into the αµ and βµ,ν parameters of Hückel theory or the hµ,µ and hµ,ν parameters of
extended Hückel theory. As electron density flows from one atom to another (due to
electronegativity differences), the electron-electron repulsions in various atomic orbitals
changes. To account for such charge-density-dependent coulombic energies, one must use
an approach that includes explicit reference to inter-orbital coulomb and exchange
interactions. There exists a large family of semi-empirical methods that permit explicit
treatment of electronic interactions; some of the more commonly used approaches are
discussed in Appendix F.


