
Chapter 18

The single Slater determinant wavefunction (properly spin and symmetry adapted) is the

starting point of the most common mean field potential. It is also the origin of the molecular

orbital concept.

I. Optimization of the Energy for a Multiconfiguration Wavefunction

A. The Energy Expression

The most straightforward way to introduce the concept of optimal molecular orbitals

is to consider a trial wavefunction of the form which was introduced earlier in Chapter 9.II.

The expectation value of the Hamiltonian for a wavefunction of the multiconfigurational

form

Ψ = ΣI CIΦI ,

where ΦI is a space- and spin-adapted CSF which consists of determinental wavefunctions

|φI1φI2φI3. . .φIN| , can be written as:

E =ΣI,J = 1, M CICJ < ΦI | H | ΦJ > .

The spin- and space-symmetry of the ΦI determine the symmetry of the state Ψ whose

energy is to be optimized.

In this form, it is clear that E is a quadratic function of the CI amplitudes CJ ; it is a

quartic functional of the spin-orbitals because the Slater-Condon rules express each < ΦI |

H | ΦJ > CI matrix element in terms of one- and two-electron integrals < φi | f | φj > and

< φiφj | g | φkφl > over these spin-orbitals.

B. Application of the Variational Method

The     variational    method can be used to optimize the above expectation value

expression for the electronic energy (i.e., to make the functional stationary) as a function of

the CI coefficients CJ and the LCAO-MO coefficients {Cν, i} that characterize the spin-

orbitals. However, in doing so the set of {Cν, i} can not be treated as entirely independent

variables. The fact that the spin-orbitals {φi} are assumed to be orthonormal imposes a set

of constraints on the {Cν, i}:



< φi | φj> = δi,j  = Σµ,ν C*µ,i < χµ| χν > Cν ,j.

These constraints can be enforced within the variational optimization of the energy function

mentioned above by introducing a set of Lagrange multipliers {εi,j} , one for each

constraint condition, and subsequently differentiating

E - Σ i,j  εi,j [ δi,j  - Σµ,ν C*µ,i < χµ| χν > Cν ,j ]

with respect to each of the Cν ,i variables.

C. The Fock and Secular Equations

Upon doing so, the following set of equations is obtained (early references to the

derivation of such equations include A. C. Wahl, J. Chem. Phys.     41     ,2600 (1964) and F.

Grein and T. C. Chang, Chem. Phys. Lett.     12    , 44 (1971); a more recent overview is

presented in R. Shepard, p 63, in Adv. in Chem. Phys. LXIX, K. P. Lawley, Ed., Wiley-

Interscience, New York (1987); the subject is also treated in the textbook     Second

    Quantization Based Methods in Quantum Chemistry    , P. Jørgensen and J. Simons,

Academic Press, New York (1981))) :

Σ J =1, M HI,J   CJ  = E CI ,  I = 1, 2, ... M, and

F φi = Σ j εi,j φj,

where the εi,j  are Lagrange multipliers.

The first set of equations govern the {CJ} amplitudes and are called the CI- secular

equations. The second set determine the LCAO-MO coefficients of the spin-orbitals {φj}

and are called the Fock equations. The Fock operator F is given in terms of the one- and

two-electron operators in H itself as well as the so-called one- and two-electron density

matrices γi,j  and Γi,j,k,l which are defined below. These density matrices reflect the

averaged occupancies of the various spin orbitals in the CSFs of Ψ. The resultant

expression for F is:

F φi = Σ j γi,j  h φj + Σ j,k,l Γi,j,k,l Jj,l  φk,



where h is the one-electron component of the Hamiltonian (i.e., the kinetic energy operator

and the sum of coulombic attractions to the nuclei). The operator Jj,l  is defined by:

Jj,l φk(r) =⌡⌠ φ*j(r ') φl(r')1/|r-r'| dτ'   φk(r),

where the integration denoted dτ' is over the spatial and spin coordinates. The so-called

spin integration simply means that the α or β spin function associated with φl must be the

same as the α or β spin function associated with φj or the integral will vanish. This is a

consequence of the orthonormality conditions <α|α> = <β|β> = 1, <α|β> = <β|α> = 0.

D. One- and Two- Electron Density Matrices

The density matrices introduced above can most straightforwardly be expressed in

terms of the CI amplitudes and the nature of the orbital occupancies in the CSFs of Ψ as

follows:

1. γi,i  is the sum over all CSFs, in which φi is occupied, of the square of the CI coefficient

of that CSF:

γi,i  =ΣI (with φi occupied) C2I .

2. γi,j  is the sum over pairs of CSFs which differ by a single spin-orbital occupancy (i.e.,

one having φi occupied where the other has φj occupied after the two are placed into

maximal coincidence-the sign factor (sign) arising from bringing the two to maximal

coincidence is attached to the final density matrix element):

γi,j  = ΣI,J (sign)( with φi occupied in I where φj is in J) CI CJ .

The two-electron density matrix elements are given in similar fashion:

3. Γi,j,i,j = ΣI (with both φi and φj occupied) CI CI ;

4.   Γi,j,j,i = -ΣI (with both φi and φj occupied) CI CI  = -Γi,j,i,j



(it can be shown, in general that Γi,j,k,l is odd under exchange of i and j, odd under

exchange of k and l and even under (i,j)<=>(k,l) exchange; this implies that Γi,j,k,l

vanishes if i = j or k = l.) ;

5. Γi,j,k,j = Σ I,J (sign)(with φj in both I and J

and φi in I where φk is in J) CICJ

= Γj,i,j,k = - Γi,j,j,k = - Γj,i,k,j;

6. Γi,j,k,l = ΣI,J (sign)( with φi in I where φk is in J and φj in I where φl is in J) CI

CJ

= Γj,i,l,k = - Γj,i,k,l = - Γi,j,l,k = Γj,i,l,k .

These density matrices are themselves quadratic functions of the CI coefficients and

they reflect all of the permutational symmetry of the determinental functions used in

constructing Ψ;  they are a compact representation of all of the Slater-Condon rules as

applied to the particular CSFs which appear in Ψ. They contain all information about the

spin-orbital occupancy of the CSFs in Ψ. The one- and two- electron integrals < φi | f | φj >

and < φiφj | g | φkφl > contain all of the information about the magnitudes of the kinetic and

Coulombic interaction energies.

II. The Single-Determinant Wavefunction

The simplest trial function of the form given above is the single Slater determinant

function:

Ψ = | φ1φ2φ3 ... φN |.

For such a function, the CI part of the energy minimization is absent  (the classic papers in

which the SCF  equations for closed- and open-shell systems are treated are C. C. J.

Roothaan, Rev. Mod. Phys.     23    , 69 (1951);     32    , 179 (1960)) and the density matrices

simplify greatly because only one spin-orbital occupancy is operative. In this case, the

orbital optimization conditions reduce to:

F φi = Σ j εi,j  φj ,



where the so-called Fock operator F is given by

F φi = h φi + Σ j(occupied) [Jj - Kj] φi .

The coulomb (Jj) and exchange (Kj) operators are defined by the relations:

Jj φi = ∫ φ*j(r') φj(r')1/|r-r'| dτ'  φi(r) , and

Kj φi = ∫ φ*j(r') φi(r')1/|r-r'| dτ'  φj(r) .

Again, the integration implies integration over the spin variables associated with the φj

(and, for the exchange operator, φi), as a result of which the exchange integral vanishes

unless the spin function of φj is the same as that of φi; the coulomb integral is non-

vanishing no matter what the spin functions of φj and φi.

The sum over coulomb and exchange interactions in the Fock operator runs only

over those spin-orbitals that are occupied in the trial Ψ. Because a unitary transformation

among the orbitals that appear in Ψ leaves the determinant unchanged (this is a property of

determinants- det (UA) = det (U) det (A) = 1 det (A), if U is a unitary matrix), it is possible

to choose such a unitary transformation to make the εi,j matrix diagonal. Upon so doing,

one is left with the so-called    canonical Hartree-Fock equations   :

F φi =  εi φj,

where εi is the diagonal value of the εi,j  matrix after the unitary transformation has been

applied; that is, εi is an eigenvalue of the εi,j  matrix. These equations are of the eigenvalue-

eigenfunction form with the Fock operator playing the role of an effective one-electron

Hamiltonian and the φi  playing the role of the one-electron eigenfunctions.

It should be noted that the Hartree-Fock equations F φi =  εi φj possess solutions

for the spin-orbitals which appear in Ψ (the so-called     occupied     spin-orbitals) as well as for

orbitals which are not occupied in Ψ ( the so-called     virtual    spin-orbitals). In fact, the F

operator is hermitian, so it possesses a complete set of orthonormal eigenfunctions; only

those which appear in Ψ appear in the coulomb and exchange potentials of the Fock

operator. The physical meaning of the occupied and virtual orbitals will be clarified later in

this Chapter (Section VII.A)



III. The Unrestricted Hartree-Fock Spin Impurity Problem

As formulated above in terms of spin-orbitals, the Hartree-Fock (HF) equations

yield orbitals that do not guarantee that Ψ possesses proper spin symmetry. To illustrate the

point, consider the form of the equations for an open-shell system such as the Lithium atom

Li. If 1sα, 1sβ, and 2sα spin-orbitals are chosen to appear in the trial function Ψ, then the

Fock operator will contain the following terms:

F = h + J1sα + J1sβ + J2sα - [ K1sα + K1sβ + K2sα ] .

Acting on an α spin-orbital φkα with F and carrying out the spin integrations, one obtains

F φkα = h φkα + (2J1s + J2s ) φkα - ( K1s + K2s) φkα .

In contrast, when acting on a β spin-orbital, one obtains

F φkβ = h φkβ + (2J1s + J2s ) φkβ - ( K1s) φkβ .

Spin-orbitals of α and  β type do     not    experience the same exchange potential in this model,

which is clearly due to the fact that Ψ contains two α spin-orbitals and only one β spin-

orbital.

One consequence of the spin-polarized nature of the effective potential in F is that

the optimal 1sα and 1sβ spin-orbitals, which are themselves solutions of F φi = εi φi , do

not have identical orbital energies (i.e., ε1sα ≠ ε1sβ ) and are not spatially identical to one

another ( i.e., φ1sα and φ1sβ do not have identical LCAO-MO expansion coefficients). This

resultant spin polarization of the orbitals in Ψ gives rise to spin impurities in Ψ. That is, the

determinant | 1sα 1s'β 2sα | is not a pure doublet spin eigenfunction although it is an Sz

eigenfunction with Ms = 1/2; it contains both S = 1/2 and S = 3/2 components. If the 1sα
and 1s'β spin-orbitals were spatially identical, then | 1sα 1s'β 2sα | would be a pure spin

eigenfunction with S = 1/2.

The above single-determinant wavefunction is commonly referred to as being of the

unrestricted Hartree-Fock (UHF) type because no restrictions are placed on the spatial

nature of the orbitals which appear in Ψ. In general, UHF wavefunctions are not of pure

spin symmetry for any open-shell system. Such a UHF treatment forms the starting point

of early versions of the widely used and highly successful Gaussian 70 through Gaussian-



8X series of electronic structure computer codes which derive from J. A. Pople and co-

workers (see, for example, M. J. Frisch, J. S. Binkley, H. B. Schlegel, K Raghavachari,

C. F. Melius, R. L. Martin, J. J. P. Stewart, F. W. Bobrowicz, C. M. Rohling, L. R.

Kahn, D. J. Defrees, R. Seeger, R. A. Whitehead, D. J. Fox, E. M. Fleuder, and J. A.

Pople,      Gaussian 86     , Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh,

PA (1984)).

The inherent spin-impurity problem is sometimes 'fixed' by using the orbitals

which are obtained in the UHF calculation to subsequently form a properly spin-adapted

wavefunction. For the above Li atom example, this amounts to forming a new

wavefunction (after the orbitals are obtained via the UHF process) using the techniques

detailed in Section 3 and Appendix G:

Ψ = 1/√2 [ |1sα 1s'β 2sα | - | 1sβ 1s'α 2sα | ] .

This wavefunction is a pure S = 1/2 state. This prescription for avoiding spin

contamination (i.e., carrying out the UHF calculation and then forming a new spin-pure Ψ)

is referred to as    spin-projection    .

It is, of course, possible to first form the above spin-pure Ψ as a trial wavefunction

and to then determine the orbitals 1s 1s' and 2s which minimize its energy; in so doing, one

is dealing with a spin-pure function from the start. The problem with carrying out this

process, which is referred to as a    spin-adapted     Hartree-Fock calculation, is that the

resultant 1s and 1s' orbitals still do not have identical spatial attributes. Having a set of

orbitals (1s, 1s', 2s, and the virtual orbitals) that form a non-orthogonal set (1s and 1s' are

neither identical nor orthogonal) makes it difficult to progress beyond the single-

configuration wavefunction as one often wishes to do. That is, it is difficult to use a spin-

adapted wavefunction as a starting point for a correlated-level treatment of electronic

motions.

Before addressing head-on the problem of how to best treat orbital optimization for

open-shell species, it is useful to examine how the HF equations are solved in practice in

terms of the LCAO-MO process.

IV. The LCAO-MO Expansion

The HF equations F φi = εi φi comprise a set of integro-differential equations; their

differential nature arises from the kinetic energy operator in h, and the coulomb and

exchange operators provide their integral nature. The solutions of these equations must be



achieved iteratively because the Ji and Ki  operators in F depend on the orbitals φi  which

are to be solved for. Typical iterative schemes begin with a 'guess' for those φi which

appear in Ψ, which then allows F to be formed. Solutions to F φi = εi φi are then found,

and those φi which possess the space and spin symmetry of the occupied orbitals of Ψ and

which have the proper energies and nodal character are used to generate a new F operator

(i.e., new Ji and Ki operators). The new F operator then gives new φi and εi via solution of

the new F φi = εi φi equations. This iterative process is continued until the φi and εi do not

vary significantly from one iteration to the next, at which time one says that the process has

converged. This iterative procedure is referred to as the Hartree-Fock    self-consistent field    

(SCF) procedure because iteration eventually leads to coulomb and exchange potential

fields that are consistent from iteration to iteration.

In practice, solution of F φi = εi φi as an integro-differential equation can be carried

out only for atoms (C. Froese-Fischer, Comp. Phys. Commun.     1     , 152 (1970)) and linear

molecules (P. A. Christiansen and E. A. McCullough, J. Chem. Phys.     67    , 1877 (1977))

for which the angular parts of the φi  can be exactly separated from the radial because of the

axial- or full- rotation group symmetry (e.g., φi = Yl,m  Rn,l (r)  for an atom and φi =

exp(imφ) Rn,l,m (r,θ) for a linear molecule). In such special cases, F φi = εi φi gives rise to

a set of coupled equations for the Rn,l(r) or Rn,l,m(r,θ) which can and have been solved.

However, for non-linear molecules, the HF equations have not yet been solved in such a

manner because of the three-dimensional nature of the φi and of the potential terms in F.

In the most commonly employed procedures used to solve the HF equations for

non-linear molecules, the φi are expanded in a basis of functions χµ according to the

LCAO-MO procedure:

φi = Σµ Cµ,i χµ .

Doing so then reduces F φi = εi φi to a matrix eigenvalue-type equation of the form:

Σν  Fµ,ν Cν ,i = εi Σν  Sµ,ν Cν ,i  ,

where Sµ,ν = < χµ | χν> is the overlap matrix among the atomic orbitals (aos) and

    Fµ,ν = <χµ|h|χν> + Σδ,κ [γδ,κ<χµχδ |g|χνχκ>-γδ,κex<χµχδ|g|χκχν >]

is the matrix representation of the Fock operator in the ao basis.  The coulomb and

exchange- density matrix elements in the ao basis are:



γδ,κ = Σ i(occupied) Cδ,i Cκ,i, and

γδ,κex = Σ i(occ., and same spin)  Cδ,i Cκ,i,

where the sum in γδ,κex runs over those occupied spin-orbitals whose ms value is equal to

that for which the Fock matrix is being formed (for a closed-shell species, γδ,κex = 1/2

γδ,κ).

It should be noted that by moving to a matrix problem, one does not remove the

need for an iterative solution; the Fµ,ν matrix elements depend on the Cν ,i  LCAO-MO

coefficients which are, in turn, solutions of the so-called Roothaan matrix Hartree-Fock

equations- Σν  Fµ,ν Cν ,i  = εi Σν  Sµ,ν Cν ,i .  One should also note that, just as

F φi =  εi φj possesses a complete set of eigenfunctions, the matrix Fµ,ν  , whose dimension

M is equal to the number of atomic basis orbitals used in the LCAO-MO expansion, has M

eigenvalues εi and M eigenvectors whose elements are the Cν ,i. Thus, there are occupied

and virtual molecular orbitals (mos) each of which is described in the LCAO-MO form with

Cν ,i  coefficients obtained via solution of

Σν  Fµ,ν Cν ,i  = εi Σν  Sµ,ν Cν ,i  .

V. Atomic Orbital Basis Sets

A. STOs and GTOs

The basis orbitals commonly used in the LCAO-MO-SCF process fall into two

classes:

1. Slater-type orbitals

χn,l,m (r,θ,φ) = Nn,l,m,ζ  Yl,m (θ,φ) rn-1 e-ζr ,

which are characterized by quantum numbers n, l, and m and exponents (which

characterize the 'size' of the basis function) ζ. The symbol Nn,l,m,ζ denotes the

normalization constant.



2. Cartesian Gaussian-type orbitals

χa,b,c (r,θ,φ) = N'a,b,c,α  xa yb zc exp(-αr2),

characterized by quantum numbers a, b, and c which detail the angular shape and direction

of the orbital and exponents α which govern the radial 'size' of the basis function. For

example, orbitals with a, b, and c values of 1,0,0 or 0,1,0 or 0,0,1 are px , py , and pz

orbitals; those with a,b,c values of 2,0,0 or 0,2,0 or 0,0,2 and

1,1,0 or 0,1,1 or 1,0,1 span the space of five d orbitals and one s orbital (the sum of the

2,0,0 and 0,2,0 and 0,0,2 orbitals is an s orbital because x2 + y2 + z2 = r2 is independent

of θ and φ).

For both types of orbitals, the coordinates r, θ, and φ refer to the position of the

electron relative to a set of axes attached to the center on which the basis orbital is located.

Although Slater-type orbitals (STOs) are preferred on fundamental grounds (e.g., as

demonstrated in Appendices A and B, the hydrogen atom orbitals are of this form and the

exact solution of the many-electron Schrödinger equation can be shown to be of this form

(in each of its coordinates) near the nuclear centers), STOs are used primarily for atomic
and linear-molecule calculations because the multi-center integrals < χaχb| g | χcχd > (each

basis orbital can be on a separate atomic center) which arise in polyatomic-molecule

calculations can not efficiently be performed when STOs are employed. In contrast, such

integrals can routinely be done when Gaussian-type orbitals (GTOs) are used. This

fundamental advantage of GTOs has lead to the dominance of these functions in molecular

quantum chemistry.

To understand why integrals over GTOs can be carried out when analogous STO-
based integrals are much more difficult, one must only consider the orbital products ( χaχc
(r1) and χbχd (r2) ) which arise in such integrals. For orbitals of the GTO form, such

products involve exp(-αa (r-Ra)2) exp(-αc (r-Rc)2). By completing the square in the

exponent, this product can be rewritten as follows:

exp(-αa (r-Ra)2) exp(-αc (r-Rc)2)

= exp(-(αa+αc)(r-R')2) exp(-α'(Ra-Rc)2),

where

R' = [ αa Ra + αcRc ]/(αa + αc) and



α' = αa αc/(αa +αc).

Thus, the product of two GTOs on different centers is equal to a single other GTO at a

center R' between the two original centers. As a result, even a four-center two-electron

integral over GTOs can be written as, at most, a two-center two-electron integral; it turns

out that this reduction in centers is enough to allow all such integrals to be carried out. A

similar reduction does not arise for STOs because the product of two STOs can not be

rewritten as a new STO at a new center.

To overcome the primary weakness of GTO functions, that they have incorrect

behavior near the nuclear centers (i.e., their radial derivatives vanish at the nucleus whereas

the derivatives of STOs are non-zero), it is common to combine two, three, or more GTOs,

with combination coefficients which are fixed and     not    treated as LCAO-MO parameters,

into new functions called contracted GTOs or CGTOs. Typically, a series of tight,

medium, and loose GTOs (i.e., GTOs with large, medium, and small α values,

respectively) are multiplied by so-called contraction coefficients and summed to produce a

CGTO which appears to possess the proper 'cusp' (i.e., non-zero slope) at the nuclear

center (although even such a combination can not because each GTO has zero slope at the

nucleus).

B. Basis Set Libraries

Much effort has been devoted to developing sets of STO or GTO basis orbitals for

main-group elements and the lighter transition metals. This ongoing effort is aimed at

providing standard basis set libraries which:

1. Yield reasonable chemical accuracy in the resultant wavefunctions and energies.

2. Are cost effective in that their use in practical calculations is feasible.

3. Are relatively transferrable in the sense that the basis for a given atom is flexible enough

to be used for that atom in a variety of bonding environments (where the atom's

hybridization and local polarity may vary).

C. The Fundamental Core and Valence Basis

In constructing an atomic orbital basis to use in a particular calculation, one must

choose from among several classes of functions. First, the size and nature of the primary



core and valence basis must be specified. Within this category, the following choices are

common:

1. A      minimal basis    in which the number of STO or CGTO orbitals is equal to the number

of core and valence atomic orbitals in the atom.

2. A     double-zeta    (DZ) basis in which twice as many STOs or CGTOs are used as there are

core and valence atomic orbitals. The use of more basis functions is motivated by a desire

to provide additional variational flexibility to the LCAO-MO process.  This flexibility

allows the LCAO-MO process to generate molecular orbitals of variable diffuseness as the

local electronegativity of the atom varies.  Typically, double-zeta bases include pairs of

functions with one member of each pair having a smaller exponent (ζ or α value) than in

the minimal basis and the other member having a larger exponent.

3. A    triple-zeta    (TZ) basis in which three times as many STOs or CGTOs are used as the

number of core and valence atomic orbitals.

4. Dunning has developed CGTO bases which range from approximately DZ to

substantially beyond TZ quality (T. H. Dunning, J. Chem. Phys.     53    , 2823 (1970); T. H.

Dunning and P. J. Hay in      Methods of Electronic Structure Theory    , H. F. Schaefer, III

Ed., Plenum Press, New York (1977))). These bases involve contractions of primitive

GTO bases which Huzinaga had earlier optimized (S. Huzinaga, J. Chem. Phys.     42    , 1293

(1965)) for use as uncontracted functions (i.e., for which Huzinaga varied the α values to

minimize the energies of several electronic states of the corresponding atom). These

Dunning bases are commonly denoted, for example, as follows for first-row atoms:

(10s,6p/5s,4p), which means that 10 s-type primitive GTOs have been contracted to

produce 5 separate s-type CGTOs and that 6 primitive p-type GTOs were contracted to

generate 4 separate p-type CGTOs. More recent basis sets from the Dunning group are

given in T. Dunning, J. Chem. Phys.     90    , 1007 (1990).

5. Even-tempered basis sets (M. W. Schmidt and K. Ruedenberg, J. Chem. Phys.     71    ,

3961 (1979)) consist of GTOs in which the orbital exponents αk belonging to series of

orbitals consist of geometrical progressions: αk = a βk , where a and β characterize the

particular set of GTOs.

6. STO-3G bases were employed some years ago (W. J. Hehre, R. F. Stewart, and J. A.

Pople, J. Chem. Phys.     51    , 2657 (1969)) but are less popular recently. These bases are

constructed by least squares fitting GTOs to STOs which have been optimized for various

electronic states of the atom. When three GTOs are employed to fit each STO, a STO-3G

basis is formed.

7. 4-31G, 5-31G, and 6-31G bases (R.  Ditchfield, W. J. Hehre, and J. A. Pople, J.

Chem. Phys.     54    , 724 (1971); W. J. Hehre, R.  Ditchfield, and J. A. Pople, J. Chem.



Phys.     56    , 2257 (1972); P. C. Hariharan and J. A. Pople, Theoret. Chim. Acta. (Berl.)     28    ,

213 (1973); R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys.     72    ,

650 (1980)) employ a single CGTO of contraction length 4, 5, or 6 to describe the core

orbital. The valence space is described at the DZ level with the first CGTO constructed

from 3 primitive GTOs and the second CGTO built from a single primitive GTO.

The values of the orbital exponents (ζs or αs) and the GTO-to-CGTO contraction

coefficients needed to implement a particular basis of the kind described above have been

tabulated in several journal articles and in computer data bases (in particular, in the data

base contained in the book      Handbook of Gaussian Basis Sets:  A. Compendium for Ab

   initio Molecular Orbital Calculations   , R. Poirer, R. Kari, and I. G. Csizmadia, Elsevier

Science Publishing Co., Inc., New York, New York (1985)).

Several other sources of basis sets for particular atoms are listed in the Table shown

below (here JCP and JACS are abbreviations for the Journal of Chemical Physics and the

Journal of The American Chemical Society, respectively).

    Literature Reference                                        Basis Type        Atoms   

Hehre, W.J.; Stewart, R.F.; Pople, J.A.           STO-3G                  H-Ar

JCP     51    , 2657 (1969).

Hehre, W.J.; Ditchfield, R.; Stewart, R.F.;

Pople, J.A. JCP     52    , 2769 (1970).

Binkley, J.S.; Pople, J.A.; Hehre, W.J.             3-21G                   H-Ne

JACS     102    , 939 (1980).

Gordon, M.S.; Binkley, J.S.; Pople, J.A.;          3-21G                    Na-Ar

Pietro, W.J.; Hehre, W.J. JACS     104    , 2797 (1982).

Dobbs, K.D.; Hehre, W.J.                                3-21G                   K,Ca,Ga

J. Comput. Chem.     7    , 359 (1986).
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D. Polarization Functions

In addition to the fundamental core and valence basis described above, one usually

adds a set of so-called     polarization functions    to the basis. Polarization functions are

functions of one higher angular momentum than appears in the atom's valence orbital space

(e.g, d-functions for C, N , and O and p-functions for H). These polarization functions

have exponents (ζ or α) which cause their radial sizes to be similar to the sizes of the

primary valence orbitals

( i.e., the polarization p orbitals of the H atom are similar in size to the 1s orbital).  Thus,

they are     not    orbitals which provide a description of the atom's valence orbital with one

higher l-value; such higher-l valence orbitals would be radially more diffuse and would

therefore require the use of STOs or GTOs with smaller exponents.

The primary purpose of polarization functions is to give additional angular

flexibility to the LCAO-MO process in forming the valence molecular orbitals. This is

illustrated below where polarization dπ orbitals are seen to contribute to formation of the

bonding π orbital of a carbonyl group by allowing polarization of the Carbon atom's pπ
orbital toward the right and of the Oxygen atom's pπ orbital toward the left.



              

C O

Polarization functions are essential in strained ring compounds because they provide the

angular flexibility needed to direct the electron density into regions between bonded atoms.

Functions with higher l-values and with 'sizes' more in line with those of the

lower-l orbitals are also used to introduce additional angular correlation into the calculation

by permitting polarized orbital pairs (see Chapter 10) involving higher angular correlations

to be formed. Optimal polarization functions for first and second row atoms have been

tabulated (B. Roos and P. Siegbahn, Theoret. Chim. Acta (Berl.)     17    , 199 (1970); M. J.

Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys.     80     , 3265 (1984)).

E. Diffuse Functions

When dealing with anions or Rydberg states, one must augment the above basis

sets by adding so-called diffuse basis orbitals. The conventional valence and polarization

functions described above do not provide enough radial flexibility to adequately describe

either of these cases. Energy-optimized diffuse functions appropriate to anions of most

lighter main group elements have been tabulated in the literature (an excellent source of

Gaussian basis set information is provided in      Handbook of Gaussian Basis Sets   , R.

Poirier, R. Kari, and I. G. Csizmadia, Elsevier, Amsterdam (1985)) and in data bases.

Rydberg diffuse basis sets are usually created by adding to conventional valence-plus-

polarization bases sequences of primitive GTOs whose exponents are smaller than that (call

it αdiff) of the most diffuse GTO which contributes strongly to the valence CGTOs. As a

'rule of thumb', one can generate a series of such diffuse orbitals which are liniarly

independent yet span considerably different regions of radial space by introducing primitive

GTOs whose exponents are αdiff /3, αdiff /9 , αdiff /27, etc.

Once one has specified an atomic orbital basis for each atom in the molecule, the

LCAO-MO procedure can be used to determine the Cν ,i  coefficients that describe the



occupied and virtual orbitals in terms of the chosen basis set. It is important to keep in mind

that the basis orbitals are     not    themselves the true orbitals of the isolated atoms; even the

proper atomic orbitals are combinations (with atomic values for the Cν ,i  coefficients) of the

basis functions. For example, in a minimal-basis-level treatment of the Carbon atom, the 2s

atomic orbital is formed by combining, with opposite sign to achieve the radial node, the

two CGTOs (or STOs); the more diffuse s-type basis function will have a larger Ci,ν

coefficient in the 2s atomic orbital. The 1s atomic orbital is formed by combining the same

two CGTOs but with the same sign and with the less diffuse basis function having a larger

Cν ,i coefficient. The LCAO-MO-SCF process itself determines the magnitudes and signs

of the Cν ,i  .

VI. The Roothaan Matrix SCF Process

The matrix SCF equations introduced earlier

Σν  Fµ,ν Cν ,i  = εi Σν  Sµ,ν Cν ,i

must be solved both for the occupied and virtual orbitals' energies εi and Cν ,i  values. Only

the occupied orbitals' Cν ,i  coefficients enter into the Fock operator

Fµ,ν  = < χµ | h | χν > + Σδ,κ  [γδ,κ< χµ χδ | g | χν χκ >

-  γδ,κex< χµ χδ | g | χκ χν >],

but both the occupied and virtual orbitals are solutions of the SCF equations. Once atomic

basis sets have been chosen for each atom, the     one- and two-electron integrals    appearing in

Fµ,ν  must be evaluated. Doing so is a time consuming process, but there are presently

several highly efficient computer codes which allow such integrals to be computed for s, p,

d, f, and even g, h, and i basis functions. After executing one of these '   integral packages   '

for a basis with a total of N functions, one has available (usually on the computer's hard

disk) of the order of N2/2 one-electron and N4/8 two-electron integrals over these atomic

basis orbitals (the factors of 1/2 and 1/8 arise from permutational symmetries of the

integrals). When treating extremely large atomic orbital basis sets (e.g., 200 or more basis

functions), modern computer programs calculate the requisite integrals but never store them



on the disk. Instead, their contributions to Fµ,ν are accumulated 'on the fly' after which the

integrals are discarded.

To begin the SCF process, one must input to the computer routine which computes

Fµ,ν    initial 'guesses'    for the Cν ,i  values corresponding to the occupied orbitals. These

initial guesses are typically made in one of the following ways:

1. If one has available Cν ,i  values for the system from an SCF calculation performed

earlier at a nearby molecular geometry, one can use these Cν ,i  values to begin the SCF

process.

2. If one has Cν ,i  values appropriate to fragments of the system (e.g., for C and O atoms

if the CO molecule is under study or for CH2 and O if H2CO is being studied), one can use

these.

3. If one has no other information available, one can carry out one iteration of the SCF

process in which the two-electron contributions to Fµ,ν   are ignored ( i.e., take Fµ,ν  = < χµ
| h | χν >) and use the resultant solutions to Σν  Fµ,ν Cν ,i  = εi Σν  Sµ,ν Cν ,i   as initial

guesses for the Cν ,i . Using only the one-electron part of the Hamiltonian to determine

initial values for the LCAO-MO coefficients may seem like a rather severe step; it is, and

the resultant Cν ,i  values are usually far from the converged values which the SCF process

eventually produces. However, the initial Cν ,i  obtained in this manner have proper

symmetries and nodal patterns because the one-electron part of the Hamiltonian has the

same symmetry as the full Hamiltonian.

Once initial guesses are made for the Cν ,i   of the occupied orbitals, the full Fµ,ν
matrix is formed and new εi and Cν ,i  values are obtained by solving Σν  Fµ,ν Cν ,i  = εi Σν
Sµ,ν Cν ,i . These new orbitals are then used to form a new Fµ,ν   matrix from which new εi

and Cν ,i  are obtained. This iterative process is carried on until the εi and Cν ,i  do not vary

(within specified tolerances)  from iteration to iteration, at which time one says that the SCF

process has converged and reached self-consistency.

As presented, the Roothaan SCF process is carried out in a fully    ab        initio     manner in

that all one- and two-electron integrals are computed in terms of the specified basis set; no

experimental data or other input is employed. As described in Appendix F,  it is possible to

introduce approximations to the coulomb and exchange integrals entering into the Fock

matrix elements that permit many of the requisite Fµ,ν elements to be evaluated in terms of

experimental data or in terms of a small set of 'fundamental' orbital-level coulomb

interaction integrals that can be computed in an    ab        initio     manner. This approach forms the

basis of so-called 'semi-empirical' methods. Appendix F provides the reader with a brief

introduction to such approaches to the electronic structure problem and deals in some detail

with the well known Hückel and CNDO- level approximations.



VII. Observations on Orbitals and Orbital Energies

A. The Meaning of Orbital Energies

The physical content of the Hartree-Fock orbital energies can be seen by observing

that Fφi = εi φi  implies that εi can be written as:

εi = < φi | F | φi > = < φi | h | φi > + Σ j(occupied) < φi | Jj - Kj | φi >

= < φi | h | φi > + Σ j(occupied) [ Ji,j - Ki,j  ].

In this form, it is clear that εi is equal to the average value of the kinetic energy plus

coulombic attraction to the nuclei for an electron in φi plus the sum over all of the spin-

orbitals occupied in Ψ of coulomb minus exchange interactions between φi  and these

occupied spin-orbitals. If φi itself is an occupied spin-orbital, the term [ Ji,i - Ki,i]

disappears and the latter sum represents the coulomb minus exchange interaction of φi with

all of the  N-1     other    occupied spin-orbitals. If φi is a virtual spin-orbital, this cancellation

does not occur, and one obtains the coulomb minus exchange interaction of φi with all N of

the occupied spin-orbitals.

In this sense, the orbital energies for occupied orbitals pertain to interactions which

are appropriate to a total of N electrons, while the orbital energies of virtual orbitals pertain

to a system with N+1 electrons. It is this fact that makes SCF virtual orbitals not optimal

(in fact, not usually very good) for use in subsequent correlation calculations where, for

instance, they are used, in combination with the occupied orbitals, to form polarized orbital

pairs as discussed in Chapter 12. To correlate a pair of electrons that occupy a valence

orbital requires double excitations into a virtual orbital that is not too dislike in size.

Although the virtual SCF orbitals themselves suffer these drawbacks, the space they span

can indeed be used for treating electron correlation. To do so, it is useful to recombine (in a

unitary manner to preserve orthonormality) the virtual orbitals to 'focus' the correlating

power into as few orbitals as possible so that the multiconfigurational wavefunction can be

formed with as few CSFs as possible. Techniques for effecting such reoptimization or

improvement of the virtual orbitals are treated later in this text.

B.. Koopmans' Theorem



Further insight into the meaning of the energies of occupied and virtual orbitals can

be gained by considering the following model of the vertical (i.e., at fixed molecular

geometry) detachment or attachment of an electron to the original N-electron molecule:

1. In this model,     both     the parent molecule and the species generated by adding or removing

an electron are treated at the single-determinant level.

2. In this model, the Hartree-Fock orbitals of the parent molecule are used to describe both

the parent and the species generated by electron addition or removal. It is said that such a

model neglects '    orbital relaxation    ' which would accompany the electron addition or

removal (i.e., the reoptimization  of the spin-orbitals to allow them to become appropriate

to the daughter species).

Within this simplified model, the energy difference between the daughter and the

parent species can be written as follows (φk represents the particular spin-orbital that is

added or removed):

1. For electron detachment:

EN-1 - EN = < | φ1φ2 ...φk-1. .φN| H | φ1φ2 ...φk-1. .φN| > -

< | φ1φ2. . .φk-1φk. .φN | H | | φ1φ2. . .φk-1φk. .φN | >

=  − < φk | h | φk > - Σ j=(1,k-1,k+1,N) [ Jk,j - Kk,j ] = - εk  ;

2. For electron attachment:

EN - EN+1 = < | φ1φ2 ...φN| H | φ1φ2 ...φN| > -

< | φ1φ2. . .φNφk | H | | φ1φ2. . . .φN φk| >

=  − < φk | h | φk > - Σ j=(1,N) [ Jk,j - Kk,j ] = - εk .

So, within the limitations of the single-determinant, frozen-orbital model set forth,

the ionization potentials (IPs) and electron affinities (EAs) are given as the negative of the

occupied and virtual spin-orbital energies, respectively. This statement is referred to as

Koopmans' theorem (T. Koopmans, Physica     1    , 104 (1933)); it is used extensively in

quantum chemical calculations as a means for estimating IPs and EAs and often yields

results that are at least qualitatively correct (i.e., ± 0.5 eV).



C. Orbital Energies and the Total Energy

For the N-electron species whose Hartree-Fock orbitals and orbital energies have

been determined, the total SCF electronic energy can be written, by using the Slater-

Condon rules, as:

 E = Σ i(occupied) < φi | h | φi > + Σ i>j(occupied) [ Ji,j - Ki,j ].

For this same system, the sum of the orbital energies of the occupied spin-orbitals is given

by:

Σ i(occupied) εi = Σ i(occupied) < φi | h | φi >

+ Σ i,j(occupied) [ Ji,j - Ki,j ].

These two seemingly very similar expressions differ in a very important way; the sum of

occupied orbital energies, when compared to the total energy, double counts the coulomb

minus exchange interaction energies. Thus, within the Hartree-Fock approximation, the

sum of the occupied orbital energies is     not    equal to the total energy. The total SCF energy

can be computed in terms of the sum of occupied orbital energies by taking one-half of

Σ i(occupied) εi and then adding to this one-half of Σ i(occupied) < φi | h | φi >:

E = 1/2 [Σ i(occupied) < φi | h | φi > + Σ i(occupied) εi].

The fact that the sum of orbital energies is not the total SCF energy also means that

as one attempts to develop a qualitative picture of the energies of CSFs along a reaction

path, as when orbital and configuration correlation diagrams are constructed, one must be

careful not to equate the sum of orbital energies with the total configurational energy; the

former is higher than the latter by an amount equal to the sum of the coulomb minus

exchange interactions.

D.  The Brillouin Theorem

The condition that the SCF energy <|φ1. . .φN| H |φ1. . .φN|> be stationary with respect

to variations δφi  in the occupied spin-orbitals (that preserve orthonormality) can be written



<|φ1. . .δφi. . .φN|H|φ1. . .φi. . .φN|> = 0.

The infinitesimal variation of φi can be expressed in terms of its (small) components along

the other occupied φj and along the virtual φm as follows:   

δφi =  Σ j=occ  Uij φj  + Σm Uim φm.

When substituted into |φ1. . .δφi. . .φΝ|, the terms Σ j'=occ|φ1. . .φj. . .φN|Uij vanish because φj

already appears in the original Slater determinant |φ1. . .φN|, so |φ1. . .φj. . .φΝ| contains φj

twice.  Only the sum over virtual orbitals remains, and the stationary property written

above becomes

Σm Uim<|φ1. . .φm. . .φN| H |φ1. . .φi. . .φN|> = 0.

The Slater-Condon rules allow one to express the Hamiltonian matrix elements

appearing here as

<|φ1. . .φm. . .φN| H |φ1. . .φi. . .φN|> = <φm|h|φi> + Σ j=occ ,≠i <φm|[Jj-Kj]|φi>,

which (because the term with j=i can be included since it vanishes) is equal to the following

element of the Fock operator: <φm|F|φi> = εi δim = 0.  This result proves that Hamiltonian

matrix elements between the SCF determinant and those that are singly excited relative to

the SCF determinant vanish because they reduce to Fock-operator integrals connecting the

pair of orbitals involved in the 'excitation'.  This stability property of the SCF energy is

known as the Brillouin theorem (i.e., that |φ1φiφN| and |φ1. . .φm. . .φN| have zero Hamiltonian

matrix elements    if    the φs are SCF orbitals). It is exploited in quantum chemical calculations

in two manners:

(i) When multiconfiguration wavefunctions are formed from SCF spin-orbitals, it

allows one to neglect Hamiltonian matrix elements between the SCF configuration and

those that are 'singly excited' in constructing the secular matrix.

(ii) A so-called generalized Brillouin theorem (GBT) arises when one deals with

energy optimization for a multiconfigurational variational trial wavefunction for which the

orbitals and CI mixing coefficients are simultaneously optimized. This GBT causes certain

Hamiltonian matrix elements to vanish, which, in turn, simplifies the treatment of electron

correlation for such wavefunctions. This matter is treated in more detail later in this text.




