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Electrons interact via pairwise Coulomb forces; within the "orbital picture" these

interactions are modelled by less difficult to treat "averaged" potentials. The difference

between the true Coulombic interactions and the averaged potential is not small, so to

achieve reasonable (ca. 1 kcal/mol) chemical accuracy, high-order corrections to the orbital

picture are needed.

The discipline of computational ab initio quantum chemistry is aimed at determining

the electronic energies and wavefunctions of atoms, molecules, radicals, ions, solids, and

all other chemical species. The phrase ab initio  implies that one attempts to solve the

Schrödinger equation from first principles, treating the molecule as a collection of positive

nuclei and negative electrons moving under the influence of coulombic potentials, and not

using any prior knowledge about this species' chemical behavior.

To make practical use of such a point of view requires that approximations be

introduced; the full Schrödinger equation is too difficult to solve exactly for any but simple

model problems. These approximations take the form of physical concepts (e.g., orbitals,

configurations, quantum numbers, term symbols, energy surfaces, selection rules, etc.)

that provide useful means of organizing and interpreting experimental data and

computational methods that allow quantitative predictions to be made.

Essentially all ab initio  quantum chemistry methods use, as a starting point from

which improvements are made, a picture in which the electrons interact via a one-electron
additive potential. These so-called mean-field potentials Vmf(r) = Σj Vmf(rj) provide

descriptions of atomic and molecular structure that are approximate. Their predictions must

be improved to achieve reasonably accurate solutions to the true electronic Schrödinger

equation. In so doing, three constructs that characterize essentially all ab initio quantum

chemical methods are employed: orbitals, configurations, and electron

correlation.
Since the electronic kinetic energy T = Σj Tj operator is one-electron additive, the

mean-field Hamiltonian H0 = T + Vmf  is also of this form. The additivity of H0  implies

that the mean-field wavefunctions {Ψ0k} can be formed in terms of products of functions

{φk} of the coordinates of the individual electrons, and that the corresponding energies

{E0k} are additive. Thus, it is the ansatz that Vmf is separable that leads to the concept of



orbitals, which are the one-electron functions {φj}. These orbitals are found by solving

the one-electron Schrödinger equations:

(T1 + Vmf(r1)) φj(r1) = εj φj(r1);

the eigenvalues {εj} are called orbital energies.

Because each of the electrons also possesses intrinsic spin, the one-electron
functions {φj} used in this construction are taken to be eigenfunctions of (T1 + Vmf(r1))

multiplied by either α or β. This set of functions is called the set of mean-field spin-

orbitals.

Given the complete set of solutions to this one-electron equation, a complete set of
N-electron mean-field wavefunctions can be written down. Each Ψ0k is constructed by

forming an antisymmetrized product of N spin-orbitals chosen from the set of {φj},

allowing each spin-orbital in the list to be a function of the coordinates of one of the N

electrons (e.g,

Ψ0k = |φk1(r1) φk2(r2)φk3(r3) ... φkN-1(rN-1) φkN(rN)|,

as above). The corresponding mean field energy is evaluated as the sum over those spin-
orbitals that appear in Ψ0k :

E0k = Σj=1,N  εkj.

By choosing to place N electrons into specific spin-orbitals, one has specified a
configuration. By making other choices of which N φj to occupy, one describes other

configurations. Just as the one-electron mean-field Schrödinger equation has a complete set
of spin-orbital solutions {φj and εj}, the N-electron mean-field Schrödinger equation has a

complete set of N-electron    configuration state functions     (CSFs) Ψ0k and energies E0k.

II. Electron Correlation Requires Moving Beyond a Mean-Field Model

To improve upon the mean-field picture of electronic structure, one must move

beyond the single-configuration approximation. It is essential to do so to achieve higher

accuracy, but it is also important to do so to achieve a    conceptually     correct view of chemical

electronic structure. However, it is very disconcerting to be told that the familiar 1s22s22p2



description of the carbon atom is inadequate and that instead one must think of the 3P

ground state of this atom as a 'mixture' of 1s22s22p2, 1s22s23p2, 1s22s23d2, 2s23s22p2

(and any other configurations whose angular momenta can be coupled to produce L=1 and

S=1).

Although the picture of configurations in which N electrons occupy N spin-orbitals

may be very familiar and useful for systematizing electronic states of atoms and molecules,

these constructs are approximations to the true states of the system. They were introduced

when the mean-field approximation was made, and neither orbitals nor configurations
describe the proper eigenstates {Ψk, Ek}. The inclusion of instantaneous spatial

correlations among electrons is necessary to achieve a more accurate description of atomic

and molecular electronic structure.       No      single spin-orbital product wavefunction is capable

of treating electron correlation to    any      extent; its product nature renders it incapable of doing

so.

III. Moving from Qualitative to Quantitative Models

The preceding Chapters introduced, in a qualitative manner, many of the concepts

which are used in applying quantum mechanics to electronic structures of atoms and

molecules. Atomic, bonding, non-bonding, antibonding, Rydberg, hybrid, and delocalized

orbitals and the configurations formed by occupying these orbitals were discussed. Spin

and spatial symmetry as well as permutational symmetry were treated, and properly

symmetry-adapted configuration state functions were formed. The Slater-Condon rules

were shown to provide expressions for Hamiltonian matrix elements (and those involving

any one- or two-electron operator) over such CSFs in terms of integrals over the orbitals

occupied in the CSFs. Orbital, configuration, and state correlation diagrams were

introduced to allow one to follow the evolution of electronic structures throughout a

'reaction path'.

Section 6 addresses the     quantitative and computational implementation     of many of

the above ideas. It is not designed to address all of the state-of-the-art methods which have

been, and are still being, developed to calculate orbitals and state wavefunctions. The rapid

growth in computer hardware and software power and the evolution of new computer

architectures makes it difficult, if not impossible, to present an up-to-date overview of the

techniques that are presently at the cutting edge in computational chemistry. Nevertheless,

this Section attempts to describe the essential elements of several of the more powerful and

commonly used methods; it is likely that many of these elements will persist in the next



generation of computational chemistry techniques although the details of their

implementation will evolve considerably. The text by Szabo and Ostlund provides excellent

insights into many of the theoretical methods treated in this Section.

IV. Atomic Units

The electronic Hamiltonian is expressed, in this Section, in so-called atomic units

(aus)

He = Σ j { ( - 1/2 ) ∇j2 - Σa Za/rj,a } + Σ j<k 1/rj,k .

These units are introduced to remove all h , e, and me factors from the equations.

To effect this unit transformation, one notes that the kinetic energy operator scales

as rj-2 whereas the coulombic potentials scale as rj-1 and as rj,k-1. So, if each of the

distances appearing in  the cartesian coordinates of the electrons and nuclei were expressed

as a unit of length a0 multiplied by a dimensionless length factor, the kinetic energy

operator would involve terms of the form

( - h2/2(a0)2me ) ∇ j2 , and the coulombic potentials would appear as

Zae2/(a0)rj,a  and e2/(a0)rj,k . A factor of e2/a0 (which has units of energy since a0 has units

of length) can then be removed from the coulombic and kinetic energies, after which the

kinetic energy terms appear as ( - h2/2(e2a0)me ) ∇ j2 and the potential energies appear as

Za/rj,a and 1/rj,k. Then, choosing a0 = h2/e2me changes the kinetic energy terms into -1/2 ∇

j2; as a result, the entire electronic Hamiltonian takes the form given above in which no e2,

me, or h2 factors appear. The value of the so-called Bohr radius a0 = h2/e2me is 0.529 Å,

and the so-called Hartree energy unit e2/a0, which factors out of He, is 27.21 eV or 627.51

kcal/mol.


