
Chapter 16

Collisions among molecules can also be viewed as a problem in time-dependent quantum

mechanics. The perturbation is the "interaction potential", and the time dependence arises

from the movement of the nuclear positions.

The simplest and most widely studied problems in chemical reaction dynamics

involve describing the unimolecular motion or bimolecular collision of a system in a well

characterized electronic state. Referring back to the discussion of Chapter 3, we recall that

the motion of the nuclei are governed by a Schrödinger equation

[ Ej(R)  Ξj0 (R) + T Ξj0(R) ] = E Ξj0 (R)

in which the electronic energy Ej (R) assumes the role of the potential upon which

movement occurs. This treatment of the nuclear motion is based on the Born-Oppenheimer

approximation (see Chapter 3 for details) which assumes that coupling to nearby electronic

states can be ignored. These assumptions are valid only when the energy surface of interest

Ej(R) is not crossed or closely approached by another electronic energy surface Ek(R).

When the electronic states are so widely spaced, it is proper to speak of the movement of

the molecule(s) on the electronic surface Ej(R), and to use either classical or quantum

mechanical methods to follow such movements.

To simplify the notation throughout this Chapter, the above Schrödinger equation

appropriate to movement on a single electronic energy surface will be written as follows:

[ T + V(R) ] Ξ (R) = E Ξ (R),

where T denotes the kinetic energy operator for    all    3N of the geometrical coordinates

(collectively denoted R) needed to specify the location of the N nuclei, V(R) is the

electronic energy as a function of these coordinates, and

Ξ (R) is the nuclear-motion wavefunction.

For example, when diatomic species are considered, V is a function of the radial

coordinate describing the distance between the two nuclei, T contains derivatives with

respect to radial as well as two angular coordinates (those pertaining to rotation or relative

angular motion of the two nuclei), and R refers to these radial and angular coordinates. For

a triatomic species such as H2O, V is a function of two O-H bond lengths and the H-O-H

angle, and R refers to these three internal coordinates as well as the three angle coordinates

needed to specify the orientation of the H2O molecule in space relative to a space-fixed



coordinate system (e.g., three Euler angles used in Chapter 3 to treat rotation of spherical

and symmetric top molecules).

In Chapters 1 and 3 and in all of Section 4, such nuclear-motion Schrödinger

equations were used to treat the     bound     vibrational motions of molecules (i.e., the

movement of the nuclei when the energy available is not adequate to rupture one or more of

the bonds in the molecule). These same Schrödinger equations also apply to the scattering

of the constituent nuclei (e.g., the vibration-rotation motion of HCl is treated by the same

Schrödinger equation as the scattering of an H atom and a Cl atom). The primary difference

between these two situations lies in the total energy (E) available: in the former, E lies

below the dissociation asymptote of the ground-state HCl electronic potential energy; in the

latter E is higher than this asymptote (e.g., see the potential curve shown below with some

of its bound state energies and a state in the continuum).
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The different energies appropriate to bound-state and scattering situations affect the

boundary conditions appropriate to the nuclear-motion wavefunctions in the large

internuclear distance region. For the HCl example at hand, the bound-state vibrational

wavefunctions Ξ (R,θ,φ) decay exponentially (see Chapter 1) for large R because such R-

values lie in the classically forbidden region of R-space where E - V(R) is negative. In

contrast, the scattering wavefunctions for this same V(R) potential and the same HCl

molecule need not decay in the large-E region. As illustrated explicitly below for a model

problem, this difference in large-R boundary conditions causes major differences in the

eigenvalue spectrum of the Hamiltonian in these two cases. In particular, the bound-state



energy levels of HCl are discrete (i.e., quantized) but the scattering states are not (i.e., an

H atom and a Cl atom may collide with arbitrary relative translational energy).

Let us now examine how the Schrödinger equation is solved for cases in which E

lies above the dissociation energy of V(R) by considering a few simple model problems

that can be solved exactly.

I. One Dimensional Scattering

Atom-atom scattering on a single Born-Oppenheimer energy surface can be reduced

to a one-dimensional Schrödinger equation by separating the radial and angular parts of the

three-dimensional Schrödinger equation in the same fashion as used for the Hydrogen atom

in Chapter 1. The resultant equation for the radial part ψ(R) of the wavefunction can be

written as:

- (h2/2µ) R-2 ∂/∂R (R2∂ψ/∂R) + L (L+1)h2/(2µR2) ψ + V(R) ψ = E ψ,

where L is the quantum number that labels the angular momentum of the colliding particles

whose reduced mass is µ.

Defining Ψ(R) = R ψ(R) and substituting into the above equation gives the

following equation for Ψ:

- (h2/2µ) ∂2Ψ/∂R2 + L (L+1)h2/(2µR2) Ψ + V(R) Ψ = E Ψ.

The combination of the "centrifugal potential" L (L+1)h2/(2µR2) and the electronic potential

V(R) thus produce a total "effective potential" for describing the radial motion of the

system.

The simplest reasonable model for such an effective potential is provided by the

"square well" potential illustrated below. This model V(R) could, for example, be applied

to the L = 0 scattering of two atoms whose bond dissociation energy is De and whose

equilibrium bond length for this electronic surface lies somewhere between R = 0 and R =

Rmax.
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The piecewise constant nature of this particular V(R) allows exact solutions to be written

both for bound and scattering states because the Schrödinger equation

- (h2/2µ) d2Ψ/dR2  = E Ψ ( for 0 ≤ R ≤ Rmax)

- (h2/2µ) d2Ψ/dR2 + De Ψ = E Ψ ( Rmax ≤ R < ∞)

admits simple sinusoidal solutions.

A. Bound States

The bound states are characterized by having E < De. For the inner region, the

two solutions to the above equation are

Ψ1(R) = A sin(kR)

and



Ψ2(R) = B cos(kR)

where

k = 2µE/h2 

is termed the "local wave number" because it is related to the momentum values for the

exp(± i k R) components of such a function:

- i h ∂exp(± i k R)/∂R = h k exp(± i k R).

The cos(kR) solution must be excluded (i.e., its amplitude B in the general solution of the

Schrödinger equation must be chosen equal to 0.0) because this function does not vanish at

R = 0, where the potential moves to infinity and thus the wavefunction must vanish. This

means that only the

Ψ = A sin(kR)

term remains for this inner region.

Within the asymptotic region (R > Rmax) there are also two solutions to the

Schrödinger equation:

Ψ3 = C exp(-κR)

and

Ψ4  = D exp(κ R)

where

κ =  2µ(De - E)/h2  .

Clearly, one of these functions is a decaying function of R for large R and the other Ψ4

grows exponentially for large R. The latter's amplitude D must be set to zero because this



function generates a probability density that grows larger and larger as R penetrates deeper

and deeper into the classically forbidden region (where E < V(R)).

To connect Ψ1 in the inner region to Ψ3 in the outer region, we use the fact that Ψ
and dΨ/dR must be continuous except at points R where V(R) undergoes an infinite

discontinuity (see Chapter 1). Continuity of Ψ  at Rmax gives:

 A sin(kRmax) = C exp(-κRmax),

and continuity of dΨ/dR at Rmax yields

A k cos(kRmax) = - κC exp(-κRmax).

These two equations allow the ratio C/A as well as the energy E (which appears in κ and in

k) to be determined:

A/C   = - κ/k exp(-κRmax)/cos(kRmax).

The condition that determines E is based on the well known requirement that the

determinant of coefficients must vanish for homogeneous linear equations to have no-trivial

solutions  (i.e., not A = C = 0):

det 






sin(kRmax)  - exp(-κRmax)

kcos(kRmax) κexp(-κRmax)
  = 0

The vanishing of this determinant can be rewritten as

κ sin(kRmax) exp(-κRmax) + k cos(kRmax) exp(-κRmax) = 0

or

 tan(kRmax)  = - k/κ  .

When employed in the expression for A/C, this result gives

A/C   = exp(-κRmax)/sin(kRmax).



For very large De compared to E, the above equation for E reduces to the familiar

"particle in a box" energy level result since k/κ vanishes in this limit, and thus tan(kRmax)

= 0, which is equivalent to sin(kRmax) = 0, which yields the familiar E = n2h2/(8µR2max)

and C/A = 0, so Ψ = A sin(kR).

When De is not large compared to E, the full transcendental equation tan(kRmax)  =

- k/κ must be solved numerically or graphically for the eigenvalues En, n = 1, 2, 3, ... .

These energy levels, when substituted into the definitions for k and κ give the

wavefunctions:

Ψ = A sin(kR) (for 0 ≤ R ≤ Rmax)

Ψ = A sin(kRmax) exp(κRmax) exp(-κR) (for Rmax ≤ R < ∞ ).

The one remaining unknown A can be determined by requiring that the modulus

squared of the wavefunction describe a probability density that is normalized to unity when

integrated over all space:

⌡⌠
0

∞

|Ψ|2 dR  = 1.

Note that this condition is equivalent to

⌡⌠
0

∞

|ψ|2 R 2dR  = 1

which would pertain to the original radial wavefunction. In the case of an infinitely deep

potential well, this normalization condition reduces to

⌡⌠
0

Rmax

A2sin2(kR)dR  = 1

which produces



A = 
2

Rmax
  .

B. Scattering States

The scattering states are treated in much the same manner. The functions Ψ1 and

Ψ2 arise as above, and the amplitude of Ψ2 must again be chosen to vanish because Ψ
must vanish at R = 0 where the potential moves to infinity. However, in the exterior region

(R> Rmax), the two solutions are now written as:

Ψ3 = C exp(ik'R)

Ψ4 = D exp(-ik'R)

where the large-R local wavenumber

k' =  2µ(E - De)/h2 

arises because E > De for scattering states.

The conditions that Ψ and dΨ/dR be continuous at Rmax still apply:

A sin(kRmax) = C exp(i k'Rmax) + D exp(-i k'Rmax)

and

k A cos(kRmax) = i k'C exp(i k'Rmax) - ik' D exp(-i k'Rmax).

However, these two equations (in    three    unknowns A, C, and D) can no longer be solved to

generate eigenvalues E and amplitude ratios. There are now three amplitudes as well as the

E value but only these two equations plus a normalization condition to be used. The result

is that the energy no longer is specified by a boundary condition; it can take on any value.

We thus speak of scattering states as being "in the continuum" because the allowed values

of E form a continuum beginning at E = De (since the zero of energy is defined in this

example as at the bottom of the potential well).

The R > Rmax  components of Ψ are commonly referred to as "incoming"



Ψin = D exp(-ik'R)

and "outgoing"

Ψout = C exp(ik'R)

because their radial momentum eigenvalues are -h k' and h k', respectively. It is a common

convention to define the amplitude D so that the flux of incoming particles is unity.

Choosing

D = 
µ

h k '  

produces an incoming wavefunction whose current density is:

S(R) = -ih/2µ [Ψin* (d/dR Ψin) - (dΨin/dR)* Ψin]

=  |D|2 (-ih/2µ) [-2ik']

= - 1.

This means that there is one unit of current density moving inward (this produces the minus

sign) for all values of R at which Ψin is an appropriate wavefunction (i.e., R > Rmax). This

condition takes the place of the probability normalization condition specified in the bound-

state case when the modulus squared of the total wavefunction is required to be normalized

to unity over all space. Scattering wavefunctions can not be so normalized because they do

not decay at large R; for this reason, the flux normalization condition is usually employed.

The magnitudes of the outgoing (C) and short range (A) wavefunctions relative to that of

the incoming function (D) then provide information about the scattering and "trapping" of

incident flux by the interaction potential.

Once D is so specified, the above two boundary matching equations are written as a

set of two inhomogeneous linear equations in two unknowns (A and C):

A sin(kRmax) - C exp(i k'Rmax) = D exp(-i k'Rmax)



and

k A cos(kRmax) - i k'C exp(i k'Rmax) = - ik' D exp(-i k'Rmax)

or





sin(kRmax) -exp(i k'Rmax)

kcos(kRmax) -i k'exp(i k'Rmax)   
A
C   = 



D exp(-i k'Rmax)

- ik' D exp(-i k'Rmax)  .

Non-trivial solutions for A and C will exist except when the determinant of the matrix on

the left side vanishes:

-i k' sin(kRmax) + k cos(kRmax) = 0,

which can be true only if

tan(kRmax) = ik'/k.

This equation is not obeyed for any (real) value of the energy E, so solutions for A and C

in terms of the specified D can always be found.

In summary, specification of unit incident flux is made by choosing D as indicated

above. For any collision energy E > De, the 2x1 array on the right hand side of the set of

linear equations written above can be formed, as can the 2x2 matrix on the left side. These

linear equations can then be solved for A and C. The overall wavefunction for this E is then

given by:

Ψ = A sin(kR) (for 0 ≤ R ≤ Rmax)

Ψ = C exp(ik'R) + D exp(-ik'R) (for Rmax ≤ R < ∞).

C. Shape Resonance States

If the angular momentum quantum number L in the effective potential introduced

earlier is non-zero, this potential has a repulsive component at large R. This repulsion can

combine with short-range attractive interactions due, for example, to chemical bond forces,



to produce an effective potential that one can model in terms of simple piecewise functions

shown below.
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Again, the piecewise nature of the potential allows the one-dimensional Schrödinger

equation to be solved analytically. For energies below De, one again finds bound states in

much the same way as illustrated above (but with the exponentially decaying function exp(-

κ'R) used in the region Rmax ≤ R ≤ Rmax + δ, with κ' =  2µ(De + δV - E)/h2  ).

For energies lying above De + δV, scattering states occur and the four amplitudes of

the functions (sin(kR), exp(±i k'''R) with k''' = 2µ(-De - δV + E)/h2  , and exp(i k'R))

appropriate to each R-region are determined in terms of the amplitude of the incoming

asymptotic function D exp(-ik'R) from the four equations obtained by matching Ψ and

dΨ/dR at Rmax  and at Rmax + δ .

For energies lying in the range De < E < De +δV, a qualitatively different class of

scattering function exists. These so-called shape resonance states occur at energies that

are determined by the condition that the amplitude of the wavefunction within the barrier

(i.e., for 0 ≤ R ≤ Rmax ) be large so that incident flux successfully tunnels through the



barrier and builds up, through constructive interference, large probability amplitude there.

Let us now turn our attention to this specific energy regime.

The piecewise solutions to the Schrödinger equation appropriate to the shape-

resonance case are easily written down:

Ψ = Asin(kR) (for 0 ≤ R ≤ Rmax )

Ψ = B+ exp(κ'R) + B- exp(-κ'R) (for Rmax ≤ R ≤ Rmax +δ)

Ψ = C exp(ik'R) + D exp(-ik'R) (for Rmax +δ ≤ R < ∞).

Note that both exponentially growing and decaying functions are acceptable in the Rmax ≤
R ≤ Rmax +δ region because this region does not extend to R = ∞.  There are four

amplitudes (A, B+, B-, and C) that must be expressed in terms of the specified amplitude D

of the incoming flux. Four equations that can be used to achieve this goal result when Ψ
and dΨ/dR are matched at Rmax and at Rmax + δ:

Asin(kRmax) = B+ exp(κ'Rmax) + B- exp(-κ'Rmax),

 Akcos(kRmax) = κ'B+ exp(κ'Rmax) - κ'B- exp(-κ'Rmax),

B+ exp(κ'(Rmax + δ)) + B- exp(-κ'(Rmax + δ))

= C exp(ik'(Rmax + δ))  + D exp(-ik'(Rmax + δ)),

κ'B+ exp(κ'(Rmax + δ)) - κ'B- exp(-κ'(Rmax + δ))

= ik'C exp(ik'(Rmax + δ))  -ik' D exp(-ik'(Rmax + δ)).

It is especially instructive to consider the value of A/D that results from solving this set of

four equations in four unknowns because the modulus of this ratio provides information

about the relative amount of amplitude that exists inside the centrifugal barrier in the

attractive region of the potential compared to that existing in the asymptotic region as

incoming flux.

The result of solving for A/D is:



A/D = 4 κ'exp(-ik'(Rmax+δ))

{exp(κ' δ)(ik'-κ')(κ'sin(kRmax)+kcos(kRmax))/ik'

+ exp(-κ' δ)(ik'+κ')(κ'sin(kRmax)-kcos(kRmax))/ik' }-1.

Further, it is instructive to consider this result under conditions of a high (large De + δV -

E) and thick (large δ) barrier. In such a case, the "tunnelling factor" exp(-κ' δ) will be very

small compared to its counterpart exp(κ' δ), and so

A/D = 4 
ik'κ'

ik'-κ'
 exp(-ik'(Rmax+δ)) exp(-κ' δ) {κ'sin(kRmax)+kcos(kRmax) }-1.

The exp(-κ' δ) factor in A/D causes the magnitude of the wavefunction inside the barrier to

be small in most circumstances; we say that incident flux must tunnel through the barrier to

reach the inner region and that exp(-κ' δ) gives the probability of this tunnelling. The

magnitude of the A/D factor could become large if the collision energy E is such that

κ'sin(kRmax)+kcos(kRmax)

is small. In fact, if

tan(kRmax) = - k/κ'

this denominator factor in A/D will vanish and A/D will become infinite. Note that the

above condition is similar to the energy quantization condition

tan(kRmax) = - k/κ

that arose when bound states of a finite potential well were examined earlier in this Chapter.

There is, however, an important difference. In  the bound-state situation

k = 2µE/h2 

and



κ =  2µ(De - E)/h2  ;

in this shape-resonance case, k is the same, but

κ' =  2µ(De + δV - E)/h2  )

rather than κ occurs, so the two tan(kRmax) equations are not identical.

However, in the case of a very high barrier (so that κ' is much larger than k), the

denominator

κ'sin(kRmax)+kcos(kRmax) ≅ κ ' sin(kRmax)

in A/D can become small if

sin(kRmax) ≅ 0.

This condition is nothing but the energy quantization condition that would occur for the

particle-in-a-box potential shown below.
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This potential is identical to the true effective potential for 0 ≤ R ≤ Rmax , but extends to

infinity beyond Rmax ; the barrier and the dissociation asymptote displayed by the true

potential are absent.

In summary, when a barrier is present on a potential energy surface, at energies

above the dissociation asymptote De but below the top of the barrier (De + δV here), one

can expect shape-resonance states to occur at "special" scattering energies E. These so-

called resonance energies can often be approximated by the bound-state energies of a

potential that is identical to the potential of interest in the inner region (0 ≤ R ≤ Rmax  here)

but that extends to infinity beyond the top of the barrier (i.e., beyond the barrier, it does not

fall back to values below E).

The chemical significance of shape resonances is great. Highly rotationally excited

molecules may have more than enough total energy to dissociate (De), but this energy may

be "stored" in the rotational motion, and the vibrational energy may be less than De. In

terms of the above model, high angular momentum may produce a significant barrier in the

effective potential, but the system's vibrational energy may lie significantly below De. In

such a case, and when viewed in terms of motion on an angular momentum modified

effective potential, the lifetime of the molecule with respect to dissociation is determined by

the rate of tunnelling through the barrier.



For the case at hand, one speaks of "rotational predissociation" of the molecule.

The lifetime τ can be estimated by computing the frequency ν at which flux existing inside

Rmax strikes the barrier at Rmax

ν = 
hk

2µRmax
 (sec-1)

and then multiplying by the probability P that flux tunnels through the barrier from Rmax to

Rmax + δ:

P = exp(-2κ' δ).

The result is that

τ -1=  
hk

2µRmax
  exp(-2κ' δ)

with the energy E entering into k and κ' being determined by the resonance condition:

(κ'sin(kRmax)+kcos(kRmax)) = minimum.

Although the examples treated above involved piecewise constant potentials (so the

Schrödinger equation and the boundary matching conditions could be solved exactly),

many of the characteristics observed carry over to more chemically realistic situations. As

discussed, for example, in     Energetic Principles of Chemical Reactions   , J. Simons, Jones

and Bartlett, Portola Valley, Calif. (1983), one can often model chemical reaction processes

in terms of:

(i) motion along a "reaction coordinate" (s) from a region characteristic of reactant

materials where the potential surface is positively curved in all direction and all forces (i.e.,

gradients of the potential along all internal coordinates) vanish,

(ii) to a transition state at which the potential surface's curvature along s is negative

while all other curvatures are positive and all forces vanish,

(iii) onward to product materials where again all curvatures are positive and all

forces vanish.



Within such a "reaction path" point of view, motion transverse to the reaction coordinate s

is often modelled in terms of local harmonic motion although more sophisticated treatments

of the dynamics is possible. In any event, this picture leads one to consider motion along a

single degree of freedom (s), with respect to which much of the above treatment can be

carried over, coupled to transverse motion along all other internal degrees of freedom

taking place under an entirely positively curved potential (which therefore produces

restoring forces to movement away from the "streambed" traced out by the reaction path s).

II. Multichannel Problems

When excited electronic states are involved, couplings between two or more

electronic surfaces may arise. Dynamics occuring on an excited-state surface may evolve in

a way that produces flux on another surface. For example, collisions between an

electronically excited 1s2s (3S) He atom and a ground-state 1s2 (1S) He atom occur on a

potential energy surface that is repulsive at large R (due to the repulsive interaction between

the closed-shell 1s2 He and the large 2s orbital) but attractive at smaller R (due to the σ2σ*1

orbital occupancy arising from the three 1s-derived electrons). The ground-state potential

energy surface for this system (pertaining to two 1s2 (1S) He atoms is repulsive at small R

values (because of the σ2σ*2 nature of the electronic state). In this case, there are two

Born-Oppenheimer electronic-nuclear motion states that are degenerate and thus need to be

combined to achieve a proper description of the dynamics:

Ψ1 = |σ2σ*2| Ψgrnd.(R,θ,φ)

pertaining to the ground electronic state and the scattering state Ψgrnd. on this energy

surface, and

Ψ2 = |σ2σ*12σ1| Ψex.(R,θ,φ)

pertaining to the excited electronic state and the nuclear-motion state Ψex. on this energy

surface. Both of these wavefunctions can have the same energy E; the former has high

nuclear-motion energy and low electronic energy, while the latter has higher electronic

energy and lower nuclear-motion energy.



A simple model that can be used to illustrate the two-state couplings that arise in

such cases is introduced through the two one-dimensional piecewise potential surfaces

shown below.

-∆

V(R)
0.0

De

Rmax

Interatomic Distance R

The dashed energy surface

V(R) = - ∆ (for 0 ≤ R < ∞)

provides a simple representation of a repulsive lower-energy surface, and the solid-line plot

represents the excited-state surface that has a well of depth De and whose well lies ∆ above

the ground-state surface.

In this case, and for energies lying above zero (for E < 0, only nuclear motion on

the lower energy dashed surface is "open" (i.e., accessible)) yet below De, the nuclear-



motion wavefunction can have amplitudes belonging to both surfaces. That is, the total

(electronic and nuclear) wavefunction consists of two portions that can be written as:

Ψ = A φ sin(kR) + φ'' A'' sin(k''R) (for 0 ≤ R ≤ Rmax)

and

Ψ = A φ sin(kRmax) exp(κRmax) exp(-κR) + φ'' A'' sin(k''R)

(for Rmax ≤ R < ∞ ),

where φ and φ'' denote the electronic functions belonging to the upper and lower energy

surfaces, respectively. The wavenumbers k and k'' are defined as:

k = 2µE/h2 

k'' = 2µ(E +  ∆)/h2  

and κ is as before

κ =  2µ(De - E)/h2  .

For the lower-energy surface, only the sin(k''R) function is allowed because the cos(k''R)

function does not vanish at R = 0.

A. The Coupled Channel Equations

In such cases, the relative amplitudes (A and A'') of the nuclear motion

wavefunctions on each surface must be determined by substituting the above "two-channel"

wavefunction ( the word channel is used to denote separate asymptotic states of the system;

in this case, the φ and φ'' electronic states) into the full Schrödinger equation. In Chapter 3,



the couplings among Born-Oppenheimer states were so treated and resulted in the

following equation:

 [ (Ej(R) - E) Ξj (R) + T Ξj(R) ] = - Σ i { < Ψj | T | Ψi > (R) Ξi(R)

+ Σa=1,M ( - h2/ma ) < Ψj | ∇a | Ψi >(R) .  ∇a Ξi(R)  }

where Ej(R) and Ξj(R) denote the electronic energy surfaces and nuclear-motion

wavefunctions, Ψj denote the corresponding electronic wavefunctions, and the ∇a

represent derivatives with respect to the various coordinates of the nuclei. Changing to

the notation used in the one-dimensional model problem introduced above, these so-called

coupled-channel equations read:

[(-∆ - E) - h2/2µ d2/dR2 ] A''sin(k''R)

= - {<φ''| - h2/2µ d2/dR2|φ' '> A''sin(k''R)

+ ( - h2/µ) <φ''|d/dR|φ> d/dR A sin(kR) } (for 0 ≤ R ≤ Rmax),

[(-∆ - E) - h2/2µ d2/dR2 ] A''sin(k''R)

 = - {<φ''|- h2/2µ d2/dR2|φ' '> A''sin(k''R)

+ ( - h2/µ) <φ''|d/dR|φ> d/dR A φ sin(kRmax) exp(κRmax) exp(-κR) }

(for Rmax ≤ R < ∞ );

when the index j refers to the ground-state surface (V(R) = -∆,  for 0 < R  < ∞), and

[(0 - E) - h2/2µ d2/dR2 ] Asin(kR) = - {<φ| - h2/2µ d2/dR2|φ> Asin(kR)

+ ( - h2/µ) <φ|d/dR|φ''> d/dR A'' sin(k''R) }(for 0 ≤ R ≤ Rmax),

[(De - E) - h2/2µ d2/dR2 ] Asin(kRmax) exp(κRmax) exp(-κR)



 = - {<φ|- h2/2µ d2/dR2|φ> Asin(kRmax) exp(κRmax) exp(-κR)

+ ( - h2/µ) <φ|d/dR|φ''> d/dR A''sin(k''R) } (for Rmax ≤ R < ∞ )

when the index j refers to the excited-state surface (where V(R) = 0, for 0 < R  ≤ Rmax and

V(R) = De for Rmax ≤ R < ∞ ).

Clearly, if the right-hand sides of the above equations are ignored, one simply

recaptures the Schrödinger equations describing motion on the separate potential energy

surfaces:

[(-∆ - E) - h2/2µ d2/dR2 ] A''sin(k''R) = 0 (for 0 ≤ R ≤ Rmax),

[(-∆ - E) - h2/2µ d2/dR2 ] A''sin(k''R) = 0 (for Rmax ≤ R < ∞ );

that describe motion on the lower-energy surface, and

[(0 - E) - h2/2µ d2/dR2 ] Asin(kR) = 0 (for 0 ≤ R ≤ Rmax),

[(De - E) - h2/2µ d2/dR2 ] Asin(kRmax) exp(κRmax) exp(-κR) = 0

(for Rmax ≤ R < ∞ )

describing motion on the upper surface on which the bonding interaction occurs. The terms

on the right-hand sides provide the couplings that cause the true solutions to the

Schrödinger equation to be combinations of solutions for the two separate surfaces.

In applications of the coupled-channel approach illustrated above, coupled sets of

second order differential equations (two in the above example) are solved by starting with a

specified flux in one of the channels and a chosen energy E. For example, one might

specify the amplitude A to be unity to represent preparation of the system in a bound

vibrational level (with E < De) of the excited electronic-state potential. One would then

choose E to be one of the eigenenergies of that potential. Propagation methods could be

used to solve the coupled differential equations subject to these choices of E and A. The



result would be the determination of the amplitude A' of the wavefunction on the ground-

state surface. The ratio A'/A provides a measure of the strength of coupling between the

two Born-Oppenheimer states.

B. Perturbative Treatment

Alternatively, one can treat the coupling between the two states via time dependent

perturbation theory. For example, by taking A = 1.0 and choosing E to be one of the

eigenenergies of the excited-state potential, one is specifying that the system is initially (just

prior to t = 0) prepared in a state whose wavefunction is:

Ψ0ex = φ sin(kR) (for 0 ≤ R ≤ Rmax)

Ψ0ex = φ sin(kRmax) exp(κRmax) exp(-κR) (for Rmax ≤ R < ∞ ).

From t = 0 on, the coupling to the other state

Ψ0grnd = φ' sin(k'R) (for 0 ≤ R < ∞)

is induced by the "perturbation" embodied in the terms on the right-hand side of the

coupled-channel equations.

Within this time dependent perturbation theory framework, the rate of transition of

probability amplitude from the initially prepared state (on the excited state surface) to the

ground-state surface is proportional to the square of the perturbation matrix elements

between these two states:

Rate α | ⌡⌠
0

Rmax

sin(kR) <φ|d/dR|φ''> (d/dRsin(k''R))dR  

+ ⌡⌠
Rmax

∞

sin(kRmax) exp(κRmax) exp(-κR) <φ|d/dR|φ''>(d/dR sin(k''R))dR  |2

The matrix elements occurring here contain two distinct parts:



<φ|d/dR|φ' '>

has to do with the electronic state couplings that are induced by radial movement of the

nuclei; and both

sin(kR)  d/dRsin(k''R)

and

sin(kRmax) exp(κRmax) exp(-κR) d/dR sin(k''R)

relate to couplings between the two nuclear-motion wavefunctions induced by these same

radial motions. For a transition to occur, both the electronic and nuclear-motion states must

undergo changes. The initially prepared state (the bound state on the upper electronic

surface) has high electronic and low nuclear-motion energy, while the state to which

transitions may occur (the scattering state on the lower electronic surface) has low electronic

energy and higher nuclear-motion energy.

Of course, in the above example, the integrals over R can be carried out if the

electronic matrix elements <φ|d/dR|φ''> can be handled. In practical chemical applications

(for an introductory treatment see     Energetic Principles of Chemical Reactions   , J. Simons,

Jones and Bartlett, Portola Valley, Calif. (1983)), the evaluation of these electronic matrix

elements is a formidable task that often requires computation intensive techniques such as

those discussed in Section 6.

Even when the electronic coupling elements are available (or are modelled or

parameterized in some reasonable manner), the solution of the coupled-channel equations

that govern the nuclear motion is a demanding task. For the purposes of this text, it suffices

to note that:

(i) couplings between motion on two or more electronic states can and do occur;

(ii) these couplings are essential to treat whenever the electronic energy difference

(i.e., the spacing between pairs of Born-Oppenheimer potential surfaces) is small (i.e.,

comparable to vibrational or rotational energy level spacings);

(iii) there exists a rigorous theoretical framework in terms of which one can evaluate

the rates of so-called radiationless transitions between pairs of such electronic,



vibrational, rotational states. Expressions for such transitions involve (a) electronic matrix

elements <φ|d/dR|φ''> that depend on how strongly the electronic states are modulated by

movement (hence the d/dR) of the nuclei, and (b) nuclear-motion integrals connecting the

initial and final nuclear-motion wavefunctions, which also contain d/dR because they

describe the "recoil" of the nuclei induced by the electronic transition.

C. Chemical Relevance

As presented above, the most obvious situation of multichannel dynamics arises

when electronically excited molecules undergo radiationless relaxation (e.g., internal

conversion when the spin symmetry of the two states is the same or intersystem crossing

when the two states differ in spin symmetry). These subjects are treated in some detail in the

text     Energetic Principles of Chemical Reactions   , J. Simons, Jones and Bartlett, Portola

Valley, Calif. (1983)) where radiationless transitions arising in photochemistry and

polyatomic molecule reactivity are discussed.

Let us consider an example involving the chemical reactivity of electronically

excited alkaline earth or d10s2 transition metal atoms with H2 molecules. The particular case

for Cd* + H2 → CdH + H has been studied experimentally and theoretically. In such

systems, the potential energy surface connecting to ground-state Cd (1S) + H2 becomes

highly repulsive as the collision partners approach (see the depiction provided in the Figure

shown below). The three surfaces that correlate with the Cd (1P) + H2 species prepared by

photo-excitation of Cd (1S) behave quite differently as functions of the Cd-to-H2 distance

because in each the singly occupied 6p orbital assumes a different orientation relative to the

H2 molecule's bond axis. For (near) C2v orientations, these states are labeled 1B2 , 1B1 ,

and 1A1; they have the 6p orbital directed as shown in the second Figure, respectively. The

corresponding triplet surfaces that derive from Cd (3P) + H2 behave, as functions of the

Cd-to-H2 distance (R) in similar manner, except they are shifted to lower energy because

Cd (3P) lies below Cd (1P) by ca. 37 kcal/mol.

Collisions between Cd (1P) and H2 can occur on any of the three surfaces

mentioned above. Flus on the 1A1 surface is primarily reflected (at low collision energies

characteristic of the thermal experiments) because this surface is quite repulsive at large R.

Flux on the 1B1 surface can proceed in to quite small R (ca. 2.4 Å ) before repulsive forces

on this surface reflect it. At geometries near R = 2.0Å and rHH = 0.88 Å, the highly

repulsive 3A1 surface intersects this 1B1 surface from below. At and near this intersection,

a combination of spin-orbit coupling (which is large for Cd) and non-adiabatic coupling



may induce flux to evolve onto the 3A1 surface, after which fragmentation to Cd (3P) + H2

could occur.

In contrast, flux on the 1B2 surface propogates inward under attractive forces to R

= 2.25 Å and rHH = 0.79 Å where it may evolve onto the 3A1 surface which intersects from

below. At and near this intersection, a combination of spin-orbit coupling (which is large

for Cd) and non-adiabatic coupling may induce flux to evolve onto the 3A1 surface, after

which fragmentation to Cd (3P) + H2 could occur. Flux that continues to propogate inward

to smaller R values experiences even stronger attractive forces that lead, near R = 1.69 Å

and rHH = 1.54 Å, to an intersection with the 1A1 surface that connects to Cd (1S) + H2.

Here, non-adiabatic couplings may cause flux to evolve onto the 1A1 surface which may

then lead to formation of ground state Cd (1S) + H2 or Cd (1S) + H + H, both of which are

energetically possible. Processes in which electronically excited atoms produce ground-

state atoms through such collisions and surface hopping are termed "electronic quenching".

The nature of the non-adiabatic couplings that arise in the two examples given

above are quite different. In the former case, when the 1B1 and 3A1 surfaces are in close

proximity to one another, the first-order coupling element:

<Ψ (1B1) | ∇j |Ψ (3A1)>

is non-zero only for nuclear motions (i.e., ∇j ) of b1xa1 = b1 symmetry. For the CdH2

collision complex being considered in (or near) C2v symmetry, such a motion corresponds

to rotational motion of the nuclei about an axis lying parallel to the H-H bond axis. In

contrast, to couple the 3A1 and 1B2 electronic states through an element of the form

<Ψ (1B2) | ∇j |Ψ (3A1)> ,

the motion must be of b2xa1 = b2 symmetry. This movement corresponds to asymmetric

vibrational motion of the two Cd-H interatomic coordinates.

The implications of these observations are clear. For example, in so-called half-

collision experiments in which a van der Waals CdH2 complex is probed, internal rotational

motion would be expected to enhance 1B1  → 3A1 quenching, whereas asymmetric

vibrational motion should enhance the 1B2  → 3A1 process.

Moreover, the production of ground-state Cd (1S) +H2 via 1B2  → 1A1 surface

hopping (near R = 1.69 Å and rHH = 1.54 Å) should also be enhanced by asymmetric

vibrational excitation. The 1B2 and 1A1 surfaces also provide, through their non-adiabatic

couplings, a "gateway" to formation of the asymmetric bond cleavage products CdH (2Σ) +



H. It can be shown that the curvature (i.e., second energy derivative) of a potential energy

surface consists of two parts: (i) one part that in always positive, and (ii) a second that can

be represented in terms of the non-adiabatic coupling elements between the two surfaces

and the energy gap ∆E between the two surfaces. Applied to the two states at hand, this

second contributor to the curvature of the 1B2 surface is:

|<Ψ(1B2)  |  ∇j |Ψ(1A1)> |2

E(1B2) - E(1A1)  
  .

Clearly, when the 1A1 state is higher in energy but strongly non-adiabatically coupled to the
1B2 state, negative curvature along the asymmetric b2 vibrational mode is expected for the
1B2 state. When the 1A1 state is lower in energy, negative curvature along the b2

vibrational mode is expected for the 1A1 state (because the above expression also expresses

the curvature of the 1A1 state).

Therefore, in the region of close-approach of these two states, state-to-state surface

hopping can be facile. Moreover, one of the two states (the lower lying at each geometry)

will likely possess negative curvature along the b2 vibrational mode. It is this negative

curvature that causes movement away from C2v symmetry to occur spontaneously, thus

leading to the CdH (2Σ) + H reaction products.
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Coupled-state dynamics can also be used to describe situations in which vibrational

rather than electronic-state transitions occur. For example, when van der Waals complexes

such as HCl...Ar undergo so-called vibrational predissociation, one thinks in terms of

movement of the Ar atom relative to the center of mass of the HCl molecule playing the role

of the R coordinate above, and the vibrational state of HCl as playing the role of the

quantized (electronic) state in the above example.



In such cases, a vibrationally excited HCl molecule (e.g., in v = 1) to which an Ar

atom is attached via weak van der Waals attraction transfers its vibrational energy to the Ar

atom, subsequently dropping to a lower (e.g., v = 0) vibrational level. Within the two-

coupled-state model introduced above, the upper energy surface pertains to Ar in a bound

vibrational level (having dissociation energy De) with HCl in an excited vibrational state (∆
being the v = 0 to v = 1 vibrational energy gap), and the lower surface describes an Ar atom

that is free from the HCl molecule that is itself in its v = 0 vibrational state. In this case, the

coordinate R is the Ar-to-HCl distance.

In analogy with the electronic-nuclear coupling example discussed earlier, the rate of

transition from HCl (v=1) bound to Ar to HCl(v=0) plus a free Ar atom depends on the

strength of coupling between the Ar...HCl relative motion coordinate (R) and the HCl

internal vibrational coordinate. The <φ|d/dR|φ''> coupling elements in this case are integrals

over the HCl vibrational coordinate x involving the v = 0 (φ) and v = 1 (φ'') vibrational

functions. The integrals over the R coordinate in the earlier expression for the rate of

radiationless transitions now involve integration over the distance R between the Ar atom

and the center of mass of the HCl molecule.

This completes our discussion of dynamical processes in which more than one

Born-Oppenheimer state is involved. There are many situations in molecular spectroscopy

and chemical dynamics where consideration of such coupled-state dynamics is essential.

These cases are characterized by

(i) total energies E which may be partitioned in two or more ways among the internal

degrees of freedom (e.g., electronic and nuclear motion or vibrational and ad-atom in the

above examples),

(ii) Born-Oppenheimer potentials that differ in energy by a small amount (so that

energy transfer from the other degree(s) of freedom is facile).

III. Classical Treatment of Nuclear Motion

For all but very elementary chemical reactions (e.g., D + HH → HD + H or F +

HH → FH + H) or scattering processes (e.g., CO (v,J) + He → CO (v',J') + He), the



above fully quantal coupled channel equations simply can not be solved even when modern

supercomputers are employed. Fortunately, the Schrödinger equation can be replaced by a

simple classical mechanics treatment of nuclear motions under certain circumstances.

For motion of a particle of mass µ along a direction R, the primary condition under

which a classical treatment of nuclear motion is valid

λ
4π

 
1
p  |dp

dR | << 1

relates to the fractional change in the    local momentum      defined as:

p = 2µ(E - E j(R)) 

along R within the 3N - 5 or 3N - 6 dimensional internal coordinate space of the molecule,

as well as to the    local de Broglie wavelength    

λ = 
2πh
|p|   .

The inverse of the quantity  
1
p  |dp

dR | can be thought of as the length over which the

momentum changes by 100%. The above condition then states that the local de Broglie

wavelength must be short with  respect to the distance over which the potential changes

appreciably. Clearly, whenever one is dealing with heavy nuclei that are moving fast (so |p|

is large), one should anticipate that the local de Broglie wavelength of those particles may

be short enough to meet the above criteria for classical treatment.

It has been determined that for potentials characteristic of typical chemical bonding

(whose depths and dynamic range of interatomic distances are well known), and for all but

low-energy motions (e.g., zero-point vibrations) of light particles such as Hydrogen and

Deuterium nuclei or electrons, the local de Broglie wavelengths are often short enough for

the above condition to be met (because of the large masses µ of non-Hydrogenic species)

except when their velocities approach zero (e.g., near classical turning points). It is

therefore common to treat the nuclear-motion dynamics of molecules that do not contain H

or D atoms in a purely classical manner, and to apply so-called semi-classical corrections



near classical turning points. The motions of H and D atomic centers usually require

quantal treatment except when their kinetic energies are quite high.

A. Classical Trajectories

To apply classical mechanics to the treatment of nuclear-motion dynamics, one

solves Newtonian equations

mk 
d2 X k

dt2
  = - 

dEj
dXk

 

where Xk denotes one of the 3N cartesian coordinates of the atomic centers in the molecule,

mk is the mass of the atom associated with this coordinate, and 
dEj
dXk

  is the derivative of the

potential, which is the electronic energy Ej(R), along the kth coordinate's direction. Starting

with coordinates {Xk(0)} and corresponding momenta {Pk(0)} at some initial time t = 0,

and given the ability to compute the force - 
dEj
dXk

   at any location of the nuclei, the Newton

equations can be solved (usually on a computer) using finite-difference methods:

Xk(t+δt) = Xk(t) + Pk(t) δt/mk

Pk(t+δt) = Pk(t) - 
dEj
dXk

 (t)  δt.

In so doing, one generates a sequence of coordinates {Xk(tn)} and momenta

{Pk(tn)}, one for each "time step" tn. The histories of these coordinates and momenta as

functions of time are called "classical trajectories". Following them from early times,

characteristic of the molecule(s) at "reactant" geometries, through to late times, perhaps

characteristic of "product" geometries, allows one to monitor and predict the fate of the time

evolution of the nuclear dynamics. Even for large molecules with many atomic centers,

propagation of such classical trajectories is feasible on modern computers    if    the forces -
dEj
dXk

  can be computed in a manner that does not consume inordinate amounts of computer

time.

In Section 6, methods by which such force calculations are performed using first-

principles quantum mechanical methods (i.e., so-called    ab initio     methods) are discussed.

Suffice it to say that these calculations are often the rate limiting step in carrying out



classical trajectory simulations of molecular dynamics. The large effort involved in the    ab

   initio     determination of electronic energies and their gradients - 
dEj
dXk

  motivate one to

consider using empirical "force field" functions Vj(R) in place of the    ab initio     electronic

energy Ej(R). Such model potentials Vj(R), are usually constructed in terms of easy to

compute and to differentiate functions of the interatomic distances and valence angles that

appear in the molecule. The parameters that appear in the attractive and repulsive parts of

these potentials are usually chosen so the potential is consistent with certain experimental

data (e.g., bond dissociation energies, bond lengths, vibrational energies, torsion energy

barriers).

For a large polyatomic molecule, the potential function V usually contains several

distinct contributions:

V = Vbond + Vbend + VvanderWaals + Vtorsion + Velectrostatic.

Here Vbond gives the dependence of V on stretching displacements of the bonds

(i.e., interatomic distances between pairs of bonded atoms) and is usually modeled as a

harmonic or Morse function for each bond in the molecule:

Vbond  = ΣJ 1/2 kJ (RJ -Req,J)2

or

Vbond = ΣJ De,J (1-exp(-aJ(RJ -Req,J)))2

where the index J labels the bonds and the kJ, aJ and Req,J are the force constant and

equilibrium bond length parameters for the Jth bond.

Vbend describes the bending potentials for each triplet of atoms (ABC) that are

bonded in a A-B-C manner; it is usually modeled in terms of a harmonic potential for each

such bend:

Vbend  = ΣJ 1/2 kθJ (θJ -θeq,J)2 .

The θeq,J and kθJ are the equilibrium angles and force constants for the Jth angle.



VvanderWaals represents the van der Waals interactions between all pairs of atoms

that are not bonded to one another. It is usually written as a sum over all pairs of such

atoms (labeled J and K) of a Lennard-Jones 6,12 potential:

VvanderWaals = ΣJ<K [aJ,K (RJ,K)-12 - bJ,K (RJ,K)-6 ]

where aJ,K and bJ,K are parameters relating to the repulsive and dispersion attraction forces,

respectively for the Jth and Kth atoms.

 Vtorsion  contributions describe the dependence of V on angles of rotation about

single bonds. For example, rotation of a CH3 group around the single bond connecting the

carbon atom to another group may have an angle dependence of the form:

 Vtorsion = V0 (1 - cos(3θ))

where θ is the torsion rotation angle, and V0 is the magnitude of the interaction between the

C-H bonds and the group on the atom bonded to carbon.

Velectrostatic contains the interactions among polar bonds or other polar groups

(including any charged groups). It is usually written as a sum over pairs of atomic centers

(J and K) of Coulombic interactions between fractional charges {QJ} (chosen to represent

the bond polarity) on these atoms:

Velectrostatic = ΣJ<K QJQK/RJ,K

Although the total potential V as written above contains many components, each is a

relatively simple function of the Cartesian positions of the atomic centers. Therefore, it is

relatively straightforward to evaluate V and its gradient along all 3N Cartesian directions in

a computationally efficient manner. For this reason, the use of such empirical force fields in

so-called molecular mechanics simulations of classical dynamics is widely used for

treating large organic and biological molecules.

B. Initial Conditions

No single trajectory can be used to simulate chemical reaction or collisions that

relate to realistic experiments. To generate classical trajectories that are characteristic of

particular experiments, one must choose many initial conditions (coordinates and momenta)



the    collection     of which is representative of the experiment. For example, to use an

ensemble of trajectories to simulate a molecular beam collision between H and Cl atoms at

a collision energy E, one must follow many classical trajectories that have a range of

"impact parameters" (b) from zero up to some maximum value bmax beyond which the

H ....Cl interaction potential vanishes. The figure shown below describes the impact

parameter as the distance of closest approach that a trajectory would have if no attractive or

repulsive forces were operative.

impact 
parameter

b
initial momentum
vector

H atom

Cl atom

Moreover, if the energy resolution of the experiment makes it impossible to fix the collision

energy closer than an amount δE, one must run collections of trajectories for values of E

lying within this range.

If, in contrast, one wishes to simulate thermal reaction rates, one needs to follow

trajectories with various E values and various impact parameters b from initiation at t = 0 to

their conclusion (at which time the chemical outcome is interrogated). Each of these

trajectories must have their outcome weighted by an amount proportional to a Boltzmann

factor exp(-E/RT), where R is the ideal gas constant and T is the temperature because this

factor specifies the probability that a collision occurs with kinetic energy E.

As the complexity of the molecule under study increases, the number of parameters

needed to specify the initial conditions also grows. For example, classical trajectories that

relate to F + H2 → HF + H need to be specified by providing (i) an impact parameter for

the F to the center of mass of H2, (ii) the relative translational energy of the F and H2, (iii)



the radial momentum and coordinate of the H2 molecule's bond length, and (iv) the angular

momentum of the H2 molecule as well as the angle of the H-H bond axis relative to the line

connecting the F atom to the center of mass of the H2 molecule. Many such sets of initial

conditions must be chosen and the resultant classical trajectories followed to generate an

ensemble of trajectories pertinent to an experimental situation.

It should be clear that even the classical mechanical simulation of chemical

experiments involves considerable effort because no single trajectory can represent the

experimental situation. Many trajectories, each with different initial conditions selected so

they represent, as an ensemble, the experimental conditions, must be followed and the

outcome of all such trajectories must be averaged over the probability of realizing each

specific initial condition.

C. Analyzing Final Conditions

Even after classical trajectories have been followed from t = 0 until the outcomes of

the collisions are clear, one needs to properly relate the fate of each trajectory to the

experimental situation. For the F + H2 → HF + H example used above, one needs to

examine each trajectory to determine, for example, (i) whether HF + H products are formed

or non-reactive collision to produce F + H2 has occurred, (ii) the amount of rotational

energy and angular momentum that is contained in the HF product molecule, (iii) the

amount of relative translational energy that remains in the H + FH products, and (iv) the

amount of vibrational energy that ends up in the HF product molecule.

Because classical rather than quantum mechanical equations are used to follow the

time evolution of the molecular system, there is no guarantee that the amount of energy or

angular momentum found in degrees of freedom for which these quantities should be

quantized will be so. For example,  F + H2 → HF + H trajectories may produce HF

molecules with internal vibrational energy that is not a half integral multiple of the

fundamental vibrational frequency ω of the HF bond. Also, the rotational angular

momentum of the HF molecule may not fit the formula J (J+1) h2/(8π2I), where I is HF's

moment of inertia.

To connect such purely classical mechanical results more closely to the world of

quantized energy levels, a method know as "binning" is often used. In this technique, one

assigns the outcome of a classical trajectory to the particular quantum state (e.g., to a

vibrational state v or a rotational state J of the HF molecule in the above example) whose

quantum energy is closest to the classically determined energy. For the HF example at



hand, the classical vibrational energy Ecl.vib is simply used to define, as the closest integer,

a vibrational quantum number v according to:

v = 
(Ecl,vib)

hω
   - 1/2.

Likewise, a rotational quantum number J can be assigned as the closest integer to that

determined by using the classical rotational energy Ecl,rot in the formula:

J =1/2 { (1+32π2IEcl,rot/h2)1/2 -1}

which is the solution of the quadratic equation J (J+1) h2/8π2I = Ecl,rot. By following

many trajectories and assigning vibrational and rotational quantum numbers to the product

molecules formed in each trajectory, one can generate histograms giving the frequency with

which each product molecule quantum state is observed for the ensemble of trajectories

used to simulate the experiment of interest. In this way, one can approximately extract

product-channel quantum state distributions from classical trajectory simulations.

IV. Wavepackets

In an attempt to combine the attributes and stregths of classical trajectories, which

allow us to "watch" the motions that molecules undergo, and quantum mechanical

wavefunctions, which are needed if interference phenomena are to be treated, a hybrid

approach is sometimes used. A popular and rather successful such point of view is

provided by so called coherent state wavepackets.

A quantum mechanical wavefunction ψ(x | X , P) that is a function of all pertinent

degrees of freedom (denoted collectively by x) and that depends on two sets of parameters

(denoted X  and P, respectively) is defined as follows:

ψ(x | X , P) = ∏
k=1

N
(2π<∆xk>2)-1/2exp{iPkxk/h  -  ( x k-Xk)2/(4<∆xk>2)} .

Here, <∆xk>2 is the uncertainty

<∆xk>2 = ⌡⌠|ψ|2(xk-Xk)2dx  



along the kth degree of freedom for this wavefunction, defined as the mean squared

displacement away from the average coordinate

⌡⌠|ψ|2xkdx   = Xk.

So, the parameter Xk specifies the    average value    of the coordiate xk. In like fashion, it can

be shown that the parameter Pk is equal to the    average value    of the momentum along the kth

coordinate:

⌡⌠ψ*(-ih∂/∂xkψ)dx   = Pk.

The uncertainty in the momentum along each coordinate:

<∆pk>2 = ⌡⌠ψ*(-ih∂/∂xk-Pk)2ψdx  

is given, for functions of the coherent state form, in terms of the coordinate uncertainty as

<∆pk>2 <∆xk>2 =  h2/4.

Of course, the general Heisenberg uncertainty condition

<∆pk>2 <∆xk>2 ≥  h2/4

limits the coordinate and momentum uncertainty products for arbitrary wavefunctions. The

coherent state wave packet functions are those for which this     uncertainty     product    is

     minimum     . In this sense, coherent state wave packets are seen to be as close to classical as

possible since in classical mechanics there are no limits placed on the resolution with which

one can observe coordinates and momenta.

These wavepacket functions are employed as follows in the most straightforward

treatements of combined quantal/classical mechanics:

1. Classical trajectories are used, as discribed in greater detail above, to generate a

series of coordinates Xk(tn) and momenta Pk(tn) at a sequence of times denoted {tn}.



2. These classical coordinates and momenta are used to     define    a wavepacket

function as written above, whose Xk and Pk parameters are taken to be the coordinates and

momenta of the classical trajectory. In effect, the wavepacket  moves around "riding" the

classical trajectory's coordiates and momenta as time evolves.

3. At any time tn, the quantum mechanical properties of the system are computed by

forming the expectation values of the corresponding quantum operators for a wavepacket

wavefunction of the form given above with Xk and Pk given by the classical coordinates

and momenta at that time tn.

Such wavepackets are, of course, simple approximations to the true quantum

mechanical functions of the system because they do not obey the Schrödinger equation

appropriate to the system. The should be expected to provide accurate representations to the

true wavefunctions for systems that are more classical in nature (i.e., when the local de

Broglie wave lengths are short compared to the range over which the potentials vary

appreciably). For species containing light particles (e.g., electrons or H atoms) or for low

kinetic energies, the local de Broglie wave lengths will not satisfy such criteria, and these

approaches can be expected to be less reliable. For further information about the use of

coherent state wavepackets in molecular dynamics and molecular spectroscopy, see E. J.

Heller, Acc. Chem. Res.     14    , 368 (1981).

This completes our treatment of the subjects of molecular dynamics and molecular

collisions. Neither its depth not its level was at the research level; rather, we intended to

provide the reader with an introduction to many of the theoretical concepts and methods that

arise when applying either the quantum Schrödinger equation or classical Newtonian

mechanics to chemical reaction dynamics. Essentially none of the experimental aspects of

this subject (e.g., molecular beam methods for preparing "cold" molecules, laser pump-

probe methods for preparing reagents in specified quantum states and observing products

in such states) have been discussed. An excellent introduction to both the experimental and

theoretical foundations of modern chemical and collision dynamics is provided by the text

     Molecular Reaction Dynamics and Chemical Reactivity     by R. D. Levine and R. B.

Bernstein, Oxford Univ. Press (1987).


