Chapter 15
Thetools of time-dependent perturbation theory can be applied to transitions among
electronic, vibrational, and rotational states of molecules.

|. Rotational Transitions

Within the approximation that the electronic, vibrational, and rotational states of a
molecule can be treated as independent, the total molecular wavefunction of the "initial"
state is a product

Fi=YeiCvifri

of an electronic functiony ¢, avibrational function cj, and arotational functionf . A
similar product expression holds for the "final" wavefunction F .

In microwave spectroscopy, the energy of the radiation liesin the range of fractions
of acnrl through several cmL; such energies are adequate to excite rotational motions of
molecules but are not high enough to excite any but the weakest vibrations (e.g., those of
weakly bound Van der Waals complexes). In rotational transitions, the electronic and
vibrational states are thus left unchanged by the excitation process, hencey ¢ = Y o and Cyj
= Cvf.

Applying the first-order electric dipole transition rate expressions

Rif=2p gw,) latif
obtained in Chapter 14 to this case requires that the E1 approximation
Rif = (2p/H2) g(wi,i) |Eo - <F¢|m|F> |2

be examined in further detail. Specifically, the electric dipole matrix elements<Ff | m| F >
withm=S; e rj + Sz Zae Ramust be analyzed for Fj and F ¢ being of the product form
shown above.

The integrations over the electronic coordinates contained in <Ff | m| F >, aswell
asthe integrations over vibrational degrees of freedom yield "expectation values' of the
electric dipole moment operator because the electronic and vibrational components of F
and F ¢ areidenticd:



<Ye |[Mlyea>=m(R)

isthe dipole moment of theinitial eectronic state (which isafunction of the internal
geometrical degrees of freedom of the molecule, denoted R); and

<Cvi |MR) | Ccvi> = Mye

isthe vibrationally averaged dipole moment for the particular vibrationa state labeled c ;.
The vector my,e has components along various directions and can be viewed as a vector
"locked" to the molecul€'sinterna coordinate axis (labeled a, b, ¢ as below).
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Therotational part of the <Ff | m| Fi> integral is not of the expectation value form
because the initial rotational function f i, is not the same asthe fina f ¢. Thisintegral hasthe
form:

<fir| mwelfr>=8(Y*L.m (@.f) mweYL m (q,f) sing dq df)

for linear molecules whose initial and final rotational wavefunctionsare Y| v and YL v,
respectively, and

_ _ 2L + 1 2L'+ 1
<f|r|mive|ffr>—\/ 8 p2 \/ 8 p2

8(DL.m .k (0.F.C) mweD*L M k' (a.f,¢) sing dg df dc)

2L +1
p2

for spherical or symmetric top molecules (here, D*L mk (q,f,c) arethe

normalized rotational wavefunctions described in Chapter 13 and in Appendix G). The
anglesq, f, and c refer to how the molecule-fixed coordinate system is oriented with

respect to the space-fixed X, Y, Z axis system.
A. Linear Molecules

For linear molecules, the vibrationally averaged dipole moment myeliesaong the
molecular axis; hence its orientation in the lab-fixed coordinate system can be specified in

terms of the same angles (g and f ) that are used to describe the rotational functionsY | m
(q,f). Therefore, the three components of the <f j; | mue|f 1> integral can be written as:

<fir | myelffx = mB(Y*L m (q.f) sing cosf Y+ m (q,f) sing dg df)

<fir| mwelfi>y=m8B(Y*L M (q,f) sing sinf Y\ (q,f) sing dg df)



<fir | myelff>z=mB(Y*L m (a.f) cosq Y m' (q,f) sing dq df),

where mis the magnitude of the averaged dipole moment. | f the molecule has no
dipole moment, al of the above electric dipole integrals vanish and theintensity of E1
rotational transitionsis zer o.

Thethree E1 integrals can be further analyzed by noting that cosq 1 Y10 ; sing
cosf p Y11+ Y-1;andsing sinf g Y11 - Y1-1 and using the angular momentum
coupling methodsiillustrated in Appendix G. In particular, the result given in that appendix:

Dj, m, m' DI, n, n'

= SJ,M,M' <JMJj,m;l,n> <j,m’; 1,n'|J;M'> D3 m. M
when multiplied by D* 3 m M and integrated over sing dq df dc, yields:
8(D*sM M Dj, m, m' DI, n, n sing dq df dc)

- B <JMJj,m;l,n><j,m’; I,n'[J,M">
_ﬂ ] |J!m1 !n J!m’ 1n||

—a2ad | Joaed | I 54y Mem
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To usethisresult in the present linear-molecule case, we note that the Dy m k functions and
the Y 3 functions are related by:

Yam (9.F) =\ (23+1)/4p D*3m0 (a.f,C).

The normalization factor is now \/ (23+1)/4p rather than \/ (23+1)/8p2 becausetheY 3\ are
no longer functions of ¢, and thus the need to integrate over O £ ¢ £ 2p disappears.

Likewise, the c-dependence of D* 3 k disappears for K = 0.
We now use these identitiesin the three E1 integrals of the form

m8(Y*L m (a,f) Y1i.m (a,f) YL m (g,f) sing dq df),



with m = 0 being the Z- axisintegral, and the Y - and X- axis integrals being combinations
of them =1 and m =-1 results. Doing so yields:

m8(Y*L.m (a,F) Y1i,m (a,F) YL m (g,f) sing dq df)

= m\/ZL+1 22 B8(DL m,0 D*1,mo D* 'm0 Sing dq df dc/2p) .
4p 4p  4p

Thelast factor of 1/2p isinserted to cancel out the integration over dc that, because all K-
factorsin the rotation matrices equal zero, trivialy yields 2p. Now, using the result shown
above expressing the integral over three rotation matrices, these E1 integrals for the linear-
molecule case reduce to:

m8(Y*L.m (a,F) Y1i,m (a,F) YL m (g,f) sing dq df)

ma [2FL 2L'+1 3 8p2 ' 1 Lgsgh' 1 Lb(_l)M
4p 4p 4p 2p aM'm-Mga 00-0 g
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Applied to the z-axis integral (identifying m = 0), thisresult therefore vanishes
unless:

M=M
and
L=L"+1orlL'-1.

Even though angular momentum coupling considerations would allow L = L' (because
coupling two angular momentawithj =1 andj =L"'should giveL'+1, L', and L'-1), the

3-j symbol %g vanishesfor the L = L' case since 3-j symbols have the following

symmetry



6&#0 = (-1)L+L+1 &O

av'm -M M'"-m Mg

with respect to the M, M', and mindices. Applied to the SLOT 3-j symboal, this

means that this particular 3-j element vanishesfor L =L'sinceL + L'+ 1isodd and hence
(_1)L +Ll'+1jg -1.

Applied to the x- and y- axis integrals, which contain m = £ 1 components, this
same analysisyields:

3 4 1L gaé 1 Ly, avm
— 1
\/(2L+1)(2L +1) M 2L Moo 000 g( )

which then requires that

M=M'=+1
and
L=L"+1,L"-1,

with L = L' again being forbidden because of the second 3-j symbol.

These results provide so-called "selection rules" because they limit theL and M
values of the final rotational state, giventheL', M' values of the initial rotational state. In
the figure shown below, the L = L' + 1 absorption spectrum of NO at 120 °K is given. The
intensities of the various peaks are related to the populations of the lower-energy rotational
states which are, in turn, proportional to (2 L' + 1) exp(- L'(L'+1) h2/8p2IKT). Also
included in the intensities are so-called line strength factor s that are proportional to the
sguares of the quantities:

o3 ' 1 Lghk' 1 Lg
m\/(2L+1)(2L+1)E MM Maa 000 g( 1) M

which appear in the E1 integrals analyzed above (recall that the rate of photon absorption
Rif =(2p/h2) g(ws i) |Ep - <Ff|m|Fi>[2involvesthe squares of these matrix elements).
The book by Zare gives an excellent treatment of line strength factors' contributionsto
rotation, vibration, and electronic line intensities.
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B. Non-Linear Molecules

For molecules that are non-linear and whose rotational wavefunctions are givenin
terms of the spherical or symmetric top functions D*|_ v k , the dipole moment nyyecan
have components along any or all three of the molecule€'sinternal coordinates (e.g., the
three molecule-fixed coordinates that describe the orientation of the principal axes of the
moment of inertiatensor). For a spherical top molecule, | myd vanishes, so E1 transitions

do not occur.
For symmetric top species, myeliesaong the symmetry axis of the molecule, so

the orientation of myye can again be described interms of q and f, the angles used to locate
the orientation of the molecule's symmetry axis relative to the lab-fixed coordinate system.
Asaresult, the E1 integral again can be decomposed into three pieces:

<fir|mad fox = mé(DL,M,K(q,f,c) cosqg cosf D* ' m' k' (9,f,c) sinq dg df dc)
<fir | muwd fr>y =8 (DL M.k (a.f,c) cosq sinf D* L+ w k: (q,f,¢) sing dq df dc)

<fir | myd ff>z=n8 (DL Mk (9.F,c) cosq D* L m k' (9.f,c) sing dg df dc).



Using the fact that cosq p D*1,0,0; sing cosf i D*11 0+ D*1-1,0; andsing sinf p
D*1.1,0 - D*1.-1,0, and the tools of angular momentum coupling allows these integrals to be
expressed, as above, in terms of products of the following 3-j symbols:

' 1 Lagk' 1 Lg
M m -MgeK 0 -Kg'

from which the following selection rules are derived:

L=L'"+1,L,L"-1 (butnotL =L'=0),
K=K’
M=M"+m,

with m = O for the Z-axisintegral and m = + 1 for the X- and Y- axisintegrals. In
addition, if K =K"'=0, theL = L' transitions are also forbidden by the second 3-j symbol
vanishing.

[1. Vibration-Rotation Transitions

When theinitial and final electronic states are identical but the respective vibrational
and rotational states are not, one is dealing with transitions between vibration-rotation states
of the molecule. These transitions are studied in infrared (IR) spectroscopy using light of
energy inthe 30 cmr? (far IR) to 5000 cm-1 range. The electric dipole matrix element
analysis still begins with the electronic dipole moment integral <y & | M|y &> = m(R), but
the integration over interna vibrational coordinates no longer produces the vibrationally
averaged dipole moment. Instead one forms the vibrational transition dipole integral:

<cvf |MR) |cvi>=m;
between theinitia ¢ and final c+ vibrational states.

A. The Dipole Moment Derivatives
Expressing n(R) in a power series expansion about the equilibrium bond length
position (denoted Re collectively and Ra e individualy):



rr(R) = rr(Re) + SaﬂMﬂRa(Ra' Ra'e) + ...,

substituting into the <cyf | MR) | cyi> integral, and using the fact that ¢j and ct are
orthogonal (because they are eigenfunctions of vibrational motion on the same electronic
surface and hence of the same vibrational Hamiltonian), one obtains:

<cvf |MR) | cvi>=mMRe) <Cvf | Cvi>+ SaMMRa<cvi | (Ra- Rag) [Cvi> + ...
= Sa(MYRa) <cvi| (Ra- Rag) ICvi> + ... .
Thisresult can be interpreted as follows:

i. Each independent vibrational mode of the molecule contributes to the n3 ; vector an
amount equal to (fMRy) <cvf| (Ra- Rae) [Cvi> + ...

ii. Each such contribution contains one part (nMfIR;) that depends on how the molecule's
dipole moment function varies with vibration along that particular mode (labeled @),

iii. and asecond part <cyf | (Ra- Rae) | Cvi> that depends on the character of theinitial
and final vibrational wavefunctions.

If the vibration does not produce amodulation of the dipole moment (e.g., aswith
the symmetric stretch vibration of the CO2> molecule), itsinfrared intensity vanishes
because (TmMRy) = 0. One saysthat such transitions are infrared "inactive'.

B. Selection Rules on the Vibrational Quantum Number in the Harmonic Approximation

If the vibrational functions are described within the harmonic oscillator
approximation, it can be shown that the <cyf | (Ra- Rae) | Cvi> integrals vanish unless vf
=vi +1, vi -1 (and that these integrals are proportional to (vi +1)Y2 and (vi)V2 in the
respective cases). Even when cys and ¢y are rather non-harmonic, it turns out that such Dv
=+ 1 transitions have thelargest <cyf | (Ra- Rag) | Cvi> integrals and therefore the highest
infrared intensities. For these reasons, transitions that correspond to Dv = + 1 arecalled
"fundamental”; those withDv = *+ 2 are called "first overtone" transitions.



In summary then, vibrations for which the molecul€'s dipole moment is modul ated
asthe vibration occurs (i.e., for which (mfRy) is non-zero) and for which Dv = + 1 tend

to have large infrared intensities; overtones of such vibrations tend to have smaller
intensities, and those for which (MR = 0 have no intensity.

C. Rotational Selection Rulesfor Vibrational Transitions

The result of al of the vibrational modes contributions to
Sa(TMTRy) <cvf | (Ra- Rae) | Cvi> isavector myansthat istermed the vibrational
"trangition dipole’ moment. Thisis avector with components along, in principle, all three
of the interna axes of the molecule. For each particular vibrational transition (i.e., each
particular cj and cy) its orientation in space depends only on the orientation of the molecule;
it isthus said to be locked to the molecul€'s coordinate frame. As such, its orientation
relative to the lab-fixed coordinates (which is needed to effect a derivation of rotational
selection rules as was done earlier in this Chapter) can be described much as was done
above for the vibrationally averaged dipole moment that arisesin purely rotational
trangitions. There are, however, important differencesin detail. In particular,

i. For alinear molecule myans Can have components either along (e.g., when stretching
vibrations are excited; these cases are denoted s-cases) or perpendicular to (e.g., when
bending vibrations are excited; they are denoted p cases) the molecul€'s axis.

ii. For symmetric top species, Nnrans Need not lie along the molecule's symmetry axis; it can
have components either along or perpendicular to this axis.

iii. For spherical tops, myans Will vanish whenever the vibration does not induce adipole
moment in the molecule. Vibrations such asthe totally symmetric &g
C-H stretching motion in CH4 do not induce a dipole moment, and are thus infrared

inactive; non-totally-symmetric vibrations can also be inactive if they induce no dipole
moment.

Asaresult of the above considerations, the angular integrals

<fir | Mrans|f > = é(Y*L,M (a,f) Mrans YL',m (,f) sing dq df)



and
<fir | Mrans|f > = é(DL,M,K (9.,f,c) Mrans D* L', M k" (9,f,c) sing dqg df dc)

that determine the rotational selection rules appropriate to vibrational transitions produce
similar, but not identical, results asin the purely rotational transition case.

The derivation of these selection rules proceeds as before, with the following
additional considerations. The transition dipole moment's nyans components along the lab-

fixed axes must be related to its molecule-fixed coordinates (that are determined by the
nature of the vibrational transition as discussed above). This transformation, asgivenin
Zare'stext, reads as follows:

(Mrang), = Sk D*1,mk (a.f,c) (Mrang,

where (Mrang) ,, Withm = 1, O, -1 refer to the components along the lab-fixed (X, Y, Z)
axes and (Mrang), Withk = 1, O, -1 refer to the components along the molecule- fixed (a, b,

C) axes.
This relationship, when used, for example, in the symmetric or spherical top E1
integral:

<fir |Mrans|f 1> = é(DL,M,K (9,f,¢) Mrans D* L' m' k' (0,f,c) sing dq df dc)
givesriseto products of 3-j symbols of the form:

' 1 Lok 1 Lg
MM -MgeK Kk -Kg°

The product of these 3-j symbols is nonvanishing only under certain conditions that
provide the rotationa selection rules applicable to vibrational lines of symmetric and
spherical top molecules.

Both 3-j symbols will vanish unless

L=L"+1,L"orL"-1.



In the special casein which L = L' =0 (and hencewithM = M' =0 =K =K', which means
that m = 0 = k), these3-j symbols again vanish. Therefore, transitions with
L=L"=0

areagainforbidden. Asusual, the fact that the lab-fixed quantum number m can range
over m=1,0, -1, requires that

M=M"+1, M, M'-1.

The selection rules for DK depend on the nature of the vibrational transition, in
particular, on the component of myans along the molecule-fixed axes. For the second 3-j
symbol to not vanish, one must have

K =K"+Kk,

wherek =0, 1, and -1 refer to these molecul e-fixed components of the transition dipole.
Depending on the nature of the transition, various k values contribute.

1. Symmetric Tops

In asymmetric top molecule such as NH3, if the transition dipole lies along the
molecul€'s symmetry axis, only k = 0 contributes. Such vibrations preserve the molecule's
symmetry relative to this symmetry axis (e.g. the totally symmetric N-H stretching modein
NH3). The additional selectionruleDK =0
isthus obtained. Moreover, for K = K' =0, al transitions with DL = 0 vanish because the
second 3-j symbol vanishes. In summary, one has:

DK=0; DM =+1,0; DL =+1 ,0 (butL =L'=0isforbiddenand al DL =0
areforbidden for K =K' =0)

for symmetric tops with vibrations whose transition dipole lies along the symmetry axis.
If the transition dipole lies perpendicular to the symmetry axis, only
k = 1 contribute. In this case, one finds

DK =+1;DM =+1,0; DL =+1,0 (neither L =L'=0nor K =K'=0can occur
for such transitions, so there are no additional constraints).



2. Linear Molecules

When the above analysis is applied to adiatomic speciessuch asHCI, only k =0is
present since the only vibration present in such amoleculeis the bond stretching vibration,
which hass symmetry. Moreover, the rotational functions are spherical harmonics (which
can beviewed as D* ' v k' (9,f,c) functions with K' = 0), so the K and K" quantum
numbers are identically zero. Asaresult, the product of 3-j symbols

' 1 Lagk' 1 Lg
M m -MgaK K -K g

reduces to

b 1 Lagh' 1Ly
M M -Mge000g*

which will vanish unless
L=L"+1,L"-1,

but not L = L' (since parity then causes the second 3-j symbol to vanish), and
M=M+1 M, M1,

TheL =L'+1 transitions are termed R-branch absorptions and those obeying L =L'-1
are caled P-branch transitions. Hence, the selection rules

DM =+1,0; DL = +1

areidentical to those for purely rotational transitions.

When applied to linear polyatomic molecules, these same selection rulesresult if the
vibration isof s symmetry (i.e., hask = 0). If, on the other hand, the transition is of p
symmetry (i.e., hask = 1), so the trangition dipole lies perpendicul ar to the molecul€e's
axis, one obtains:

DM =+1,0; DL =1, 0.



These selection rules are derived by redlizing that in addition to k = 1, one has:

() alinear-molecule rotational wavefunction that in thev = 0 vibrational level is described
in terms of arotation matrix D' m*,0 (9,f,¢) with no angular momentum along the

molecular axis, K' =0 (ii) av = 1 molecule whose rotational wavefunction must be given
by arotation matrix D m 1 (9,f,c) with one unit of angular momentum about the

molecule's axis, K = 1. In the latter case, the angular momentum is produced by the
degenerate p vibration itself. Asaresult, the selection rules above derive from the

following product of 3-j symbols:

' 1 Lggbh" 1 Lp
aM'm-Mga 01-1 -

Because DL = 0 transitions are allowed for p vibrations, one says that p vibrations possess
Q- branches in addition to their R- and P- branches (with DL = 1 and -1, respectively).

In the figure shown below, thev = 0 ==> v = 1 (fundamental) vibrational
absorption spectrum of HCI is shown. Here the peaks at lower energy (to the right of the
figure) belong to P-branch transitions and occur at energies given approximately by:

E = A Wgretch + (h2/8p2l) ((L-1)L - L(L+1))
= A Weretch -2 (h2/8p2l) L.
The R-branch transitions occur at higher energies given approximately by:
E = h Watrerch + (h%/8p21) ((L+1)(L+2) - L(L+1))
= h Watretch +2 (h2/8p21) (L+1).

The absorption that is "missing” from the figure below lying slightly below 2900 cmrlis
the Q-branch transition for which L = L"; it is absent because the selection rules forbid it.



It should be noted that the spacings between the experimentally observed peaksin
HCI are not constant as would be expected based on the above P- and R- branch formulas.
Thisis because the moment of inertia appropriate for thev = 1 vibrational level is different
than that of thev = 0 level. These effects of vibration-rotation coupling can be modeled by
allowingthev=0and v = 1levelsto haverotational energieswritten as

E = hwgretch (v + 1/2) + (h?/8p21y) (L (L+1))

wherev and L arethe vibrational and rotational quantum numbers. The P- and R- branch
trangition energies that pertain to these energy levels can then be written as:

Ep = A Waretch - [ (h%/8p2l1) + (h%/8p2lg) ] L +[ (h2/8p2y) - (h2/8p2g) ] L2
ER = A Watretch + 2 (h%/8p2l 1)
+[ 3(h2/8p2l1) - (h2/8p20) ] L + [ (h2/8p2l7) - (h2/8p2lg) ] L2.

Clearly, these formulas reduce to those shown earlier inthe 1 = Ig limit.

If the vibrationally averaged bond length islonger inthev = 1 statethan inthev =0
state, which isto be expected, 11 will be larger than 1, and therefore [ (n2/8p2l4) -
(h2/8p21g) ] will be negative. In this case, the spacing between neighboring P-branch lines
will increase as shown above for HCI. In contrast, the fact that [ (h2/8p2l1) - (h2/8p2l0) ]
IS negative causes the spacing between neighboring R- branch linesto decrease, again as
shown for HCI.

[11. Electronic-Vibration-Rotation Transitions



When electronic transitions are involved, theinitial and final states generally differ
in their electronic, vibrational, and rotational energies. Electronic transitions usually require
light in the 5000 cm-1 to 100,000 cm1 regime, so their study lies within the domain of
visible and ultraviolet spectroscopy. Excitations of inner-shell and core orbital el ectrons
may require even higher energy photons, and under these conditions, E2 and M1
transitions may become more important because of the short wavelength of the light
involved.

A. The Electronic Transition Dipole and Use of Point Group Symmetry
Returning to the expression
Rif =(2p/H2) g(wi i) |[Eo - <Ff|m|Fi> 2

for the rate of photon absorption, we realize that the electronic integral now involves
<Yef IMlye>=m, (R),

atrangition dipole matrix element between the initia y & and final y ¢f €lectronic
wavefunctions. This element isafunction of the internal vibrational coordinates of the
molecule, and again is avector locked to the molecule'sinternal axis frame.

Molecular point-group symmetry can often be used to determine whether a
particular transition's dipole matrix element will vanish and, as aresult, the electronic
transition will be "forbidden" and thus predicted to have zero intensity. If the direct product
of the symmetries of theinitial and final electronic statesy ¢ and y ¢ do not match the
symmetry of the electric dipole operator (which has the symmetry of itsx, y, and z
components; these symmetries can be read off the right most column of the character tables
givenin Appendix E), the matrix element will vanish.

For example, the formal dehyde molecule H,CO has a ground electronic state (see
Chapter 11) that has 1A; symmetry in the Coy point group. Its p ==> p* singlet excited
state also has 1A symmetry because both the p and p* orbitals are of by symmetry. In
contrast, the lowest n ==> p* singlet excited state is of 1A, symmetry because the highest
energy oxygen centered n orbital is of by symmetry and the p* orbital is of by symmetry,
so the Slater determinant in which both the n and p* orbitals are singly occupied hasits
symmetry dictated by the by x b1 direct product, which is Ao.



Thep ==> p* transition thus involves ground (1A1) and excited (1A1) states whose
direct product (A1 x Aj) isof A; symmetry. This trangition thus requires that the electric
dipole operator possess a component of A1 symmetry. A glance at the Cyy, point group's
character table shows that the molecular z-axisisof A1 symmetry. Thus, if the light's
electric field has a non-zero component along the C, symmetry axis (the molecul€'s z-axis),
thep ==> p* trangition is predicted to be allowed. Light polarized along either of the
molecul€'s other two axes cannot induce this transition.

In contrast, the n ==> p* transition has a ground-excited state direct product of B»
x B1 = Az symmetry. The Cpy 's point group character table clearly shows that the electric
dipole operator (i.e., its x, y, and z components in the molecule-fixed frame) has no
component of Az symmetry; thus, light of no electric field orientation can induce thisn ==>
p* transition. We thus say that the n ==> p* transition is E1 forbidden (although itisM1
allowed).

Beyond such electronic symmetry analysis, it is also possible to derive vibrational
and rotational selection rulesfor electronic transitions that are E1 alowed. Aswas donein
the vibrational spectroscopy case, it is conventional to expand n3; (R) in apower series
about the equilibrium geometry of theinitial electronic state (since this geometry is more
characteristic of the molecular structure prior to photon absorption):

mi(R) =mi(Re + SaTm i/TRa(Ra- Rae + -...
B. The Franck-Condon Factors

Thefirst term in this expansion, when substituted into the integral over the
vibrational coordinates, gives my j(Re) <Cvf | Cvi>, which hasthe form of the electronic
transition dipole multiplied by the "overlap integral” between theinitial and final vibrationa
wavefunctions. The ny j(Re) factor was discussed above; it is the electronic E1 transition
integral evaluated at the equilibrium geometry of the absorbing state. Symmetry can often
be used to determine whether thisintegral vanishes, asaresult of which the E1 transition
will be "forbidden”.

Unlike the vibration-rotation case, the vibrational overlap integrals
<cCvf | cvi> do not necessarily vanish because cyf and cyj are no longer eigenfunctions of
the same vibrational Hamiltonian. cyf is an eigenfunction whose potential energy isthe
final electronic state's energy surface; cyj hastheinitia electronic state's energy surface as
its potential. The squares of these <c s | cyi> integrals, which are what eventually enter
into the transition rate expression R; 1 = (2p/h?) g(wr i) | Eo - <Ff|m|Fi> |2, are caled



"Franck-Condon factor s". Their relative magnitudes play strong roles in determining
the relative intensities of various vibrational "bands’ (i.e., peaks) within a particular
electronic transition's spectrum.

Whenever an electronic transition causes a large change in the geometry (bond
lengths or angles) of the molecule, the Franck-Condon factors tend to display the
characteristic "broad progression” shown below when considered for one initial-state
vibrational level vi and various final-state vibrational levels vf:

|<Ci|Cf>|2

|
vi0 1 23 456
Final state vibrational Energy (E,s)

Notice that as one movesto higher vf values, the energy spacing between the states (Eyf -
Evf-1) decreases, this, of course, reflects the anharmonicity in the excited state vibrational

potential. For the above example, the transition to the vf = 2 state has the largest Franck-

Condon factor. This means that the overlap of theinitial state's vibrational wavefunction

cvj islargest for thefinal state's cyf function with vf = 2.

Asaqualitative rule of thumb, the larger the geometry difference between theinitial
and final state potentials, the broader will be the Franck-Condon profile (as shown above)
and the larger the vf value for which this profile peaks. Differencesin harmonic frequencies
between the two states can also broaden the Franck-Condon profile, although not as
significantly as do geometry differences.



For example, if theinitial and fina states have very similar geometries and
frequencies aong the mode that is excited when the particular electronic excitation is
realized, the following type of Franck-Condon profile may result:

2
[<cilce|

v 0 1 23456

Final state vibrational Energy (E.s)

In contragt, if theinitial and final e ectronic states have very different geometries and/or
vibrational frequencies along some mode, a very broad Franck-Condon envelope peaked at
high-vf will result as shown below:
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C. Vibronic Effects

The second term in the above expansion of the transition dipole matrix element Sy
1M j/Ra (Ra - Ra,e) can become important to analyze when the first term ny;(Re) vanishes
(e.g., for reasons of symmetry). This dipole derivative term, when substituted into the
integral over vibrational coordinates gives
Sam i/fRa<cvf | (Ra- Rae)| cvi>. Transitions for which ny j(Re) vanishes but for which
im j/Ra does not for the ah vibrational mode are said to derive intensity through "vibronic
coupling” with that mode. The intensities of such modes are dependent on how strongly the
electronic dipole integral varies along the mode (i.e, on 3 i/Ra) as well as on the
magnitude of the vibrational integral
<cvf | (Ra- Rae)l cvi>.

An example of an E1 forbidden but "vibronically allowed" transition is provided by
the singlet n ==> p* transition of HyCO that was discussed earlier in this section. As
detailed there, the ground electronic state has 1A, symmetry, and the n ==> p* stateis of
1A, symmetry, so the E1 transition integral
<y ef | M|y &> vanishesfor al three (x, y, z) components of the electric dipole operator m.
However, vibrations that are of by symmetry (e.g., the H-C-H asymmetric stretch
vibration) can induce intensity in the n ==> p* trangition asfollows:

(1) For such vibrations, the by mode'svi = 0 to vf = 1 vibronic integral

<cvf | (Ra- Rag)| Cvi> Will be non-zero and probably quite substantial (because, for
harmonic oscillator functions these "fundamental” transition integrals are dominant- see
earlier);

(if) Along these same by modes, the electronic transition dipole integral derivative ny i/Ra
will be non-zero, even though the integral itself nmy j (Re) vanishes when evaluated at the
initial state's equilibrium geometry.

To understand why the derivative fn3 j/Ra can be non-zero for distortions
(denoted Ry) of by symmetry, consider this quantity in greater detail:

M,ifRa = <y ef M|y ei>/TRa
=<fyefTRalm|yei>+ <y ef | M|y &/TR2> + <y ef | 1MTRa |y &>
Thethird integral vanishes because the derivative of the dipole operator itself

m=S;j e rj + Sy Zae RaWwith respect to the coordinates of atomic centers, yields an
operator that contains only a sum of scalar quantities (the elementary charge e and the



magnitudes of various atomic charges Z5); as aresult and because the integra over the
electronic wavefunctions <y ¢f | y &> vanishes, this contribution yields zero. The first and
second integrals need not vanish by symmetry because the wavefunction derivatives

TV e/ TRz and Ty /R4 do not possess the same symmetry as their respective
wavefunctionsy ¢ and y . In fact, it can be shown that the symmetry of such aderivative
isgiven by the direct product of the symmetries of its wavefunction and the symmetry of
the vibrational mode that gives rise to the f/fiRa. For the H>CO case at hand, the b, mode
vibration can induce in the excited 1A, state a derivative component (i.e., Ty «/Ra) that is
of 1B1 symmetry) and this same vibration can induce in the 1A; ground state a derivative
component of 1B, symmetry.

As aresult, the contribution <fly f/fRa | M|y &> to 1n3 j/IR4 arising from vibronic
coupling within the excited electronic state can be expected to be non-zero for components
of the dipole operator mthat are of (y f/fRa X Y &) = (B1 X A1) = B1 symmetry. Light
polarized along the molecul€e's x-axis gives such ab; component to m(see the Cyy, character
tablein Appendix E). The second contribution <y ¢ | m| fly &i/fRz> can be non-zero for
components of mthat are of (y ¢f X Ty &/IRa) = (A2 X B2) = B1 symmetry; again, light of
x-axis polarization can induce such atransition.

In summary, electronic transitions that are E1 forbidden by symmetry can derive
significant (e.g., in HoCO the singlet n ==> p* transition israther intense) intensity
through vibronic coupling. In such coupling, one or more vibrations (either in the initial or
the final state) cause the respective e ectronic wavefunction to acquire (through fly /1Rz) a
symmetry component that is different than that of y itself. The symmetry of fly /R which
isgiven asthe direct product of the symmetry of y and that of the vibration, can then cause
the eectric dipole integral <y '|nly /fRz> to be non-zero even when <y |y > is zero.
Such vibronically allowed transitions are said to derive their intensity through vibronic
borrowing.

D. Rotationa Sdection Rules for Electronic Transitions

Each vibrational peak within an electronic transition can also display rotational
structure (depending on the spacing of the rotational lines, the resolution of the
spectrometer, and the presence or absence of substantial line broadening effects such as



those discussed later in this Chapter). The selection rules for such transitions are derived in
afashion that parallels that given above for the vibration-rotation case. The mgjor difference
between this el ectronic case and the earlier situation is that the vibrational transition dipole
moment Myans appropriate to the former is replaced by ny j(Re) for conventional (i.e., non-
vibronic) transitions or T} j/R4 (for vibronic transitions).

Asbefore, when 3 j(Re) (or T3 i/R5) lies along the molecular axis of alinear
molecule, the transition is denoted s and k = 0 applies; when this vector lies perpendicular
totheaxisitiscalled p and k = +1 pertains. The resultant linear -molecul e rotationa
selection rules are the same as in the vibration-rotation case:

DL=x1,and DM =+ 1,0 (for s transitions).
DL=%1,0 and DM =+1,0 (for p transitions).

In the latter case, the L = L' = 0 situation does not arise because ap transition has one unit
of angular momentum along the molecular axis which would preclude both L and L'
vanishing.

For non-linear molecules of the spherical or symmetric top variety, n3 j(Re) (or
m j/IR5) may be aligned along or perdendicular to a symmetry axis of the molecule. The
selection rulesthat result are

DL=+10,DM=+10;andDK =0 (L =L"'=0isnot allowed and al DL =
0 are forbidden when K = K' = 0)

which applieswhen n3 j(Re) or T i/fRalies along the symmetry axis, and
DL=+10,DM=+10; and DK =+ 1 (L =L' = Qisnot allowed)
which applieswhen my j(Re) or 1 i/fIRa lies perpendicular to the symmetry axis.
IV. Time Correlation Function Expressions for Transition Rates
Thefirst-order E1 "golden-rule” expression for the rates of photon-induced
trangitions can be recast into aform in which certain specific physical models are easily

introduced and insights are easily gained. Moreover, by using so-called equilibrium
averaged time correlation functions, it is possible to obtain rate expressions appropriate to a



large number of molecules that exist in adistribution of initial states (e.g., for molecules
that occupy many possible rotational and perhaps severa vibrationa levels at room
temperature).

A. State-to-State Rate of Energy Absorption or Emission
To begin, the expression obtained earlier
Rif =(2p/H2) 9w i) |[Eo - <Ff|m|Fi> 2,

that is appropriate to transitions between a particular initial state Fj and a specific final state
F, isrewritten as

Rif = (2p/2) Bgw) | Eo - <Ff | m| Fi> |2 dw; - w) dw.

Here, the d(w i - w) function is used to specifically enforce the "resonance condition” that
resulted in the time-dependent perturbation treatment given in Chapter 14; it states that the
photons' frequency w must be resonant with the transition frequency w; . It should be
noted that by allowing w to run over positive and negative values, the photon absorption
(with wg j positive and hence w positive) and the stimulated emission case (with w
negative and hence w negative) are both included in this expression (aslong asg(w) is
defined as g(jw|) so that the negative-w contributions are multiplied by the light source
intensity at the corresponding positive w value).

The following integral identity can be used to replace the d-function:

¥

d(w, 'W):z_lp Bexplitwr - wyt] dt
¥

by aform that is more amenable to further development. Then, the state-to-state rate of
transition becomes:



(’) ¥
Rif=(1/h2) Ogw) | Eo - <Ff| m| Fi>R8expi(w - w)t] dt dw.
0 ¥

B. Averaging Over Equilibrium Boltzmann Population of Initial States

If this expression is then multiplied by the equilibrium probability r that the
moleculeisfound in the state F; and summed over al such initia states and summed over
al fina states F 1 that can be reached from F with photons of energy-hw, the equilibrium
averaged rate of photon absorption by the molecular sampleis obtained:

Reqave. = (1/R?) Si, fri

é ¥
Ogw) | Eo - <Ff| m| Fi>RBexpli(w; - wt] dt dw.
0 ¥

This expression is appropriate for an ensemble of molecules that can bein variousinitia
statesF; with probabilitiesr j. The corresponding result for transitionsthat originate in a

particular state (F ) but end up in any of the "allowed" (by energy and selection rules) final
states reads:

Reatei. = (R St8gw) | Eg - <F¢| m| Fi>R

¥

Bexpli(wj - w)t] dtdw .
¥

For acanonical ensemble, in which the number of molecules, the temperature, and the
system volume are specified, r j takes the form:

_ i exp(- E9/KT)
ri = 0




where Q isthe canonical partition function of the molecules and g; is the degeneracy of the
state F j whose energy is E9.

In the above expression for Reg.ave,, @ double sum occurs. Writing out the elements
that appear in this sumin detail, one finds:

Si,f ri Eo- <Fi|m|F¢> Eg- <Ff|m|Fi>expi(wt.
In situationsin which oneisinterested in developing an expression for the intensity arising
from transitions to all allowed fina states, the sum over these final states can be carried out
explicitly by first writing

<F¢ | m| Fi> expi(wg i)t = <F ¢ |exp(iHt/R) mexp(-iHtA)| Fi>
and then using the fact that the set of states{F x} are complete and hence obey

SkIFi><Fil=1.

Theresult of using these identities aswell asthe Heisenber g definition of thetime-
dependence of the dipole operator

m(t) = exp(iHt/R) mexp(-iHt/A),

Sil’i <Fi|Eo- mEg- m(t) |Fi>.

In thisform, one says that the time dependence has been reduce to that of an equilibrium
averaged (n.b., the Si ri <Fi| |Fj>)time correlation function involving the

component of the dipole operator along the external electricfieldat t =0 ( Eg - m) and this
component at adifferent timet (Eg - m(t)).

C. Photon Emission and Absorption



If wg j is positive (i.e., in the photon absorption case), the above expression will
yield anon-zero contribution when multiplied by exp(-i wt) and integrated over positive w-
values. If wg j is negative (asfor stimulated photon emission), this expression will
contribute, again when multiplied by exp(-i wt), for negativew-values. In the latter
situation, r j is the equilibrium probability of finding the moleculein the (excited) state from
which emission will occur; this probability can be related to that of the lower state r ¢ by

I excited = I lower €XP[ - (EV%xcited - E%ower)/KT ]
=T |ower €XP[ - AW/KT ].

In thisform, it isimportant to realize that the excited and lower states are treated as
individual states, not as levelsthat might contain a degenerate set of states.

The absorption and emission cases can be combined into asingle net expression for
the rate of photon absorption by recognizing that the latter process leads to photon
production, and thus must be entered with a negative sign. The resultant expression for the
net rate of decrease of photonsis:

Reqavenet = (A S 1 (1- exp(- hwikT))

28gw) <Fi| (Eo - m) Eo- m(t) | Fi> exp(-iwt) dwd.

D. The Line Shape and Time Correlation Functions

Now, it is convention to introduce the so-called "line shape" function | (w):
lw)= S ri6 <F;| (Eop- m) Eg - m(t) | Fi> exp(-iwt) dt

in terms of which the net photon absorption rate is



Regavenet = (L/R2) (1 - exp(- hwikT) )8 g(w) | (w) dw.
As stated above, the function
Ct)=S ri <Fi|(Eo- m)Ep- m(t) |Fi>

is caled the equilibrium averaged time correlation function of the component of the
electric dipole operator along the direction of the external electric field Eq. Its Fourier
transform is| (w), the spectral line shape function. The convolution of | (w) with the
light source's g (w) function, multiplied by

(1 - exp(-h W/KT) ), the correction for stimulated photon emission, gives the net rate of
photon absorption.

E. Rotational, Trandational, and Vibrational Contributions to the Correlation Function

To apply the time correlation function machinery to each particular kind of
spectroscopic transition, one proceeds as follows:

1. For purely rotational transitions, theinitial and final eectronic and vibrational states
are the same. Moreover, the electronic and vibrationa states are not summed over in the
analog of the above development because oneisinterested in obtaining an expression for a
paticular cjy Yie ==> Cty Y fe€lectronic-vibrational transition's lineshape. As aresult, the

sum over final states contained in the expression (see earlier) Si'f riEo- <Fi|m|F¢
Eo- <Ff|m(t) | Fi> expi(ws i)t applies only to summing over final rotational states. In
more detail, this can be shown as follows:

SifriEo- <Fi|m|F>Eg- <Ff|m()|Fi>

=Si,f riEo- <firCivyied m[ftcCivyie> Eo- <ft#cCivYie|m() |firCivYie

=Si,f FirfivrieEo- <firciv |MR) |ffrCiv>Eo - <ftciv [M(RY) | firCiv >

=Si,f FirlivrieEo- <fir|mweiv|ffr>Eo- <f# | maeiv (t) |Tir>



:Si FirfivrieEo- <fir|Mweiv Eo- Maweiv (t) |fir>.

In moving from the second to the third lines of this derivation, the following identity was
used:

<ffrcivyielm() [fir Civ Yie> = <ftr Civ Yie| exp(iHth)
mexp(-iHth) | fir Civ Y ie>
=<ftrCiv Yie| exp(iHy, ) mR) exp(-iHy /tA) [fir Civ yie>,
where H isthe full (electronic plus vibrational plusrotational) Hamiltonian and Hy ¢ is the
vibrational and rotational Hamiltonian for motion on the electronic surface of the statey je
whose dipole moment is m(R). From the third line to the fourth, the (approximate)
separation of rotational and vibrational motionsin Hy
Hy,r=Hy +Hy
has been used along with the fact that cjy is an eigenfunction of Hy:
Hy civ =Eiv Civ
to write
<cijy |[M(R,t) [civ > =exp(i Hy t/h) <cjy | exp( iHy tHh)
m(R) exp(- iHy tA) | cjy > exp(- iH; t/)
=exp(i Hy th) <cjy | exp(iEjy t/h)
m(R) exp(- iEy t) | civ > exp(- iHr tHh)

=exp(i Hr t/R) <ciy [ m(R)[ciy > exp(- iH th)



= Mueiv (1)

In effect, misreplaced by the vibrationally averaged electronic dipole moment nyyejy for
each initial vibrationa state that can be involved, and the time corre ation function thus
becomes:

CH=Sirirriv rie<fir| (Eo- Mwvejiv) Eo - Mwejiv () [Tir>,

where myejv (t) isthe averaged dipole moment for the vibrational state cjy at timet, given
that it was myyejv a timet = 0. The time dependence of myyejv (t) isinduced by the
rotational Hamiltonian Hy, as shown clearly in the steps detailed above:

Meiv (1) = exp(i Hr t/A) <ciy |m(R)| ciy > exp(- iH; ).
In this particular case, the equilibrium average is taken over the initial rotational states
whose probabilities are denoted r j, , any initial vibrationa states that may be populated,

with probabilitiesr jy, and any populated electronic states, with probabilitiesr je.

2. For vibration-rotation transitions within asingle electronic state, theinitial and
final electronic states are the same, but the initial and final vibrational and rotational states

differ. Asaresult, the sum over final states contained in the expression Si, friEo- <Fj|
m|F¢> Eo - <Ff|m|Fi> expi(w )t applies only to summing over final vibrational and
rotational states. Paralleling the devel opment made in the pure rotation case given above,
this can be shown asfollows:

Si,f riEo- <Fi|m|F¢>Eg- <Ff|m(t) |Fi>
=Si,f ri Eo- <fircivyid m|fercrvyie> Eo- <ftrCevYielm@) [firCivyie>
=Si,f FirfivrieEo- <firCiv Im(R)|f¢rCfy > Eo - <ffrcey |[M(RY) | firCiv >

=Si frirrivrieEo- <fircivlmRe) + Sa(Ra- Raeg) TR, | f fr Cv>



Eo- <frcrlexpiHtR)(MRe) + Sa(Ra- Raey TR
exp(-iHit/R)| firCiv > exp(iwsy,ivt)
= Siriv.ieir Fiv T ie Sty fr Da<Civl(Ra- Raeg)lCtv>
St <cul(Rat - Rateq) Civ>exp(iwgu,ivt)
Eo- <fir | IMTRa Eo - exp(iHtM)IMTRa exp(-iHth)| f iy >
= Sir, iv, ieTirTiv T ie Sfv,fr €xp(iry,ivt)
<fir| (Eo- Mrang) Eo: exp(iHAHR) Myrans exp(-iHtA)| fir >,
where the vibrational transition dipole matrix element is defined as before
Mrans= Sa<Civl(Ra- Raeg)lcv> TR,
and derives its time dependence above from the rotational Hamiltonian:
Mrans (t) = exp(iHtA) Myans exp(-iHAA).
The corresponding final expression for the time correlation function C(t) becomes:
C®=Si rirriv rie<firl (o Mrans) Eo - Mrans(®) [fir> exp(iwg,vt).
The net rate of photon absorption remains:
Regavena = (UR?) (1-exp(-hw) ) 8 g(w) | (w) dw,

where [(w) is the Fourier transform of C(t).

The expression for C(t) clearly contains two types of time dependences: (i) the
exp(iwsy ivt), upon Fourier transforming to obtain I(w), produces d-function "spikes" at



frequenciesw = wyy jy equal to the spacings between the initial and final vibrational states,
and (ii) rotational motion time dependence that causes myans (t) to change with time. The
latter appears in the form of a correlation function for the component of myansaong Eg at

timet = 0 and this component at another timet. The convolution of both these time
dependences determines the from of I(w).

3. For electronic-vibration-rotation transitions, theinitial and final eectronic states
aredifferent asaretheinitial and final vibrational and rotational states. As aresult, the sum

over fina states contained in the expression Si,f riEo- <Fi|m|F¢>Eqg- <F¢|m|F;>
expi(wg i)t applies to summing over final electronic, vibrational, and rotational states.

Paralleling the development made in the pure rotation case given above, this can be shown
asfollows:

Si,f riEo- <Fi|m|F¢>Eq- <Ff|m(t) |Fi>
=Si,f ri Eo- <fircivyid m|fercrvyfe> Eo- <frcev el m() [firCivyie>

=Si,f FirlivrieEo: <firciv |Mm#(R)|ffrcey>Eo- <fgrctv |[Ms(R.E) | fir Civ

>
=Sif rirrivrieEo- <fir Ims(Ralf 1> I<ciy |cr>P
Eo - <f |lexp(iHtAR) m $(Re) exp(-iHtA)| fir> exp(iwgy jvt + iDE; ft/)
=Si ¢ rirrivrie <fir [Eo- ms(Ra Eo- mi(Ret) Ifir> I<civ | c>P
exp(iwy iyt + IDE; ft/h),
where

M f(Ret) = exp(iHtH) m ¢(Re) exp(-iHit/)



isthe electronic transition dipole matrix e ement, evaluated at the equilibrium geometry of
the absorbing state, that derivesits time dependence from the rotational Hamiltonian Hy as
in the time correlation functions treated earlier.

This development thus leads to the following definition of C(t) for the electronic,
vibration, and rotation case:

C)= Sif rirrivrie <fir|[Eo- ms(Re Eo- mf(Rel) Ifir> I<Civ | cr>P
exp(iwsy iyt + IDE; st/h)
but the net rate of photon absorption remains:
Reqavenet = (1/R?) (1- exp(- AW/kT) )8 g(w) 1 (w) dw.

Here, 1(w) isthe Fourier transform of the above C(t) and DE; ¢ isthe adiabatic electronic
energy difference (i.e.,, the energy difference between thev = 0 level in thefinal electronic
state and the v = O level in theinitia electronic state) for the electronic transition of interest.
The above C(t) clearly contains Franck-Condon factors as well astime dependence
exp(iwsy ivt + IDE; st/R) that produces d-function spikes at each €lectronic-vibrational
trangition frequency and rotationa time dependence contained in the time correlation
function quantity <f i [ Eg - m(Re) Eo - mf(Ret) |fir>.

To summarize, the line shape function I(w) produces the net rate of photon
absorption

Regavene = (1h2) (1 - exp(- AW/kT) )6 g(w) | (w) dw

in all of the above cases, and I(w) isthe Fourier transform of a corresponding time-
dependent C(t) functionin al cases. However, the pure rotation, vibration-rotation, and
electronic-vibration-rotation cases differ in the form of their respective C(t)'s. Specificaly,

CM=Sirirriv rie<fir| (Eo- Mwveiv) Eo - Mweiv (1) |fir>

in the pure rotational case,



C®=Si rirriv rie<fir| (Eo* Mrans) Eo* Mrans(t) |fir> exp(iwty,ivt)
in the vibration-rotation case, and
CH) = Sif rirrivrie <fir|Eo- mi(Re Eo- ms(Rel) Ifir> [<civ | cr>PR
exp(iwy jvt + DE; st/h)

in the el ectronic-vibration-rotation case.

All of these time correlation functions contain time dependences that arise from
rotational motion of adipole-related vector (i.e., the vibrationally averaged dipole myye.iv
(t), the vibrational transition dipole myans (), or the electronic transition dipole m f(Ret))
and the | atter two also contain oscillatory time dependences (i.e., exp(iwsy jyt) or
exp(iwgy vt + IDE; st/R)) that arise from vibrational or electronic-vibrational energy level
differences. In the treatments of the following sections, consideration is given to the
rotational contributions under circumstances that characterize, for example, dilute gaseous
samples where the collision frequency is low and liquid-phase samples where rotationa
motion is better described in terms of diffusional motion.

F. Line Broadening Mechanisms

If the rotational motion of the moleculesis assumed to be entirely unhindered (e.g.,
by any environment or by collisions with other molecules), it is appropriate to express the
time dependence of each of the dipole time correlation functions listed above in terms of a

"freerotation™ model. For example, when dealing with diatomic molecules, the electronic-
vibrational-rotational C(t) appropriate to a specific electronic-vibrationa transition becomes:

C(t) = (o Ov e &) Sy (23+1) exp(- h2X(I+1)/(8p2IKT)) exp(- hyipvi /kT)

gie <fJ|Eo- m#(Re Eo- m#(Rel) If 2 [<Civ | crv>?
exp(i [hnyip] t + IDE; f t/h).

Here,



gr = (8p2lkT/M2)

isthe rotational partition function (I being the molecule's moment of inertia
| = mRe?, and h2J(3+1)/(8p2l) the molecule's rotational energy for the state with quantum

number J and degeneracy 23+1)
Qv = exp(-hnyip/2KT) (1-exp(-hnyip/kT))L

isthe vibrationa partition function (nyjp being the vibrational frequency), gieisthe
degeneracy of theinitia electronic state,

g = (2pmkT/2)3/2 v

isthe trandational partition function for the molecules of mass m moving in volume V, and
DE; s isthe adiabatic electronic energy spacing.

Thefunctions<f 3| Eg - m#(Re) Eo - m#(Ret) |f 5 describe the time evolution of
the dipole-related vector (the electronic transition dipole in this case) for the rotational state
J. In a"free-rotation" model, this function is taken to be of the form:

<fj|Eo- mt(Re) Eo- m(Ret) If

h J(J+1) t
=<fj|Eo- mi(Re) Eo- Mf(Re0) |f 5> Cos (4 | : '

where

h J(J+1) = w;
4pl

isthe rotational frequency (in cycles per second) for rotation of the moleculein the state
labeled by J. This oscillatory time dependence, combined with the exp(iwsy jyt + IDE; stH)
time dependence arising from the electronic and vibrational factors, produce, when this C(t)
function is Fourier transformed to generate 1(w) a series of d-function "peaks’ whenever

W= Wy iy + DE A+ wj.



Theintensities of these peaks are governed by the
(or v Qe ) Sy (23+1) exp(- h2)(F+1)/(8p2IKT)) exp(- hripvi /KT) ge

Boltzmann population factors as well as by the |<cijy | cf>|? Franck-Condon factors and
the <f 3| Eo - mf(Re) Eo - mi(Re0) [f 5> terms.

This same analysis can be applied to the pure rotation and vibration-rotation C(t)
time dependences with analogous results. In the former, d-function peaks are predicted to
occur at

w=xw;
and in the latter at
W= Wy jy £ W3,

with the intensities governed by the time independent factors in the corresponding
expressions for C(t).

In experimental measurements, such sharp d-function peaks are, of course, not
observed. Even when very narrow band width laser light sources are used (i.e., for which
g(w) isan extremely narrowly peaked function), spectral lines are found to possess finite
widths. Let us now discuss several sources of line broadening, some of which will relate to
deviations from the "unhindered" rotational motion model introduced above.

1. Doppler Broadening

In the above expressions for C(t), the averaging over initial rotational, vibrational,
and electronic states is explicitly shown. There is also an average over the trandational
motion implicit in al of these expressions. Itsrole has not (yet) been emphasized because
the molecular energy levels, whose spacings yield the characteristic frequencies at which
light can be absorbed or emitted, do not depend on trandational motion. However, the
frequency of the electromagnetic field experienced by moving molecules does depend on
the velocities of the molecules, so thisissue must now be addressed.

Elementary physics classes express the so-called Doppler shift of awave's
frequency induced by movement either of the light source or of the molecule (Einstein tells
us these two points of view must give identical results) asfollows:



Wobsarved = Wnominal (1 +VZ/€)1» Wnomina (1 - vZC + ...).

Here, Wnomina 1S the frequency of the unmoving light source seen by unmoving molecules,
vz isthe velocity of relative motion of the light source and molecules, c is the speed of

light, and wgopsarved IS the Doppler shifted frequency (i.e., the frequency seen by the
molecules). The second identity is obtained by expanding, in a power series, the (1 + v,/c)
1 factor, and is valid in truncated form when the molecules are moving with speeds
significantly below the speed of light.

For all of the cases considered earlier, a C(t) function is subjected to Fourier
transformation to obtain a spectral lineshape function I(w), which then provides the
essentia ingredient for computing the net rate of photon absorption. In this Fourier
transform process, the variable w is assumed to be the frequency of the electromagnetic
field experienced by the molecules. The above considerations of Doppler shifting then leads
oneto realize that the correct functional form to usein converting C(t) to I(w) is:

I(w) = BC(t) exp(-itw(1-vz/c)) dt

where w is the nominal frequency of the light source.

As stated earlier, within C(t) there is aso an equilibrium average over trandational
motion of the molecules. For a gas-phase sample undergoing random collisions and at
thermal equilibrium, this average is characterized by the well known Maxwell-Boltzmann
velocity distribution:

(M/2pKT)3/2 exp(-m (vx2+vy2+Vz2)/2KT) dvy dvy dvz.

Here m is the mass of the molecules and vy, vy, and v label the velocities along the [ab-
fixed cartesian coordinates.

Defining the z-axis as the direction of propagation of the light's photons and
carrying out the averaging of the Doppler factor over such avelocity distribution, one
obtains:

¥
B exp(-itw(1-vz/c)) (m/2pkT)3/2 exp(-m (Vx2+vy2+vZ2)/2KT) dvy dvy dv;
-¥



¥

= exp(-iwt) 8 (M/2pkT)L/2 exp(iwtv,/c) exp(-mvz2/2kT) dv;
-¥

= exp(-iwt) exp(- w2t2kT/(2mc2)).

This result, when substituted into the expressions for C(t), yields expressions identical to
those given for the three cases treated above but with one modification. The trandational
motion average need no longer be considered in each C(t); instead, the earlier expressions
for C(t) must each be multiplied by afactor exp(- w2t2kT/(2mc2)) that embodies the
trandationally averaged Doppler shift. The spectral line shape function 1(w) can then be
obtained for each C(t) by simply Fourier transforming:

¥
I(w) = Bexp(-iwt) C(t) dt .
-¥
When applied to the rotation, vibration-rotation, or el ectronic-vibration-rotation
cases within the "unhindered” rotation model treated earlier, the Fourier transform involves
integrals of the form:

¥

I(w) = Bexp(-iwt) exp(- W2t2kT/(2mc2))exp(i(Wiviv + DEifh + wit) dt .
-¥

Thisintegral would arise in the electronic-vibration-rotation case; the other two cases would
involveintegrals of the same form but with the DE; ¢/h absent in the vibration-rotation
Situation and with wsy jy + DE; /A missing for pure rotation transitions. All such integrals
can be carried out analytically and yield:

2mc?
o[22

Theresult isaseries of Gaussian "peaks' in w-space, centered at:

exp[ -(w-wgy jv - DEj /h + w)2 mc?/(2w2kT)].



W = Wy iy + DEj tfh £ w;
with widths (s) determined by
s2 = w2kT/(mc?),

given the temperature T and the mass of the molecules m. The hotter the sample, the faster
the molecules are moving on average, and the broader is the distribution of Doppler shifted
frequencies experienced by these molecules. The net result then of the Doppler effect isto
produce a line shape function that is similar to the "unhindered” rotation model's series of
d-functions but with each d-function peak broadened into a Gaussian shape.

2. Pressure Broadening

To include the effects of collisions on the rotational motion part of any of the above
C(t) functions, one must introduce a model for how such collisions change the dipole-
related vectorsthat enter into C(t). The most el ementary model used to address collisions
applies to gaseous samples which are assumed to undergo unhindered rotational motion
until struck by another molecule at which time arandomizing "kick" is applied to the dipole
vector and after which the molecule returnsto its unhindered rotational movement.

The effects of such collisionally induced kicks are treated within the so-called
pressure broadening (sometimes called collisional broadening) model by modifying the
free-rotation correlation function through the introduction of an exponential damping factor
exp( -[t)/t):

h J(J+1) t
<fj|Eo- mt(Re) Eo- ms(ReO) |f 5> COS%

P <fj|Eo- mi(Re Eo- mi(Re0) [f 5> Cos

% exp( -Itt).

This damping function's time scale parameter t is assumed to characterize the average time
between collisions and thus should be inversely proportiona to the collision frequency. Its
magnitude is also related to the effectiveness with which collisions cause the dipole
function to deviate from its unhindered rotational motion (i.e., related to the collision
strength). In effect, the exponential damping causes the time correlation function <f 5| Eg -



m(Re) Eo - m¢(Ret) [f 5 to"loseits memory" and to decay to zero; this"memory" point
of view isbased on viewing <f 3| Eg - m$(Re) Eo - mf(Ret) |f 7 asthe projection of Eg
- m¢#(Ret) dongitst =0value Ep - m¢(Re0) asafunction of timet.

Introducing this additional exp( -[t|/t) time dependence into C(t) produces, when
C(t) is Fourier transformed to generate I (w),

¥

I(w) = B exp(-iwt)exp(-Itft )exp(-w2t2kT/(2mc2))exp(i (Wi, iv+DE; /A + wa)t)dt .
¥

In the limit of very small Doppler broadening, the (W2t2kT/(2mc2)) factor can be ignored
(i.e., exp(-w2t2kT/(2mc2)) set equal to unity), and

¥

(W) = Bexp(-iwt)exp(-|tht )exp(iwy,iv+DE; £A + wyt)dt
-¥

results. Thisintegral can be performed analytically and generates:

W= = ¢ - - - }
4p © (Ut)2+ (W-whyiy-DEi¢/h = w2 (Ut)2+ (W+wry iv+DEit/h £ wy)2 ~

apair of Lorentzian peaks inw-space centered again at
W=+ [Wry ivtDE A+ wy].

The full width at half height of these Lorentzian peaksis 2/t. One says that the individual
peaks have been pressure or collisionally broadened.

When the Doppler broadening can not be neglected relative to the collisiona
broadening, the above integral

¥

I(w) = B exp(-iwt)exp(-|tft )exp(-w2t2kT/(2mc2))exp(i (Wry,jv+DE; /A + wa)t)dt
-¥



is more difficult to perform. Nevertheless, it can be carried out and again produces a series
of peaks centered at

W = Wy jiv+DE A £ w;

but whose widths are determined both by Doppler and pressure broadening effects. The
resultant line shapes are thus no longer purely Lorentzian nor Gaussian (which are
compared in the figure below for both functions having the same full width at half height
and the same integrated area), but have a shape that is called aVV oight shape.

Gaussian -

(Doppler)

Intensity 9

Lorentzian

3. Rotational Diffusion Broadening

Moleculesin liquids and very dense gases undergo frequent collisions with the
other molecules; that is, the mean time between collisionsis short compared to the
rotational period for their unhindered rotation. As aresult, the time dependence of the
dipole related correlation function can no longer be modeled in terms of free rotation that is
interrupted by (infrequent) collisions and Dopler shifted. Instead, amodel that describes the
incessant buffeting of the molecul€'s dipole by surrounding molecules becomes
appropriate. For liquid samplesin which these frequent collisions cause the molecule's
dipole to undergo angular motions that cover al angles (i.e., in contrast to afrozen glass or



solid in which the molecul€'s dipole would undergo strongly perturbed pendular motion
about some favored orientation), the so-called r otational diffusion model is often used.
In this picture, the rotation-dependent part of C(t) is expressed as.

<f3|Eo- mi(Re) Eo- mf(Ret) [f 5>
=<fj]Eo- m#(Re) Eo- M(Re0) [f 5> exp(-2Drotlt]),
where Dyqt is therotational diffusion constant whose magnitude details the time

decay in the averaged value of Eg - m f(Ret) at timet with respect to itsvalue at timet = 0;
the larger Dyqt, the faster isthis decay.

As with pressure broadening, this exponential time dependence, when subjected to
Fourier transformation, yields:

¥
I(w) = 8 exp(-iwt)exp(-2Drotlt) exp(-w2t2kT/(2mc2))exp(i (Wi iv+DE; 1/ + wa)t)dt .

-¥
Again, in the limit of very small Doppler broadening, the (W2t2kT/(2mc?2)) factor can be
ignored (i.e., exp(-w2t2kT/(2mc?)) set equal to unity), and

¥

I(w) = B exp(-iwt)exp(-2Drorlt])exp(i(wry iv+DE; /A £ wy)t)dt
-¥

results. Thisintegral can be evaluated analytically and generates:

1 { 2Drot

I(w) =
4p  (2Dro)%+ (W-Wry,iv-DEj t/h + wj)2

N 2Dyt }
(2Dro)2+ (W+Wry iy +DE; t/h £ wy)2

apair of Lorentzian peaks inw-space centered again at

W = +[Wry iy +DE; i £ wy.



The full width at half height of these Lorentzian peaksis 4Dyqt. In this case, one says that
the individual peaks have been broadened viarotationa diffusion.  When the Doppler
broadening can not be neglected relative to the collisional broadening, the above integral

¥

I(w) = B exp(-iwt)exp(-2Drotlt) exp(-w2t2kT/(2mc2))exp(i (Wi iy +DE; /A + wa)t)dt .
-¥

is more difficult to perform. Nevertheless, it can be carried out and again produces a series
of peaks centered at

W = [Wry,iv+DE; t/A + wy|
but whose widths are determined both by Doppler and rotational diffusion effects.

4. Lifetime or Heisenberg Homogeneous Broadening

Whenever the absorbing species undergoes one or more processes that depletesits
numbers, we say that it has afinite lifetime. For example, a species that undergoes
unimolecular dissociation has afinite lifetime, as does an excited state of a molecule that
decays by spontaneous emission of a photon. Any process that depletes the absorbing
species contributes another source of time dependence for the dipole time correlation

functions C(t) discussed above. This time dependence is usually modeled by appending, in
amultiplicative manner, afactor exp(-[tj/t). This, in turn modifies the line shape function
I (w) in amanner much like that discussed when treating the rotational diffusion case:

¥
I(w) = B exp(-iwt)exp(-Ityt )exp(-w2t2kT/(2mc2))exp(i (Wi, iv+DE; /A + wa)t)dt .
-¥
Not surprisingly, when the Doppler contribution is small, one obtains:
1 Ut

I(w) =
) 4p { (Ut)2+ (w-wiy,iy-DEi t/h £ wy)?

N 1 )
(1/t)2+ (W+wry jy+DEj t/h £ w2~




In these Lorentzian lines, the parameter t describes the kinetic decay lifetime of the
molecule. One says that the spectral lines have been lifetime or Heisenberg
broadened by an amount proportional to 1/t. The latter terminology arises because the
finite lifetime of the molecular states can be viewed as producing, viathe Heisenberg
uncertainty relation DEDt > h, states whose energy is"uncertain” to within an amount DE.

5. Site Inhomogeneous Broadening

Among the above line broadening mechanisms, the pressure, rotational diffusion,
and lifetime broadenings are al of the homogeneous variety. This means that each
moleculein the sample is affected in exactly the same manner by the broadening process.
For example, one does not find some molecules with short lifetimes and others with long
lifetimes, in the Heisenberg case; the entire ensemble of moleculesis characterized by a
singlelifetime.

In contrast, Doppler broadening isinhomogeneous in nature because each
mol ecul e experiences a broadening that is characteristic of its particular nature (velocity vz
inthiscase). That is, the fast molecules have their lines broadened more than do the slower
molecules. Another important example of inhomogeneous broadening is provided by so-
caled site broadening. Moleculesimbedded in aliquid, solid, or glass do not, at the
instant of photon absorption, al experience exactly the same interactions with their
surroundings. The distribution of instantaneous "solvation™ environments may be rather
"narrow" (e.g., in ahighly ordered solid matrix) or quite "broad" (e.g., in aliquid at high
temperature). Different environments produce different energy level splittings w =
Wry iv+DE; £/ + wj (because the initial and final states are "solvated" differently by the
surroundings) and thus different frequencies at which photon absorption can occur. The
distribution of energy level splittings causes the sample to absorb at arange of frequencies
asillustrated in the figure below where homogeneous and inhomogeneous line shapes are
compared.
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Homogeneous (a) and inhomogeneous (b) band shapes having
inhomogeneous width DnINH‘ and homogeneous width DnH .

The spectra line shape function I (w) is further broadened when site inhomogeneity
is present and significant. These effects can be modeled by convolving the kind of 1(w)
function that results from Doppler, lifetime, rotational diffusion, and pressure broadening
with a Gaussian distribution P(DE) that describes the inhomogeneous distribution of
energy level splittings:

I(w) = 810(w;DE) P(DE) dDE .

Here I9(w;DE) is aline shape function such as those described earlier each of which
contains a set of frequencies (e.g., w = Wy jy+DE; /A = wy = w + DE/R) at which
absorption or emission occurs.

A common experimental test for inhomogeneous broadening involves hole
burning. In such experiments, an intense light source (often alaser) istuned to a
frequency wpyrn that lies within the spectral line being probed for inhomogeneous
broadening. Then, a second tunable light source is used to scan through the profile of the
spectral line, and, for example, an absorption spectrum is recorded. Given an absorption
profile as shown below in the absence of the intense burning light source:



Intensity

one expects to see a profile such as that shown below:

Intensity

w—

if inhomogeneous broadening is operative.

The interpretation of the change in the absorption profile caused by the bright light
source proceeds as follows:
(1) In the ensemble of molecules contained in the sample, some molecules will absorb at or
near the frequency of the bright light source wiyyrm; other molecules (those whose
environments do not produce energy level splittings that match wiyyrm) will not absorb at
this frequency.
(i) Those molecules that do absorb at Wi Will have their transition saturated by the
intenselight source, thereby rendering this frequency region of the line profile transparent
to further absorption.
(iii) When the "probe" light source is scanned over the line profile, it will induce
absorptions for those molecules whose local environments did not allow them to be
saturated by the wyyrn light. The absorption profile recorded by this probe light source's
detector thus will match that of the original line profile, until



(iv) the probe light source's frequency matches wyyrn, Upon which no absorption of the
probe source's photons will be recorded because molecules that absorb in this frequency
regime have had their transition saturated.

(v) Hence, a"hole" will appear in the spectrum recorded by the probe light source's
detector in the region of Wiyrn.

Unfortunately, the technique of hole burning does not provide afully reliable
method for identifying inhomogeneously broadened lines. If aholeis observed in such a
burning experiment, this provides ample evidence, but if one is not seen, the result is not
definitive. In the latter case, the transition may not be strong enough (i.e., may not have a
large enough "rate of photon absorption” ) for the intense light source to saturate the
transition to the extent needed to form a hole.

This completes our introduction to the subject of molecular spectroscopy. More
advanced treatments of many of the subjects treated here as well as many aspects of modern
experimental spectroscopy can be found in the text by Zare on angular momentum as well
asin Seinfeld's text Molecules and Radiation, 2nd Edition, by J. . Seinfeld, MIT Press
(1985).




