
Chapter 15

The tools of time-dependent perturbation theory can be applied to transitions among

electronic, vibrational, and rotational states of molecules.

I. Rotational Transitions

Within the approximation that the electronic, vibrational, and rotational states of a

molecule can be treated as independent,  the total molecular wavefunction of the "initial"

state is a product

Φi = ψei χvi φri

of an electronic function ψei, a vibrational function χvi, and a rotational function φri. A

similar product expression holds for the "final" wavefunction Φf.

In microwave spectroscopy, the energy of the radiation lies in the range of fractions

of a cm-1 through several cm-1; such energies are adequate to excite rotational motions of

molecules but are not high enough to excite any but the weakest vibrations (e.g., those of

weakly bound Van der Waals complexes). In rotational transitions, the electronic and

vibrational states are thus left unchanged by the excitation process; hence ψei = ψef and χvi

= χvf.

Applying the first-order electric dipole transition rate expressions

Ri,f = 2 π g(ωf,i) |αf,i|2

obtained in Chapter 14 to this case requires that the E1 approximation

Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2

be examined in further detail. Specifically, the electric dipole matrix elements <Φf | µ | Φi>

with µ = Σ j  e  rj  + Σa  Za e   Ra must be analyzed for Φi and Φf being of the product form

shown above.

The integrations over the electronic coordinates contained in <Φf | µ | Φi>, as well

as the integrations over vibrational degrees of freedom yield "expectation values" of the

electric dipole moment operator because the electronic and vibrational components of Φi

and Φf are identical:



<ψei | µ | ψei> = µ (R)

is the dipole moment of the initial electronic state (which is a function of the internal

geometrical degrees of freedom of the molecule, denoted R); and

<χvi | µ(R) | χvi> = µave

is the vibrationally averaged dipole moment for the particular vibrational state labeled χvi.

The vector  µave has components along various directions and can be viewed as a vector

"locked" to the molecule's internal coordinate axis (labeled a, b, c as below).

depends on
φ  and χ

θ

c

a

 b

Z 

X Y



The rotational part of the <Φf | µ | Φi> integral is not of the expectation value form

because the initial rotational function φir is not the same as the final φfr. This integral has the

form:

<φir |  µave | φfr> = ⌡⌠(Y*L,M (θ,φ)   µave YL',M' (θ,φ) sinθ dθ dφ) 

for linear molecules whose initial and final rotational wavefunctions are YL,M and YL',M' ,

respectively, and

<φir |  µave | φfr> = 
2L + 1

8  π2
 

2L'  + 1

8  π2
  

 ⌡⌠(DL,M,K (θ,φ,χ)  µave D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) 

for spherical or symmetric top molecules (here, 
2L + 1

8  π2
   D*L,M,K (θ,φ,χ) are the

normalized rotational wavefunctions described in Chapter 13 and in Appendix G). The

angles θ, φ, and χ refer to how the molecule-fixed coordinate system is oriented with

respect to the space-fixed X, Y, Z axis system.

A. Linear Molecules

For linear molecules, the vibrationally averaged dipole moment  µave lies along the

molecular axis; hence its orientation in the lab-fixed coordinate system can be specified in

terms of the same angles (θ and φ) that are used to describe the rotational functions YL,M

(θ,φ). Therefore, the three components of the <φir |  µave | φfr> integral can be written as:

<φir |  µave | φfr>x  = µ ⌡⌠(Y*L,M (θ,φ) sinθ cosφ YL',M' (θ,φ) sinθ dθ dφ) 

<φir |  µave | φfr>y = µ ⌡⌠(Y*L,M (θ,φ) sinθ sinφ YL',M' (θ,φ) sinθ dθ dφ) 



<φir |  µave | φfr>z = µ ⌡⌠(Y*L,M (θ,φ) cosθ YL',M' (θ,φ) sinθ dθ dφ) ,

where µ is the magnitude of the averaged dipole moment. If the molecule has no

dipole moment, all of the above electric dipole integrals vanish and the intensity of E1

rotational transitions is zero.

The three E1 integrals can be further analyzed by noting that cosθ ∝ Y1,0 ; sinθ
cosφ ∝ Y1,1 + Y1,-1 ; and sinθ sinφ ∝ Y1,1 - Y1,-1 and using the angular momentum

coupling methods illustrated in Appendix G. In particular, the result given in that appendix:

 Dj, m, m' Dl, n, n'

= ΣJ,M,M' <J,M|j,m;l,n> <j,m'; l,n'|J,M'> DJ, M, M'

when multiplied by D*J,M,M' and integrated over sinθ dθ dφ dχ, yields:

⌡⌠(D*J,M,M' Dj ,  m, m' D l ,  n, n' sinθ dθ dφ dχ) 

=  
8π2

2J+1   <J,M|j,m;l,n> <j,m'; l,n'|J,M'>

= 8π2  




j   l   J

m n -M  




j   l   J

m'  n '  -M'  (-1) M+M'.

To use this result in the present linear-molecule case, we note that the DJ,M,K functions and

the YJ,M functions are related by:

YJ,M (θ,φ) = (2J+1)/4π  D*J,M,0 (θ,φ,χ).

The normalization factor is now (2J+1)/4π   rather than (2J+1)/8π2   because the YJ,M are

no longer functions of χ, and thus the need to integrate over 0 ≤ χ ≤ 2π disappears.

Likewise, the χ-dependence of D*J,M,K  disappears for K = 0.

We now use these identities in the three E1 integrals of the form

µ ⌡⌠(Y*L,M (θ,φ) Y1,m (θ,φ) YL',M' (θ,φ) sinθ dθ dφ) ,



with m = 0 being the Z- axis integral, and the Y- and X- axis integrals being combinations

of the m = 1 and m = -1 results. Doing so yields:

µ ⌡⌠(Y*L,M (θ,φ) Y1,m (θ,φ) YL',M' (θ,φ) sinθ dθ dφ) 

= µ 
2L+1

4π
 
2L'+1

4π
 

3

4π
  ⌡⌠(DL,M,0 D*1,m,0 D*L',M',0 sinθ dθ dφ dχ/2π) .

The last factor of 1/2π is inserted to cancel out the integration over dχ that, because all K-

factors in the rotation matrices equal zero, trivially yields 2π. Now, using the result shown

above expressing the integral over three rotation matrices, these E1 integrals for the linear-

molecule case reduce to:

µ ⌡⌠(Y*L,M (θ,φ) Y1,m (θ,φ) YL',M' (θ,φ) sinθ dθ dφ) 

=  µ 
2L+1

4π
 
2L'+1

4π
 

3

4π
  
8π2

2π
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=  µ (2L+1)(2L'+1) 
3

4π
    





L '   1   L

M' m -M  

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Applied to the z-axis integral (identifying m = 0), this result therefore vanishes

unless:

M = M'

and

L = L' +1 or L' - 1.

Even though angular momentum coupling considerations would allow L = L' (because

coupling two angular momenta with j = 1 and j = L' should give L'+1, L', and L'-1), the

3-j symbol  




L '   1   L

0 0 -0   vanishes for the L = L' case since 3-j symbols have the following

symmetry







L '   1   L

M' m -M   = (-1)L+L'+1 




L '   1   L

-M' -m M   

with respect to the M, M', and m indices. Applied to the  




L '   1   L

0 0 -0    3-j symbol, this

means that this particular 3-j element vanishes for L = L' since L + L' + 1 is odd and hence

(-1)L + L' + 1 is  -1.

Applied to the x- and y- axis integrals, which contain m = ± 1 components, this

same analysis yields:

 µ (2L+1)(2L'+1) 
3

4π
    





L '   1   L

M'  ±1 -M
 




L '   1   L

0 0 -0  (-1) M

which then requires that

M = M' ± 1

and

L = L' + 1, L' - 1,

with L = L' again being forbidden because of the second 3-j symbol.

These results provide so-called "selection rules" because they limit the L and M

values of the final rotational state, given the L', M' values of the initial rotational state. In

the figure shown below, the L = L' + 1 absorption spectrum of NO at 120 °K is given. The

intensities of the various peaks are related to the populations of the lower-energy rotational

states which are, in turn, proportional to (2 L' + 1) exp(- L'(L'+1) h2/8π2IkT). Also

included in the intensities are so-called line strength factors that are proportional to the

squares of the quantities:

 µ (2L+1)(2L'+1) 
3

4π
    





L '   1   L

M' m -M  




L '   1   L

0 0 -0  (-1) M

which appear in the E1 integrals analyzed above (recall that the rate of photon absorption

Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2 involves the squares of these matrix elements).

The book by Zare gives an excellent treatment of line strength factors' contributions to

rotation, vibration, and electronic line intensities.



B. Non-Linear Molecules

For molecules that are non-linear and whose rotational wavefunctions are given in

terms of the spherical or symmetric top functions D*L,M,K , the dipole moment  µave can

have components along any or all three of the molecule's internal coordinates (e.g., the

three molecule-fixed coordinates that describe the orientation of the principal axes of the

moment of inertia tensor). For a spherical top molecule, | µave| vanishes, so E1 transitions

do not occur.

For symmetric top species,  µave lies along the symmetry axis of the molecule, so

the orientation of  µave can again be described in terms of θ and φ, the angles used to locate

the orientation of the molecule's symmetry axis relative to the lab-fixed coordinate system.

As a result, the E1 integral again can be decomposed into three pieces:

<φir | µave| φfr>x = µ ⌡⌠(DL,M,K(θ,φ,χ) cosθ cosφ D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) 

<φir |  µave| φfr>y = µ⌡⌠(DL,M,K (θ,φ,χ) cosθ sinφ D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) 

 <φir |  µave| φfr>z = µ⌡⌠(DL,M,K (θ,φ,χ) cosθ D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) .



Using the fact that cosθ ∝ D*1,0,0 ; sinθ cosφ ∝ D*1,1,0 + D*1,-1,0 ; and sinθ sinφ ∝
D*1,1,0 - D*1,-1,0, and the tools of angular momentum coupling allows these integrals to be

expressed, as above, in terms of products of the following 3-j symbols:

 




L '   1   L

M' m -M  




L '   1   L

K'  0  -K   ,

from which the following selection rules are derived:

 L = L' + 1, L', L' - 1 (but not L = L' = 0),

K = K',

M = M' + m, 

with m = 0 for the Z-axis integral and m =  ± 1 for the X- and Y- axis integrals. In

addition, if K = K' = 0, the L = L' transitions are also forbidden by the second 3-j symbol

vanishing.

II. Vibration-Rotation Transitions

When the initial and final electronic states are identical but the respective vibrational

and rotational states are not, one is dealing with transitions between vibration-rotation states

of the molecule. These transitions are studied in infrared (IR) spectroscopy using light of

energy in the 30 cm-1 (far IR) to 5000 cm-1 range. The electric dipole matrix element

analysis still begins with the electronic dipole moment integral <ψei | µ | ψei> = µ (R), but

the integration over internal vibrational coordinates no longer produces the vibrationally

averaged dipole moment. Instead one forms the vibrational transition dipole integral:

<χvf | µ(R) | χvi> = µf,i

between the initial χi and final χf vibrational states.

A. The Dipole Moment Derivatives

Expressing µ(R) in a power series expansion about the equilibrium bond length

position (denoted Re collectively and Ra,e individually):



µ(R) = µ(Re) + Σa ∂µ/∂Ra (Ra - Ra,e) + ...,

substituting into the <χvf | µ(R) | χvi> integral, and using the fact that χi and χf are

orthogonal (because they are eigenfunctions of vibrational motion on the same electronic

surface and hence of the same vibrational Hamiltonian), one obtains:

<χvf | µ(R) | χvi> = µ(Re) <χvf | χvi> + Σa ∂µ/∂Ra <χvf |  (Ra - Ra,e) | χvi>  + ...

= Σa (∂µ/∂Ra) <χvf |  (Ra - Ra,e) | χvi>  + ...  .

This result can be interpreted as follows:

i. Each independent vibrational mode of the molecule contributes to the µf,i vector an

amount equal to (∂µ/∂Ra) <χvf |  (Ra - Ra,e) | χvi>  + ... .

ii. Each such contribution contains one part (∂µ/∂Ra) that depends on how the molecule's

dipole moment function varies with vibration along that particular mode (labeled a),

iii. and a second part  <χvf |  (Ra - Ra,e) | χvi> that depends on the character of the initial

and final vibrational wavefunctions.

If the vibration does not produce a modulation of the dipole moment (e.g., as with

the symmetric stretch vibration of the CO2  molecule), its infrared intensity vanishes

because (∂µ/∂Ra) = 0. One says that such transitions are infrared "inactive".

B. Selection Rules on the Vibrational Quantum Number in the Harmonic Approximation

If the vibrational functions are described within the harmonic oscillator

approximation, it can be shown that the  <χvf |  (Ra - Ra,e) | χvi> integrals vanish unless vf

= vi +1 , vi -1 (and that these integrals are proportional to (vi +1)1/2 and (vi)1/2 in the

respective cases). Even when χvf and χvi are rather non-harmonic, it turns out that such ∆v

= ± 1 transitions have the largest <χvf |  (Ra - Ra,e) | χvi> integrals and therefore the highest

infrared intensities. For these reasons, transitions that correspond to ∆v = ± 1 are called

"fundamental"; those with ∆v = ± 2 are called "first overtone" transitions.



In summary then, vibrations for which the molecule's dipole moment is modulated

as the vibration occurs (i.e., for which  (∂µ/∂Ra) is non-zero)    and     for which ∆v = ± 1 tend

to have large infrared intensities; overtones of such vibrations tend to have smaller

intensities, and those for which  (∂µ/∂Ra) = 0 have no intensity.

C. Rotational Selection Rules for Vibrational Transitions

The result of all of the vibrational modes' contributions to

Σa (∂µ/∂Ra) <χvf |  (Ra - Ra,e) | χvi> is a vector µtrans that is termed the vibrational

"transition dipole" moment. This is a vector with components along, in principle, all three

of the internal axes of the molecule. For each particular vibrational transition (i.e., each

particular χi and χf) its orientation in space depends only on the orientation of the molecule;

it is thus said to be locked to the molecule's coordinate frame. As such, its orientation

relative to the lab-fixed coordinates (which is needed to effect a derivation of rotational

selection rules as was done earlier in this Chapter) can be described much as was done

above for the vibrationally averaged dipole moment that arises in purely rotational

transitions. There are, however, important differences in detail. In particular,

i. For a linear molecule µtrans can have components either along (e.g., when stretching

vibrations are excited; these cases are denoted σ-cases) or perpendicular to (e.g., when

bending vibrations are excited; they are denoted π cases) the molecule's axis.

ii. For symmetric top species, µtrans need not lie along the molecule's symmetry axis; it can

have components either along or perpendicular to this axis.

iii. For spherical tops, µtrans will vanish whenever the vibration does not induce a dipole

moment in the molecule. Vibrations such as the totally symmetric a1

C-H stretching motion in CH4 do not induce a dipole moment, and are thus infrared

inactive; non-totally-symmetric vibrations can also be inactive if they induce no dipole

moment.

As a result of the above considerations, the angular integrals

     <φir | µtrans | φfr> = ⌡⌠(Y*L,M (θ,φ)  µtrans YL',M' (θ,φ) sinθ dθ dφ) 



and

     <φir | µtrans | φfr> = ⌡⌠(DL,M,K (θ,φ,χ)  µtrans D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) 

that determine the rotational selection rules appropriate to vibrational transitions produce

similar, but not identical, results as in the purely rotational transition case.

The derivation of these selection rules proceeds as before, with the following

additional considerations. The transition dipole moment's µtrans components along the lab-

fixed axes must be related to its molecule-fixed coordinates (that are determined by the

nature of the vibrational transition as discussed above). This transformation, as given in

Zare's text, reads as follows:

(µtrans)m = Σk D*1,m,k (θ,φ,χ) (µtrans)k

where (µtrans)m with m = 1, 0, -1 refer to the components along the lab-fixed (X, Y, Z)

axes and (µtrans)k with k = 1, 0, -1 refer to the components along the molecule- fixed (a, b,

c) axes.

This relationship, when used, for example, in the symmetric or spherical top E1

integral:

 <φir | µtrans | φfr> = ⌡⌠(DL,M,K (θ,φ,χ)  µtrans D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) 

gives rise to products of 3-j symbols of the form:

 




L '   1   L

M' m -M  




L '   1   L

K'  k  -K   .

The product of these 3-j symbols is nonvanishing only under certain conditions that

provide the rotational selection rules applicable to vibrational lines of symmetric and

spherical top molecules.

Both 3-j symbols will vanish unless

L = L' +1, L', or L'-1.



In the special case in which L = L' =0 (and hence with M = M' =0 = K = K', which means

that m = 0 = k), these3-j symbols again vanish. Therefore, transitions with

L = L' =0 

are again forbidden. As usual, the fact that the lab-fixed quantum number m can range

over m = 1, 0, -1, requires that

M = M' + 1, M', M'-1.

The selection rules for ∆K depend on the nature of the vibrational transition, in

particular, on the component of µtrans along the molecule-fixed axes. For the second 3-j

symbol to not vanish, one must have

K = K' + k,

where k = 0, 1, and -1 refer to these molecule-fixed components of the transition dipole.

Depending on the nature of the transition, various k values contribute.

1. Symmetric Tops

In a symmetric top molecule such as NH3, if the transition dipole lies along the

molecule's symmetry axis, only k = 0 contributes. Such vibrations preserve the molecule's

symmetry relative to this symmetry axis (e.g. the totally symmetric N-H stretching mode in

NH3). The additional selection rule ∆K = 0

is thus obtained. Moreover, for K = K' = 0, all transitions with ∆L = 0 vanish because the

second 3-j symbol vanishes. In summary, one has:

∆K = 0; ∆M = ±1 ,0; ∆L = ±1 ,0 (but L = L' =0 is forbidden and all ∆L = 0 

are forbidden for K = K' = 0)

for symmetric tops with vibrations whose transition dipole lies along the symmetry axis.

If the transition dipole lies perpendicular to the symmetry axis, only

k = ±1 contribute. In this case, one finds

∆K = ±1; ∆M = ±1 ,0; ∆L = ±1 ,0 (neither L = L' =0 nor K = K' = 0 can occur

for such transitions, so there are no additional constraints).



2. Linear Molecules

When the above analysis is applied to a diatomic species such as HCl, only k = 0 is

present since the only vibration present in such a molecule is the bond stretching vibration,

which has σ symmetry. Moreover, the rotational functions are spherical harmonics (which

can be viewed as D*L',M',K' (θ,φ,χ) functions with K' = 0), so the K and K' quantum

numbers are identically zero. As a result, the product of 3-j symbols

 




L '   1   L

M' m -M  




L '   1   L

K'  k  -K   

reduces to

 




L '   1   L

M' m -M  




L'  1  L

0 0 0   ,

which will vanish unless

L = L' +1, L'-1,

but     not    L = L' (since parity then causes the second 3-j symbol to vanish), and

M = M' + 1, M', M'-1.

The L = L' +1 transitions are termed R-branch absorptions and those obeying L = L' -1

are called P-branch transitions. Hence, the selection rules

∆M = ±1,0; ∆L = ±1

are identical to those for purely rotational transitions.

When applied to linear polyatomic molecules, these same selection rules result if the

vibration is of σ symmetry (i.e., has k = 0). If, on the other hand, the transition is of π
symmetry (i.e., has k = ±1), so the transition dipole lies perpendicular to the molecule's

axis, one obtains:

∆M = ±1,0; ∆L = ±1, 0.



These selection rules are derived by realizing that in addition to k = ±1, one has:

(i) a linear-molecule rotational wavefunction that in the v = 0 vibrational level is described

in terms of a rotation matrix DL',M',0 (θ,φ,χ) with no angular momentum along the

molecular axis, K' = 0 ; (ii) a v = 1 molecule whose rotational wavefunction must be given

by a rotation matrix DL,M,1 (θ,φ,χ) with one unit of angular momentum about the

molecule's axis, K = 1. In the latter case, the angular momentum is produced by the

degenerate π vibration itself. As a result, the selection rules above derive from the

following product of 3-j symbols:

  




L '   1   L

M' m -M  




L '   1   L

0 1 -1   .

Because ∆L = 0 transitions are allowed for π vibrations, one says that π vibrations possess

Q- branches in addition to their R- and P- branches (with ∆L = 1 and -1, respectively).

In the figure shown below, the v = 0 ==> v = 1 (fundamental) vibrational

absorption spectrum of HCl is shown. Here the peaks at lower energy (to the right of the

figure) belong to P-branch transitions and occur at energies given approximately by:

E = h ωstretch + (h2/8π2I) ((L-1)L - L(L+1))

= h ωstretch -2 (h2/8π2I) L.

The R-branch transitions occur at higher energies given approximately by:

E = h ωstretch + (h2/8π2I) ((L+1)(L+2) - L(L+1))

= h ωstretch +2 (h2/8π2I) (L+1).

The absorption that is "missing" from the figure below lying slightly below 2900 cm-1 is

the Q-branch transition for which L = L'; it is absent because the selection rules forbid it.



It should be noted that the spacings between the experimentally observed peaks in

HCl are not constant as would be expected based on the above P- and R- branch formulas.

This is because the moment of inertia appropriate for the v = 1 vibrational level is different

than that of the v = 0 level. These effects of vibration-rotation coupling can be modeled by

allowing the v = 0 and v = 1 levels to  have rotational energies written as

E = h ωstretch (v + 1/2) + (h2/8π2Iv) (L (L+1))

where v and L are the vibrational and rotational quantum numbers. The P- and R- branch

transition energies that pertain to these energy levels can then be written as:

EP = h ωstretch  - [ (h2/8π2I1) + (h2/8π2I0) ] L + [ (h2/8π2I1) - (h2/8π2I0) ] L2

ER = h ωstretch  + 2 (h2/8π2I1)

+ [ 3(h2/8π2I1) - (h2/8π2I0) ] L + [ (h2/8π2I1) - (h2/8π2I0) ] L2 .

Clearly, these formulas reduce to those shown earlier in the I1 = I0 limit.

If the vibrationally averaged bond length is longer in the v = 1 state than in the v = 0

state, which is to be expected, I1 will be larger than I0, and therefore [ (h2/8π2I1) -

(h2/8π2I0) ] will be negative. In this case, the    spacing     between neighboring P-branch lines

will increase as shown above for HCl. In contrast, the fact that  [ (h2/8π2I1) - (h2/8π2I0) ]

is negative causes the    spacing     between neighboring R- branch lines to decrease, again as

shown for HCl.

III. Electronic-Vibration-Rotation Transitions



When electronic transitions are involved, the initial and final states generally differ

in their electronic, vibrational, and rotational energies. Electronic transitions usually require

light in the 5000 cm-1 to 100,000 cm-1 regime, so their study lies within the domain of

visible and ultraviolet spectroscopy. Excitations of inner-shell and core orbital electrons

may require even higher energy photons, and under these conditions, E2 and M1

transitions may become more important because of the short wavelength of the light

involved.

A. The Electronic Transition Dipole and Use of Point Group Symmetry

Returning to the expression

Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2

for the rate of photon absorption, we realize that the electronic integral now involves

<ψef | µ | ψei> = µf,i (R),

a transition dipole matrix element between the initial ψei and final ψef electronic

wavefunctions. This element is a function of the internal vibrational coordinates of the

molecule, and again is a vector locked to the molecule's internal axis frame.

Molecular point-group symmetry can often be used to determine whether a

particular transition's dipole matrix element will vanish and, as a result, the electronic

transition will be "forbidden" and thus predicted to have zero intensity. If the direct product

of the symmetries of the initial and final electronic states ψei and ψef do not match the

symmetry of the electric dipole operator (which has the symmetry of its x, y, and z

components; these symmetries can be read off the right most column of the character tables

given in Appendix E), the matrix element will vanish.

For example, the formaldehyde molecule H2CO has a ground electronic state (see

Chapter 11) that has 1A1 symmetry in the C2v point group. Its π ==> π* singlet excited

state also has 1A1 symmetry because both the π and π* orbitals are of b1 symmetry. In

contrast, the lowest n ==> π* singlet excited state is of 1A2 symmetry because the highest

energy oxygen centered n orbital is of b2 symmetry and the π* orbital is of b1 symmetry,

so the Slater determinant in which both the n and π* orbitals are singly occupied has its

symmetry dictated by the b2 x b1 direct product, which is A2.



The π ==> π* transition thus involves ground (1A1) and excited (1A1) states whose

direct product (A1 x A1) is of A1 symmetry. This transition thus requires that the electric

dipole operator possess a component of A1 symmetry. A glance at the C2v point group's

character table shows that the molecular z-axis is of A1 symmetry. Thus, if the light's

electric field has a non-zero component along the C2 symmetry axis (the molecule's z-axis),

the π ==> π* transition is predicted to be allowed. Light polarized along either of the

molecule's other two axes cannot induce this transition.

In contrast, the n ==> π* transition has a ground-excited state direct product of B2

x B1 = A2 symmetry. The C2v 's point group character table clearly shows that the electric

dipole operator (i.e., its x, y, and z components in the molecule-fixed frame) has no

component of A2 symmetry; thus, light of no electric field orientation can induce this n ==>

π* transition. We thus say that the n ==> π* transition is E1 forbidden (although it is M1

allowed).

Beyond such electronic symmetry analysis, it is also possible to derive vibrational

and rotational selection rules for electronic transitions that are E1 allowed. As was done in

the vibrational spectroscopy case, it is conventional to expand  µf,i (R) in a power series

about the equilibrium geometry of the initial electronic state (since this geometry is more

characteristic of the molecular structure prior to photon absorption):

µf,i(R) = µf,i(Re) + Σa ∂µf,i/∂Ra (Ra - Ra,e) + ....

B. The Franck-Condon Factors

The first term in this expansion, when substituted into the integral over the

vibrational coordinates, gives  µf,i(Re) <χvf | χvi> , which has the form of the electronic

transition dipole multiplied by the "overlap integral" between the initial and final vibrational

wavefunctions. The  µf,i(Re) factor was discussed above; it is the electronic E1 transition

integral evaluated at the equilibrium geometry of the absorbing state. Symmetry can often

be used to determine whether this integral vanishes, as a result of which the E1 transition

will be "forbidden".

Unlike the vibration-rotation case, the vibrational overlap integrals

<χvf | χvi> do not necessarily vanish because χvf and  χvi are no longer eigenfunctions of

the same vibrational Hamiltonian. χvf is an eigenfunction whose potential energy is the

   final    electronic state's energy surface; χvi has the    initial    electronic state's energy surface as

its potential. The squares of these <χvf | χvi> integrals, which are what eventually enter

into the transition rate expression Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2, are called



"Franck-Condon factors". Their relative magnitudes play strong roles in determining

the relative intensities of various vibrational "bands" (i.e., peaks) within a particular

electronic transition's spectrum.

Whenever an electronic transition causes a large change in the geometry (bond

lengths or angles) of the molecule, the Franck-Condon factors tend to display the

characteristic "broad progression" shown below when considered for one initial-state

vibrational level vi and various final-state vibrational levels vf:

vf=   0    1   2   3   4  5  6

|<χi|χf>|2

Final state vibrational Energy (Evf)

Notice that as one moves to higher vf values, the energy spacing between the states (Evf -

Evf-1) decreases; this, of course, reflects the anharmonicity in the excited state vibrational

potential. For the above example, the transition to the vf = 2 state has the largest Franck-

Condon factor. This means that the overlap of the initial state's vibrational wavefunction

χvi is largest for the final state's χvf function with vf = 2.

As a qualitative rule of thumb, the larger the geometry difference between the initial

and final state potentials, the broader will be the Franck-Condon profile (as shown above)

and the larger the vf value for which this profile peaks. Differences in harmonic frequencies

between the two states can also broaden the Franck-Condon profile, although not as

significantly as do geometry differences.



For example, if the initial and final states have very similar geometries and

frequencies along the mode that is excited when the particular electronic excitation is

realized, the following type of Franck-Condon profile may result:

vf=   0    1   2   3   4  5  6

|<χi|χf>|2

Final state vibrational Energy (Evf)

In contrast, if the initial and final electronic states have very different geometries and/or

vibrational frequencies along some mode, a very broad Franck-Condon envelope peaked at

high-vf will result as shown below:

Final state vibrational Energy (Evf)

|<χi|χf>|
2

vf=   0    1   2   3   4  5  6



C. Vibronic Effects

The second term in the above expansion of the transition dipole matrix element Σa

∂µf,i/∂Ra (Ra - Ra,e) can become important to analyze when the first term µfi(Re) vanishes

(e.g.,  for reasons of symmetry). This dipole derivative term, when substituted into the

integral over vibrational coordinates gives

Σa ∂µf,i/∂Ra <χvf | (Ra - Ra,e)| χvi>. Transitions for which µf,i(Re) vanishes but for which

∂µf,i/∂Ra does not for the ath vibrational mode are said to derive intensity through "vibronic

coupling" with that mode. The intensities of such modes are dependent on how strongly the

electronic dipole integral varies along the mode (i.e, on ∂µf,i/∂Ra ) as well as on the

magnitude of the vibrational integral

<χvf | (Ra - Ra,e)| χvi>.

An example of an E1 forbidden but "vibronically allowed" transition is provided by

the singlet n ==> π* transition of H2CO that was discussed earlier in this section. As

detailed there, the ground electronic state has 1A1 symmetry, and the n ==> π* state is of
1A2 symmetry, so the E1 transition integral

<ψef | µ | ψei> vanishes for all three (x, y, z) components of the electric dipole operator µ .

However, vibrations that are of b2 symmetry (e.g., the H-C-H asymmetric stretch

vibration) can induce intensity in the n ==> π* transition as follows:

(i) For such vibrations, the b2 mode's vi = 0 to vf = 1 vibronic integral

<χvf | (Ra - Ra,e)| χvi> will be non-zero and probably quite substantial (because, for

harmonic oscillator functions these "fundamental" transition integrals are dominant- see

earlier);

(ii) Along these same b2 modes, the electronic transition dipole integral     derivative    ∂µf,i/∂Ra

will be non-zero, even though the integral itself µf,i (Re) vanishes when evaluated at the

initial state's equilibrium geometry.

To understand why the derivative ∂µf,i/∂Ra  can be non-zero for distortions

(denoted Ra) of b2 symmetry, consider this quantity in greater detail:

∂µf,i/∂Ra  = ∂<ψef | µ | ψei>/∂Ra

= <∂ψef/∂Ra | µ | ψei> + <ψef | µ | ∂ψei/∂Ra> + <ψef | ∂µ/∂Ra | ψei>.

The third integral vanishes because the derivative of the dipole operator itself

µ = Σ i  e  rj  + Σa  Za e   Ra with respect to the coordinates of atomic centers, yields an

operator that contains only a sum of scalar quantities (the elementary charge e and the



magnitudes of various atomic charges Za); as a result and because the integral over the

electronic wavefunctions <ψef | ψei> vanishes, this contribution yields zero. The first and

second integrals need not vanish by symmetry because the wavefunction derivatives

∂ψef/∂Ra and ∂ψei/∂Ra do     not    possess the same symmetry as their respective

wavefunctions ψef and ψei. In fact, it can be shown that the symmetry of such a derivative

is given by the direct product of the symmetries of its wavefunction and the symmetry of

the vibrational mode that gives rise to the ∂/∂Ra. For the H2CO case at hand, the b2 mode

vibration can induce in the excited 1A2 state a derivative component (i.e., ∂ψef/∂Ra ) that is

of 1B1 symmetry) and this same vibration can induce in the 1A1 ground state a derivative

component of 1B2 symmetry.

As a result, the contribution <∂ψef/∂Ra | µ | ψei> to ∂µf,i/∂Ra  arising from vibronic

coupling within the    excited     electronic state can be expected to be non-zero for components

of the dipole operator µ that are of (∂ψef/∂Ra  x ψei) = (B1 x A1) = B1 symmetry. Light

polarized along the molecule's x-axis gives such a b1 component to µ (see the C2v character

table in Appendix E). The second contribution  <ψef | µ | ∂ψei/∂Ra> can be non-zero for

components of µ that are of ( ψef x ∂ψei/∂Ra) = (A2 x B2) = B1 symmetry; again, light of

x-axis polarization can induce such a transition.

In summary, electronic transitions that are E1 forbidden by symmetry can derive

significant (e.g., in H2CO the singlet n ==> π* transition is rather intense) intensity

through vibronic coupling. In such coupling, one or more vibrations (either in the initial or

the final state) cause the respective electronic wavefunction to acquire (through ∂ψ/∂Ra) a

symmetry component that is different than that of ψ itself. The symmetry of ∂ψ/∂Ra, which

is given as the direct product of the symmetry of ψ and that of the vibration, can then cause

the electric dipole integral <ψ' |µ|∂ψ/∂Ra> to be non-zero even when <ψ' |µ|ψ> is zero.

Such vibronically allowed transitions are said to derive their intensity through vibronic

borrowing.

D. Rotational Selection Rules for Electronic Transitions

Each vibrational peak within an electronic transition can also display rotational

structure (depending on the spacing of the rotational lines, the resolution of the

spectrometer, and the presence or absence of substantial line broadening effects such as



those discussed later in this Chapter). The selection rules for such transitions are derived in

a fashion that parallels that given above for the vibration-rotation case. The major difference

between this electronic case and the earlier situation is that the vibrational transition dipole

moment µtrans appropriate to the former is replaced by µf,i(Re) for conventional (i.e., non-

vibronic) transitions or ∂µf,i/∂Ra (for vibronic transitions).

As before, when µf,i(Re) (or ∂µf,i/∂Ra) lies along the molecular axis of a linear

molecule, the transition is denoted σ and k = 0 applies; when this vector lies perpendicular

to the axis it is called π and k = ±1 pertains. The resultant linear-molecule rotational

selection rules are the same as in the vibration-rotation case:

∆ L = ± 1, and ∆ M = ± 1,0 (for σ transitions).

∆ L = ± 1,0  and ∆ M = ±1,0 (for π transitions).

In the latter case, the L = L' = 0 situation does not arise because a π transition has one unit

of angular momentum along the molecular axis which would preclude both L and L'

vanishing.

For non-linear molecules of the spherical or symmetric top variety, µf,i(Re) (or

∂µf,i/∂Ra) may be aligned along or perdendicular to a symmetry axis of the molecule. The

selection rules that result are

∆ L = ± 1,0; ∆ M = ± 1,0; and ∆K = 0 (L = L' = 0 is not allowed and all ∆L = 

0 are forbidden when K = K' = 0)

which applies when  µf,i(Re) or ∂µf,i/∂Ra lies along the symmetry axis, and

∆ L = ± 1,0; ∆ M = ± 1,0; and ∆K = ± 1 (L = L' = 0 is not allowed)

which applies when  µf,i(Re) or ∂µf,i/∂Ra lies perpendicular to the symmetry axis.

IV. Time Correlation Function Expressions for Transition Rates

The first-order E1 "golden-rule" expression for the rates of photon-induced

transitions can be recast into a form in which certain specific physical models are easily

introduced and insights are easily gained. Moreover, by using so-called equilibrium

averaged time correlation functions, it is possible to obtain rate expressions appropriate to a



large number of molecules that exist in a distribution of initial states (e.g., for molecules

that occupy many possible rotational and perhaps several vibrational levels at room

temperature).

A. State-to-State Rate of Energy Absorption or Emission

To begin, the expression obtained earlier

Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2 ,

that is appropriate to transitions between a particular initial state Φi and a specific final state

Φf, is rewritten as

Ri,f  = (2π/h2) ⌡⌠
 

g(ω)  |  E0  • < Φf |  µ |  Φi> |2 δ(ωf,i -  ω) dω .

Here, the δ(ωf,i - ω) function is used to specifically enforce the "resonance condition" that

resulted in the time-dependent perturbation treatment given in Chapter 14; it states that the

photons' frequency ω must be resonant with the transition frequency ωf,i . It should be

noted that by allowing ω to run over positive and negative values, the photon absorption

(with ωf,i positive and hence ω positive) and the stimulated emission case (with ωf,i

negative and hence ω negative) are both included in this expression (as long as g(ω) is

defined as g(|ω|) so that the negative-ω contributions are multiplied by the light source

intensity at the corresponding positive ω value).

The following integral identity can be used to replace the δ-function:

δ(ωf,i - ω) = 
1

2π
  ⌡⌠

-∞

∞

exp[i(ωf,i -  ω)t] dt 

by a form that is more amenable to further development. Then, the state-to-state rate of

transition becomes:



Ri,f = (1/h2) 
⌡

⌠

 

g(ω)  |  E0  • < Φf |  µ |  Φi>|2 ⌡⌠

-∞

∞

exp[i(ωf,i -  ω)t] dt dω .

B. Averaging Over Equilibrium Boltzmann Population of Initial States

If this expression is then multiplied by the equilibrium probability ρi   that the

molecule is found in the state Φi and summed over all such initial states and summed over

all final states Φf that can be reached from Φi with photons of energy h ω, the    equilibrium

   averaged rate of photon absorption     by the molecular sample is obtained:

Req.ave. = (1/h2) Σi, f  ρi

⌡

⌠

 

g(ω)  |  E0  • < Φf |  µ |  Φi>|2 ⌡⌠

-∞

∞

exp[i(ωf,i -  ω)t] dt dω .

This expression is appropriate for an ensemble of molecules that can be in various initial

states Φi with probabilities ρi. The corresponding result for transitions that originate in a

particular state (Φi) but end up in any of the "allowed" (by energy and selection rules) final

states reads:

Rstate i. = (1/h2) Σf ⌡⌠g(ω)  |  E0  • < Φf |  µ |  Φi>|2  

⌡⌠

-∞

∞

exp[i(ωf,i -  ω)t] dtdω .

For a canonical ensemble, in which the number of molecules, the temperature, and the

system volume are specified, ρi takes the form:

ρi  = 
gi  exp(- Ei0/kT)

Q  



where Q is the canonical partition function of the molecules and gi is the degeneracy of the

state Φi whose energy is Ei0.

In the above expression for Req.ave., a double sum occurs. Writing out the elements

that appear in this sum in detail, one finds:

Σi, f  ρi E0 • <Φi | µ | Φf> E0 • <Φf | µ | Φi> expi(ωf,i)t.

In situations in which one is interested in developing an expression for the intensity arising

from transitions to    all    allowed final states, the sum over these final states can be carried out

explicitly by first writing

 <Φf | µ | Φi> expi(ωf,i)t = <Φf |exp(iHt/h) µ exp(-iHt/h)| Φi>

and then using the fact that the set of states {Φk} are complete and hence obey

Σk |Φk><Φk| = 1.

The result of using these identities as well as the Heisenberg definition of the time-

dependence of the dipole operator

µ(t) = exp(iHt/h) µ exp(-iHt/h),

is:

Σi ρi  <Φi | E0 • µ  E0 • µ (t) | Φi> .

In this form, one says that the time dependence has been reduce to that of an equilibrium

averaged (n.b., the Σi ρi <Φi |   | Φi>) time correlation function involving the

component of the dipole operator along the external electric field at t = 0 ( E0 • µ ) and this

component at a different time t  (E0 • µ (t)).

C. Photon Emission and Absorption



If ωf,i is positive (i.e., in the photon absorption case), the above expression will

yield a non-zero contribution when multiplied by exp(-i ωt) and integrated over positive ω-

values. If ωf,i is negative (as for stimulated photon emission), this expression will

contribute, again  when multiplied by exp(-i ωt), for negative ω-values. In the latter

situation, ρi is the equilibrium probability of finding the molecule in the (excited) state from

which emission will occur; this probability can be related to that of the lower state ρf by

ρexcited = ρlower exp[ - (E0excited  - E0lower)/kT ]

= ρlower exp[ - hω/kT ].

In this form, it is important to realize that the excited and lower states are treated as

individual    states   , not as levels that might contain a degenerate set of states.

The absorption and emission cases can be combined into a single     net    expression for

the rate of photon absorption  by recognizing that the latter process leads to photon

production, and thus must be entered with a negative sign. The resultant expression for the

    net rate of decrease of photons    is:

Req.ave.net = (1/h2) Σi  ρi (1 - exp(- h ω/kT) )

    ⌡
⌠

⌡⌠g(ω)  <Φi |  (E0  • µ )  E0  • µ ( t )  |  Φi>  exp(-iωt) dω dt.

D. The Line Shape and Time Correlation Functions

Now, it is convention to introduce the so-called "line shape" function I (ω):

I (ω) =  Σi  ρi ⌡⌠ < Φi |  (E0  • µ )  E0  • µ ( t )  |  Φi>  exp(-iωt) dt

in terms of which the net photon absorption rate is



 Req.ave.net  = (1/h2) (1 - exp(- h ω/kT) ) ⌡⌠ g(ω)  I  (ω) dω .

As stated above, the function

 C (t) = Σi  ρi  <Φi | (E0 • µ ) E0 • µ (t) | Φi>

is called the equilibrium averaged time correlation function of the component of the

electric dipole operator along the direction of the external electric field E0. Its Fourier

transform is I (ω), the spectral line shape function. The convolution of I (ω) with the

light source's g (ω) function, multiplied by

(1 - exp(-h ω/kT) ), the correction for stimulated photon emission, gives the net rate of

photon absorption.

E. Rotational, Translational, and Vibrational Contributions to the Correlation Function

To apply the time correlation function machinery to each particular kind of

spectroscopic transition, one proceeds as follows:

1. For purely rotational transitions, the initial and final electronic and vibrational states

are the same. Moreover, the electronic and vibrational states are not summed over in the

analog of the above development because one is interested in obtaining an expression for a

particular χiv ψie ==> χfv ψfe electronic-vibrational transition's lineshape. As a result, the

sum over final states contained in the expression (see earlier) Σi, f  ρi E0 • <Φi | µ | Φf>

E0 • <Φf | µ (t) | Φi> expi(ωf,i)t applies only to summing over final rotational states. In

more detail, this can be shown as follows:

Σi, f  ρi E0 • <Φi | µ | Φf> E0 • <Φf | µ (t) | Φi>

= Σi, f  ρi E0 • <φir χiv ψie| µ | φfr χiv ψie> E0 • <φfr χiv ψie | µ (t) | φir χiv ψie>

= Σi, f  ρir ρiv ρie E0 • <φir χiv | µ(R) | φfr χiv > E0 • <φfr χiv  | µ (R,t) | φir χiv >

= Σi, f  ρir ρiv ρie E0 • <φir | µave.iv | φfr > E0 • <φfr  | µave.iv (t) | φir >



= Σi  ρir ρiv ρie E0 • <φir | µave.iv  E0 •  µave.iv (t) | φir >.

In moving from the second to the third lines of this derivation, the following identity was

used:

<φfr χiv ψie | µ (t) | φir χiv ψie> = <φfr χiv ψie | exp(iHt/h)

µ exp(-iHt/h) | φir χiv ψie>

= <φfr χiv ψie | exp(iHv,rt/h) µ(R) exp(-iHv,rt/h) | φir χiv ψie>,

where H is the full (electronic plus vibrational plus rotational) Hamiltonian and Hv,r is the

vibrational and rotational Hamiltonian for motion on the electronic surface of the state ψie

whose dipole moment is µ(R). From the third line to the fourth, the (approximate)

separation of rotational and vibrational motions in Hv,r

Hv,r = Hv + Hr

has been used along with the fact that χiv is an eigenfunction of Hv:

Hv χiv  = Eiv  χiv

to write

<χiv  | µ (R,t) |χiv >  = exp(i Hr t/h) <χiv  | exp( iHv t/h)

µ (R) exp(- iHv t/h) | χiv > exp(- iHr t/h)

= exp(i Hr t/h) <χiv  | exp( iEiv t/h)

µ (R) exp(- iEiv t/h) | χiv > exp(- iHr t/h)

= exp(i Hr t/h) <χiv  | µ (R)| χiv > exp(- iHr t/h)



= µave.iv (t).

In effect, µ is replaced by the vibrationally averaged electronic dipole moment  µave,iv for

each initial vibrational state that can be involved, and the time correlation function thus

becomes:

 C (t) = Σi  ρir ρiv  ρie <φir | (E0 • µave,iv ) E0 • µave,iv (t) | φir> ,

where µave,iv (t) is the averaged dipole moment for the vibrational state χiv at time t, given

that it was µave,iv at time t = 0. The time dependence of µave,iv (t) is induced by the

rotational Hamiltonian Hr, as shown clearly in the steps detailed above:

µave,iv (t) = exp(i Hr t/h) <χiv  | µ (R)| χiv > exp(- iHr t/h).

In this particular case, the equilibrium average is taken over the initial rotational states

whose probabilities are denoted ρir , any initial vibrational states that may be populated,

with probabilities ρiv, and any populated electronic states, with probabilities ρie.

2. For vibration-rotation transitions within a single electronic state, the initial and

final electronic states are the same, but the initial and final vibrational and rotational states

differ. As a result, the sum over final states contained in the expression Σi, f  ρi E0 • <Φi |

µ | Φf> E0 • <Φf | µ | Φi> expi(ωf,i)t applies only to summing over final vibrational and

rotational states. Paralleling the development made in the pure rotation case given above,

this can be shown as follows:

Σi, f  ρi E0 • <Φi | µ | Φf> E0 • <Φf | µ (t) | Φi>

= Σi, f  ρi E0 • <φir χiv ψie| µ | φfr χfv ψie> E0 • <φfr χfv ψie | µ (t) | φir χiv ψie>

= Σi, f  ρir ρiv ρie E0 • <φir χiv | µ (R)| φfr χfv > E0 • <φfr χfv  | µ (R,t) | φir χiv >

= Σi, f  ρir ρiv ρie E0 • <φir χiv| µ(Re) + Σa (Ra - Ra,eq)∂µ/∂Ra | φfr χfv>



E0 • <φfr χfv|exp(iHrt/h)(µ(Re) + Σa (Ra - Ra,eq)∂µ/∂Ra)

exp(-iHrt/h)| φirχiv > exp(iωfv,ivt)

= Σir, iv, ie ρir ρiv ρie Σfv,fr Σa <χiv|(Ra - Ra,eq)|χfv>

Σa' <χfv|(Ra' - Ra',eq)|χiv>exp(iωfv,ivt)

E0 • <φir | ∂µ/∂Ra  E0 • exp(iHrt/h)∂µ/∂Ra' exp(-iHrt/h)| φir >

= Σir, iv, ie ρir ρiv ρie Σfv,fr  exp(iωfv,ivt)

 <φir | (E0 • µtrans) E0 • exp(iHrt/h) µtrans exp(-iHrt/h)| φir >,

where the vibrational transition dipole matrix element is defined as before

µtrans = Σa <χiv|(Ra - Ra,eq)|χfv> ∂µ/∂Ra ,

and derives its time dependence above from the rotational Hamiltonian:

µtrans (t) = exp(iHrt/h) µtrans exp(-iHrt/h).

The corresponding final expression for the time correlation function C(t) becomes:

 C (t) = Σi  ρir ρiv  ρie <φir | (E0 • µtrans ) E0 • µtrans (t) | φir>  exp(iωfv,ivt).

The net rate of photon absorption remains:

 Req.ave.net  = (1/h2) (1 - exp(- h ω) ) ⌡⌠ g(ω)  I  (ω) dω ,

where I(ω) is the Fourier transform of C(t).

The expression for C(t) clearly contains two types of time dependences: (i) the

exp(iωfv,ivt), upon Fourier transforming to obtain I(ω), produces δ-function "spikes" at



frequencies ω = ωfv,iv equal to the spacings between the initial and final vibrational states,

and (ii) rotational motion time dependence that causes µtrans (t) to change with time. The

latter appears in the form of a correlation function for the component of µtrans along E0 at

time t = 0 and this component at another time t. The convolution of both these time

dependences determines the from of I(ω).

3. For electronic-vibration-rotation transitions, the initial and final electronic states

are different as are the initial and final vibrational and rotational states. As a result, the sum

over final states contained in the expression Σi, f  ρi E0 • <Φi | µ | Φf> E0 • <Φf | µ | Φi>

expi(ωf,i)t applies to summing over final electronic, vibrational, and rotational states.

Paralleling the development made in the pure rotation case given above, this can be shown

as follows:

Σi, f  ρi E0 • <Φi | µ | Φf> E0 • <Φf | µ (t) | Φi>

= Σi, f  ρi E0 • <φir χiv ψie| µ | φfr χfv ψfe> E0 • <φfr χfv ψfe | µ (t) | φir χiv ψie>

= Σi, f  ρir ρiv ρie E0 • <φir χiv | µi,f(R)| φfr χfv > E0 • <φfr χfv  | µi,f(R,t) | φir χiv

>

= Σi, f  ρir ρiv ρie E0 • <φir | µi,f(Re)| φfr > |<χiv | χfv>|2

E0 • <φfr |exp(iHrt/h) µi,f(Re) exp(-iHrt/h)| φir> exp(iωfv,ivt + i∆Ei,ft/h)

= Σi, f  ρir ρiv ρie  <φir | E0 • µi,f(Re) E0 • µi,f(Re,t) |φir> |<χiv | χfv>|2

 exp(iωfv,ivt + i∆Ei,ft/h),

where

µi,f(Re,t) = exp(iHrt/h) µi,f(Re) exp(-iHrt/h)



is the electronic transition dipole matrix element, evaluated at the equilibrium geometry of

the absorbing state, that derives its time dependence from the rotational Hamiltonian Hr as

in the time correlation functions treated earlier.

This development thus leads to the following definition of C(t) for the electronic,

vibration, and rotation case:

C(t) =  Σi, f  ρir ρiv ρie  <φir | E0 • µi,f(Re) E0 • µi,f(Re,t) |φir> |<χiv | χfv>|2

 exp(iωfv,ivt + i∆Ei,ft/h)

but the net rate of photon absorption remains:

 Req.ave.net  = (1/h2) (1 - exp(- h ω/kT) ) ⌡⌠ g(ω)  I  (ω) dω .

Here, I(ω) is the Fourier transform of the above C(t) and ∆Ei,f is the adiabatic electronic

energy difference (i.e., the energy difference between the v = 0 level in the final electronic

state and the v = 0 level in the initial electronic state) for the electronic transition of interest.

The above C(t) clearly contains Franck-Condon factors as well as time dependence

exp(iωfv,ivt + i∆Ei,ft/h) that produces δ-function spikes at each electronic-vibrational

transition frequency and rotational time dependence contained in the time correlation

function quantity <φir | E0 • µi,f(Re) E0 • µi,f(Re,t) |φir>.

To summarize, the line shape function I(ω) produces the net rate of photon

absorption

 Req.ave.net  = (1/h2) (1 - exp(- h ω/kT) ) ⌡⌠ g(ω)  I  (ω) dω 

in all of the above cases, and I(ω) is the Fourier transform of a corresponding time-

dependent C(t) function in all cases. However, the pure rotation, vibration-rotation, and

electronic-vibration-rotation cases differ in the form of their respective C(t)'s. Specifically,

C (t) = Σi  ρir ρiv  ρie <φir | (E0 • µave,iv ) E0 • µave,iv (t) | φir>

in the pure rotational case,



 C (t) = Σi  ρir ρiv  ρie <φir | (E0 • µtrans ) E0 • µtrans (t) | φir>  exp(iωfv,ivt)

in the vibration-rotation case, and

C(t) =  Σi, f  ρir ρiv ρie  <φir | E0 • µi,f(Re) E0 • µi,f(Re,t) |φir> |<χiv | χfv>|2

 exp(iωfv,ivt + ∆Ei,ft/h)

in the electronic-vibration-rotation case.

All of these time correlation functions contain time dependences that arise from

rotational motion of a dipole-related vector (i.e., the vibrationally averaged dipole µave,iv

(t), the vibrational transition dipole µtrans (t), or the electronic transition dipole µi,f(Re,t))

and the latter two also contain oscillatory time dependences (i.e., exp(iωfv,ivt) or

exp(iωfv,ivt + i∆Ei,ft/h)) that arise from vibrational or electronic-vibrational energy level

differences. In the treatments of the following sections, consideration is given to the

rotational contributions under circumstances that characterize, for example, dilute gaseous

samples where the collision frequency is low and liquid-phase samples where rotational

motion is better described in terms of diffusional motion.

F. Line Broadening Mechanisms

If the rotational motion of the molecules is assumed to be entirely unhindered (e.g.,

by any environment or by collisions with other molecules), it is appropriate to express the

time dependence of each of the dipole time correlation functions listed above in terms of a

"free rotation" model. For example, when dealing with diatomic molecules, the electronic-

vibrational-rotational C(t) appropriate to a specific electronic-vibrational transition becomes:

C(t) =  (qr qv qe qt)-1 ΣJ  (2J+1) exp(- h2J(J+1)/(8π2IkT)) exp(- hνvibvi /kT)

gie  <φJ | E0 • µi,f(Re) E0 • µi,f(Re,t) |φJ> |<χiv | χfv>|2

exp(i [hνvib] t + i∆Ei,f t/h).

Here,



qr = (8π2IkT/h2)

is the rotational partition function (I being the molecule's moment of inertia

I = µRe2, and h2J(J+1)/(8π2I) the molecule's rotational energy for the state with quantum

number J and degeneracy 2J+1)

qv = exp(-hνvib/2kT) (1-exp(-hνvib/kT))-1

is the vibrational partition function (νvib being the vibrational frequency), gie is the

degeneracy of the initial electronic state,

qt = (2πmkT/h2)3/2 V

is the translational partition function for the molecules of mass m moving in volume V, and

∆Ei,f is the adiabatic electronic energy spacing.

The functions <φJ | E0 • µi,f(Re) E0 • µi,f(Re,t) |φJ> describe the time evolution of

the dipole-related vector (the electronic transition dipole in this case) for the rotational state

J. In a "free-rotation" model, this function is taken to be of the form:

<φJ | E0 • µi,f(Re) E0 • µi,f(Re,t) |φJ>

= <φJ | E0 • µi,f(Re) E0 • µi,f(Re,0) |φJ> Cos
h J(J+1) t

4πI
  ,

where

h J(J+1)

4πI
  = ωJ

is the rotational frequency (in cycles per second) for rotation of the molecule in the state

labeled by J. This oscillatory time dependence, combined with the exp(iωfv,ivt + i∆Ei,ft/h)

time dependence arising from the electronic and vibrational factors, produce, when this C(t)

function is Fourier transformed to generate I(ω) a series of δ-function "peaks" whenever

ω = ωfv,iv + ∆Ei,f/h ± ωJ .



The intensities of these peaks are governed by the

(qr qv qe qt)-1 ΣJ  (2J+1) exp(- h2J(J+1)/(8π2IkT)) exp(- hνvibvi /kT) gie

Boltzmann population factors as well as by the |<χiv | χfv>|2 Franck-Condon factors and

the <φJ | E0 • µi,f(Re) E0 • µi,f(Re,0) |φJ> terms.

This same analysis can be applied to the pure rotation and vibration-rotation C(t)

time dependences with analogous results. In the former, δ-function peaks are predicted to

occur at

ω = ± ωJ

and in the latter at

ω = ωfv,iv  ± ωJ ;

with the intensities governed by the time independent factors in the corresponding

expressions for C(t).

In experimental measurements, such sharp δ-function peaks are, of course, not

observed. Even when very narrow band width laser light sources are used (i.e., for which

g(ω) is an extremely narrowly peaked function), spectral lines are found to possess finite

widths. Let us now discuss several sources of line broadening, some of which will relate to

deviations from the "unhindered" rotational motion model introduced above.

1. Doppler Broadening

In the above expressions for C(t), the averaging over initial rotational, vibrational,

and electronic states is explicitly shown. There is also an average over the translational

motion implicit in all of these expressions. Its role has not (yet) been emphasized because

the molecular energy levels, whose spacings yield the characteristic frequencies at which

light can be absorbed or emitted, do not depend on translational motion. However, the

frequency of the electromagnetic field experienced by moving molecules does depend on

the velocities of the molecules, so this issue must now be addressed.

Elementary physics classes express the so-called Doppler shift of a wave's

frequency induced by movement either of the light source or of the molecule (Einstein tells

us these two points of view must give identical results) as follows:



ωobserved = ωnominal (1 + vz/c)-1 ≈ ωnominal (1 - vz/c + ...).

Here, ωnominal is the frequency of the unmoving light source seen by unmoving molecules,

vz is the velocity of relative motion of the light source and molecules, c is the speed of

light, and ωobserved is the Doppler shifted frequency (i.e., the frequency seen by the

molecules). The second identity is obtained by expanding, in a power series, the (1 + vz/c)-

1 factor, and is valid in truncated form when the molecules are moving with speeds

significantly below the speed of light.

For all of the cases considered earlier, a C(t) function is subjected to Fourier

transformation to obtain a spectral lineshape function I(ω), which then  provides the

essential ingredient for computing the net rate of photon absorption. In this Fourier

transform process, the variable ω is assumed to be the frequency of the electromagnetic

field    experienced by the molecules   . The above considerations of Doppler shifting then leads

one to realize that the correct functional form to use in converting C(t) to I(ω) is:

I(ω) = ⌡⌠C(t) exp(-itω(1-vz/c)) dt ,

where ω is the nominal frequency of the light source.

As stated earlier, within C(t) there is also an equilibrium average over translational

motion of the molecules. For a gas-phase sample undergoing random collisions and at

thermal equilibrium, this average is characterized by the well known Maxwell-Boltzmann

velocity distribution:

(m/2πkT)3/2 exp(-m (vx2+vy2+vz2)/2kT) dvx dvy dvz.

Here m is the mass of the molecules and vx, vy, and vz label the velocities along the lab-

fixed cartesian coordinates.

Defining the z-axis as the direction of propagation of the light's photons and

carrying out the averaging of the Doppler factor over such a velocity distribution, one

obtains:

⌡⌠

-∞

∞

exp(-itω(1-vz/c)) (m/2πkT)3/2 exp(-m (vx2+vy2+vz2)/2kT) dvx  dvy dvz 



= exp(-iωt) ⌡⌠

-∞

∞

(m/2πkT)1/2 exp(iωtvz/c) exp(-mvz2/2kT) dvz  

= exp(-iωt) exp(- ω2t2kT/(2mc2)).

This result, when substituted into the expressions for C(t), yields expressions identical to

those given for the three cases treated above     but    with one modification. The translational

motion average need no longer be considered in each C(t); instead, the earlier expressions

for C(t) must each be multiplied by a factor exp(- ω2t2kT/(2mc2)) that embodies the

translationally averaged Doppler shift. The spectral line shape function I(ω) can then be

obtained for each C(t) by simply Fourier transforming:

I(ω) = ⌡⌠

-∞

∞

exp(-iωt) C(t) dt .

When applied to the rotation, vibration-rotation, or electronic-vibration-rotation

cases within the "unhindered" rotation model treated earlier, the Fourier transform involves

integrals of the form:

I(ω) = ⌡⌠

-∞

∞

exp(-iωt) exp(- ω2t2kT/(2mc2))exp(i(ωfv,iv +  ∆Ei,f/h ± ωJ)t) dt .

This integral would arise in the electronic-vibration-rotation case; the other two cases would

involve integrals of the same form but with the ∆Ei,f/h absent in the vibration-rotation

situation and with ωfv,iv + ∆Ei,f/h missing for pure rotation transitions. All such integrals

can be carried out analytically and yield:

I(ω) = 
2mc2π
ω2kT

  exp[ -(ω-ωfv,iv - ∆Ei,f/h ± ωJ)2 mc2/(2ω2kT)].

The result is a series of Gaussian "peaks" in ω-space, centered at:



ω = ωfv,iv + ∆Ei,f/h ± ωJ

with widths (σ) determined by

σ2 = ω2kT/(mc2),

given the temperature T and the mass of the molecules m. The hotter the sample, the faster

the molecules are moving on average, and the broader is the distribution of Doppler shifted

frequencies experienced by these molecules. The net result then of the Doppler effect is to

produce a line shape function that is similar to the "unhindered" rotation model's series of

δ-functions but with each δ-function peak broadened into a Gaussian shape.

2. Pressure Broadening

To include the effects of collisions on the rotational motion part of any of the above

C(t) functions, one must introduce a model for how such collisions change the dipole-

related vectors that enter into C(t). The most elementary model used to address collisions

applies to gaseous samples which are assumed to undergo unhindered rotational motion

until struck by another molecule at which time a randomizing "kick" is applied to the dipole

vector and after which the molecule returns to its unhindered rotational movement.

The effects of such collisionally induced kicks are treated within the so-called

pressure broadening (sometimes called collisional broadening) model by modifying the

free-rotation correlation function through the introduction of an exponential damping factor

exp( -|t|/τ):

<φJ | E0 • µi,f(Re) E0 • µi,f(Re,0) |φJ> Cos 
h J(J+1) t

4πI
   

⇒ <φJ | E0 • µi,f(Re) E0 • µi,f(Re,0) |φJ> Cos 
h J(J+1) t

4πI
   exp( -|t|/τ).

This damping function's time scale parameter τ is assumed to characterize the average time

between collisions and thus should be inversely proportional to the collision frequency. Its

magnitude is also related to the effectiveness with which collisions cause the dipole

function to deviate from its unhindered rotational motion (i.e., related to the collision

strength). In effect, the exponential damping causes the time correlation function <φJ | E0 •



µi,f(Re) E0 • µi,f(Re,t) |φJ> to "lose its memory" and to decay to zero; this "memory" point

of view is based on viewing <φJ | E0 • µi,f(Re) E0 • µi,f(Re,t) |φJ> as the projection of E0

• µi,f(Re,t) along its t = 0 value E0 • µi,f(Re,0) as a function of time t.

Introducing this additional exp( -|t|/τ) time dependence into C(t) produces, when

C(t) is Fourier transformed to generate I(ω),

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-|t|/τ)exp(-ω2t2kT/(2mc2))exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt .

In the limit of very small Doppler broadening, the (ω2t2kT/(2mc2)) factor can be ignored

(i.e., exp(-ω2t2kT/(2mc2)) set equal to unity), and

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-|t|/τ)exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt 

results. This integral can be performed analytically and generates:

I(ω) =
1

4π
  { 

1/τ
(1/τ)2+ (ω-ωfv,iv-∆Ei,f/h ± ωJ)2

  +  
1/τ

(1/τ)2+ (ω+ωfv,iv+∆Ei,f/h ± ωJ)2
  },

a pair of Lorentzian peaks in ω-space centered again at

ω = ± [ωfv,iv+∆Ei,f/h ± ωJ].

The full width at half height of these Lorentzian peaks is 2/τ. One says that the individual

peaks have been pressure or collisionally broadened.

When the Doppler broadening can not be neglected relative to the collisional

broadening, the above integral

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-|t|/τ)exp(-ω2t2kT/(2mc2))exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt 



is more difficult to perform. Nevertheless, it can be carried out and again produces a series

of peaks centered at

ω = ωfv,iv+∆Ei,f/h ± ωJ

but whose widths are determined both by Doppler and pressure broadening effects. The

resultant line shapes are thus no longer purely Lorentzian nor Gaussian (which are

compared in the figure below for both functions having the same full width at half height

and the same integrated area), but have a shape that is called a Voight shape.
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3. Rotational Diffusion Broadening

Molecules in liquids and very dense gases undergo frequent collisions with the

other molecules; that is, the mean time between collisions is short compared to the

rotational period for their unhindered rotation. As a result, the time dependence of the

dipole related correlation function can no longer be modeled in terms of free rotation that is

interrupted by (infrequent) collisions and Dopler shifted. Instead, a model that describes the

incessant buffeting of the molecule's dipole by surrounding molecules becomes

appropriate. For liquid samples in which these frequent collisions cause the molecule's

dipole to undergo angular motions that cover all angles (i.e., in contrast to a frozen glass or



solid in which the molecule's dipole would undergo strongly perturbed pendular motion

about some favored orientation), the so-called rotational diffusion model is often used.

In this picture, the rotation-dependent part of C(t) is expressed as:

<φJ | E0 • µi,f(Re) E0 • µi,f(Re,t) |φJ>

= <φJ | E0 • µi,f(Re) E0 • µi,f(Re,0) |φJ>  exp( -2Drot|t|),

where Drot is the    rotational diffusion constant    whose magnitude details the time

decay in the averaged value of E0 • µi,f(Re,t) at time t with respect to its value at time t = 0;

the larger Drot, the faster is this decay.

As with pressure broadening, this exponential time dependence, when subjected to

Fourier transformation, yields:

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-2Drot|t|)exp(-ω2t2kT/(2mc2))exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt .

Again, in the limit of very small Doppler broadening, the (ω2t2kT/(2mc2)) factor can be

ignored (i.e., exp(-ω2t2kT/(2mc2)) set equal to unity), and

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-2Drot|t|)exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt 

results. This integral can be evaluated analytically and generates:

I(ω) =
1

4π
  { 

2Drot

(2Drot)2+ (ω-ωfv,iv-∆Ei,f/h ± ωJ)2
  

+  
2Drot

(2Drot)2+ (ω+ωfv,iv+∆Ei,f/h ± ωJ)2
  },

a pair of Lorentzian peaks in ω-space centered again at

ω = ±[ωfv,iv+∆Ei,f/h ± ωJ].



The full width at half height of these Lorentzian peaks is 4Drot. In this case, one says that

the individual peaks have been broadened via rotational diffusion. When the Doppler

broadening can not be neglected relative to the collisional broadening, the above integral

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-2Drot|t|)exp(-ω2t2kT/(2mc2))exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt .

is more difficult to perform. Nevertheless, it can be carried out and again produces a series

of peaks centered at

ω = ±[ωfv,iv+∆Ei,f/h ± ωJ]

but whose widths are determined both by Doppler and rotational diffusion effects.

4. Lifetime or Heisenberg Homogeneous Broadening

Whenever the absorbing species undergoes one or more  processes that depletes its

numbers, we say that it has a finite lifetime. For example, a species that undergoes

unimolecular dissociation has a finite lifetime, as does an excited state of a molecule that

decays by spontaneous emission of a photon. Any process that depletes the absorbing

species contributes another source of time dependence for the dipole time correlation

functions C(t) discussed above. This time dependence is usually modeled by appending, in

a multiplicative manner, a factor exp(-|t|/τ). This, in turn modifies the line shape function

I(ω) in a manner much like that discussed when treating the rotational diffusion case:

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-|t|/τ)exp(-ω2t2kT/(2mc2))exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt .

Not surprisingly, when the Doppler contribution is small, one obtains:

I(ω) =
1

4π
  { 

1/τ
(1/τ)2+ (ω-ωfv,iv-∆Ei,f/h ± ωJ)2

  

+  
1/τ

(1/τ)2+ (ω+ωfv,iv+∆Ei,f/h ± ωJ)2
  }.



In these Lorentzian lines, the parameter τ describes the kinetic decay lifetime of the

molecule. One says that the spectral lines have been lifetime or Heisenberg
broadened by an amount proportional to 1/τ. The latter terminology arises because the

finite lifetime of the molecular states can be viewed as producing, via the Heisenberg

uncertainty relation ∆E∆t > h, states whose energy is "uncertain" to within an amount ∆E.

5. Site Inhomogeneous Broadening

Among the above line broadening mechanisms, the pressure, rotational diffusion,

and lifetime broadenings are all of the homogeneous variety. This means that each

molecule in the sample is affected in exactly the same manner by the broadening process.

For example, one does not find some molecules with short lifetimes and others with long

lifetimes, in the Heisenberg case; the entire ensemble of molecules is characterized by a

single lifetime.

In contrast, Doppler broadening is inhomogeneous in nature because each

molecule experiences a broadening that is characteristic of its particular nature (velocity vz

in this case). That is, the fast molecules have their lines broadened more than do the slower

molecules. Another important example of inhomogeneous broadening is provided by so-

called site broadening. Molecules imbedded in a liquid, solid, or glass do not, at the

instant of photon absorption, all experience exactly the same interactions with their

surroundings. The distribution of instantaneous "solvation" environments may be rather

"narrow" (e.g., in a highly ordered solid matrix) or quite "broad" (e.g., in a liquid at high

temperature). Different environments produce different energy level splittings  ω =

ωfv,iv+∆Ei,f/h ± ωJ (because the initial and final states are "solvated" differently by the

surroundings) and thus different frequencies at which photon absorption can occur. The

distribution of energy level splittings causes the sample to absorb at a range of frequencies

as illustrated in the figure below where homogeneous and inhomogeneous line shapes are

compared.



(a)                                                   (b)

Homogeneous (a) and inhomogeneous (b) band shapes having 
inhomogeneous width ∆ν     , and homogeneous width ∆ν   .INH H

The spectral line shape function I(ω) is further broadened when site inhomogeneity

is present and significant. These effects can be modeled by convolving the kind of I(ω)

function that results from Doppler, lifetime, rotational diffusion, and pressure broadening

with a Gaussian distribution P(∆E) that describes the inhomogeneous distribution of

energy level splittings:

I(ω) = ⌡⌠I0(ω;∆E) P(∆E) d∆E .

Here I0(ω;∆E) is a line shape function such as those described earlier each of which

contains a set of frequencies (e.g., ω = ωfv,iv+∆Ei,f/h ± ωJ = ω + ∆E/h) at which

absorption or emission occurs.

A common experimental test for inhomogeneous broadening involves hole

burning. In such experiments, an intense light source (often a laser) is tuned to a

frequency ωburn that lies within the spectral line being probed for inhomogeneous

broadening. Then, a second tunable light source is used to scan through the profile of the

spectral line, and, for example, an absorption spectrum is recorded. Given an absorption

profile as shown below in the absence of the intense burning light source:



ω
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one expects to see a profile such as that shown below:

ω
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if inhomogeneous broadening is operative.

The interpretation of the change in the absorption profile caused by the bright light

source proceeds as follows:

(i) In the ensemble of molecules contained in the sample, some molecules will absorb at or

near the frequency of the bright light source ωburn; other molecules (those whose

environments do not produce energy level splittings that match ωburn) will not absorb at

this frequency.

(ii) Those molecules that do absorb at ωburn will have their transition saturated by the

   intense    light source, thereby rendering this frequency region of the line profile transparent

to    further    absorption.

(iii) When the "probe" light source is scanned over the line profile, it will induce

absorptions for those molecules whose local environments did not allow them to be

saturated by the ωburn light. The absorption profile recorded by this probe light source's

detector thus will match that of the original line profile,     until   



(iv)  the probe light source's frequency matches ωburn, upon which no absorption of the

probe source's photons will be recorded because molecules that absorb in this frequency

regime have had their transition saturated.

(v) Hence, a "hole" will appear in the spectrum recorded by the probe light source's

detector in the region of ωburn.

Unfortunately, the technique of hole burning does not provide a fully reliable

method for identifying inhomogeneously broadened lines. If a hole is observed in such a

burning experiment, this provides ample evidence, but if one is not seen, the result is not

definitive. In the latter case, the transition may not be strong enough (i.e., may not have a

large enough "rate of photon absorption" ) for the intense light source to saturate the

transition to the extent needed to form a hole.

This completes our introduction to the subject of molecular spectroscopy. More

advanced treatments of many of the subjects treated here as well as many aspects of modern

experimental spectroscopy can be found in the text by Zare on angular momentum as well

as in Steinfeld's text      Molecules and Radiation    , 2nd Edition, by J. I. Steinfeld, MIT Press

(1985).


