
Qualitative Orbital Picture and Semi-Empirical Methods F

Some of the material contained in the early parts of this Appendix appears, in
condensed form, near the end of Chapter 7. For the sake of completeness and clarity of
presentation, this material is repeated and enhanced here.

In the simplest picture of chemical bonding, the valence molecular orbitals φi are

constructed as linear combinations of valence atomic orbitals χµ according to the LCAO-
MO formula:

φi = Σµ Ciµ χµ.

The core electrons are not explicitly included in such a treatment, although their effects are
felt through an electrostatic potential
V as detailed below. The electrons that reside in the occupied MO's are postulated to
experience an effective potential V that has the following properties:

1.  V contains contributions from all of the nuclei in the molecule exerting
coulombic attractions on the electron, as well as coulombic repulsions and exchange
interactions exerted by the other electrons on this electron;

2.  As a result of the (assumed) cancellation of attractions from distant nuclei and
repulsions from the electron clouds (i.e., the core, lone-pair, and valence orbitals) that
surround  these distant nuclei , the effect of V on any particular MO φi depends primarily

on the atomic charges and local bond polarities of the atoms over which φi  is delocalized.

As a result of these assumptions, qualitative molecular orbital models can be
developed in which one assumes that each MO φi obeys a one-electron Schrödinger
equation

h φi = εi φi.

Here the orbital-level hamiltonian h contains the kinetic energy of motion of the electron
and the potential V mentioned above:

[ - h2/2me ∇2 + V] φi = εi φi .

Expanding the MO φi in the LCAO-MO manner, substituting this expansion into the above

Schrödinger equation, multiplying on the left by χ*ν, and integrating over the coordinates
of the electron generates the following orbital-level eigenvalue problem:

Σµ <χν |- h2/2me ∇2 + V|χµ> Ciµ = εi Σµ <χν |χµ> Ciµ.

If the constituent atomic orbitals {χµ} have been orthonormalized as discussed in Chapter
7, the overlap integrals <χν |χµ> reduce to δµ,ν.

In all semi-empirical models, the quantities that explicitly define the potential V are
not computed from first principles as they are in so-called    ab initio     methods. Rather, either



experimental data or results of    ab initio     calculations are used to determine the parameters in
terms of which V is expressed. The various semi-empirical methods discussed below differ
in the sophistication used to include electron-electron interactions as well as in the manner
experimental data or    ab initio     computational results are used to specify V.

If experimental data is used to parameterize a semi-empirical model, then the model
should not be extended beyond the level at which it has been parameterized. For example,
orbitals obtained from a semi-empirical theory parameterized such that bond energies,
excitation energies, and ionization energies predicted by theory agree with experimental
data should not subsequently be used in a configuration interaction (CI) calculation. To do
so would be inconsistent because the CI treatment, which is designed to treat dynamical
correlations among the electrons, would duplicate what using the experimental data (which
already contains mother nature's electronic correlations) to determine the parameters had
accomplished.

Alternatively, if results of    ab initio     theory at the single-configuration orbital level are
used to define the parameters of a semi-empirical model, it would be proper to use the
semi-empirical orbitals in a subsequent higher-level treatment of electron correlations.

A. The Hückel Model

In the most simplified embodiment of the above orbital-level model, the following
additional approximations are introduced:

1.  The diagonal values <χµ|- h2 /2me ∇2 + V|χµ>, which are usually denoted αµ,

are taken to be equal to the energy of an electron in the atomic orbital χµ and, as such, are
evaluated in terms of atomic ionization energies (IP's) and electron affinities (EA's):

<χµ|- h2/2me ∇2 + V |χµ> = -IPµ,

for atomic orbitals that are occupied in the atom, and

<χµ|- h2/2me ∇2 + V |χµ> = -EAµ,

for atomic orbitals that are not occupied in the atom.
These approximations assume that contributions in V arising from coulombic

attraction to nuclei other than the one on which χµ is located, and repulsions from the core,
lone-pair, and valence electron clouds surrounding these other nuclei cancel to an extent
that
<χµ| V | χµ> contains only potentials from the atom on which χµ sits.

It should be noted that the IP's  and EA's of valence-state orbitals are not identical
to the experimentally measured IP's and EA's of the corresponding atom, but can be
obtained from such information. For example, the 2p valence-state IP (VSIP) for a Carbon
atom is the energy difference associated with the hypothetical process

C(1s22s2px2py2pz) ==> C+(1s22s2px2py).

If the energy differences for the "promotion" of C

C(1s22s22px2py) ==> C(1s22s2px2py2pz) ; ∆EC

and for the promotion of C+



C+(1s22s22px) ==> C+(1s22s2px2py) ; ∆EC+

are known, the desired VSIP is given by:

IP2pz
 = IPC  + ∆EC+  - ∆EC .

The EA of the 2p orbital is obtained from the

C(1s22s22px2py) ==> C-(1s22s22px2py2pz)

energy gap, which means that EA2pz
 = EA

C
 . Some common IP's of valence 2p orbitals in

eV are as follows: C (11.16), N (14.12), N+ (28.71), O (17.70), O+ (31.42), F+ (37.28).

2.  The off-diagonal elements <χν |- h2/2me ∇2 + V |χµ> are

taken as zero if χµ  and χν belong to the same atom because the atomic orbitals are
assumed to have been constructed to diagonalize the one-electron hamiltonian appropriate to
an electron moving in that atom. They are set equal to a parameter denoted βµ,ν if χµ and

χν reside on neighboring atoms that are chemically bonded. If χµ and χν reside on atoms
that are not bonded neighbors, then the off-diagonal matrix element is set equal to zero.

3. The geometry dependence of the βµ,ν parameters is often approximated by

assuming that βµ,ν is proportional to the overlap Sµ,ν between the corresponding atomic
orbitals:

βµ,ν = βoµ,ν Sµ,ν .

Here βoµ,ν is a constant (having energy units) characteristic of the bonding interaction

between χµ  and χν; its value is usually determined by forcing the molecular orbital
energies obtained from such a qualitative orbital treatment to yield experimentally correct
ionization potentials, bond dissociation energies, or electronic transition energies.

The particular approach described thus far forms the basis of the so-called      Hückel
     model   . Its implementation requires knowledge of the atomic αµ and β0µ,ν values, which
are eventually expressed in terms of experimental data, as well as a means of calculating the
geometry dependence of the βµ,ν 's (e.g., some method for computing overlap matrices
Sµ,ν ).

B. The Extended Hückel Method

It is well known that bonding and antibonding orbitals are formed when a pair of
atomic orbitals from neighboring atoms interact. The energy splitting between the bonding
and antibonding orbitals depends on the overlap between the pair of atomic orbitals. Also,
the energy of the antibonding orbital lies higher above the arithmetic mean Eave = EA + EB
of the energies of the constituent atomic orbitals (EA and EB) than the bonding orbital lies
below Eave . If overlap is ignored, as in conventional Hückel theory (except in



parameterizing the geometry dependence of βµ,ν), the differential destabilization of
antibonding orbitals compared to stabilization of bonding orbitals can not be accounted for.

By parameterizing the off-diagonal Hamiltonian matrix elements in the following
overlap-dependent manner:

hν ,µ = <χν |- h2/2me ∇2 + V |χµ> = 0.5 K (hµ,µ + hν ,ν) Sµ,ν  ,

and explicitly treating the overlaps among the constituent atomic orbitals {χµ} in solving
the orbital-level Schrödinger equation

Σµ <χν |- h2/2me ∇2 + V|χµ> Ciµ = εi Σµ <χν |χµ> Ciµ,

Hoffmann introduced the so-called extended Hückel method. He found that a value for K=
1.75 gave optimal results when using Slater-type orbitals as a basis (and for calculating the
Sµ,ν). The diagonal hµ,µ elements are given, as in the conventional Hückel method, in
terms of valence-state IP's and EA's. Cusachs later proposed a variant of this
parameterization of the off-diagonal elements:

hν ,µ = 0.5 K (hµ,µ + hν ,ν) Sµ,ν (2-|Sµ,ν |).

For first- and second-row atoms, the 1s or (2s, 2p) or (3s,3p, 3d) valence-state ionization
energies (αµ's), the number of valence electrons (#Elec.) as well as the orbital exponents
(es , ep and ed) of Slater-type orbitals used to calculate the overlap matrix elements Sµ,ν
corresponding are given below.



Atom # Elec. es=ep ed αs(eV) αp(eV) αd(eV)
H 1 1.3 -13.6
Li 1 0.650 -5.4 -3.5
Be 2 0.975 -10.0 -6.0
B 3 1.300 -15.2 -8.5
C 4 1.625 -21.4 -11.4
N 5 1.950 -26.0 -13.4
O 6 2.275 -32.3 -14.8
F 7 2.425 -40.0 -18.1

Na 1 0.733 -5.1 -3.0
Mg 2 0.950 -9.0 -4.5
Al 3 1.167 -12.3 -6.5
Si 4 1.383 1.383 -17.3 -9.2 -6.0
P 5 1.600 1.400 -18.6 -14.0 -7.0
S 6 1.817 1.500 -20.0 -13.3 -8.0
Cl 7 2.033 2.033 -30.0 -15.0 -9.0

In the Hückel or extended Hückel methods no    explicit    reference is made to electron-
electron interactions although such contributions are absorbed into the V potential, and
hence into the αµ and βµ,ν parameters of Hückel theory or the hµ,µ and hµ,ν parameters of
extended Hückel theory. As electron density flows from one atom to another (due to
electronegativity differences), the electron-electron repulsions in various atomic orbitals
changes. To account for such charge-density-dependent coulombic energies, one must use
an approach that includes explicit reference to inter-orbital coulomb and exchange
interactions. There exists a large family of semi-empirical methods that permit explicit
treatment of electronic interactions; some of the more commonly used approaches are
discussed below.

C. Semi-Empirical Models that Treat Electron-Electron Interactions

1. The ZDO Approximation

Most methods of this type are based on the so-called zero-differential overlap
(ZDO) approximation. Their development begins by using an approximation to the atomic-
orbital-based two-electron integrals introduced by Mulliken:

<χaχb|g|χcχd> = Sa,cSb,d {λa,b + λa,d + λc,b + λc,d}/4,

where Sa,c is the overlap integral between χa and χc , and

λa,b = <χaχb|g|χaχb>

is the    coulomb integral    between the charge densities |χa|2  and |χb|2.
Then, when the so-called zero-overlap approximation

Sa,c = δa,c



is made, the general four-orbital two-electron integral given above reduces to its    zero-   
    differential overlap     value:

<χaχb|g|χcχd> = δa,c δb,d λa,b.

This fundamental approximation allows the two-electron integrals that enter into the
expression for the Fock matrix elements to be expressed in terms of the set of two-orbital
coulomb interaction integrals λa,b as well as experimental or    ab initio     values for valence-
state IP's and EA's, as is now illustrated.

2. Resulting Fock Matrices

Using the ZDO approximation, the Fock matrix elements over the valence atomic
orbitals (the cores are still treated through an effective electrostatic potential as above)

Fµ,ν  = < χµ | h | χν > + Σδ,κ [ γδ,κ< χµ χδ | g | χν χκ >

-  γδ,κex< χµ χδ | g | χκ χν >],

reduce, to:

Fµ,µ = < χµ | h | χµ > + Σε γε,ε λµ,ε -  γµ,µex λµ,µ,

for the diagonal elements and

Fµ,ν = < χµ | h | χν > - γµ,νex λµ,ν

for the off-diagonal elements. Here, h represents the kinetic energy
- h2∇2/2m operator plus the sum of the attractive coulombic potential energies to each of

the nuclei - Σa Za e2/|r-Ra| and the electrostatic repulsions of the core electrons (i.e., all
those not explicitly treated as valence in this calculation) around each of the nuclei.

Further reduction of the     diagonal    Fµ,µ expression is achieved by:

a. Combining terms in the sum Σε involving orbitals χε on atomic centers other than where

χµ sits (atom a) together with the sum of coulomb attractions (which appear in h) over
these same centers:

Σε(not on atom a)  γε,ε λµ,ε

- Σb(not on atom a)<χµ| Zbe2|r-Rb|-1 |χµ>

= Σb,ε(not center a) (γε,ε λµ,ε - Vµ,b ).

This combination represents the net coulombic interaction of |χµ|2 with the total electron
density (first sum) and the total attractive positive density (second sum) on atoms other than
the atom on which χµ sits.



b. Recognizing

< χµ| - h2∇2/2m| χµ> + Σε≠µ( on center a ) γε,ε λµ,ε

- <χµ| Zae2/|r-Ra| |χµ> = Uµ,µ

as the average value of the atomic Fock operator (i.e., kinetic energy plus attractive colomb
potential to that atom's nucleus plus coulomb and exchange interactions with other
electrons on that atom) for an electron in χµ on the nucleus a. As in Hückel theory, the

values of these parameters Uµ,µ , which play the role of the Hückel αµ, can be determined
from atomic valence-state ionization potentials and electron affinities. These quantities, in
turn, may be obtained either from experimental data or from the results of    ab initio    
calculations.

As a result, the diagonal F matrix elements are given by

Fµ,µ = Uµ,µ + (γµ,µ - γµ,µex) λµ,µ  + Σb,ε(not center a) (γε,ε λµ,ε - Vµ,b ).

The evaluation of the quantities entering into this expression and that for the off-diagonal
Fµ,ν elements differs from one semi-empirical method to another; this topic is covered late
in this Appendix.

Reduction of the off-diagonal elements involving orbitals χµ and χν on the    same   
atom (a) is achieved by assuming that the atomic orbitals have been formed in a manner that
makes the contributions to Fµ,ν from atom a vanish

< χµ| - h2∇2/2m| χν> - <χµ| Zae2/|r-Ra| |χν>- γµ,νex λµ,ν

+ Σε(on atom a) γε,ε <χµχε | g | χνχε> = 0,

and then neglecting, to be consistent with the ZDO assumption, the contributions from
atoms other than atom a

- Σb(not center a) <χµ| Zb e2/|r-Rb| |χν> + Σε( not on atom a) γε,ε

<χµχε | g | χνχε> = 0.

Hence, the off-diagonal F matrix elements vanish, Fµ,ν = 0 for χµ and χν  both on the
same atom (a).

The off-diagonal F matrix elements coupling orbitals from different atoms (a and b)
are expressed as

Fµ,ν = < χµ| - h2∇2/2m| χν> - <χµ| Zae2/|r-Ra| |χν>

- <χµ| Zbe2/|r-Rb| |χν>  - γµ,νex λµ,ν  = βµ,ν  - γµ,νex λµ,ν .

Contributions to these elements from atoms other than a and b are neglected, again to be
consistent with the ZDO approximation.

Unlike the Hückel and extended Hückel methods, the semi-empirical approaches
that explicitly treat electron-electron interactions give rise to Fock matrix element



expressions that depend on the atomic-orbital-based density matrix γµ,ν . This quantity is
computed using the LCAO-MO coefficients {Ci,µ} of the occupied molecular orbitals from
the previous iteration of the

Σµ Fν ,µ Ciµ = εi Σµ <χν |χµ> Ciµ

equations. In particular,

γµ,ν = Σi(occupied) ni Ci,µ Ci,ν,

γµ,νex = Σi(occupied and of spin σ)  Ci,µ Ci,ν.

Here, ni is the number (0, 1, or 2) of electrons that occupy the ith molecular orbital, and

spin σ denotes the spin (α or β) of the orbital whose Fock matrix is being formed. For
example, when studying doublet radicals having K doubly occupied orbitals and one half-
filled orbital (K+1) in which an α electron resides, σ is α. In this case, ni = 2 for the first
K orbitals and ni = 1 for the last occupied orbital. Moreover, the Fock matrix elements

Fµ,νβ for β orbitals contains contributions from γµ,νex that are of the form

γµ,νex = Σi=1,K Ci,µ Ci,ν,

while the Fock matrix elements Fµ,να for α orbitals contains

γµ,νex = Σi=1,K Ci,µ Ci,ν + CK+1,µ CK+1,ν.

For both Fµ,να and Fµ,νβ, coulomb contributions arise as

γµ,ν = 2 Σi=1,K Ci,µ Ci,ν + CK+1,µ CK+1,ν.

3. Various Semi-Empirical Methods

a. The Pariser-Parr-Pople (PPP) Method for π-Orbitals

In the PPP method, only the π- orbitals and the corresponding π-electrons are
considered. The parameters included in the F matrix

Fµ,µ = Uµ,µ + (γµ,µ - γµ,µex) λµ,µ  + Σb,ε(not center a) (γε,ε λµ,ε - Vµ,b ).

Fµ,ν = βµ,ν  - γµ,νex λµ,ν

are obtained as follows:

i). The diagonal integrals λa,a , which represent the mutual coulomb repulsions between a
pair of electrons in the valence-state orbital labeled a, can be estimated, as suggested by
Pariser, in terms of the valence-state IP and EA of that orbital:



λa,a = IPa - EAa .

Alternatively, these one-center coulomb integrals can be computed from first principles
using Slater or Gaussian type orbitals.

ii). The off-diagonal coulomb integrals λa,b are commonly approximated either by the
Mataga-Nishimoto formula:

λa,b = e2/(Ra,b + xa,b),

where

xa,b = 2e2 /(λa,a  + λb,b),

or by the Dewar-Ohno-Klopman expression:

λa,b = 
e2 

(R2a,b + 0.25 e4 (1/λa,a  +  1 /λb,b)2)
  .

iii). The valence-state IP's and EA's, Uµ,µ are evaluated from experimental data or from
the results of    ab initio     calculations of the atomic IP's and EA's.

iv). The βµ,ν integrals are usually chosen to make bond lengths, bond energies, or
electronic excitation energies in the molecule agree with experimental data. The geometry
dependence of βµ,ν is often parameterized as in Hückel theory  βµ,ν = βoµ,ν Sµ,ν, and the
overlap is then computed from first principles.

v). The Σb(not center a) Vµ,b term, which represents the coulombic attraction of an electron

in χµ to the nucleus at center b, is often approximated as Zb λµ,ε, where ε labels the one π
orbital on center b, and Zb is the number of π electrons contributed by center b. This
parameterization then permits the attractive interaction for center b to be combined with the
repulsive interaction to give
Σb,ε(not center a) (γε,ε - Zb) λµ,ε .

b. All Valence Electron Methods

The CNDO, INDO, NDDO, MNDO, and MINDO methods all are defined in terms
of an orbital-level Fock matrix with elements

Fµ,µ = Uµ,µ + (γµ,µ - γµ,µex) λµ,µ  + Σb,ε(not center a) (γε,ε λµ,ε - Vµ,b ).

Fµ,ν = βµ,ν  - γµ,νex λµ,ν .

They differ among one another in two ways: (i) in the degree to which they employ the
ZDO approximation to eliminate two-electron integrals, and (ii) in whether they employ



experimental data (MINDO, MNDO, CNDO/S) or results of    ab initio     one-electron
calculations (CNDO, INDO, NDDO) to define their parameters.

The CNDO and CNDO/S methods apply the ZDO approximation to all integrals,
regardless of whether the orbitals are located on the same atom or not. In the INDO
method, which was designed to improve the treatment of spin densities at nuclear centers
and to handle singlet-triplet energy differences for open-shell species, exchange integrals
<χaχb|g|χbχa> involving orbitals χa and χb on the same atom are retained. In the NDDO
approach, the ZDO approximation is applied only to integrals involving orbitals on two or
more different atoms; that is, all one center integrals are retained. The text      Approximate
     Molecular Orbital Theory     by J. A. Pople and D. L. Beveridge, McGraw-Hill, New York
(1970) gives a treatment of several of these semi-empirical methods beyond the
introduction provided here.

To illustrate the differences among the various approaches and to clarify how their
parameters are obtained, let us consider two specific and popular choices- CNDO/2 and
MINDO.

i. The CNDO/2 and CNDO/S Models

In the CNDO/2 approach as originally implemented,    ab initio     (orbital-level)
calculated values of the energies mentioned below are used in determining the requisite
parameters. In the later CNDO/S method, experimental values of these energies are
employed. Briefly, in any CNDO method:

1). The diagonal integrals λa,a , which represent the mutual coulomb repulsions between a
pair of electrons in the valence-state orbital labeled a, are calculated in terms of the valence-
state IP and EA of that orbital:

λa,a = IPa - EAa .

2). The valence-state IP's and EA's, and hence the Uµ,µ are evaluated from the results of
   ab initio      calculations (CNDO/2) or experimental measurement (CNDO/S) of the atomic
IP's and EA's. The expressions used are:

-IPA = Ua,a +(ZA -1) λa,a,

for orbitals χa, and

-EAA = Ub,b + ZA λb,b,

for orbitals χb. Here ZA is the effective core charge of atom A (the nuclear charge minus
the number of "core" electrons not explicitly treated). For first row atoms, several Ua,a and

λa,a values are tabulated below (all quantities are in eV).

H Li Be B C N O F
Us,s -13.6 -5.00 -15.4 -30.37 -50.69 -70.09 -101.3 -129.5
Up,p -3.67 -12.28 -24.7 -41.53 -57.85 -84.28 -108.9

λA,A
12.85 3.46 5.95 8.05 10.33 11.31 13.91 15.23



3). The off-diagonal coulomb integrals λa,b are commonly approximated either by the
Mataga-Nishimoto formula:

λa,b = e2/(Ra,b + xa,b),

where

xa,b = 2e2 /(λa,a  + λb,b),

or by the Dewar-Ohno-Klopman expression:

λa,b = 
e2 

(R2a,b + 0.25 e4 (1/λa,a  +  1 /λb,b)2)
  .

4). As in PPP theory, the term Σb,ε(not center a) (γε,ε λµ,ε - Vµ,b ) is approximated by

Σb,ε(not center a) (γε,ε - Zb) λµ,ε , where Zb is the number of valence electrons contributed

by atom b, and χε is one of the valence electrons on atom b.

5. The βµ,ν parameters are approximated as βµ,ν = Sµ,ν (βa + βb),

where Sµ,ν is the overlap between the orbitals χµ and χν , and βa and βb are atom-
dependent parameters given below for first row atoms:

H Li Be B C N O F

βa(eV) -9 -9 -13 -17 -21 -25 -31 -39

ii. The INDO (and MINDO-Type) Methods

In these methods, the specification of the parameters entering into Fµ,ν is carried
out in the same fashion as in the CNDO/2 approach, except that:

1. The ZDO approximation is made only for two-center integrals; one-center coulomb λa,b

= <χaχb|g|χaχb> and exchange

λa,bex = <χaχb|g|χbχa> integrals are retained. In the INDO approach, the values of these
single-atom integrals are determined by requiring the results of the calculation, performed at
the Fock-like orbital level, to agree with results of    ab initio     Fock-level calculations. In the
MINDO approach, experimental electronic spectra of the particular atom are used to
determine these parameters. The "diagonal" values λa,a are determined, as indicated earlier,
from valence-state energies (   ab initio     for INDO and experimental for MINDO) of the atom
A on which χa resides.

2. The values of the Ua,a parameters are determined according to the following equations:

Us,s = -0.5 (IPH + EAH) -0.5 λs,s

for Hydrogen's 1s orbital;



Us,s = -0.5(IPs + EAs) -(ZA-0.5) λs,s +1/6 (ZA-1.5) G1(s,s)

for Boron through Fluorine's 2s orbitals; and

Up,p = -0.5(IPp + EAp) -(ZA-0.5) λp,p +2/25 (ZA-1.5) F2(p,p) +

1/3 G1(p,p).

Here, F2 and G1 represent the well known Slater-Condon integrals in terms of which the
coulomb and exchange integrals can be expressed:

Fk(nl,n'l') = 
⌡

⌠

0

∞

⌡⌠
0

∞

 |Rnl(r)|2 |Rn'l'(r')|2  2r<k/r>k+1 r2r'2 dr dr'  

Gk(nl,n'l') = 
⌡

⌠

0

∞

⌡⌠
0

∞

 |Rnl(r)Rn'l'(r)|2  2r<k/r>k+1 r2r'2 dr dr'  

and ZA is the effective core charge (the nuclear charge minus the number of "core"
electrons not explicitly treated in the calculation) of the atom A on which the orbitals in
question reside. In the definitions of the integrals, r< and r> represent, respectively, the
smaller and larger of r and r'. Again,    ab initio     calculational data is used in the INDO
method, and experimental data in the MINDO method to fix the parameters entering these
expressions.

D. Summary

As presented, semi-empirical methods are based on a single-configuration picture of
electronic structure. Extensions of such approaches to permit consideration of more than a
single important configuration have been made (for excellent overviews, see     Approximate
     Molecular Orbital Theory     by J. A. Pople and D. L. Beveridge, McGraw-Hill, New York
(1970) and     Valence Theory    , 2nd Ed., by J. N. Murrell, S. F. A. Kettle, and J. M. Tedder,
John Wiley, London (1965)). Pople and co-workers preferred to use data from    ab initio    
calculations in developing sets of parameters to use in such methods because they viewed
semi-empirical methods as approximations to    ab initio     methods. Others use experimental
data to determine parameters because they view semi-empirical methods as models of
mother nature.


