Qualitative Orbital Picture and Semi-Empirical Methods F

Some of the material contained in the early parts of this Appendix appears, in

condensed form, near the end of Chapter 7. For the sake of completeness and clarity of
presentation, this material is repeated and enhanced here.

In the simplest picture of chemical bonding, the valence molecular orbitalsf; are

congtructed as linear combinations of vaence atomic orbitals ¢ maccording to the LCAO-
MO formula

fi=SmCimCm

The core electrons are not explicitly included in such atreatment, although their effects are
felt through an el ectrostatic potential

V asdetailed below. The electrons that reside in the occupied MO's are postul ated to
experience an effective potential V that has the following properties:

1. V contains contributions from al of the nuclel in the molecule exerting
coulombic attractions on the electron, as well as coulombic repulsions and exchange
interactions exerted by the other electrons on this electron;

2. Asaresult of the (assumed) cancellation of attractions from distant nuclei and
repulsions from the electron clouds (i.e., the core, lone-pair, and valence orbitals) that

surround these distant nuclel , the effect of V on any particular MO f j depends primarily
on the atomic charges and local bond polarities of the atoms over which i isdelocalized.

Asaresult of these assumptions, qualitative molecular orbital models can be
developed in which one assumes that each MO f ; obeys a one-electron Schrédinger

equation
hfi=gfj.

Here the orbital-level hamiltonian h contains the kinetic energy of motion of the electron
and the potential V mentioned above:

[-h22meN2+ V] fi=gf;

Expanding the MO f j in the LCAO-MO manner, substituting this expansion into the above

Schradinger equation, multiplying on the left by ¢*1,, and integrating over the coordinates
of the electron generates the following orbital-level eigenvalue problem:

Sm<cnl-h22meN2 + Vic > Cim= & Sm<cniCn Cim

If the constituent atomic orbitals{c} have been orthonormalized as discussed in Chapter

7, the overlap integrals <cn(c > reduce to dmpn.
In all semi-empirical models, the quantities that explicitly define the potential V are
not computed from first principles as they are in so-called ab initio methods. Rather, either



experimental data or results of ab initio calculations are used to determine the parametersin
terms of which V is expressed. The various semi-empirical methods discussed below differ
in the sophistication used to include el ectron-electron interactions as well as in the manner
experimental data or ab initio computational results are used to specify V.

If experimental datais used to parameterize a semi-empirical model, then the model
should not be extended beyond the level at which it has been parameterized. For example,
orbitals obtained from a semi-empirical theory parameterized such that bond energies,
excitation energies, and ionization energies predicted by theory agree with experimental
data should not subsequently be used in a configuration interaction (Cl) calculation. To do
so would be inconsistent because the CI treatment, which is designed to treat dynamical
correlations among the electrons, would duplicate what using the experimental data (which
already contains mother nature's electronic correlations) to determine the parameters had
accomplished.

Alternatively, if results of ab initio theory at the single-configuration orbital level are
used to define the parameters of a semi-empirical model, it would be proper to use the
semi-empirical orbitalsin a subsequent higher-level treatment of electron correlations.

A. The Hickel Modd

In the most smplified embodiment of the above orbital-level model, the following
additional approximations are introduced:

1. Thediagonal vaues <c - 2 /2me N2 + Vic >, which are usually denoted a

are taken to be equal to the energy of an eectron in the atomic orbital cyand, as such, are
evaluated in terms of atomic ionization energies (IP's) and electron affinities (EA'S):

<Cn}- B22me N2+ V 9 = - 1P,
for atomic orbitals that are occupied in the atom, and
<cn}- B22me N2+ V > = -EAm

for atomic orbitals that are not occupied in the atom.
These approximations assume that contributionsin V arising from coulombic

attraction to nuclel other than the one on which ¢y islocated, and repulsions from the core,
lone-pair, and valence el ectron clouds surrounding these other nuclel cancel to an extent
that

<cnlV | ¢y contains only potentials from the atom on which ¢y, Sits.

It should be noted that the IP's and EA's of valence-state orbitals are not identical
to the experimentally measured IP's and EA's of the corresponding atom, but can be
obtained from such information. For example, the 2p valence-state |P (V SIP) for a Carbon
atom isthe energy difference associated with the hypothetical process

C(1s22s2py2py2p;) ==> C*(152252px2py).
If the energy differences for the "promotion” of C
C(1s22s22px2py) ==> C(152252py2py2p;) ; DEC

and for the promotion of C*



C*(1s22s22py) ==> C*(1s22s2px2py) ; DEC+
are known, the desired VSIP is given by:
IPsz: IPc + DEc+ - DEc .
The EA of the 2p orbital is obtained from the
C(1s22522py2py) ==> C(1522522py2py2p,)

energy gap, which means that EAzpZ = EAC . Some common |P's of valence 2p orbitalsin
eV areasfollows: C (11.16), N (14.12), N* (28.71), O (17.70), O* (31.42), F* (37.28).

2. The off-diagonal eements <cp|- F22me N2+ V [ are
taken as zero if ¢y, and ¢y belong to the same atom because the atomic orbitals are
assumed to have been constructed to diagonalize the one-electron hamiltonian appropriate to
an electron moving in that atom. They are set equal to a parameter denoted b if cmand

Cn reside on neighboring atoms that are chemically bonded. If cand ¢y, reside on atoms
that are not bonded neighbors, then the off-diagonal matrix element is set equal to zero.

3. The geometry dependence of the bmn parameters is often approximated by

assuming that bmn is proportional to the overlap Sy between the corresponding atomic
orbitals:

bmn = bomn Smn .

Here boyn isaconstant (having energy units) characteristic of the bonding interaction

betweency, and cp; itsvaueisusualy determined by forcing the molecular orbital
energies obtained from such a qualitative orbital treatment to yield experimentally correct
ionization potentials, bond dissociation energies, or el ectronic transition energies.

The particular approach described thus far forms the basis of the so-called Hiickel

model. Its implementation requires knowledge of the atomic a mand b9y, values, which
are eventually expressed in terms of experimental data, as well as a means of calculating the

geometry dependence of the bmn 's (e.9., some method for computing overlap matrices
Smn )-

B. The Extended Hiickdl Method

It iswell known that bonding and antibonding orbitals are formed when a pair of
atomic orbitals from neighboring atoms interact. The energy splitting between the bonding
and antibonding orbitals depends on the overlap between the pair of atomic orbitals. Also,
the energy of the antibonding orbital lies higher above the arithmetic mean Ege= Ea + ER
of the energies of the congtituent atomic orbitals (Ea and Eg) than the bonding orbital lies
below Ege. If overlapisignored, asin conventional Huickel theory (except in



parameterizing the geometry dependence of by ), the differential destabilization of
antibonding orbitals compared to stabilization of bonding orbitals can not be accounted for.

By parameterizing the off-diagonal Hamiltonian matrix elementsin the following
overlap-dependent manner:

hn,m: <Cn|'h2/2rne Nz +V |Cn‘P =05K (hmm+ hn,n) Smn ,

and explicitly treating the overlaps among the constituent atomic orbitals{cn} in solving
the orbital-level Schrédinger equation

Sm<cnl-#22meN2 + Vic > Cim= g Sm<cniCn Cim

Hoffmann introduced the so-called extended Hiickel method. He found that a value for K=
1.75 gave optimal results when using Slater-type orbitals as abasis (and for calculating the
Smn). The diagonal hnmelements are given, asin the conventional Hiickel method, in
terms of valence-state IPsand EA's. Cusachs |ater proposed a variant of this
parameterization of the off-diagona elements:

hn,m= 0.5 K (hmm+* hn,n) Smn (2-|Smn))-

For first- and second-row atoms, the 1sor (2s, 2p) or (3s,3p, 3d) valence-state ionization

energies (@ms), the number of valence electrons (#Elec.) aswell asthe orbital exponents
(s, ep and &j) of Slater-type orbitals used to calculate the overlap matrix elements Syn
corresponding are given below.



Atom  #Elec.  esep &d ageV) apev) adev)

H 1 1.3 -13.6

Li 1 0.650 -54 -3.5

Be 2 0.975 -10.0 -6.0

B 3 1.300 -15.2 -8.5

C 4 1.625 -21.4 -11.4

N 5 1.950 -26.0 -13.4

@) 6 2.275 -32.3 -14.8

F 7 2.425 -40.0 -18.1

Na 1 0.733 51 -3.0
Mg 2 0.950 -9.0 -4.5

Al 3 1.167 -12.3 -6.5

Si 4 1.383 1.383 -17.3 -9.2 -6.0
P 5 1.600 1.400 -18.6 -14.0 -7.0
S 6 1.817 1.500 -20.0 -13.3 -8.0
Cl 7 2.033 2.033 -30.0 -15.0 -9.0

In the Hickel or extended Hiickel methods no explicit reference is made to electron-
electron interactions although such contributions are absorbed into the V potential, and

hence into the amand by parameters of Hiickel theory or the hmmand hyn parameters of
extended Hickel theory. As electron density flows from one atom to another (dueto
electronegativity differences), the electron-electron repulsions in various atomic orbitals
changes. To account for such charge-density-dependent coulombic energies, one must use
an approach that includes explicit reference to inter-orbital coulomb and exchange
interactions. There exists alarge family of semi-empirical methods that permit explicit
treatment of electronic interactions; some of the more commonly used approaches are
discussed below.

C. Semi-Empirica Modelsthat Treat Electron-Electron Interactions
1. The ZDO Approximation
Most methods of this type are based on the so-called zero-differential overlap

(ZDO) approximation. Their development begins by using an approximation to the atomic-
orbital-based two-electron integral s introduced by Mulliken:

<cLplgccC = SacSpd{l ap+lad* ! cpot+ ! cd/4
where Sy ¢ isthe overlap integral betweencaand ¢, and
| 'ap = <caChlglcLb>

is the coulomb integral between the charge densities |cg2 and [cpf2.
Then, when the so-called zero-overlap approximation

Sac = dac



is made, the general four-orbital two-electron integral given above reducesto its zero-
differential overlap value:

<CLhlglccCd = dacdbd! ap-

This fundamental approximation allows the two-electron integrals that enter into the
expression for the Fock matrix elementsto be expressed in terms of the set of two-orbital

coulomb interaction integrals| 5 aswell as experimental or ab initio values for valence-
state IPsand EA's, asis now illustrated.

2. Resulting Fock Matrices

Using the ZDO approximation, the Fock matrix elements over the valence atomic
orbitals (the cores are till treated through an effective electrostatic potential as above)

Fmn=<cm|h|ch>+Sgk [ wk<CmCd|g|CnCk >

- Wk<cmcd|glck cn>],

reduce, to:

Fmm=<Cm|h|cm>+ SeGe!l me- dmn™*| mm

for the diagonal elements and

Fmn=<cm|h|ch>-gmn®| mn

for the off-diagonal elements. Here, h represents the kinetic energy
- h2N'2/2m operator plus the sum of the attractive coulombic potential energiesto each of

the nuclei - S, Z, €2/|r-R4 and the electrostatic repulsions of the core electrons (i.e., all
those not explicitly treated as vaence in this calculation) around each of the nuclel.
Further reduction of the diagonal Fmmexpression isachieved by:

a. Combining termsin the sum Sg involving orbitals ce on atomic centers other than where

CmSits (atom a) together with the sum of coulomb attractions (which appear in h) over
these same centers:

Se(not on atom a) Ge,e | me
- Sp(not on atom a)<Cnl Zper-Rof L ene
= Sp,e(not center &) (Gee | me - Vmpb )-

This combination represents the net coulombic interaction of |cy{2 with the total electron
density (first sum) and the total attractive positive density (second sum) on atoms other than

the atom on which ¢y Sits.



b. Recognizing
<cnf-W2N22m|cpp + Se m on center a) %ee | me

- <cnl Ze£2/I-Rd Ien = Umm

asthe average value of the atomic Fock operator (i.e., kinetic energy plus attractive colomb
potential to that atom's nucleus plus coulomb and exchange interactions with other

electrons on that atom) for an electron in cyyon the nucleus a. Asin Hiickel theory, the
values of these parameters Umm, which play the role of the Hiickel ay, can be determined
from atomic valence-state ionization potentials and electron affinities. These quantities, in
turn, may be obtained either from experimental data or from the results of ab initio

calculations.
Asaresult, the diagonal F matrix elements are given by

Frym=Umm=* (Gnm- dnnf) | mm + Sb,e(not center @) (Gee | me - Vmp )-
The evaluation of the quantities entering into this expression and that for the off-diagonal
Fmn elements differs from one semi-empirical method to another; thistopic is covered late
in thisAppendix.

Reduction of the off-diagonal elementsinvolving orbitalscmand ¢, on thesame
atom (@) is achieved by assuming that the atomic orbitals have been formed in a manner that
makes the contributions to Fyyn from atom avanish

< cp] - WNZ2m| cp> - <cp] ZEI-RY e n>- ann® | mn

+ Se(on atom @) Je,e <Cnfe|g|CnCe> =0,

and then neglecting, to be consistent with the ZDO assumption, the contributions from
atoms other than atom a

- Sp(not center &) <Cnl Zp €2/Ir-Ro| lcn> + Se( not on atom a) %e,e
<Cnfel|g|cnCe>=0.

Hence, the off-diagonal F matrix elements vanish, Fymn = 0 for cjmand ¢y both on the
same atom ().

The off-diagona F matrix elements coupling orbitals from different atoms (aand b)
are expressed as

Fmn =< cnl - B2N212m| cn> - <c ] Z2|r-Rd [en>

- <cnl Zpe2/Ir-Rol en> - gmn® ! mn = bmn - ann® 1 mn -

Contributions to these elements from atoms other than aand b are neglected, again to be
consistent with the ZDO approximation.

Unlike the Hiickel and extended Hiickel methods, the semi-empirical approaches
that explicitly treat electron-electron interactions give rise to Fock matrix element



expressions that depend on the atomic-orbital-based density matrix gmn . This quantity is
computed using the LCAO-MO coefficients { Cj y of the occupied molecular orbitals from
the previous iteration of the

SmFn,mCim=& Sm<Cn(Cn Cim
equations. In particular,

dmn = Si(occupied) Ni Ci,mCi n,

Onn® = Si(occupied and of spins) Ci,mCi n-

Here, nj isthe number (0, 1, or 2) of electrons that occupy the ith molecular orbital, and

spin s denotesthe spin (a or b) of the orbital whose Fock matrix is being formed. For
example, when studying doublet radicals having K doubly occupied orbitals and one half-

filled orbital (K+1) in which an a electron resides, s isa. In thiscase, nj = 2 for thefirst
K orbitalsand iy = 1 for the last occupied orbital. Moreover, the Fock matrix elements

FmnP for b orbitals contains contributions from gy that are of the form
tnmn® = Si=1,k Ci,mCi n,

while the Fock matrix elements Fyyn@ for a orbitals contains
Omn® = Si:1,K Ci,mGCin + Ck+1,mCk+1,n-

For both Fyn@ and FmnP, coulomb contributions arise as

gmn =2 Si=1K Ci,mCi n + Ck+1,mCk+1.n-

3. Various Semi-Empirical Methods
a. The Pariser-Parr-Pople (PPP) Method for p-Orbitas

In the PPP method, only the p- orbitals and the corresponding p-electrons are
considered. The parametersincluded in the F matrix

Fmm=Umm* (Gmm- dnnf™) | mm * Sb,e(not center a) (Gee | me - Vmp )-

Fmn =bmn - Gmn® 1 mn
are obtained asfollows:
i). The diagonal integrals| a4, which represent the mutual coulomb repulsions between a

pair of electronsin the valence-state orbital labeled a, can be estimated, as suggested by
Pariser, in terms of the valence-state |P and EA of that orbital:



| a'a: IPa' EAa.

Alternatively, these one-center coulomb integrals can be computed from first principles
using Slater or Gaussian type orbitals.

it). The off-diagonal coulomb integrals| a1 are commonly approximated either by the
Mataga-Nishimoto formula:

| ab = €2/(Rap + Xap),

where

Xap=2€%1(1 aa + 1 bp),
or by the Dewar-Ohno-Klopman expression:

e2
\(R2ap + 0.25 € (1/l aa + 1/l pp)?)

|ab:

iii). The valence-state IPs and EA's, Unymare evaluated from experimental dataor from
the results of ab initio calculations of the atomic IPsand EA's.

iv). The bmn integrals are usually chosen to make bond lengths, bond energies, or
electronic excitation energies in the molecule agree with experimental data. The geometry

dependence of bmn, is often parameterized asin Huickel theory bmnp = b%mn Smn, and the
overlap isthen computed from first principles.

V). The Spnot center &) Vmb term, which represents the coulombic attraction of an electron
in cmto the nucleus at center b, is often approximated asZp | me, Where elabels the one p

orbital on center b, and Zy, is the number of p electrons contributed by center b. This
parameterization then permits the attractive interaction for center b to be combined with the
repulsive interaction to give

Sh,e(not center a) (Gee - Zb) | me -

b. All Vaence Electron Methods

The CNDO, INDO, NDDO, MNDO, and MINDO methods all are defined in terms
of an orbital-level Fock matrix with e ements

Finm=Umm=* (Gnm- dnnf) | mm + Sb,e(not center @) (Gee | me - Vmp )-

an = bmn 'g'nnexl mn -

They differ among one another in two ways: (i) in the degree to which they employ the
ZDO approximation to eliminate two-electron integrals, and (ii) in whether they employ



experimental data (MINDO, MNDO, CNDO/S) or results of ab initio one-electron
calculations (CNDO, INDO, NDDO) to define their parameters.

The CNDO and CNDO/S methods apply the ZDO approximation to al integrals,
regardless of whether the orbitals are located on the same atom or not. In the INDO
method, which was designed to improve the treatment of spin densities at nuclear centers
and to handle singlet-triplet energy differences for open-shell species, exchangeintegrals

<CLplglcphc s> involving orbitals c 3 and ¢ on the same atom are retained. Inthe NDDO
approach, the ZDO approximation is applied only to integrals involving orbitals on two or
more different atoms; that is, all one center integrals are retained. The text Approximate
Molecular Orbital Theory by J. A. Pople and D. L. Beveridge, McGraw-Hill, New Y ork
(1970) gives atreatment of several of these semi-empirical methods beyond the
introduction provided here.

To illustrate the differences among the various approaches and to clarify how their
parameters are obtained, let us consider two specific and popular choicess CNDO/2 and
MINDO.

i. The CNDO/2 and CNDO/S Models

In the CNDO/2 approach as originaly implemented, ab initio (orbital-level)
calculated values of the energies mentioned below are used in determining the requisite
parameters. In the later CNDO/S method, experimental values of these energies are
employed. Briefly, in any CNDO method:

1). The diagonal integrals| 4, Which represent the mutual coulomb repulsions between a
pair of electronsin the valence-state orbital 1abeled a, are calculated in terms of the valence-
state IP and EA of that orbital:

| a1a: IPa' EAa.

2). The valence-state IP's and EA's, and hence the Umymare evaluated from the results of
abinitio calculations (CNDO/2) or experimental measurement (CNDO/S) of the atomic
IPsand EA's. The expressions used are:

-IPA=Uga+(Za-1) | aa
for orbitalscg and
-EAA=Upp +Zal bp,
for orbitalscp. Here Zp isthe effective core charge of atom A (the nuclear charge minus

the number of "core" electrons not explicitly treated). For first row atoms, several Ug 4 and
| aaVvalues are tabulated below (all quantitiesarein eV).

H Li Be B C N O F
Uss -13.6 -5.00 -15.4 -30.37 | -50.69 | -70.09 | -101.3 | -129.5
Upp -3.67 -12.28 -24.7 -41.53 | -57.85 | -84.28 | -108.9
| AA 12.85 3.46 5.95 8.05 10.33 11.31 13.91 15.23




3). The off-diagonal coulomb integrals| a1, are commonly approximated either by the
Mataga-Nishimoto formula:

| ab=€%(Rap + Xap),

where
Xabh = 2e2 /(] aa *!bb),
or by the Dewar-Ohno-Klopman expression:

: e2
I a1b - .
\(R2ap + 0.25 e (1l aa + 1/l bp)?)

4) As in PPP theory, the term Sbye(no’[ center a) (%’e | me - Vmb ) |S appt’OXImated by
Sh,e(not center a) (Gee - Zb) | me » Where Zp, isthe number of valence electrons contributed
by atom b, and ce is one of the valence el ectrons on atom b.

5. The bmn parameters are approximated as bmn = Smn (ba+ bp),

where Sy, isthe overlap between the orbitalscmand ¢y, , and by and b are atom-
dependent parameters given below for first row atoms:

H Li Be B C N O F

beV) -9 -9 -13 -17 -21 -25 -31 -39

ii. The INDO (and MINDO-Type) Methods

In these methods, the specification of the parameters entering into Fr, y iscarried
out in the same fashion as in the CNDO/2 approach, except that:

1. The ZDO approximation is made only for two-center integrals; one-center coulomb | 4
= <CLplglc £p> and exchange

| ab® = <cLplglchCa> integrals are retained. In the INDO approach, the values of these
single-atom integrals are determined by requiring the results of the calculation, performed at
the Fock-like orbital level, to agree with results of ab initio Fock-level calculations. In the
MINDO approach, experimental electronic spectra of the particular atom are used to
determine these parameters. The "diagona" values| 5 5 are determined, as indicated earlier,
from valence-state energies (ab initio for INDO and experimental for MINDO) of the atom

A onwhichcgresides.

2. The values of the U 5 parameters are determined according to the following equations:

Us,s =-05 (l PH + EAH) -0.51 S,S

for Hydrogen's 1s orbital;



Uss = -0.5(1Ps + EAg) -(Za-0.5) | g5 +1/6 (Za-1.5) G1(s,s)
for Boron through Fluorine's 2s orbitals; and
Up,p = -0.5(1Pp + EAp) -(Za-0.5) | pp +2/25 (Za-1.5) F2(p,p) +
1/3 GL(p,p).

Here, F2 and G represent the well known Slater-Condon integrals in terms of which the
coulomb and exchange integrals can be expressed:

¥
O¥
Fk(nl,n'1"y = Q8 [Ru(P [Rupr(r )R 2rKirsk+1 r2r'2 dr dr
0

0

+

¥
GK(nl,n'1") = Q8 |Ru(NRy (NP 2r<Kirsk+1 r2r'2 dr dr
0

o OO0~

and Zp isthe effective core charge (the nuclear charge minus the number of "core"
electrons not explicitly treated in the calculation) of the atom A on which the orbitalsin

question reside. In the definitions of the integrals, r< and r> represent, respectively, the
smaller and larger of r andr'. Again, abinitio calculationa dataisused inthe INDO
method, and experimenta datain the MINDO method to fix the parameters entering these
expressions.

D. Summary

As presented, semi-empirica methods are based on a single-configuration picture of
electronic structure. Extensions of such approaches to permit consideration of more than a
single important configuration have been made (for excellent overviews, see Approximate
Molecular Orbital Theory by J. A. Pople and D. L. Beveridge, McGraw-Hill, New Y ork

(1970) and Vaence Theory, 2" Ed., by J. N. Murrell, S. F. A. Kettle, and J. M. Tedder,
John Wiley, London (1965)). Pople and co-workers preferred to use data from ab initio
calculationsin developing sets of parameters to use in such methods because they viewed
semi-empirical methods as approximations to ab initio methods. Others use experimental
data to determine parameters because they view semi-empirical methods as models of
mother nature.




