
Quantum Mechanical Operators and Commutation C

I. Bra-Ket Notation

It is conventional to represent integrals that occur in quantum mechanics in a
notation that is independent of the number of coordinates involved. This is done because
the fundamental structure of quantum chemistry applies to all atoms and molecules,
regardless of how many electronic and atom-center coordinates arise. The most commonly
used notation, which is referred to as 'Dirac' or 'bra-ket' notation, can be summarized as
follows:

A. The wavefunction itself Ψ is represented as a so-called 'ket' |Ψ>.

B. The complex conjugate Ψ* of Ψ is represented as a 'bra' <Ψ|; the complex conjugation
is implied by writing < |.

C. The integral, over all of the N coordinates (q1...qN) on which Ψ depends, of the

product of Ψ* and Ψ is represented as a so-called 'bra-ket' or bracket:

 ⌡⌠
 

 Ψ* Ψ dq1...dqN   = < Ψ | Ψ>.

By convention, the two vertical lines that touch when < Ψ | is placed against | Ψ > are
merged into a single line in this notation.

D. Integrals involving one function (Ψ*) and either another function (Φ) or the result of an

operator A acting on a function (e.g., AΨ or AΦ) are denoted as follows:



⌡⌠
 

 

Ψ* Φ dq1...dqN  = < Ψ | Φ >

⌡⌠
 

 

Ψ* AΨ dq1...dqN  = < Ψ | AΨ > = < Ψ | A | Ψ >

⌡⌠
 

 

Ψ* AΦ dq1...dqN  = < Ψ | AΦ > = < Ψ | A | Φ >

⌡⌠
 

 

(AΨ)* Φ dq1...dqN  = < AΨ | Φ >.

It is merely convention that an 'extra' vertical line (e.g., that appearing in < Ψ | A | Φ >) is
inserted when an operator acting on the ket function appears in the integral.

II. Hermitian Operators

In quantum mechanics, physically measurable quantities are represented by
hermitian operators.  Such operators {R} have matrix representations, in any basis
spanning the space of functions on which the {R} act, that are hermitian:

<φk|R|φ1> = <φ1|R|φk>* = <Rφk|φl>.

The equality of the first and third terms expresses the so-called 'turn-over rule'; hermitian
operators can act on the function to their right or, equivalently, on the function to their left.

Operators that do not obey the above identity are not hermitian. For such operators,
it is useful to introduce the so-called adjoint operator as follows. If for the operator R,
another operator R+ can be found that obeys

 <φk|R|φ1> = <R+ φk|φl> = <φ1|R+|φk>*,

for all {φk} within the class of functions on which R and R+ operate, then R+ is defined to
be the    adjoint     of R. With this definition, it should be clear that hermitian operators are self-
adjoint (i.e., they obey R+= R).

The hermiticity property guarantees that the eigenvalues {λm} of such operators are
real numbers (i.e., not complex) and that the corresponding eigenfunctions {fm}, or their

representations {Vmk} within the {φk} basis

fm = Σk Vmk φk,

corresponding to different eigenvalues are orthonormal and that the eigenfunctions
belonging to degenerate eigenvalues can be made orthonormal.

To prove these claims, start with Rφk = λkφk.  Multiplying on the left by the

complex conjugate of φk and integrating gives <φk|R|φk> = λk <φk|φk>. Taking the



complex conjugate of this equation and using the Hermiticity property <φk|R|φ1> =

<φ1|R|φk>* (applied with k=l) gives λk* = λk.

The orthogonality proof begins with Rφk = λkφk, and Rφl = λlφl. Multiplying the

first of these on the left by <φl| and the second by <φk|

gives <φl|R|φk> = λk <φl|φk> and <φk|R|φl> = λl <φk|φl>. The complex conjugate of the

second reads <φk|R|φl>* = λl <φk|φl>*; using the Hermiticity property this reduces to

<φl|R|φk> = λl <φl|φk>. If λk ≠ λl, this result can be consistent with <φl|R|φk> = λk

<φl|φk> only if <φl|φk> vanishes.

III. Meaning of the Eigenvalues and Eigenfunctions

In quantum mechanics, the eigenvalues of an operator represent the     only     numerical
values that can be observed if the physical property corresponding to that operator is
measured. Operators for which the eigenvalue spectrum (i.e., the list of eigenvalues) is
discrete thus possess discrete spectra when probed experimentally.

For a system in a state     ψ       that is an eigenfunction      of R

R ψ = λψ ,

measurement of the property corresponding to R will yield the value λ.  For example, if an

electron is in a 2p-1 orbital and L2  is measured, the value L(L+1) h2 = 2h2 (and only this
value) will be observed; if Lz is measured, the value -1h (and only this value) will be

observed. If the electron were in a 2px orbital and L2  were measured, the value 2h2 will be
found; however, if Lz is measured, we can not say that only one value will be observed
because the 2px orbital is not an eigenfunction of Lz (measurements in such non-
eigenfunction situations are discussed below).

   In general   ,  if the property R is measured, any one of the eigenvalues {λm} of the
operator R may be observed. In a large number of such measurements (i.e., for an
ensemble of systems all in states described by ψ that may or may not itself be an

eigenfunction of R), the probability or frequency of observing the particular eigenvalue λm

is given by |Cm|2, where Cm  is the expansion coefficient of ψ in the eigenfunctions of R:

ψ = Σµ  Cm fm.

In the special case treated earlier in which ψ is an eigenfunction of R, all but one of the Cm

vanish; hence the probability of observing various λm values is zero except for the     one   
state for which Cm is non-zero.

For a measurement that results in the observation of the particular value λm , a

   subsequent     measurement of R on systems just found to have eigenvalue λm will result,

with 100% certainty, in observation of this    same     value λm . The quantum mechanical
interpretation of this experimental observation it to say that the act of measuring the
property belonging to the operator R causes the wavefunction to be altered. Once this



measurement of R is made, the wavefunction is no longer ψ; it is now fm for those species

for which the value λm is observed.
For example (this example and others included in this Appendix are also treated

more briefly in Chapter 1) , if the initial ψ discussed above were a so-called superposition
state of the form

ψ = a (2p0 + 2p-1 - 2p1) + b (3p0 - 3p-1), then:

A. If L2  were measured, the value 2h2 would be observed with probability 3 |a|2 + 2 |b|2 =
1, since all of the non-zero Cm coefficients correspond to p-type orbitals for this ψ. After

said measurement, the wavefunction would still be this same ψ because this entire ψ is an

eigenfunction of L2 .

B. If Lz were measured for this

ψ = a (2p0 + 2p-1 - 2p1) + b (3p0 - 3p-1),

the values 0h, 1h, and -1h would be observed (because these are the only functions with
non-zero Cm coefficients for the Lz operator) with respective probabilities | a |2 + | b |2, | -a

|2, and | a |2 + | -b |2 .

C.     After     Lz were measured, if the sub-population for which -1h had been detected were

subjected to measurement of L2  the value 2h2 would certainly be found because the     new     
wavefunction

ψ' = {-  a 2p-1 - b 3p-1} (|a|2 + |b|2)-1/2

is still an eigenfunction of L2  with this eigenvalue.

D. Again after Lz were measured, if the sub-population for which -1h
had been observed and for which the wavefunction is now

ψ' = {-  a 2p-1 - b 3p-1} (|a|2 + |b|2)-1/2

were subjected to measurement of the energy (through the Hamiltonian operator), two
values would be found. With probability
| -a |2 (|a|2 + |b|2)-1 the energy of the 2p-1 orbital would be observed; with probability | -b |2

(|a|2 + |b|2)-1 , the energy of the 3p-1 orbital would be observed.

The     general observation      to make is that, given an initial normalized ψ function, and

a physical measurement (with operator R) to be made, one first must express ψ as a linear
combination of the complete set of eigenfunctions of that R:

ψ = Σm  Cm fm.



The coefficients Cm tell, through |Cm|2, the probabilities (since ψ is normalized to unity) of

observing each of the R eigenvalues λm when the measurement is made. Once the
measurement is made, that sub-population of the sample on which the experiment was run
that gave the particular eigenvalue, say λp, now have a wavefunction that no longer is the

above ψ; their wavefunction now is fp.

IV. Experiments Do Not Prepare Only Eigenstates

The above remarks should     not     be interpreted to mean that experiments are limited
to preparing only eigenstates. Just as one can 'pluck' a violin string  or 'pound' a drum
head in any manner, experiments can prepare a system in states that are not pure
eigenfunctions (i.e., states that do not contain just one eigenfunction in their expansion).
However,     no matter how the state is prepared    ,  i   t can be interpreted    ,  via expansion    in the
   complete set of eigenfunctions     of the operator(s) whose properties are to be measured, as a
superposition of eigenfunctions. The superposition amplitudes provide the probabilities of
observing each eigenfunction when the measurement is made.

For example, after the drum head has been hit, its shape will evolve spatially and in
time in a manner that depends on how it was 'prepared' by the initial blow. However, if
one carries out an experiment to detect and frequency-analyze the sound that emanates from
this drum, thereby measuring differences in the eigen-energies of the system, one finds a
set of discrete (quantized) frequencies {ωk} and corresponding amplitudes {Ak}.
Repeating this experiment after a different 'blow' is used to prepare a different initial state
of the drum head, one finds the    same     frequencies {ωk} but     different     amplitudes {Bk}.

The quantum mechanics interpretation of these observations is that the initial state of
the drum head is a superposition of eigenstates:

ψ = Σn Cn fn.

The {Cn} amplitudes are determined by how the drum head is 'prepared' in the blow that

strikes it. As time evolves, ψ progresses according to the time-dependent Schrödinger
equation:

ψ(t) = Σn Cn fn exp(- i En t/ h).

The frequencies emitted by this system will depend on the probability |Cn|2 of the system
being in a particular eigenstate fn and the energy  En of each eigenstate.

The frequency spectrum measured for the drum head motion is therefore seen to
have variable amplitudes for each observed 'peak' because the |Cn|2 vary depending on
how the drum head was prepared. In contrast, the frequencies themselves are not
characteristic of the preparation process but are properties of the drum head itself; they
depend on the eigen-energies of the system, not on how the system is prepared.

This distinction between the characteristic eigenstates of the system with their
intrinsic properties and the act of preparing the system in some state that may be a
superposition of these eigenstates is essential to keep in mind when applying quantum
mechanics to experimental observations.



V. Operators That Commute and the Experimental Implications

Two hermitian operators that commute

[R , S] = RS  - SR = 0

can be shown to possess    complete sets     of simultaneous eigenfunctions. That is, one can
find complete sets of functions that are  eigenfunctions of both R and of S.

The symbol [R , S] is used to denote what is called the    commutator    of the operators
R and S. There are several useful identities that can be proven for commutators among
operators A, B, C, and D, scalar numbers k, and integers n. Several of these are given as
follows:

[A,An] = 0
[kA,B] = [A,kB] = k[A,B]
[A,B+C] = [A,B] + [A,C]
[A+B,C] = [A,C] + [B,C]
[A+B,C+D] = [A,C] + [A,D] + [B,C] + [B,D]
[A,BC] = [A,B]C + B[A,C]
[AB,C] = [A,C]B + A[B,C]
[AB,CD] = [A,C]DB + C[A,D]B + A[B,C]D + AC[B,D].

The physical implications of the commutation of two operators are very important
because they have to do with what pairs of measurements can be made without interfering
with one another. For example, the fact that the x coordinate operator x= x and its
momentum operator px  = -ih ∂/∂x do     not     commute results in the well known Heisenberg

uncertainty relationship ∆x ∆px ≥ h/2  involving measurements of x  and px  .

There are two distinct cases that need to be addressed:

A. If the two operators act on     different coordinates     (or, more generally, on different
sets of coordinates), then they obviously commute. Moreover, in this case, it is
straightforward to find the complete set of eigenfunctions of both operators; one simply
forms a product of any eigenfunction (say fk) of R and any eigenfunction (say gn) of S.
The function fk gn is an eigenfunction of both R and S:

R fk gn = gn (R fk) = gn (λ fk) = λ gn fk = λ fk gn ;

S fk gn = fk (S gn) = fk (µ gn) = µ fk gn .

In these equations use has been made of the fact that gn and fk are functions of different
sets of coordinates that S and R, respectively, act upon.

Product functions such as fk gn yield predictable results when measurements are

performed. If the property corresponding to R is measured, the value λ is observed,    and    
the wavefunction remains
fk gn . If S is measured, the value µ is observed, and the wavefunction remains fk gn . For

example, the two Hermitian operators  -i ∂/∂φ and -i ∂/∂r clearly commute. An
eigenfunction of



-i ∂/∂φ is of the form exp(iaφ) and an eigenfunction of -i ∂/∂r is of the form exp(ibr). The

    product     exp(iaφ) exp(ibr) is an eigenfunction of both -i ∂/∂φ and -i ∂/∂r. The
corresponding eigenvalues are a and b, respectively; only these values will be observed if
measurements of the properties corresponding to -i ∂/∂φ and -i ∂/∂r are made for a system

whose wavefunction is exp(iaφ) exp(ibr).

B. If the operators R and S act on the    same  coordinates     yet still commute, the
implications of their commutation are somewhat more intricate to detail.

As a first step, consider the functions {gn} that are eigenfunctions of S with

eigenvalues {µn}. Now,  act on gn with the SR operator and use the fact that SR = RS to
obtain

 S R gn =  RS gn .

Because the {gn} are eigenfunctions of S having eigenvalues {µn}, this equation further
reduces to:

 S R gn =  R µngn =  µn R gn .

This is a     key result   .  It shows that the function (R gn) is itself    either     an eigenfunction of S
having the same eigenvalue that gn has     or     it vanishes.

If R gn vanishes,  gn clearly is an eigenfunction of R (since R gn = 0 gn) and of S.
On the other hand, if R gn is non-vanishing, it must be an eigenfunction of S having the

same eigenvalue (µn) as gn. If this eigenvalue is non-degenerate (i.e., if gn is the only

function with eigenvalue µn), then R gn must be proportional to gn itself:

R gn = cn gn.

This also implies that gn is an eigenfunction of both R and of S.
Thus far, we can say that functions which are eigenfunctions of S belonging to

    non-degenerate     eigenvalues must also be eigenfunctions of R. On the other hand, if the µn

eigenvalue is degenerate (i.e., there are ω such functions gn, gn', gn'', etc. that are S-

eigenfunctions with the same µn as their eigenvalue), all that can be said is that R gn is

some combination of this ω-fold degenerate manifold of states:

R gn = Σn' cn,n' gn'

where the sum over n' runs only over the states with S-eigenvalues equal to µn. This same
conclusion can be reached no matter which particular state gn among the degenerate
manifold we begin with. Therefore, the above equation holds for    all     {gn} that belong to
this degenerate group of states.

The constants cn,n' form a square (since we act on all ω states and produce

combinations of ω states) Hermitian (since R is Hermitian) matrix; in fact, cn,n' forms the

matrix representation of the operator R within the ω-dimensional space of orthonormal
functions {gn}. As with all Hermitian matrices, a unitary transformation can be employed



to bring it to diagonal form. That is, the ω orthonormal {gn} functions can be unitarily
combined:

Gp = Σn Up,n gn

to produce ω new orthonormal functions {Gp} for which the corresponding matrix
elements cp,p', defined by

R Gp = Σn Up,n R gn = Σn,n' Up,n cn,n' gn

= Σp' Σn,n' Up,n cn,n' U*n',p' Gp' = Σp' cp,p' Gp'

are diagonal

R Gp = cp,p Gp.

This shows that the set of functions (the Gp in this degenerate case) that are eigenfunctions
of S can also be eigenfunctions of R.

C. Summary

In summary, we have shown that if R and S are operators that act on the same set
of coordinates (e.g., -i∂/∂x and x2 or ∂2/∂x2 and

-i∂/∂x), then an eigenfunction of R (denoted fk and having eigenvalue λk) must either (i) be
eigenfunction of S (if its R-eigenvalue is non-degenerate) or (ii)  be a member of a
degenerate set of R eigenfunctions that can be combined among one another to produce
eigenfunctions of S.

An example will help illustrate these points. The px, py and pz orbitals are

eigenfunctions of the L2  angular momentum operator with eigenvalues equal to L(L+1) h2

= 2 h2. Since L2  and Lz commute and act on the same (angle) coordinates, they possess a
complete set of simultaneous eigenfunctions. Although the px, py and pz orbitals are     not   
eigenfunctions of Lz , they can be combined (as above to form the Gp functions) to form

three new orbitals: p0 = pz, p1= 2-1/2 [px + i py], and p-1= 2-1/2 [px - i py] that are still

eigenfunctions of L2  but are now eigenfunctions of Lz also (with eigenvalues 0h, 1h, and -
1h, respectively).

It should be mentioned that if two operators do not commute, they may still have
   some    eigenfunctions in common, but they will not have a complete set of simultaneous
eigenfunctions. For example, the Lz and Lx components of the angular momentum operator
do not commute; however, a wavefunction with L=0 (i.e., an S-state) is an eigenfunction
of both operators.

D. Experimental Significance

We use an example to illustrate the importance of two operators commuting to
quantum mechanics' interpretation of experiments. Assume that an experiment has been
carried out on an atom to measure its total angular momentum L2. According to quantum
mechanics, only values equal to L(L+1) h2 will be observed. Further assume, for the



particular experimental sample subjected to observation, that values of L2 equal to 2 h2  and
0 h2 were detected in relative amounts of 64 % and 36 % , respectively. This means that the
atom's original wavefunction ψ could be represented as:

ψ = 0.8 P + 0.6 S,

where P and S represent the P-state and S-state components of ψ. The squares of the
amplitudes 0.8 and 0.6 give the 64 % and 36 % probabilities mentioned above.

Now assume that a subsequent measurement of the component of angular
momentum along the lab-fixed z-axis is to be measured for that sub-population of the
original sample found to be in the P-state. For that population, the wavefunction is now a
pure P-function:

ψ' = P.

However, at this stage we have no information about how much of this ψ' is of m = 1, 0,
or -1, nor do we know how much 2p, 3p, 4p, ... np component this state contains.

Because the property corresponding to the operator Lz is about to be measured, we

express the above ψ' in terms of the eigenfunctions of Lz:

ψ' = P = Σm=1,0,-1 C'm Pm.

When the measurement of L z is made, the values 1 h, 0 h, and -1 h will be observed with

probabilities given by |C'1|2, |C'0|2, and |C'-1|2, respectively. For that sub-population found
to have, for example, Lz equal to -1 h,  the wavefunction then becomes

ψ' ' = P-1.

At this stage, we do not know how much of 2p-1, 3p -1, 4p -1, ... np-1 this wavefunction
contains. To probe this question another subsequent measurement of the energy
(corresponding to the H operator) could be made. Doing so would allow the amplitudes in
the expansion of the above ψ' '= P-1

ψ' '= P-1 = Σn C' 'n nP-1

to be found.
The kind of experiment outlined above allows one to find the content of each

particular component of an initial sample's wavefunction. For example, the original
wavefunction has
0.64 |C''n|2 |C'm|2   fractional content of the various nPm functions.

Let us consider another experiment in which an initial sample (with wavefunction
ψ) is first subjected to measurement of Lz and then subjected to measurement of L2 and
then of the energy. In this order, one would first find  specific values (integer multiples of
h) of Lz and one would express ψ as

ψ = Σm Dm ψm.



At this stage, the nature of each ψm is unknown (e.g., the ψ1 function can contain np1,

n'd1, n''f1, etc. components); all that is known is that ψm has m h as its Lz value.

Taking that sub-population (|Dm|2 fraction) with a particular m h value for Lz and

subjecting it to subsequent measurement of L2 requires the current wavefunction ψm to be
expressed as

ψm = ΣL DL,m ψL,m.

When L2 is measured the value L(L+1) h2 will be observed with probability |Dm,L|2, and
the wavefunction for that particular sub-population will become

ψ' '  = ψL,m.

At this stage, we know the value of L and of m, but we do not know the energy of the
state. For example, we may know that the present sub-population has L=1, m=-1, but we
have no knowledge (yet) of how much 2p-1, 3p -1, ... np-1 the system contains.

To further probe the sample, the above sub-population with L=1 and m=-1 can be
subjected to measurement of the energy. In this case, the function ψ1,-1 must be expressed
as

ψ1,-1 = Σn Dn' '  nP-1.

When the energy measurement is made, the state nP-1 will be found |Dn' ' |2  fraction of the
time.

We now need to explain how the fact that Lz ,  L2 ,  and H all commute with one
another (i.e., are      mutually  commutative   )  makes the series of measurements described
above more straightforward than if these operators did not commute. In the first
experiment, the fact that they are mutually commutative allowed us to expand the 64 %
probable L2  eigenstate with L=1 in terms of functions that were eigenfunctions of the
operator for which measurement was    about     to be made without destroying our knowledge
of the value of L2. That is, because L2  and Lz can have simultaneous eigenfunctions, the L

= 1 function can be expanded in terms of functions that are eigenfunctions of     both      L2  and
Lz. This in turn, allowed us to find experimentally the sub-population that had, for
example a -1 h value of Lz while retaining knowledge that the state    remains     an eigenstate of

L2  (the state at this time had L = 1    and      m = -1 and was denoted
P-1) Then, when this P-1 state was subjected to energy measurement, knowledge of the

energy of the sub-population could be gained      without     giving up knowledge of the L2 and
Lz information; upon carrying out said measurement, the state became nP-1.

In contrast, if (hypothetically) L2  and Lz  did not commute, the L=1 function
originally detected with 64 % probability would be altered by the subsequent Lz

measurement in a manner that     destroys     our knowledge of L2. The P function could still
have been expanded in terms of the eigenfunctions of the property about to be probed (Lz)

P = Σm=1,0,-1 C'm ψm.



However, because L2  and Lz do not commute in this hypothetical example, the states ψm

that are eigenfunctions of Lz will not, in general, also be eigenfunctions of L2 . Hence,
when Lz is measured and a particular value (say -1 h) is detected, the wavefunction
becomes

ψ' ' '  = ψ-1,

which is     no longer     an eigenfunction of L2  .
The essential observations to be made are:

1. After the first measurement is made (say for operator R), the wavefunction becomes an
eigenfunction of R with a well defined R-eigenvalue (say λ): ψ = ψ(λ).

2. The eigenfunctions of the second operator S (i.e., the operator corresponding to the
measurement about to be made) can be taken to also be eigenfunctions of R if R and S
commute. This then allows ψ(λ) to be expanded in terms of functions that are both R-

eigenfunctions (with eigenvalue λ) and S-eigenfunctions (with various eigenvalues µn):

ψ(λ) = Σn Cn ψ(λ,µn). Upon measurement of S, the wavefunction becomes one of these

ψ(λ,µn) functions. When the system is in this state, both R- and S- eigenvalues are known

precisely; they are λ and µn.

3. The eigenfunctions of the second operator S (i.e., the operator corresponding to the
measurement about to be made) can     not     be taken to also be eigenfunctions of R if R and S
do not commute. The function ψ(λ) can still be expanded in terms of functions that are both

S-eigenfunctions (with various eigenvalues µn): ψ(λ) = Σn Cn ψ(µn). However, because R

and S do not commute, these ψ(µn) functions are not, in general, also R-eigenfunctions;
they are only S-eigenfunctions. Then, upon measurement of S, the wavefunction becomes
one of these ψ(µn) functions. When the system is in this state, the S- eigenvalue is known

precisely; it is µn. The R-eigenvalue is no longer specified. In fact, the new state ψ(µn)
may contain components of all different R-eigenvalues, which can be represented by
expanding ψ(µn) in terms of the R-eigenfunctions: ψ(µn) = Σk Dk ψ(λk). If R were

measured again, after the state has been prepared in ψ(µn), the R-eigenvalues {λk} would

be observed with probabilities {|Dk|2}, and the wavefunction would, for these respective

sub-populations, become ψ(λk).
It should now be clear that the act of carrying out an experimental measurement

disturbs the system in that it causes the system's wavefunction to become an eigenfunction
of the operator whose property is measured. If two properties whose corresponding
operators commute are measured, the measurement of the second property does
    not    destroy knowledge of the first property's value gained in the first measurement. If the
two properties do not commute, the second measurement does destroy knowledge of the
first property's value. It is thus often said that 'measurements for operators that do not
commute interfere with one another'.


