Chapter 8. Chemical Dynamics

Chemical dynamicsisa field in which scientists study the rates and mechanisms
of chemical reactions. It also involves the study of how energy is transferred among
molecules as they undergo collisions in gas-phase or condensed-phase environments.
Therefore, the experimental and theoretical tools used to probe chemical dynamics must
be capable of monitoring the chemical identity and energy content (i.e., electronic,
vibrational, and rotational state populations) of the reacting species. Moreover, because
the rates of chemical reactions and energy transfer are of utmost importance, these tools
must be capable of doing so on time scales over which these processes, which are often
very fast, take place. Let us begin by examining many of the most commonly employed

theoretical models for simulating and under standing the processes of chemical dynamics.

I. Theoretical Toolsfor Studying Chemical Change and Dynamics

A. Transition State Theory

The most successful and widely employed theoretical approach for studying reaction
rates involving species that are undergoing reaction at or near thermal-equilibrium
conditions is the transition state theory (TST) of Eyring. Thiswould not be a good way to

model, for example, photochemical reactions in which the reactants do not reach thermal



equilibrium before undergoing significant reaction progress. However, for most thermal
reactions, it is remarkably successful.

In this theory, one views the reactants as undergoing collisions that act to keep all of
their degrees of freedom (tranglational, rotational, vibrational, electronic) in thermal
equilibrium. Among the collection of such reactant molecules, at any instant of time,
some will have enough internal energy to access atransition state (TS) on the Born-
Oppenheimer ground state potential energy surface. Within TST, the rate of progress
from reactants to products is then expressed in terms of the concentration of species that
exist near the TS multiplied by the rate at which these species move through the TS
region of the energy surface.

The concentration of species at the TSis, in turn, written in terms of the equilibrium
constant expression of statistical mechanics discussed in Chapter 7. For example, for a
bimolecular reaction A + B ® C passing through a TS denoted AB*, one writes the
concentration (in molecules per unit volume) of AB* speciesin terms of the

concentrations of A and of B and the respective partition functions as

[AB*] = (Oae-/V)A (A/V)(0e/V)} [A] [B].



Thereis, however, one aspect of the partition function of the TS species that is specific to
thistheory. The g,g. contains al of the usual translational, rotational, vibrational, and
electronic partition functions that one would write down, as we did in Chapter 7, for a
conventional AB molecule except for one modification. It does not contain a{exp(-hn
12KT)/(1- exp(-hn,/KT))} vibrational contribution for motion along the one internal

coordinate corresponding to the reaction path.
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Figure 8.1 Typical Potential Energy Surface in Two Dimensions Showing Local Minima,

Transition States and Paths Connecting Them.

In the vicinity of the TS, the reaction path can be identified as that direction along which
the PES has negative curvature; along all other directions, the energy surfaceis positively
curved. For example, in Fig. 8.1, areaction path begins at Transition Structure B and is

directed "downhill". More specifically, if one knows the gradients { (TE/s«) } and



Hessian matrix elements{ Hj x = T°E/T51s} of the energy surface at the TS, one can

express the variation of the potential energy along the 3N Cartesian coordinates{s} of

the molecule as follows;

E (s) = E(0) + Sk (TE/Ts) s+ V2 §jk§ Hjksc + ..

where E(0) isthe energy at the TS, and the {s.} denote displacements away fromthe TS
geometry. Of course, at the TS, the gradients all vanish because this geometry
corresponds to a stationary point. As we discussed in the Background Material, the
Hessian matrix H,, has 6 zero eigenval ues whose eigenvectors correspond to overall
trandation and rotation of the molecule. This matrix has 3N-7 positive eigenvalues whose
eigenvectors correspond to the vibrations of the TS species, as well as one negative
eigenvalue. The latter has an eigenvector whose components{s,} along the 3N Cartesian
coordinates describe the direction of the reaction path asit beginsitsjourney fromthe TS
backward to reactants (when followed in one direction) and onward to products (when
followed in the opposite direction). Once one moves a small amount along the direction
of negative curvature, the reaction path is subsequently followed by taking infinitesimal
“steps’ downhill along the gradient vector g whose 3N components are (TE/{s,). Note
that once one has moved downhill away from the TS by taking theinitial step along the
negatively curved direction, the gradient no longer vanishes because one is no longer at
the stationary point.

Returning to the TST rate calculation, one therefore is able to express the

concentration [AB*] of speciesat the TS in terms of the reactant concentrations and a



ratio of partition functions. The denominator of this ratio contains the conventional
partition functions of the reactant molecules and can be evaluated as discussed in Chapter
7. However, the numerator contains the partition function of the TS species but with one
vibrational component missing (i.€., G, = P =y an.7 { €XP(-hn; /2KT)/(1- exp(-hn,/KT))}).
Other than the one missing q,,,, the TS's partition function is also evaluated as in Chapter
7. The motion along the reaction path coordinate contributes to the rate expression in
terms of the frequency (i.e., how often) with which reacting flux crossesthe TS region
given that the system isin near-thermal equilibrium at temperature T.

To compute the frequency with which trajectories cross the TS and proceed
onward to form products, one imagines the TS as consisting of a narrow region along the
reaction coordinate s; the width of this region we denote ds. We next ask what the
classical weighting factor isfor a collision to have momentum p, along the reaction
coordinate. Remembering our discussion of such mattersin Chapter 7, we know that the
momentum factor entering into the classical partition function for trangation along the
reaction coordinate is (1/h) exp(-p&/2nkT) dp,. Here, mis the mass factor associated with
the reaction coordinate s. We can express the rate or frequency at which such trajectories
pass through the narrow region of width ds as (p/nds), with p/mbeing the speed of
passage (cm s*) and 1/d, being the inverse of the distance that defines the TS region. So,
(pJ/nds) has units of s*. In summary, we expect the rate of trajectories moving through

the TS region to be

(1/h) exp(-p/2nKT) dp, (pdndd).



However, we still need to integrate this over all values of p, that correspond to enough
energy pZ/2mto access the TS's energy, which we denote E*. Moreover, we have to
account for the fact that it may be that not all trajectories with kinetic energy equal to E*
or greater pass on to form product molecules; some trajectories may pass through the TS
but later recross the TS and return to produce reactants. Moreover, it may be that some
trajectories with kinetic energy along the reaction coordinate less than E* can react by
tunneling through the barrier.

The way we account for the facts that a reactive trgjectory must have at least E* in
energy along s and that not all trajectories with this energy will react isto integrate over
only values of p greater than (2nE*)*? and to include in the integral a so-called
transmission coefficient k that specifies the fraction of tragjectories crossing the TS that
eventually proceed onward to products. Putting all of these pieces together, we carry out

the integration over p, just described to obtain:

00(1/h) k exp(-p/2nkT) (pJ/nd) ds dp,

where the momentum isintegrated from p, = (2nE*)"? to ¥ and the s-coordinate is
integrated only over the small region ds. If the transmission coefficient is factored out of
theintegral (treating it as amultiplicative factor), the integral over p, can be done and

yields the following:

k (KT/h) exp(-E*/KT).



The exponentia energy dependence is usually then combined with the partition function
of the TS species that reflect this species’ other 3N-7 vibrational coordinates and

momenta and the reaction rate is then expressed as

Rate = k (KT/h) [AB*] =k (KT/h) (Qae- /V){ (A0/V)(Ge/V)} [A] [B].

Thisimpliesthat the rate coefficient k.. for this bimolecular reaction is given in terms of

molecular partition functions by:

Krae = K KT/N (Qae-/V)H (00/V)(06/V)}

which is the fundamental result of TST. Once again we notice that ratios of partition
functions per unit volume can be used to express ratios of species concentrations (in
number of molecules per unit volume), just as appeared in earlier expressions for
equilibrium constants as in Chapter 7.

The above rate expression undergoes only minor modifications when
unimolecular reactions are considered. For example, in the hypothetical reaction A ® B

viathe TS (A*), one obtains

Krae = K KT/ {(Q2./V)I(QW/V)},

where again g,. is a partition function of A* with one missing vibrational component.



Before bringing this discussion of TST to aclose, | need to stress that this theory is
not exact. It assumes that the reacting molecules are nearly in thermal equilibrium, so it is
less likely to work for reactions in which the reactant species are prepared in highly non-
equilibrium conditions. Moreover, it ignores tunneling by requiring al reactions to
proceed through the TS geometry. For reactionsin which alight atoms(i.e., anH or D
atom) istransferred, tunneling can be significant, so this conventional form of TST can
provide substantial errorsin such cases. Nevertheless, TST remains the most widely used
and successful theory of chemical reaction rates and can be extended to include tunneling

and other corrections as we now illustrate.

B. Variational Transition State Theory

Within the TST expression for the rate constant of a bi-molecular reaction, K, =k
KT/h (Qag-/V){ (0./V)(gs/V)} Or of auni-molecular reaction, k.= k kT/h
{(g:/V)I(qa/V)}, the height (E*) of the barrier on the potential energy surface
appearsin the TS species’ partition function q,g. Or q,., respectively. In particular,
the TS partition function contains a factor of the form exp(-E*/kT) in which the Born-
Oppenheimer electronic energy of the TS relative to that of the reactant species
appears. This energy E* isthe value of the potential energy E(S) at the TS geometry,
which we denote S,.

[t turns out that the conventional TS approximation to k., over-estimates reaction
rates because it assumes al trajectories that cross the TS proceed onward to products
unless the transmission coefficient is included to correct for this. In the variationa

transition state theory (VTST), one does not eval uate the ratio of partition functions



appearing in k. at S,, but one first determines at what geometry (S*) the TS partition
function (i.e., .- Or gu.) IS SMallest. Because this partition function is a product of
(i) the exp(-E(S)/KT) factor aswell as (ii) 3 trandational, 3 rotational, and 3N-7
vibrational partition functions (which depend on S), the value of S for which this
product is smallest need not be the conventional TS value S,. What this meansiis that
the location (S*) along the reaction path at which the free-energy reaches asaddle
point is not the same the location S, where the Born-Oppenheimer electronic energy
E(S) hasits saddle. Thisinterpretation of how S* and S, differ can be appreciated by
recalling that partition functions are related to the Helmholtz free energy A by q =
exp(-A/KT); so determining the value of S where g reaches a minimum is equivalent
to finding that Swhere A is at a maximum.

So, in VTST, one adjusts the “dividing surface” (through the location of the
reaction coordinate S) to first find that value S* wherek,,, has a minimum. One then
evaluates both E(S*) and the other components of the TS species partition functions
at thisvalue S*. Finaly, one then uses the k., expressions given above, but with S
taken at S*. Thisishow VTST computes reaction rates in a somewhat different
manner than does the conventional TST. Aswith TST, the VTST, in the form
outlined above, does not treat tunneling and the fact that not all trajectories crossing
S* proceed to products. These corrections still must be incorporated as an “add-on” to
thistheory (i.e., in the k factor) to achieve high accuracy for reactions involving light
species (recall from the Background Material that tunneling probabilities depend

exponentially on the mass of the tunneling particle).



C. Reaction Path Hamiltonian Theory

Let us review what the reaction path is as defined above. It is a path that
i. begins at atransition state (TS) and evolves aong the direction of negative curvature on
the potential energy surface (as found by identifying the eigenvector of the Hessian
matrix H;, = 1°E/is 15 that belongs to the negative eigenvalue);
ii. moves further downhill along the gradient vector g whose components are g, = TE/1s,’
iii. terminates at the geometry of either the reactants or products (depending on whether
one began moving away from the TS forward or backward along the direction of negative
curvature).
Theindividual “steps’ aong the reaction coordinate can belabeled S, S;, S,, ... Ssas

they evolve from the TS to the products (labeled S;) and Sg, Sg.4, -.-S asthey evolve

from reactants (Sy) to the TS. If these steps are taken in very small (infinitesimal)
lengths, they form a continuous path and a continuous coordinate that we label S.

At any point S along areaction path, the Born-Oppenheimer potential energy
surface E(S), its gradient components g,(S) = (TE(S)/1s,) and its Hessian components
Hi;(S) = (TPE(9)/1s1s) can be evaluated in terms of derivatives of E with respect to the
3N Cartesian coordinates of the molecule. However, when one carries out reaction path
dynamics, one uses a different set of coordinates for reasons that are similar to those that
arise in the treatment of normal modes of vibration as given in the Background Material.
In particular, one introduces 3N mass-weighted coordinates xj = s (mj)ﬂ2 that are related

to the 3N Cartesian coordinates s in the same way as we saw in the Background Material.
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The gradient and Hessian matrices along these new coordinates { x;} can be

evaluated in terms of the original Cartesian counterparts:

o' (S) = al(S) (M)

Hj,k’ = Hj,k (mjmk)-:uz.

The eigenvalues {w,?} and eigenvectors{v,} of the mass-weighted Hessian H’ can then

be determined. Upon doing so, one finds

I 6 zero eigenvalues whose eigenvectors describe overall rotation and trandlation of
the molecule;

ii. 3N-7 positive eigenvalues { w,*} and eigenvectors v, along which the gradient g
has zero (or nearly so) components;

iii. and one eigenvalue w2 (that may be positive, zero, or negative) along whose
eigenvector vq the gradient g hasiits largest component.

The one unigue direction along v gives the direction of evolution of the reaction path (in

these mass-weighted coordinates). All other directions (i.e., within the space spanned by

the 3N-7 other vectors{v,}) possess zero gradient component and positive curvature.

Thismeansthat at any point S on the reaction path being discussed

I oneisat aloca minimum along all 3N-7 directions{v,} that are transverse to the
reaction path direction (i.e., the gradient direction);

ii. one can move to a neighboring point on the reaction path by moving a small

(infinitesimal) amount along the gradient.
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In terms of the 3N-6 mass-weighted Hessian’ s eigen-mode directions ({ v} and
Vg), the potential energy surface can be approximated, in the neighborhood of each such
point on the reaction path S, by expanding it in powers of displacements away from this
point. If these displacements are expressed as components
I dX, along the 3N-7 eigenvectors v, and
ii. dS aong the gradient direction vg,

one can write the Born-Oppenheimer potential energy surface locally as:

E=E(S) + vsdS+ /2 wg dS” + Sy_; gnr Y2 W, > dX 2.

Within this local quadratic approximation, E describes a sum of harmonic potentials
along each of the 3N-7 modes transverse to the reaction path direction. Along the
reaction path, E appears with a non-zero gradient and a curvature that may be positive,
negative, or zero.

The eigenmodes of the local (i.e., in the neighborhood of any point S along the
reaction path) mass-weighted Hessian decompose the 3N-6 internal coordinates into 3N-7
along which E is harmonic and one (S) along which the reaction evolves. In terms of
these same coordinates, the kinetic energy T can also be written and thus the classical
Hamiltonian H = T + V can be constructed. Because the coordinates we use are mass-

weighted, in Cartesian form the kinetic energy T contains no explicit mass factors:

T=12Sm (ds/dty = 1/2'S (dx/dt)>.
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This means that the momenta conjugate to each (mass-weighted) coordinate x;, obtained
in the usual way as p, = T[T-V]/1(dx;/dt) = dx;/dt, all have identical (unit) mass factors
associated with them.

To obtain the working expression for the reaction path Hamiltonian (RPH), one
must transform the above equation for the kinetic energy T by replacing the 3N Cartesian
mass-weighted coordinates { x;} by

I the 3N-7 eigenmode displacement coordinates dX,
ii. the reaction path displacement coordinate dS, and

iii. 3 trandation and 3 rotational coordinates.

The 3 trandational coordinates can be separated and ignored (because center-of-mass
energy is conserved) in further consideration. The 3 rotational coordinates do not enter
into the potential E, but they do appear in T. However, it is most common to ignore their
effects on the dynamics that occurs in the internal-coordinates; this amounts to ignoring
the effects of overall centrifugal forces on the reaction dynamics. We will proceed with
this approximation in mind.

Although it istedious to perform the coordinate transformation of T outlined

above, it has been done and results in the following form for the RPH:

H = SK:l,?;N-7 :I‘/z[pK2 + WKZ(S)] + E(S) + 1/2 [pS - SK,K’:1,3N-7 pK de BK,K’]Z/(1+F)

where

13



(1+F) =[1 + S¢oyav7 dX By ] 2.

In the absence of the so-called dynamical coupling factors B, . and B, g, this expression

for H describes

(1) 3N-7 harmonic-oscillator Hamiltonia 1/2[p,2 + w,*(S)] each of which has alocally

defined frequency w, (S) that varies along the reaction path (i.e., is S-dependent);

(2) aHamiltonian 1/2 p2 + E(S) for motion along the reaction coordinate S with E(S)

serving as the potential.

Inthislimit (i.e., with the B factors “turned off”), the reaction dynamics can be simulated

inwhat istermed a“vibrationally adiabatic’ manner by

I placing each transverse oscillator into a quantum level v, that characterizes the
reactant’ s population of this mode;

ii. assigning an initial momentum pg(0) to the reaction coordinate that is
characteristic of the collision to be ssmulated (e.g., ps(0) could be sampled from a
Maxwell-Boltzmann distribution if athermal reaction is of interest, or ps(0) could
be chosen equal to the mean collision energy of a beam-collision experiment);

iii. time evolving the Sand ps, coordinate and momentum using the above
Hamiltonian, assuming that each transverse mode remains in the quantum state v,
that it had when the reaction began.

The assumption that v, remains fixed, which is why this model is called vibrationally

adiabatic, does not mean that the energy content of the K™ mode remains fixed because

the frequencies w,(S) vary as one moves along the reaction path. As aresult, the kinetic

14



energy along the reaction coordinate 1/2 ps? will change both because E(S) variesalong S
and because S, 5., AW, (S) [V + 1/2] variesalong S.

Let’sreturn now to the RPH theory in which the dynamical couplings among
motion along the reaction path and the modes transverse to it are included. In the full
RPH, the terms By ,.(S) couple modes K and K’, while By o(S) couples the reaction path
to mode K. These couplings are how energy can flow among these various degrees of
freedom. Explicit forms for the B, . and By s factors are given in terms of the

eigenvectors{v,, v¢} of the mass-weighted Hessian matrix as follows:

Bk = <av, /dS|v,>; By s = <dv,/dS|vg>

where the derivatives of the eigenvectors{dv,/dS} are usualy computed by taking the

eigenvectors at two neighboring points Sand S’ along the reaction path:

AV, /dS = {V(S) =V (9)/(S-9).

In summary, once areaction path has been mapped out, one can compute, along

this path, the mass-weighted Hessian matrix and the potential E(S). Given these

quantities, all termsin the RPH

H = SK:l,?;N-7 :I‘/z[pK2 + WKZ(S)] + E(S) + 1/2 [pS - SK,K’:1,3N-7 pK de BK,K’]Z/(1+F)

arein hand.
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This knowledge can, subsequently, be used to perform the propagation of a set of
classical coordinates and momentaforward in time. For any initia (i.e., t = 0) momenta
ps and p, , one can use the above form for H to propagate the coordinates { dX, dS} and
momenta{py, ps} forward in time. In this manner, one can use the RPH theory to follow
the time evolution of a chemical reaction that begins (t = 0) with coordinates and moment
characteristic of reactants under specified laboratory conditions and movesthroughaTS
and onward to products. Once time has evolved long enough for product geometries to be
realized, one can interrogate the values of 1/2[p,? + w,%(S)] to determine how much
energy has been deposited into various product-molecule vibrations and of 1/2 ps® to see
what the final kinetic energy of the product fragmentsis. Of course, one also monitors
what fraction of the trgjectories, whose initial conditions are chosen to represent some
experimental situation, progress to product geometries vs. returning to reactant

geometries. In this way, one can determine the overall reaction probability.

D. Classical Dynamics Simulation of Rates

One can perform classical dynamics simulations of reactive events without using
the reaction path Hamiltonian. Following a procedure like that outlined in Chapter 7
where condensed-media MD simulations were discussed, one can time-evolve the
Newton equations of motion of the molecular reaction species using, for example, the
Cartesian coordinates of each atom in the system and with either a Born-Oppenheimer

surface or a parameterized functional form. Of course, it is essential for whatever
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function one uses to accurately describe the reactive surface, especialy near the transition
state.

With each such coordinate having an initial velocity (dg/dt), and an initial value
d, , one then uses Newton’ s equations written for atime step of duration dt to propagate q
and dg/dt forward in time according, for example, to the following first-order

propagation formula:

q(t+d t) = g, + (dg/dt), dt

doydt (t+dt) = (dg/dt), - dt [(TE/Ta)y/m,].

Here m, is the mass factor connecting the velocity dg/dt and the momentum p, conjugate

to the coordinate q:

p, = m, do/dt,

and -(TE/1lg), isthe force along the coordianate q at the “initial” geometry q,. Again, as
in Chapter 7, | should note that the above formulas for propagating q and p forward in
time represent only the most elementary approach to this problem. There are other, more
sophisticated, numerical methods for effecting more accurate and longer-time
propagations, but | will not go into them here. Rather, | wanted to focus on the basics of

how these simulations are carried out.
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By applying the time-propagation proecess, one generates a set of “new”
coordinates q(t+dt) and new velocities dg/dt(t+dt) appropriate to the system at time t+dt.
Using these new coordinates and momenta as g, and (dg/dt), and evaluating the forces
—(YE/1lg), at these new coordinates, one can again use the Newton equations to generate
another finite-time-step set of new coordinates and velocities. Through the sequential
application of this process, one generates a sequence of coordinates and velocities that
simulate the system’ s dynamical behavior.

In using thiskind of classical trajectory approach to study chemical reactions, itis
important to choose the initial coordinates and momentain away that is representative of
the experimental conditions that one is attempting to ssmulate. The tools of statistical
mechani cs discussed in Chapter 7 guide us in making these choices. When one attempts,
for example, to simulate the reactive collisions of an A atom with a BC molecule to
produce AB + C, it is not appropriate to consider asingle classical (or quantal) collision
between A and BC. Why? Because in any |aboratory setting,

1. The A atoms are probably moving toward the BC molecules with a distribution of
relative speeds. That is, within the sample of molecules (which likely contains 10" or
more molecules), some A + BC pairs have low relative kinetic energies when they
collide, and others have higher relative kinetic energies. Thereis a probability
distribution P(E, ) for this relative kinetic energy that must be properly sampled in
choosing the initial conditions.

2. The BC molecules may not all be in the same rotational (J) or vibrationa (v) state.
Thereis aprobability distribution function P(J,v) describing the fraction of BC molecules

that arein aparticular J state and a particular v state. Initial values of the BC molecul€'s
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internal vibrational coordinate and momentum as well asits orientation and rotational
angular momentum must be selected to represent this P(J,v).

3. When the A and BC molecules collide with arelative motion velocity vector v, they do
not all hit "head on". Some collisions have small impact parameter b (the closest distance
from A to the center of mass of BC if the collision were to occur with no attractive or
repulsive forces), and some have large b-values (see Fig. 8.2). The probability function
for these impact parametersis P(b) = 2p b db, which is simply a statement of the
geometrical fact that larger b-values have more geometrical volume element than smaller

b-values.

A
Y
E.
Impact parameter
b
. O\
t X
C

Initial relative
velocity vector v

Figure 8.2 Coordinates Needed to Characterize an Atom-Diatom Collision Showing the

Impact Parameter b.
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So, to simulate the entire ensembl e of collisions that occur between A atoms and
BC moleculesin various J, v states and having various relative kinetic energies E, - and
impact parameters b, one must:
1. run classical trajectories (or quantum propagations) for alarge number of J, v, E.¢,
and b values,

2. with each such trgjectory assigned an overall weighting (or importance) of

P = P(Exe ) P(J,V) 2pb db.

After such an ensemble of tragjectories representative of an experimental condition
has been carried out, one has available a great deal of data. This data includes knowledge
of what fraction of the trgjectories produced final geometries characteristic of products,
so the net reaction probability can be calculated. In addition, the kinetic and potential
energy content of the internal (vibrational and rotational) modes of the product molecules
can be interrogated and used to compute probabilities for observing productsin these
states. Thisis how classical dynamics simulations allow us to study chemical reactions

and/or energy transfer.

E. RRKM Theory

Another theory that is particularly suited for studying uni-molecular decomposition
reactions is named after the four scientists who developed it- Rice, Ramsperger, Kassdl,

and Marcus. To use this theory, one imagines an ensemble of molecules that have been
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“activated” to a state in which they possess a specified total amount of internal energy E
of which an amount E*,, exists as rotational energy and the remainder as internal
vibrational energy.

The mechanism by which the molecules become activated could involve collisions
or photochemistry. It does not matter as long as enough time has passed to permit oneto
reasonably assume that these molecules have the energy E-E*,, distributed randomly
among all their internal vibrational degrees of freedom. When considering thermally
activated unimolecular decomposition of a molecule, the implications of such
assumptions are reasonably clear. For photochemically activated unimolecular
decomposition processes, one usually also assumes that the molecule has undergone
radiationless relaxation and returned to its ground electronic state but in aquite
vibrationally “hot” situation. That is, in this case, the molecule contains excess
vibrational energy equal to the energy of the optical photon used to exciteit. Finaly,
when applied to bimolecular reactions, one assumes that collision between the two
fragments resultsin along-lived complex. The lifetime of this intermediate must be long
enough to allow the energy E-E*,,, which isrelated to the fragments' collision energy, to
be randomly distributed among all vibrational modes of the collision complex.

For bimolecular reactions that proceed “directly” (i.e., without forming along-lived
intermediate), one does not employ RRKM-type theories because their primary
assumption of energy randomization almost certainly would not be valid in such cases.

The RRKM expression of the unimolecular rate constant for activated molecules A*
(i.e., either along-lived complex formed in a bimolecular collision or a“hot” molecule)

dissociating to products through a transition state, A* ® TS ® P, is
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krate = G(E_EO -E tot )/(N(E_E* rot) h)

Here, the total energy E isrelated to the energies of the activated molecules by

E = E*rot + E*vib
where E*,, isthe rotational energy of the activated molecule and E* ;, is the vibrational
energy of this molecule. This same energy E must, of course, appear in the transition state
where it is decomposed as an amount E, needed to move from A* tothe TS (i.e, the
energy needed to reach the barrier) and vibrational (E';,) , trandational (E',,.s along the
reaction coordiate), and rotational (E',.,) energies.

E=E, +E ,,t E st E

trans rot *

In the rate coefficient expression, G(E-E, —E',; ) isthe total sum of internal
vibrational quantum states that the transition state possesses having energies up to and
including E-Ej—E’,; - Thisenergy isthe total energy E but with the activation energy E,
removed and the overall rotational energy E’,, of the TS removed. The quantity
N(E-E*,,) isthe density of internal vibrational quantum states (excluding the mode
describing the reaction coordinate) that the activated molecul e possesses having an
energy between E-E*,, and E-E* , + dE. In this expression, the energy E-E* ., is the total

energy E with the rotational energy E* ., of the activated species removed.

22



In the most commonly employed version of RRKM theory, the rotational energies of

the activated molecules E* , and of the TSE’,, are assumed to be related by

E*  —E = J3+1) h¥8p {1/1* - UI'} = E* , {1—1*/I'}.

Herel* and I’ are the average (taken over the three eigenvalues of the moment inertia
tensors) moments of inertia of the activated molecules and TS species, respectively. The
primary assumption embodied in the above relationship is that the rotational angular
momenta of the activated and TS species are the same, so their rotational energies can be
related, as expressed in the equation, to changes in geometries as reflected in their
mometns of inertia. Because RRKM theory assumes that the vibrational energy is
randomly distributed, its fundamental rate coefficient equation
Ko = G(E-Ej—FE o )/(N(E-E* ) h) depends on the total energy E, the energy E, required
to access the TS, and the amount of energy contained in the rotational degrees of freedom
that isthus not available to the vibrations.

To implement a RRKM rate coefficient calculation, one must know
(i) thetotal energy E available,
(ii) the barrier energy E,,
(iii) the geometries (and hence the moments of inertial* and I') of the activated

molecules and of the TS, respectively,

(iv) therotational energy E* ., of the activated molecules, aswell as
(v) all 3N-6 vibrational energies of the activated molecules and all 3N-7 vibrational

energiers of the TS (i.e., excluding the reaction coordinate).
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Therotational energy of the TS species can then be related to that of the activated
moleculesthrough E* . —E’,,,= E*{1-1*/I'}.

To simulate an experiment in which the activated molecules have athermal
distribution of rotational energies, the RRKM rate constant is computed for a range of
E* . values and then averaged over E*,, using the thermal Boltzmann population
(23+1) exp(-J(F+1)h%(8pA*KkT)) as aweighting factor. This can be carried out, for
example, using the MC process for selecting rotational J values. This then produces arate
constant for any specified total energy E. Alternatively, to simulate experiments in which
the activated species are formed in bimolecular collisions at a specified energy E, the
RRKM rate coefficient is computed for arange of E*,, values with each E*,, related to
the collisional impact parameter b that we discussed earlier. In that case, the collisional
angular momentum Jis given asJ=mv b, where v is the collision speed (related to the
collision energy) and mis the reduced mass of the two colliding fragments. Again using
E* «—E .« = E*,« {1—-1*/I'} the TSrotational energy can be related to that of the
activated species. Finally, the RRKM rate coefficient is evaluated by averaging the result
over a series of impact parameters b (each of which implies aJvaue and thusan E*,; )
with 2pb db as the weighting factor.

The evaluation of the sum of states G(E-E, —E’; ) and the density of states
N(E-E*,.,) that appear in the RRKM expression is usualy carried out using a state-
counting algorithm such as that implemented by Beyer and Swinehart (Commun. Assoc.
Comput. Machin. 16, 372 (1973)). Thisalgorithm uses knowledge of the 3N-6 harmonic
vibrational frequencies of the activated molecules and the 3N-7 frequencies of the TS and

determines how many ways a given amount of energy can be distributed among these
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modes. By summing over all such distributions for energy varying from zero to E, the
algorithm determines G(E). By taking the difference G(E+dE) — G(E), it determines

N(E)dE.

F. Correlation Function Expressionsfor Rates

Recall from Chapter 6 that rates of photon absorption can, in certain
circumstances, be expressed either (@) in terms of squares of transition dipole matrix

elements connecting each initial state F, to each final state F;,

|Eo- <Ff|m|Fi>[2

or (b) in terms of the equilibrium average of the product of atransition dipole vector at

time t=0 dotted into this same vector at another time t

Siri <Fi|Eo- mEg- m(t) |F>

That is, these rates can be expressed either in a state-to-state manner or in atime-
dependent correlation function framework. In Chapter 7, this same correlation function
approach was examined further.

In an analogous fashion, it is possible to express chemical reaction rate constants
in atime-domain language again using time correlation functions. The TST (or VTST)

and RRKM expressions for the rate constant k., all involve, through the partition
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functions or state densities, the reactant and transition-state energy levels and
degeneracies. These theories are therefore anal ogs of the state-to-state photon-absorption
rate equations.

To make the connection between the state-to-state and time-correlation function

expressions, one can begin with a classical expression for the rate constant given below:

k(T) =Q*(2ph) " ¢plpdae P F(p,a)c (p.q)

Here Q, is the partition function of the reactant species, L is the number of coordinates
and momenta upon which the Hamiltonian H(p,q) depends, and b is 1/KT. The flux factor
F and the reaction probability ¢ are defined in terms of adividing surface which could,
for example, be a plane perpendicular to the reaction coordinate S and located along
the reaction path that was discussed earlier in this Chapter in Section IC. Points on such
asurface can be defined by specifying one condition that the L coordinates { ¢} must

obey, and we write this condition as

f(q) =0.

Points lying where f(q) < O are classified as lying in the reactant region of coordinate
space, while those lying where f > 0 are in the product region. For example, if the
dividing surface is defined as mentioned above as being a plane perpendicular to the

reaction path, the function f can be written as:
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f(@) = (S-S

Here, Sisthe reaction coordinate (which, of course, depends on all of the g variables)
and S, isthe value of S at the dividing surface. If the dividing surface is placed at the
transition state on the energy surface, S, vanishes because the transition state is then, by
convention, the origin of the reaction coordinate.

So, now we see how the dividing surface can be defined, but how are the flux
F and probability ¢ constructed? The flux factor F is defined in terms of the dividing

surface function f(q) as follows:

F(p,q) = d h(f(q))/dt

= (dh/df) (dff/clt)

=(dh/df) S, /Mg, (dgy/ct)

= d(F(a)) S T/fq, (dg/ct).

Here, h(f(q)) isthe Heaviside step function (h(x) = 1 if x>0; h(x) = 0if x < 0), whose

derivative dh(x)/dx is the Dirac delta function d(x), and the other identities follow by

using the chain rule. When the dividing surface is defined in terms of the reaction path

coordinate S as introduced earlier (i.e., f(q) = (S- &)), the factor S, 1if/fq, (dg;/dt)

contains only one term when the L coordinates{q;} are chosen, asin the reaction path
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theory, to be the reaction coordinate S and L-1 coordinates{q’;} =g’ perpendicular to the

reaction path. For such a choice, one obtains
S 1f/Mlq, (dg/dt) = dSdt = P¢/mg

where Pg is the momentum along S and mg is the mass factor associated with Sin the

reaction path Hamiltonian. So, in this case, the total flux factor F reduces to:

F(p.a) = d(S-S) Pdms.

We have seen exactly this construct before in Section |A where the TST expression for
the rate coefficient was devel oped.
The reaction probability factor c(p,q) is defined in terms of those trajectories that

evolve, at longtimet ® ¥, onto the product side of the dividing surface; such tragjectories

obey
c(p.a) =lim,e « h(f(a(®)) = 1.

Thislong-time limit can, in turn, be expressed in aform where the flux factor again

OCCUrs:

ah(f(aw)) o

Iimt®¥ h(f(q())) = OT d:dt
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In this expression, the flux F(t) pertains to coordinates g(t) and momentap(t) at t > 0.
Because of time reversibility, the integral can be extended to range from fromt =- ¥ tot
- ¥,

Using the expressions for ¢ and for F as developed above in the equation for the
rate coefficient given at the beginning of this Section allows the rate coefficient k(T) to

be rewritten as follows:

k(T) =Q*(2pn) " dpdge " *PF(p,q)c (p,q)

= Q*(2ph) " ¢yt Cplpdae P F(p,q) F(p(t),q(t))

In this form, the rate constant k(T) appears as an equilibrium average (represented by the
integral over theinitial values of the variables p and q with the Q,* (2ph)™* exp(-bH)

weighting factor) of the time correlation function of the flux F:

CPtF (p, @) F(p(t),q(t))

To evaluate the rate constant in this time-domain framework for a specific
chemical reaction, one would proceed as follows.
i. Run an ensemble of trajectories whose initial coordinates and momenta{q.p} are
selected (e.g., using Monte-Carlo methods discussed in Chapter 7) from adistribution

with exp(-bH) asits weighting factor.
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ii. Make sure that the initial coordinates{q} lie on the dividing surface because the flux
expression contains the d(f(q)) factor;

iii. Monitor each trgjectory to observe when it again crosses the dividing surface (i.e.,
when {q(t)} again obeysf(q(t)) = 0; at which time the quantity

iv. F(p(t),q(t)) can be evaluated as F(p,q) = d(f(q)) S 1f/ig; (dg/dt), using the coordinates

and momenta at time t to compute these quantities.

Using a planar dividing surface attached to the reaction path at S = S, as noted
earlier allows F(q,p) to be calculated in terms of the initial (t=0) momentum lying along
the reaction path direction as, F(p,q) = d(S-S)) Ps/mg and permits F(p(t),q(t)) to be
computed when the tragjectory again crosses this surface at at timet as F(p(t),q(t)) = d(S
S,) Ps(t)/ms. So, all that isreally needed if the dividing surface is defined in this manner
isto start trajectories with S = S;;; to keep track of the initial momentum along S; to
determine at what times't the trgjectory returnsto S = S; and to form the product (Ps/ms)
(Ps(t)/mg) for each such time. It isin this manner that one can compute flux-flux
correlation functions and, thus, the rate coefficient.

Notice that trajectories that undergo surface re-crossings contribute negative
terms to the flux-flux correlation function computed as discussed above. That is, a
trajectory with a positive initial value of (Ps/mg) can, at some later timet, cross the
dividing surface with a negative value of (P(t)/my) (i.e, be directed back toward
reactants). This re-crossing will contribute a negative value, via. the product (Ps/mg)
(Ps(t)/mg), to the total correlation function, which integrates over all times. Of course, if

this same trajectory later undergoes yet another crossing of the dividing surface at t' with
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positive P4(t"), it will contribute a positive term to the correlation function via. (Ps/ms)
(P4(t)/mg). Thus, the correlation function approach to computing the rate coefficient can
properly account for surface re-crossings, unlike the TST which requires one to account

for such effects (and tunneling) in the transmission coefficient k.

G. Wave Packet Propagation

The preceding discussion should have made it clear that it is very difficult to
propagate wave functions rigorously using quantum mechanics. On the other hand, to
propagate a classical trajectory isrelatively straightforward. There exists a powerful tool
that allows one to retain much of the computational ease and convenient interpretation of
the classical trgjectory approach while also incorporating quantum effects that are
appropriate under certain circumstances. In this wave packet propagation approach, one
begins with a quantum mechanical wave function that is characterized by two parameters
that give the average value of the position and momentum along each coordinate. One
then propagates not the quantum wave function but the values of these two parameters,
which one assumes will evolve according to Newtonian dynamics. Let's see how these
steps are taken in more detail and try to understand when such an approach is expected to
work or to fail.

First, the form of the so-called wave packet quantum function is written as

follows:

Y (an1 P) = PJ=1,N (2p<dq32>)-ﬂ2 eXp[(i PJ qJ/‘h) '(qJ - QJ)2/4<qu2>]'
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Here, we have atotal of N coordinates that we denote {q,: J=1, N}. It isthese
coordinates that the quantum wave function depends upon. The total wave functionisa
product of terms, one for each coordinate. Notice that this wave function has two distinct
ways in which the coordinate g, appear. First, it has a Gaussian (exp[- (g, - Q,)?/4<dq/>>])
dependence centered at the values Q, and having Gaussian width factors related to <q,>.
This dependence tends to make the wave function's amplitude largest when q; is close to
Q. Secondly, it has aform exp[(iP; gy-h)] that looks like the travelling wave that we
encountered in the Background Material in which the coordinate g;moves with
momentum P;. So, these wave packet functions have built into them characteristics that
allow them to describe motion (via. the P;) of an amplitude that is centered at Q, with a
width given by the parameter <q,>>.

The parameters P; and Q, we assume in this approach to chemical dynamics will

undergo classical time evolution according to the Newton equations:

dQydt = Pym,

dPydt = - TE/Q,

where E is the potential energy surface (Born-Oppenheimer or force field) upon which

we wish to propagate the wave packet, and m, is the mass associated with coordinate g; .

The Q, and P, parameters can be shown to be the expectation values of the coordinates g,

and momenta -i-h{/1q, for the above function:
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Q,=0Y* q,Y dq,

P,=0Y* (-ih1/0qy Y dg.

Moreover, the <q,2> parameter appearing in the Gaussian part of the function can be

shown to equal the dispersion or "spread” of this wave function aong the coordinate q;:

<q.]2> =0Y* (0;- QJ)Z Y da.

There is an important characteristic of the above Gaussian wave packet functions

that we need to point out. It turns out that functions of this form:

Y (9,Q(t), P(1)) = P 11 (2p<da,”>) " exp[ (iPy(t) ay/-h) -(d, - Qx(1))*/4<da,*>]

can be shown to have uncertaintiesin g, and in - i h-1/9q, that are as small as possible:

<(0h,=Q)*> <(- i h-1/Mq,— P)> = h/4.

The Heisenberg uncertainty relation, which is discussed in many texts dealing with

guantum mechanics, says that this product of coordinate and momentum dispersions must

be greater than or equal to h?/4. In a sense, the Gaussian wave packet function is the most
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classical function that one can have because its uncertainty product is as small as possible
(i.e, equalsh?¥4). We say thisisthe most classical possible quantum function becausein
classical mechanics, both the coordinate and the momentum can be known precisely. So,
whatever quantum wave function allows these two variables to be |least uncertain is the
most classical.

To use wave packet propagation to simulate a chemical dynamics event, one
begins with a set of initial classical coordinates and momenta{ Q,(0), P,(0)} aswell asa
width <qg,>> or uncertainty for each coordinate. Each width must be chosen to represent
the range of that coordinate in the experiment that is to be simulated. For example,
assume one were to represent the dynamics of awave function that is prepared by photon
absorption of av = 0 vibrational state of the H-CI molecule from the ground 'S state to an
excited-state energy surface (E(R)). Such a situation is described qualitatively in Fig. 8.3.
In this case, one could choose <dR?> to be the half width of the v = 0 harmonic (or
Morse) oscillator wave function c(R) of H-Cl, and take P(0) = O (because thisis the
average value of the momentum for c,) and R(0) = R, the equilibrium bond length.

For such initial conditions, classical Newtonian dynamics would then be used to
propagate the Q,and P,. In the H-Cl example, introduced above, this propagation would
be performed using the excited-state energy surface for E since, for t > 0, the moleculeis
assumed to be on this surface. The total energy at which the initial wave packet it
delivered to the upper surface would be dictated by the energy of the photon used to
perform the excitation. In Fig. 8.3, two such examples are shown.

Once the packet is on the upper surface, its position Q and momentum P begin to

change according to the Newton equations. This, in turn, causes the packet to move as
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shown for several equally spaced time “steps’ in Fig. 8.3 for the two different photons
cases. At such subsequent times, the quantum wave function is then assumed, within this

model, to be given by:

Y (9,Q(t), P(1)) = P 51 (2p<da,>) " exp[(iPyt) ay/-h) -(d; - Q«1))*/4<da,>].

That is, it is taken to be of the same form as the initial wave function but to have simply

moved its center from Q(0) to Q(t) with a momentum that has changed from P(0) to P(t).
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Wave Packet Just After Absorption of Higher-Energy
Photon

N\

~
\Excited-State Potential

Wave Packet Just After Absorption of Low-Energy
Photon

~“~Ground-State Potential

nitital Wave Packet

Figure 8.3 Propagation of Wave Packet Prepared by Absorption of Two Different

Photons.

It should be noticed that the time evolution of the wave packet shown in Fig. 8.3 displays
clear classical behavior. For example, as time evolves, it movesto large R-values and its

speed (as evidenced by the spacings between neighboring packets for equal time steps) is
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large when the potential islow and small when the potential is higher. Aswe learned in

the Background Material and in Chapter 6, the time correlation function

C(t) = <Y (a,.Q(0).P(0)) | Y (a.Q(1).P(1)>

can be used to extract spectral information by Fourier transformation. For the H-Cl
example considered here, this correlation function will be large at t = 0 but will decay in
magnitude as the wave packet Y (g,Q(t),P(t)) movesto theright (at t1, t2, etc.) because its
overlap with Y (9,Q(0),P(0)) becomes smaller and smaller as time evolves. This decay in
C(t) will occur more rapidly for the high-energy photon case because Y (q,Q(t),P(t))
moves to the right more quickly because the classica momentum P(t) grows more
rapidly. These dynamics will induce exponential decaysin C(t) (i.e., C(t) will vary as
exp(-t/t,)) at short times.

In fact, the decay of C(t) discussed above produces, when C(t) is Fourier
transformed, the primary characteristic of the correlation function for the higher-energy
photon case where dissociation ultimately occurs. In such photo-dissociation spectra, one
observes a Lorentzian line shape whose width is characterized by the decay rate (1/t ,),
which, in turn, relates to the total energy of the packet and the steepness of the excited-
state surface. This steepness determines how fast P(t) grows, which then determines how
fast the H-Cl bond fragments.

In the lower-energy photon case shown in Fig. 8.3, aqualitatively different
behavior occursin C(t) and thusin the spectrum. The packet’s movement to larger R

causes C(t) to initially undergo exp(-t/t,) decay. However, as the packet movesto its
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large-R turning point (shortly after time t3), it strikes the outer wall of the surface where
it isreflected. Subsequently, it undergoes motion to smaller R, eventually returning to its
initial location. Such recurrences, which occur on time scales that we denotet , are
characteristic of bound motion in contrast to the directly dissociative motion discussed
earlier. This recurrence will cause C(t) to again achieve alarge amplitude, but, C(t) will
subsequently again undergo exp(-t/t ;) decay as the packet once again departs. Clearly, the
correlation function will display a series of recurrences followed by exponential decays.
The frequency of the recurrencesis determined by the frequency with which the packet
traverses from itsinner to outer turning points and back again, which is proportional to
1t,. This, of course, isthe vibrational period of the H-Cl bond. So, in such bound-motion
cases, the spectrum (i.e., the Fourier transform of C(t)) will display a series of peaks
spaced by (1/t,) with the envelope of such peaks having awidth determined by 1/t ;.

In more complicated multi-mode cases (e.g., in molecules containing several
coordinates), the periodic motion of the wave packet usually shows another feature that
we have not yet discussed. Let us, for simplicity, consider a case in which only two
coordinates are involved. For the wave packet to return to (or near) itsinitial location
enough time must pass for both coordinates to have undergone an excursion to their
turning points and back. For example, consider the situation in which one coordinate’ s
vibrational frequency is ca. 1000 cm™ and the other’ sis 300 cm'™?; these two modes then
require ca. /30 ps and 1/9 ps, respectively, to undergo one complete oscillation. At t =0,
the wave packet, which is a product of two packets, P ., , (2p<dq,>)"?exp[(iP,t) a/-h) -
(9, - Q,(1))?/4<dq,>>], one for each mode, produces alarge C(t). After 1/30 ps, the first

mode’ s coordinate has returned to itsinitial location, but the second mode is only 9/30 of
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the way along in its periodic motion. Moreover, after 1/9 ps, the second mode's
coordinate has returned to near where it began, but now the first mode has moved away.
So, at both 1/30 ps and 1/9 ps, the correlation function will not be large because one of
the mode contribution to C(t) = <Y (q,Q(0),P(0)) | Y (q,Q(t),P(t))> will be small.
However, after 1/3 ps, both modes’ coordinates will be in positions to produce alarge
value of C(t); the high-frequency mode will have undergone 10 oscillations, and the
lower-frequency mode will have undergone 3 oscillations. My point in discussing this
example has been to illustrate that molecules having many coordinates can produce
spectrathat display rather complicated patterns but which, in principle, can be related to
the time evolution of these coordinates using the correlation function’s connection to the
spectrum.

Of course, there are problems that arise in using the wave packet function to
describe the time evolution of a molecule (or any system that should be treated using
guantum mechanics). One of the most important limitations of the wave packet approach
to be aware of relatesto it inability to properly treat wave reflections. It iswell know that
when awave strikes ahard wall it is reflected by the wall. However, when, for example,
awater wave moves suddenly from aregion of deep water to a much more shallow
region, one observes both a reflected and a transmitted wave. In the discussion of
tunneling resonances given in the Background Material, we also encountered reflected
and transmitted waves. Furthermore, when awave strikes a barrier that has two or more
holes or openingsin it, one observes wave fronts coming out of these openings. The
problem with the most elementary form of wave packets presented above is that each

packet contains only one “piece’. It therefore can not break into two or more “pieces’ as
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it, for example, reflects from turning points or passes through barriers with holes.
Because such wave packets can not fragment into two or more packets that subsequently
undergo independent dynamical evolution, they are not able to describe dynamical
processes that require multiple-fragmentation events. It is primarily for this reason that
wave packet approaches to simulating dynamics are usually restricted to treating short-
time dynamics where such fragmentation of the wave packet is less likely to occur.
Prompt molecular photo-dissociation processes such as we discussed above is a good

example of such a short-time phenomenon.

H. Surface Hopping Dynamics

There are, of course, chemical reactions and energy transfer collisionsin which
two or more Born-Oppenheimer energy surfaces are involved. Under such circumstances,
it is essential to have available the tools needed to describe the coupled electronic and
nuclear-motion dynamics appropriate to this situation.

The way this problem is addressed is by returning to the Schrédinger equation
before the single-surface Born-Oppenheimer approximation was made and expressing the
electronic wave function Y (r|R), which depends on the electronic coordinates {r} and

the nuclear coordinates{ R}, as.

Y (r|R) = S;a(t) y r|R) exp[-i/-h 0 H,,(R) df].
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Here, y (r|R) is the Born-Oppenheimer electronic wave function belonging to the J"
electronic state, and H, (R) is the expectation value of H for this state. The ayt) are
amplitudes that will eventually relate to the probability that the systemis“on” the J"

surface. Substituting this expansion into the time-dependent Schrédinger equation

TRTY/Mt=HY

followed by multiplying on the left by y *,(r|R) and integrating over the electronic

coordinates {r}, gives an equation for the a(t) amplitudes:

I hrdg/dt = Sy { Hy ;- i-R<y (|dy Jdt>} exp[-i/-h O (H,,(R) —Hy«(R)) dt].

Here, H, ;isthe Hamiltonian matrix that couplesy  toy ;. Theintegral appearing in the
exponential istaken from an initial timet, when oneis assumed to know that the system
resides on a particular Born-Oppenheimer surface (K) up to the timet, at which the
amplitude for remaining on this surface g, as well as the amplitudes for hopping to other
surfaces{a} are needed. This differential equation for the amplitudesis solved
numerically by starting at t, with g = 1 and a,, = 0 and propagating the amplitudes
valuesforward in time.

The next step isto express <y |dy /dt>, using the chain rule, in terms of
derivatives with respect to the nuclear coordinates { R} and the time rate of change of

these coordinates;
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<y «[dy Jdt> = S,<y «|dy JdR,> dR /dlt.

Thisis how aclassical dynamical treatment of the nuclear motions will be introduced
(i.e., by assuming that the nuclear coordinates R, and dR /dt obey Newton equations). So,

now the equations for the a.(t) read as follows:

I h-dg/dt = S, { He,-i-h S;dR/dt <y |dy JdR >} exp[-i/-h 0 (H,;(R) —H«(R)) dt].

The <y |dy ydR_> are called non-adiabatic coupling matrix elements, and it is their
magnitudes that play a central role in determining how efficient surface hoppings are.
These matrix elements are becoming more commonly available in widely utilized
gquantum chemistry and dynamics computer packages (although their efficient evaluation
remains a challenge that is undergoing significant study).

In addition to the above prescription for calculating amplitudes (the probabilities
then being computed as |aj?), one also needs to identify (using, perhaps the kind of
strategy discussed in Chapter 3) the seam at which the surfaces of interest intersect. Let
us, for example, assume that there are two surfaces that undergo such an intersection in a
subspace of the 3N-6 dimensional energy surfacesH,, and H,,, and let us denote nuclear

coordinates { R} that lie on this seam as obeying

F(R,) = 0.

following the discussion of Chapter 3.
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To utilize the most basic form of surface hopping theory, one proceeds as follows:
1. One begins with initial values of the nuclear coordinates{ R} and their velocities
{dR/dt} that properly characterize the kind of collision or reaction one wishes to
simulate. Of course, one may have to perform many such surface hopping trajectories
with an ensemble of initial conditions chosen to properly describe such an experimental
situation. In addition, one specifies which electronic surface (say the K" surface) the
systemisinitially on.
2. For each such set of initial conditions, one propagates a classical trgjectory describing
the time evolution of the { R} and {dR/dt} on thisinitial surface, until such atragectory
approaches a geometry lying on the intersection seam.
3. Asoneis propagating the classical trajectory from t, up to the timet, when it
approaches the seam, one aso propagates the (in this example, two) differential equations
i Rdg/dt = S, { He,- i-h S,dR/dt <y |dy ydR>} exp[-i/-h 0 (H,;(R) —Hy «(R)) dt]
that produce the time evolution of the {a;} amplitudes.
4. Once the classical trgjectory reaches the seam, theinitial trgjectory is halted and two
(inthe case of M coupled surfaces, M) new trajectories are initiated, one beginning (at t,)
on each of the (two in our case) coupled surfaces. Each of these new trajectories (two )
are assigned a probability weighting factor computed as the square of the amplitude
belonging to the surface upon which the trajectory now resides: |a,|~.
5. Each of the new trajectories is subsequently allowed to propagate from t, (where the
nuclear coordinates are what they were just prior to diving the one initial trajectory into

two (or M) trajectories) but now on different Born-Oppenheimer surfaces. This
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propagation is continued until one of these trajectories again approaches a geometry on
the intersection seam, at which time the trajectory hopping scheme is repeated.

Clearly, it is possible that the oneinitial trgjectory will generate alarge number of
subsequent trajectories each of which is assigned an overall weighting factor taken to be
the product of all of the |a,[* probabilities associated with trajectories from which this
particular trgjectory was descended. It is these overall weightings that one uses to predict,
one this process has been carried out long enough to allow the reaction or collision to
proceed to completion, the final yield of products in each Born-Oppenheimer state. This
surface-hopping algorithm remains one of the most widely used approaches to treating

such coupled-state dynamics.

[1. Experimental Probes of Reaction Dynamics

A. Spectroscopic M ethods

To follow the rate of any chemical reaction, one must have a means of monitoring
the concentrations of reactant or product molecules as time evolves. In the majority of
current experiments that relate to reaction dynamics, one uses some form of

spectroscopic or aternative physical probe (e.g., an electrochemical signature) to monitor



these concentrations as functions of time. Of course, in al such measurements, one must
know how the intensity of the signal detected relates to the concentration of the
molecules that cause the signal. For example, in most absorption experiments, as
illustrated in Fig. 8.4, light is passed through a sample of “thickness’ L and the intensity

of the light beam in the absence of the sample I, and with the sample present | are

measured.
Sample of thickness L
I ntensity of Intensity of
Incident Light I Transmitted Light |

Figure 8.4 Typical Beer’'s—Law Experiment in Which aLight Beam of Intensity |, is

Passed Through a Sample of ThicknessL.

The Beer-Lambert law:

log(l/I) =e[A] L

45



then allows the concentration [A] of the absorbing molecules to be determined, given the
path length L over which absorption occurs and given the extinction coefficient e of the
absorbing molecules.

These extinction coefficients, which relate to the electric dipole matrix elements
that are discussed in Chapter 6, are usually determined empirically by preparing a known
concentration of the absorbing molecules and measuring the I /1 ratio that this
concentration producesin a cell of length L. For molecules and ions that are extremely
reactive, this “calibration” approach to determining e is often not feasible because one
can not prepare a sample with a known and stable concentration. In such cases, one often
must resort to using the theoretical expressions given in Chapter 6 (and discussed in most
textbooks on molecular spectroscopy) to compute e in terms of the wave functions of the
absorbing species. In any event, one must know how the strength of the signal relates to
the concentrations of the species if one wishes to monitor chemical reaction or energy
transfer rates.

Because modern experimental techniques are capable of detecting moleculesin
particular electronic and vibration-rotation states, it has become common to use such
tools to examine chemical reaction dynamics on a state-to-state level and to follow
energy transfer processes, which clearly require such state-specific data. In such
experiments, one seeks to learn the rate at which reactants in a specific state F; react to
produce products in some specific state F ;. One of the most common ways to monitor
such state-specific rates is through a so-called “ pump-probe” experiment in which
I A short-duration light source is used to excite reactant molecules to some

specified initial state F;. Usually atunable laser is used because its narrow
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frequency spread allows specific states to be pumped. The time at which this
“pump” laser thus prepares the excited reactant moleculesin state F; definest = 0.
ii. After a“delay time” of duration t, a second light sourceis used to “probe” the
product molecules that have been formed in various final states, F;. Usualy, the
frequency of this probe source is scanned so that one can examine populations of

many such final states.

The concentrations of reactant and products moleculesin the initial and final states, F,
and F, aredetermined by the Beer-Lambert relation assuming that the extinction
coefficients e and g for these species and states absorption are known. In the former case,
the extinction coefficient e relates to absorption of the pump photons to prepare reactant
moleculesin the specified initial state. In the latter, e refers to absorption of the product
molecules that are created in the state F ;. Carrying out a series of such final-state
absorption measurements at various delay timest allows one to determine the
concentration of these states as afunction of time.

Thiskind of laser pump-probe experiment is used not only to probe specific
electronic or vibration/rotation states of the reactants and products but also when the
reaction isfast (i.e., completein 10*s or less). In these cases, oneis not using the high
frequency resolution of the laser but its fast time response. Because laser pulses of quite
short duration can be generated, these tools are well suited in such fast chemical reaction
studies. The reactions can be in the gas phase (e.g., fast radical reactionsin the
atmosphere or in explosions) or in solution (e.g., photo-induced electron transfer

reactionsin biological systems).

47



B. Beam Methods

Another approach to probing chemical reaction dynamicsisto use a beam of reactant
molecules A that collides with other reactants B that may also in abeam or ina“bulb” in
equilibrium at some temperature T. Such crossed-beam and beam-bulb experiments are

illustrated in Fig. 8.5.
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Figure 8.5 Typical Crossed-Beam and Beam-Bulb Experimental Setups.

Almost always, these beam and bulb samples contain molecules, radicals, or ionsin the
gas phase, so these techniques are most prevalent in gas-phase dynamics studies.
The advantages of the crossed-beam type experiments are that:

(i) one can control the velocities, and hence the collision energies, of both reagents,
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(i) one can examine the product yield as a function of the angle q through which the
products are scattered,

(iii) one can probe the velocity of the products and,

(iv) by using spectroscopic methods, one can determine the fraction of products
generated in various internal (electronic/vibrational/rotational) states.

Such measurements allow one to gain very detailed information about how the
reaction rate coefficient depends on collisional (kinetic) energy and where the total
energy available to the productsis deposited (i.e., into product translational energy or
product internal energy). The angular distribution of product molecules can also give
information about the nature of the reaction process. For example, if the A + B collision
forms along-lived (i.e., on rotational time scales) collision complex, the product C
molecules display avery isotropic angular distribution.

In beam-bulb experiments, one is not able to gain as much detailed information
because one of the reactant molecules B is not constrained to be moving with a known
fixed velocity in a specified direction whenthe A + B ® C collisions occur. Instead, the
B molecules collide with A molecules in avariety of orientations and with a distribution
of collision energies whose range depends on the Maxwell-Boltzmann distribution of
kinetic energies of the B moleculesin the bulb. The advantage of beam-bulb experiments
isthat one can achieve much higher collision densities than in crossed-beam experiments
because the density of B molecules inside the bulb is much higher than are the densities
achievable in abeam of B molecules.

There are cases in which the beam-bulb experiments can be used to determine how

the reaction rate depends on collision energy even though the moleculesin the bulb have
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adistribution of kinetic energies. That is, if the speciesin the beam have much higher
Kinetic energies than most of the B molecules, then the A + B collision energy is
primarily determined by the beam energy. An example of this situation is provided by so-
called guided-ion beam experiments in which a beam of ions having well-specified
kinetic energy E impinges on moleculesin abulb having atemperature T for which kT

<<E. Fig. 8.6 illustrates data that can be extracted from such an experiment.
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Figure 8.6 Collision-Induced Dissociation Data Showing Cross-Section as a Function of

Coallision Energy.

In Fig. 8.6, weillustrate the cross-section s (related to the bimolecular rate constant k by
s v =k, where v isthe relative collision speed) for production of Na" ions when abeam
of Na'(uracil) complexes having energy E (the horizontal axis) collides with abulb
containing Xe atoms at room temperature. In this case, the reaction is simply the
collision-induced dissociation (CID) process in which the complex undergoes

unimolecular decomposition after gaining internal energy in its collsions with Xe atoms:

Na'(uracil) ® Na' + uracil.

The primary knowledge gained in this CID experiment is the threshold energy E*; that is,
the minimum collision energy needed to effect dissociation of the Na'(uracil) complex.
Thiskind of data has proven to offer some of the most useful information about bond
dissociation energies of awide variety of species. In addition, the magnitude of the
reaction cross-section s as afunction of collision energy is a valuable product of such
experiments. These kind of CID beam-bulb experiments offer one of the most powerful
and widely used means of determining such bond-rupture energies and reaction rate

constants.

C. Other Methods

52



Of course, not all chemical reactions occur so quickly that they require the use of
fast lasers to follow concentrations of reacting species or pump-probe techniques to
generate and probe these molecules. For slower chemical reactions, one can use other
methods for monitoring the relevant concentrations. These methods include
electrochemistry (where the redox potential is the specie's signature) and NMR
spectroscopy (where the chemical shifts of substituents are the signatures) both of whose
instrumental response times would be too slow for probing fast reactions.

In addition, when the reactions under study do not proceed to completion but exist in
equilibrium with aback reaction, aternative approaches can be used. The example
discussed in Chapter 5 is one such case. Let us briefly review it here and again consider

the reaction of an enzyme E and a substrate S to form the enzyme-substrate complex ES:

E+SU ES

In the perturbation-type experiments, the equilibrium concentrations of the species are

"shifted" by asmall amount d by application of the perturbation, so that

[ES] = [ES],, -d

[E] =[E]l,, +d

[S] =[Sl + d.
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Subsequently, the following rate law will govern the time evolution of the concentration

change d:

- dd/dt = - k, ([ES]e; -d) + ki ([El + d) ([S]eq + d).

Assuming that d is very small (so that the term involving d” cam be neglected) and using
the fact that the forward and reverse rates balance at equilibrium, this equation for the

time evolution of d can be reduced to:

- da/dt = (k, + K, [S]eg + K [E]) d.

So, the concentration deviations from equilibrium will return to equilibrium

exponentially with an effective rate coefficient that is equal to a sum of terms:

Kt = K, + ki [S]eq +K; [Eeq]

So, by following the concentrations of the reactants or products as they return to
their equilibrium values, one can extract the effective rate coefficient k. Doing thisat a
variety of different initial equilibrium concentrations (e,g., [S], and [E],), and seeing

how k; changes, one can then determine both the forward and reverse rate constants.



