Chapter 6. Electronic Structures

Electronsare the“ glue” that holds the nuclei together in the chemical bonds of
molecules and ions. Of course, it isthe nucle’s positive charges that bind the electronsto
the nuclei. The competitions among Coulomb repulsions and attractions as well as the
existence of non-zero electronic and nuclear kinetic energies make the treatment of the
full electronic-nuclear Schrodinger equation an extremely difficult problem. Electronic
structure theory deals with the quantum states of the electrons, usually within the Born-
Oppenheimer approximation (i.e., with the nuclel held fixed). It also addresses the forces
that the electrons’ presence creates on the nuclei; it is these forces that determine the
geometries and energies of various stable structures of the molecule as well as transition
states connecting these stable structures. Because there are ground and excited
electronic states, each of which has different electronic properties, there are different
stable-structure and transition-state geometries for each such electronic state. Electronic
structure theory deals with all of these states, their nuclear structures, and the

spectroscopies (e.g., electronic, vibrational, rotational) connecting them.

|. Theoretical Treatment of Electronic Structure: Atomic and Molecular Orbital

Theory

In Chapter 5’ s discussion of molecular structure, | introduced you to the strategies

that theory usesto interpret experimental data relating to such matters, and how and why



theory can also be used to simulate the behavior of molecules. In carrying out
simulations, the Born-Oppenheimer electronic energy E(R) as afunction of the 3N
coordinates of the N atoms in the molecule plays a central role. It is on this landscape that
one searches for stable isomers and transition states, and it is the second derivative
(Hessian) matrix of this function that provides the harmonic vibrational frequencies of
such isomers. In the present Chapter, | want to provide you with an introduction to the
tools that we use to solve the electronic Schrodinger equation to generate E(R) and the
electronic wave function Y (r|R). In essence, this treatment will focus on orbitals of atoms
and molecules and how we obtain and interpret them.

For an atom, one can approximate the orbitals by using the solutions of the
hydrogenic Schrédinger equation discussed in the Background Material. Although such
functions are not proper solutions to the actual N-electron Schroédinger equation (believe
it or not, no one has ever solved exactly any such equation for N > 1) of any atom, they
can be used as perturbation or variational starting-point approximations when one may be
satisfied with qualitatively accurate answers. In particular, the solutions of this one-
electron Hydrogenic problem form the qualitative basis for much of atomic and
molecular orbital theory. As discussed in detail in the Background Material, these orbitals
arelabeled by n, |, and m quantum numbers for the bound states and by | and m quantum
numbers and the energy E for the continuum states.

Much as the particle-in-a-box orbitals are used to qualitatively describe p-
electrons in conjugated polyenes or electronic bands in solids, these so-called hydrogen-
like orbitals provide qualitative descriptions of orbitals of atoms with more than asingle

electron. By introducing the concept of screening as away to represent the repulsive



interactions among the electrons of an atom, an effective nuclear charge Z; can be used
in place of Z in the hydrogenicy ,,;,, and E,, formulas of the Background Material to
generate approximate atomic orbitals to be filled by electronsin a many-electron atom.
For example, in the crudest approximation of a carbon atom, the two 1s electrons
experience the full nuclear attraction so Z; =6 for them, whereas the 2s and 2p electrons
are screened by the two 1s electrons, so Z; = 4 for them. Within this approximation, one
then occupies two 1s orbitals with Z=6, two 2s orbitals with Z=4 and two 2p orbitals with
Z=4in forming the full six-electron product wave function of the lowest-energy state of

carbon

Y(l’ 2’ Tty 6) = ylsa(l) ylsba(z) yZSa(B) y1p(0) b(6)

However, such approximate orbitals are not sufficiently accurate to be of usein
guantitative simulations of atomic and molecular structure. In particular, their energies do
not properly follow the trends in atomic orbital (AO) energies that are taught in

introductory chemistry classes and that are shown pictorially in Fig. 6.1.



Figure 6.1 Energies of Atomic Orbitals as Functions of Nuclear Charge for Neutral
Atoms
For example, the relative energies of the 3d and 4s orbitals are not adequately described
in amodel that treats electron repulsion effects in terms of a simple screening factor. So,
now it istime to examine how we can move beyond the screening model and take the
electron repulsion effects, which cause the inter-electronic couplings that render the

Schrodinger equation insoluble, into account in a more reliable manner.

A. Orbitals

1. TheHartree Description



The energies and wave functions within the most commonly used theories of
atomic structure are assumed to arise as solutions of a Schrddinger equation whose
hamiltonian hy(r) possess three kinds of energies:

1. Kinetic energy, whose average value is computed by taking the expectation value of
the kinetic energy operator —h%/2m N2 with respect to any particular solution f () to the
Schrédinger equation: KE = <f )| —h%2m N? [f >;

2. Coulombic attraction energy with the nucleus of charge Z: <f || -Z€/r |f >;

3. And Coulomb repulsion energies with all of the n-1 other electrons, which are assumed

to occupy other atomic orbitals (AOs) denoted f ., with this energy computed as

Sc <f o) £ () KEr-r') [ £40) F1e(r')>.

The so-called Dirac notation <f (r) f (r") [(€¥|r-r']) | f () f ((r')> isused to
represent the six-dimensional Coulomb integral J;, = df (r)f If «(r')F’ (€%/|r-r") dr dr’ that
describes the Coulomb repulsion between the charge density |f ,(r)[*for the electronin f |
and the charge density |f .(r')[for the electroniin f . Of course, the sum over K must be
limited to exclude K=Jto avoid counting a “self-interaction” of the electron in orbital f ,
with itself.

Thetotal energy e, of the orbital f ;, isthe sum of the above three contributions:

e=<f |-R2mN?[f >+ <f | -Z&¥/|r |f >

+ S <0 Fi(1) I | F5(r) F(r)>.



This treatment of the electrons and their orbitalsis referred to as the Hartree-level of
theory. As stated above, when screened hydrogenic AOs are used to approximate thef |
and f , orbitals, the resultant e, values do not produce accurate predictions. For example,
the negative of e, should approximate the ionization energy for removal of an electron
from the AO f ;. Such ionization potentials (1P s) can be measured, and the measured
values do not agree well with the theoretical values when a crude screening

approximation is made for the AO s.

2. The LACO-Expansion
To improve upon the use of screened hydrogenic AOs, it is most common to

approximate each of the Hartree AOs {f } as alinear combination of so-called basis AOs

{ca:

f,= SnCim Cn

using what is termed the linear-combination-of-atomic-orbitals (LCAO) expansion. In

this equation, the expansion coefficients{ C,,} are the variablesthat are to be determined

by solving the Schrédinger equation

After substituting the LCAO expansion for f ; into this Schrédinger equaiton, multiplying



on the left by one of the basis AOs c,, and then integrating over the coordinates of the

electronin f ;, one obtains

Sm<cn| hel Cm> CJ,m = eJ Sm<Cn| Cm> CJ,m .

Thisisamatrix eigenvalue equation in which thee;and {C,} appear as eigenvalues and
eigenvectors. The matrices <c,| h c.> and <c,| c,> are called the Hamiltonian and
overlap matrices, respectively. An explicit expression for the former is obtained by

introducing the earlier definition of h,

<c,|hJc,>=<c,|-h2m N? [c,> + <c,| -Z€|r |c,>

+ S¢ Cn Crg <Co(r) C4(1") I(E7Ir-1"]) | €4fr) cor')>.

An important thing to notice about the form of the matrix Hartree equations is that to
compute the Hamiltonian matrix, one must know the LCAQ coefficients {C, ;} of the
orbitals which the electrons occupy. On the other hand, these LCAO coefficients are
supposed to be found by solving the Hartree matrix eigenvalue equations. This paradox
leads to the need to solve these equations iteratively in a so-called self-consistent field
(SCF) technique. In the SCF process, one inputs an initia approximation to the { Cy .}
coefficients. This then allows one to form the Hamiltonian matrix defined above. The
Hartree matrix equations S, <c | hJ ¢, C,,, =& S,<c,|c,> C,,, arethen solved for

“new” {Cy g} coefficients and for the orbital energies{e}. The new LCAO coefficients



of those orbitals that are occupied are then used to form a*“new” Hamiltonian matrix,
after which the Hartree equations are again solved for another generation of LCAO
coefficients and orbital energies. This processis continued until the orbital energies and
LCAO coefficients obtained in successive iterations do not differ appreciably. Upon such
convergence, one says that a self-consistent field has been redized because the { C, }
coefficients are used to form a Coulomb field potential that details the electron-electron

interactions.

3. AO Basis Sets
a. STOsand GTOs

As noted above, it is possible to use the screened hydrogenic orbitals asthe{c,}.
However, much effort has been expended at developing alternative sets of functionsto
use as basis orbitals. The result of this effort has been to produce two kinds of functions
that currently are widely used.

The basis orbitals commonly used in the LCAO process fall into two primary

classes:

1. Slater-type orbitals (STOs) cn | m (r,g,f) =NnIm,z Yi.m(Qf) MleZ ae
characterized by quantum numbersn, |, and m and exponents (which characterize the
orbital’sradial 'size' ) z. The symbol Nn | m,z denotes the normalization constant.

2. Cartesian Gaussian-type orbitals (GTOs) cab.c (r.a,f) =N'ab,c.a xayb zC exp(-ar?),
are characterized by quantum numbers a, b, and ¢, which detail the angular shape and

direction of the orbital, and exponents a which govern the radial 'size'.

For both types of AOs, the coordinatesr, g, and f refer to the position of the



electron relative to a set of axes attached to the nucleus on which the basis orbital is
located. Note that Slater-type orbitals (STO's) are similar to hydrogenic orbitalsin the
region close to the nucleus. Specifically, they have a non-zero slope near the nucleus (i.e.,
d/dr(exp(-zr)),-, =-z). In contrast, GTOs, have zero slope near r=0 because
d/dr(exp(-ar?)),., = 0. We say that STOs display a*“cusp” at r=0 that is characteristic of
the hydrogenic solutions, whereas GTOs do not.

Although STOs have the proper 'cusp' behavior near nuclei, they are used
primarily for atomic and linear-molecul e cal cul ations because the multi-center integrals
<c (1) ¢ (2)|e/Iry-r,l| €,(1) c(2)> which arisein polyatomic-molecule calculations (we
will discuss these intergrals later in this Chapter) can not efficiently be evalusted when
STOs are employed. In contrast, such integrals can routinely be computed when GTOs
are used. This fundamental advantage of GTOs has |ead to the dominance of these
functions in molecular quantum chemistry.

To overcome the primary weakness of GTO functions (i.e., their radial derivatives
vanish at the nucleus), it is common to combine two, three, or more GTOs, with
combination coefficients which are fixed and not treated as L CAO parameters, into new
functions called contracted GTOsor CGTOs. Typically, a series of radialy tight,
medium, and loose GTOs are multiplied by contraction coefficients and summed to
produce a CGTO which approximates the proper ‘cusp' at the nuclear center (although no
such combination of GTOs can exactly produce such a cusp because each GTO has zero
dopeat r = 0).

Although most cal culations on molecules are now performed using Gaussian

orbitals, it should be noted that other basis sets can be used as long as they span enough



of the regions of space (radial and angular) where significant electron density resides. In
fact, it is possible to use plane wave orbitals of the form ¢ (r,q,f ) = N exp[i(k,r sing cosf
+k, rsingsinf +k,r cosqg)], where N isanormalization constant and k, , k,, and k, are
guantum numbers detailing the momenta of the orbital along the x, y, and z Cartesian
directions. The advantage to using such “simple” orbitalsis that the integrals one must
perform are much easier to handle with such functions. The disadvantage is that one must
use many such functions to accurately describe sharply peaked charge distributions of,
for example, inner-shell core orbitals.

Much effort has been devoted to developing and tabulating in widely available
locations sets of STO or GTO basis orbitals for main-group elements and transition
metals. Thisongoing effort isaimed at providing standard basis set libraries which:

1. Yield predictable chemical accuracy in the resultant energies.
2. Are cost effective to usein practical calculations.
3. Arerelatively transferable so that a given atom's basis is flexible enough to be used for

that atom in various bonding environments (e.g., hybridization and degree of ionization).

b. The Fundamental Core and Valence Basis

In constructing an atomic orbital basis, one can choose from among severa
classes of functions. First, the size and nature of the primary core and valence basis must
be specified. Within this category, the following choices are common:
1. A minimal basisin which the number of CGTO orbitalsis equal to the number of core
and valence atomic orbitals in the atom.

2. A double-zeta (DZ) basisin which twice asmany CGTOs are used as there are core
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and valence atomic orbitals. The use of more basis functions is motivated by a desire to
provide additional variational flexibility so the LCAO process can generate molecular
orbitals of variable diffuseness as the local electronegativity of the atom varies.

3. A triple-zeta (TZ) basis in which three times as many CGTOs are used as the number
of core and valence atomic orbitals (of course, there are quadruple-zeta and higher-zeta
bases a o).

Optimization of the orbital exponents (z'sor a's) and the GTO-to-CGTO
contraction coefficients for the kind of bases described above have undergone explosive
growth in recent years. The theory group at the Pacific Northwest National Labs (PNNL)
offer aworld wide web site from which one can find (and even download in aform
prepared for input to any of several commonly used electronic structure codes) awide
variety of Gaussian atomic basis sets. This site can be accessed at

http://www.emsl.pnl.gov:2080/forms/basi sform.htmil.

c. Polarization Functions

One usually enhances any core and valence basis set with a set of so-called
polarization functions. They are functions of one higher angular momentum than appears
in the atom's valence orbital space (e.g, d-functionsfor C, N, and O and p-functions for
H), and they have exponents (z or a) which cause their radial sizesto be similar to the
sizes of the valence orbitals ( i.e., the polarization p orbitals of the H atom are similar in
sizeto the 1s orbital). Thus, they are not orbitals which describe the atom's valence
orbital with one higher I-value; such higher-I valence orbitals would be radially more

diffuse.
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The primary purpose of polarization functionsisto give additional angular
flexibility to the LCAO process in forming bonding orbitals between pairs of valence
atomic orbitals. Thisisillustrated in Fig. 6.2 where polarization d, orbitals on C and O
are seen to contribute to formation of the bonding p orbital of a carbonyl group by
allowing polarization of the carbon atom's p, orbital toward the right and of the oxygen

atom's p, orbital toward the left.
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Carbon p, and d, orbitals combining to form
a bent p orbital

< 7

Oxygen p, and d orbitals combining to form
a bent p orbital

p bond formed from C and O bent (polarized) AOs

Figure 6.2 Oxygen and Carbon Form ap Bond That Uses the Polarization Functions on

Each Atom

Polarization functions are essential in strained ring compounds because they provide the
angular flexibility needed to direct the electron density into regions between bonded
atoms, but they are also important in unstrained compounds when high accuracy is

required.
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d. Diffuse Functions

When dealing with anions or Rydberg states, one must further augment the AO
basis set by adding so-called diffuse basis orbitals. The valence and polarization
functions described above do not provide enough radial flexibility to adequately describe
either of these cases. The PNNL web site data base cited above offers a good source for
obtaining diffuse functions appropriate to a variety of atoms.

Once one has specified an atomic orbital basis for each atom in the molecule, the
LCAO-MO procedure can be used to determine the C; coefficients that describe the
occupied and virtual (i.e., unoccupied) orbitals. It isimportant to keep in mind that the
basis orbitals are not themselves the SCF orbitals of the isolated atoms; even the proper
atomic orbitals are combinations (with atomic values for the C; coefficients) of the basis
functions. The LCAO-MO-SCF process itself determines the magnitudes and signs of the

C.. - Inparticular, it is alternations in the signs of these coefficients allow radial nodesto

form.
4. The Hartree-Fock Apprxoimation

Unfortunately, the Hartree approximation discsussed above ignores an important
property of electronic wave functions- their permutational antisymmetry. The full

Hamiltonian

H=S{-2mR? - Z&r} + 12 S, 1
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isinvariant (i.e., isleft unchanged) under the operation B,; in which apair of €lectrons

have their labels (i, j) permuted. We say that H commutes with the permutation operator
P;;. Thisfact impliesthat any solution'Y to HY = EY must also be an eigenfunction of B

Because permutation operators are idempotent, which means that if one applies P twice,
one obtains the identity P P = 1, it can be seen that the eigenvalues of P must be either +1
or-1. Thatis, if PY =cY,then PPY =ccY, but PP=1meansthatcc=1,soc=+1or
1.

Asaresult of H commuting with electron permutation operators and of the
idempotency of P, the eigenfunctions Y must either be odd or even under the application
of any such permutation. Particles whose wave functions are even under P are called
Bose particles or Bosons,; those for which Y isodd are called Fermions. Electrons
belong to the latter class of particles.

The simple spin-orbital product function used in Hartree theory

Y = szl,ka

does not have the proper permutational symmetry. For example, the Be atom function

Y =1sa(l) 1sb(2) 2sa(3) 2sb(4) is not odd under the interchange of the labels of
electrons 3 and 4; instead one obtains 1sa(1) 1sb(2) 2sa(4) 2sb(3). However, such
products of spin-orbitals (i.e., orbitals multiplied by a or b spin functions) can be made
into properly antisymmetric functions by forming the determinant of an NxN matrix
whose row index labels the spin orbital and whose column index |abels the el ectrons. For

example, the Be atom function 1sa(1) 1sb(2) 2sa(3) 2sb(4) produces the 4x4 matrix
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whose determinant is shown below

1sa() 1sa(?2) 1sa(3) 1sa(4)
1@ 1sb(2) 1sb(3) 1sb(4)
2sa(l) 2sa(2) 2sa(3) 2sa(4)
2@ 2sb(2) 2sb(3) 2sb(4)

Clearly, if one were to interchange any columns of this determinant, one changes the sign
of the function. Moreover, if a determinant contains two or more rows that are identical
(i.e., if one attempts to form such afunction having two or more spin-orbitals equal), it
vanishes. Thisis how such antisymmetric wave functions embody the Pauli exclusion

principle.

A convenient way to write such a determinant is as follows:

Se(-1)"F e (D) FrA2) ... Fen(N),

where the sumisover al N! permutations of the N spin-orbitals and the notation (-1)°
means that a—1 is affixed to any permutation that involves an odd number of pairwise
interchanges of spin-orbitals and a+1 sign is given to any that involves an even number.
To properly normalize such a determinental wave function, one must multiply it by

(N2, So, the final result is that wave functions of the form
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Y = (ND™2Sp(-1)° £ (1) f () ... Ton(N)

have the proper permutational antisymmetry. Note that such functions consist of as sum
of N! factors, all of which have exactly the same number of electrons occupying the same
number of spin orbitals; the only difference among the N! terms involves which electron
occupies which spin-orbital. For example, in the 1sa2sa function appropriate to the

excited state of He, one has

Y = (2)¥2{1sa(1) 25a(2) - 2sa(1) 15a(2)}

Thisfunction is clearly odd under the interchange of the labels of the two electrons, yet
each of its two components has one electron isa 1sa spin-orbital and another electronin
a2sa spin-orbital.

Although having to make Y antisymmetric appears to complicate matters
significantly, it turns out that the Schrodinger equation appropriate to the spin-orbitalsin
such an antisymmetrized product wave function is nearly the same as the Hartree

Schrodnger equation treated earlier. In fact, the resultant equation is

h.f,= {—h2m N? -Z&r + S <f () (/- ]) | o (F)>} F A1)

= S <Fi () IENI-r ) 11 07)> TN} = e F ).
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In this expression, which is known as the Hartree-Fock equation, the same kinetic and
nuclear attraction potentials occur as in the Hartree equation. Moreover, the same

Coulomb potential

ScOf (') /lr-r | (") dr' = S < (M- | [f (1')> = S¢ i (1)

appears. However, one a'so finds a so-called exchange contribution to the Hartree-Fock
potential that isequal to S, <f (') |(e”/|r-r'|) | f (r’)> f () and is often written in short-
hand notation as S, K, f ,(r). Notice that the Coulomb and exchange terms cancel for the
L=J case; this causes the artificia self-interaction term J_f  (r) that can appear in the
Hartree equations (unless one explicitly eliminatesit) to automatically cancel with the
exchangeterm K, f(r) in the Hartree-Fock equations.

When the LCAO expansion of each Hartree-Fock (HF) spin-orbital is substituted

into the above HF Schrodinger equation, a matrix equation is again obtained:

Sn<c,|hJc,> Cim=6 Sn<c,lc,> Cim

where the overlap integral <c,|c»> is as defined earlier, and the h, matrix element is

<c,| hJ c,> = <c,|-h¥2m N? [c,> + <c,| -Z€/|r |c,»

+ Sicng Cin Creg [<Ca(r) Cn(r) IEI-|) [ €ofr) c(r')>

- <Cy(r) Cu(1") I(EFIr-r']) [ 1) Cr ()]
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Clearly, the only difference between this expression and the corresponding result of
Hartree theory is the presence of the last term, the exchange integral. The SCF interative
procedure used to solve the Hartree equationsis again used to solve the HF equations.
Next, | think it is useful to reflect on the physical meaning of the Coulomb and
exchange interactions between pairs of orbitals. For example, the Coulomb integral J, , =
off ,(N|? €/r-r' | f ,(r)|Pdr dr' appropriate to the two orbitals shown in Fig. 6.3 represents
the Coulombic repulsion energy €/|r-r’| of two charge densities, |f ,J* and |f ,J%, integrated

over al locationsr and r’ of the two e ectrons.

ﬁz(r')

Overlap region

fa(r)

Figure 6.3 An sand ap Orbital and Their Overlap Region
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In contrast, the exchange integral K, = of ,(r) f ,(r") €/|r-r'| f,(r) f (") dr dr’

can be thought of as the Coulombic repulsion between two electrons whose coordinates r
and r’ are both distributed throughout the “ overlap region” f , f ,. Thisoverlap region is
where both f; and f , have appreciable magnitude, so exchange integrals tend to be
significant in magnitude only when the two orbitals involved have substantial regions of
overlap.

Finally, afew words are in order about one of the most computer time-consuming
parts of any Hartree-Fock calculation (or those discussed later)- the task of evaluating
and transforming the two-electron integrals <c,(r) c,(r") |(€”/|r-r']) | ¢(r) c(r')>. Even
when M GTOs are used as basis functions, the evaluation of M*/8 of these integrals poses
amajor hurdle. For example, with 500 basis orbitals, there will be of the order of 7.8 x10°
such integrals. With each integral requiring 2 words of disk storage, this would require at
least 1.5 x10* Mwords of disk storage. Even in the era of modern computers that possess
100 Ghy disks, thisis asignificant requirement. One of the more important technical
advances that is under much current development is the efficient calculation of such
integrals when the product functions ¢ (r) c.{r) and c(r’') c,(r’) that display the
dependence on the two electrons’ coordinatesr and r’ are spatially distant. In particular,
multipolar expansions of these product functions are used to obtain more efficient
approximations to their integrals when these functions are far apart. Moreover, such
expansions offer areliable way to “ignore” (i.e., approximate as zero) many integrals
whose product functions are sufficiently distant. Such approaches show considerable

promise for reducing the M*/8 two-electron integral list to one whose size scales much
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less strongly with the size of the AO basis.

a. Koopmans Theorem
The HF-SCF equations h, fj = g fj imply that the orbital enegies g can be

written as:

g=<fi|h|fi>=<fi|T+V|fi>+Sjoccupied) <filJ-Kjlfi>

=<fi|T+V|fi>+Sjoccupied) [ Jij - Kij ],

where T + V represents the kinetic (T) and nuclear attraction (V) energies, respectively.
Thus, g isthe average value of the kinetic energy plus Coulombic attraction to the nuclel
for an electron in f j plus the sum over al of the spin-orbitals occupied in Y of Coulomb
minus exchange interactions.

If fj isan occupied spin-orbital, thej =i term [ Jj j - Kj j] disappearsin the above
sum and the remaining termsin the sum represent the Coulomb minus exchange
interaction of f wit all of the N-1 other occupied spin-orbitals. If fj isavirtual spin-
orbital, this cancellation does not occur because the sum over j does not includej =i. So,
one obtains the Coulomb minus exchange interaction of fj with all N of the occupied
spin-orbitalsin Y . Hence the energies of occupied orbitals pertain to interactions
appropriate to atotal of N electrons, while the energies of virtual orbitals pertainto a
system with N+1 electrons.

Let us consider the following model of the detachment or attachment of an
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electron in an N-electron system.
1. In thismodel, both the parent molecule and the species generated by adding or
removing an electron are treated at the single-determinant level.
2. The Hartree-Fock orbitals of the parent molecule are used to describe both species. Itis
said that such amodel neglects ‘orbital relaxation’ (i.e., the reoptimization of the spin-
orbitals to alow them to become appropriate to the daughter species).

Within this model, the energy difference between the daughter and the parent can

be written as follows (f k represents the particular spin-orbital that is added or removed):

for electron detachment:

EN-1.EN=_ g :

and for electron attachment:

EN-EN+1=_¢g.

So, within the limitations of the HF, frozen-orbital model, the ionization

potentials (IPs) and electron affinities (EAS) are given as the negative of the occupied and

virtual spin-orbital energies, respectively. This statement is referred to as Koopmans

theorem; it is used extensively in quantum chemical calculations as a means of estimating

IPs and EAs and often yields results that are qualitatively correct (i.e., £ 0.5eV).

b. Orbital Energiesand the Total Energy
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The total HF-SCF €electronic energy can be written as:

E = Si(occupied) <fi [T+ V [fi>+ Si>j(occupied) [ Jij - Ki,j]

and the sum of the orbital energies of the occupied spin-orbitalsis given by:

Si(occupied) € = Si(occupied) <fi|T+V [fi>+ S j(occupied) [Ji,j - Ki,j ]

These two expressions differ in avery important way; the sum of occupied orbital
energies double counts the Coulomb minus exchange interaction energies. Thus, within
the Hartree-Fock approximation, the sum of the occupied orbital energiesis not equal to
the total energy. Thisfinding teaches us that we can not think of the total electronic
energy of agiven orbital occupation in terms of the orbital energies alone. We need to

also keep track of the inter-electron Coulomb and exchange energies.

5. Molecular Orbitals

Before moving on to discuss methods that go beyond the HF mode, it is
appropriate to examine some of the computational effort that goes into carrying out an
SCF calculation on molecules. The primary differences that appear when molecules
rather than atoms are considered are
i. The electronic Hamiltonian h, contains not only one nuclear-attraction Coulomb

potential S; Z&*/r, but asum of such terms, one for each nucleusin the molecule:
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S,S Z.€/r-R,], whose locations are denoted R,.

ii. One has AO basis functions of the type discussed above located on each nucleus

of the molecule. These functions are still denoted ¢ (r-R,), but their radial and angular
dependences involve the distance and orientation of the electron relative to the particular

nucleus on which the AO is located.

Other than these two changes, performing a SCF cal culation on a molecule (or molecular
ion) proceeds just asin the atomic case detailed earlier. Let us briefly review how this
iterative process occurs.

Once atomic basis sets have been chosen for each atom, the one- and two-electron
integral's appearing in the h_and overlap matrices must be evaluated. There are numerous
highly efficient computer codes that allow such integrals to be computed for s, p, d, f, and
even g, h, and i basis functions. After executing one of these 'integral packages for a

basis with atotal of M functions, one has available (usually on the computer's hard disk)
of the order of M2/2 one-electron (< cm| h, | cn > and < cm| cn >) and M4/8 two-
electron (< CmCq | Ch Ck >) integrals. When treating extremely large atomic orbital
basis sets (e.g., 500 or more basis functions), modern computer programs calculate the
requisite integrals but never store them on the disk. Instead, their contributions to the

<c,,|hJc,> matrix elements are accumulated ‘on the fly' after which the integrals are

discarded.

a. Shapes, Sizes, and Energies of Orbitals

Each molecular spin-orbital (MO) that results from solving the HF SCF equations
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for amolecule or molecular ion consists of a sum of componentsinvolving al of the

basis AOs;

f, =S, CmCi

In this expression, the C,, are referred to as LCAO-MO coefficients because they tell us
how to linearly combine AOs to form the MOs. Because the AOs have various angular
shapes (e.g., S, p, or d shapes) and radial extents (i.e., different orbital exponents), the

M Os constructed from them can be of different shapes and radial sizes. Let’slook at a

few examples to see what | mean.
The first example arises when two H atoms combine to form the H, molecule. The

valence AOs on each H atom are the 1s AOs; they combine to form the two valence MOs

(s and s*) depicted in Fig. 6.4.

Energy
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Figure 6. 4 Two 1s Hydrogen Atomic Orbitals Combine to Form a Bonding and

Antibonding Molecular Orbital

The bonding MO labeled s has LCAO-MO coefficients of equal sign for the two 1s AOs,
as aresult of which this MO has the same sign near the left H nucleus (A) as near the
right H nucleus (B). In contrast, the antibonding MO labeled s* has LCAO-MO
coefficients of different sign for the A and B 1s AOs. Aswas the case in the Hiickel or
tight-binding model outlined in the Background Material, the energy splitting between
the two M Os depends on the overlap <c,.,|c,&> between the two AOs.

An analogous pair of bonding and antibonding M Os arises when two p orbitals

overlap “sideways’ asin ethylene to form p and p* MOswhich are illustrated in Fig. 6.5.
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Figure 6. 5 Two p, Atomic Orbitals on Carbon Atoms Combine to Form a Bonding and

Antibonding Molecular Orbital

The shapes of these MOs clearly are dictated by the shapes of the AOs that comprise
them and the relative signs of the LCAO-MO coefficients that relate the MOsto
AQs. For the p MO, these coefficients have the same sign on the left and right atoms; for
the p* MO, they have opposite signs.

| should stress that the signs and magnitudes of the LCAO-MO coefficients arise as

eigenvectors of the HF SCF matrix eigenvalue equation:

Sm<cn|hel Cn‘? Cj,m=%Sm<Cn|Cm> Cj,m
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It isacharacteristic of such eigenvalue problems for the lower energy eigenfunctionsto
have fewer nodes than the higher energy solutions as we learned from several examples
that we solved in the Background Material.

Another thing to note about the MOs shown above is that they will differ in their
guantitative details, but not in their overall shapes, when various functional groups are
attached to the ethylene molecule’ s C atoms. For example, if electron withdrawing
groups such as ClI, OH or Br are attached to one of the C atoms, the attractive potential
experience by ap electron near that C atom will be enhanced. As aresult, the bonding
MO will have larger LCAO-MO coefficients C, ,belonging to the “tighter” basisAOsc,,
on this C atom. Thiswill make the bonding p MO more radially compact in this region of
space, athough its nodal character and gross shape will not change. Alternatively, an
electron donating group such as H,C- or t-butyl attached to one of the C centers will
cause the p MO to be more diffuse (by making its LCAO-MO coefficients for more
diffuse basis AOs larger).

In addition to MOs formed primarily of AOs of onetype (i.e., for H, it is primarily s-
type orbitals that form the s and s* MOs; for ethylene' s p bond, it is primarily the C 2p
AOQOs that contribute), there are bonding and antibonding MOs formed by combining
several AOs. For example, the four equivalent C-H bonding MOsin CH, shown in Fig. 6.

6 each involve C 2sand 2p aswell asH 1sbasis AOs.
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Figure 6. 6 The Four C-H Bonds in Methane

The energies of the MOs depend on two primary factors: the energies of the AOs
from which the MOs are constructed and the overlap between these AOs. The patternin
energies for valence MOs formed by combining pairs of first-row atoms to form homo-

nuclear diatomic moleculesis shownin Fig. 6. 7.
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Figure 6.7 Energies of the Valence Molecular Orbitalsin Homonuclear Diatomics

Involving First-Row Atoms

In this figure, the core MOs formed from the 1s AOs are not shown, but only those MOs
formed from 2s and 2p AOs appear. The clear trend toward lower orbital energies as one
moves from left to right is due primarily to the trendsin orbital energies of the constituent
AOQs. That is, F being more electronegative than N has a lower-energy 2p orbital than

does N.

b. Bonding, Anti-bonding, Non-bonding, and Rydberg Or bitals

As noted above, when valence AOs combine to form MOs, the relative signs of the
combination coefficients determine, along with the AO overlap magnitudes, the MO’s
energy and nodal properties. In addition to the bonding and antibonding M Os discussed
and illustrated earlier, two other kinds of MOs are important to know about.

Non-bonding MOs arise, for example, when an orbital on one atom is not directed
toward and overlapping with an orbital on a neighboring atom. For example, the lone pair
orbitals on H,O or on the oxygen atom of H,C=0 are non-bonding orbitals. They till are
described in the LCAO-MO manner, but their C,; coefficients do not contain dominant
contributions from more than one atomic center.

Finally, thereis atype of orbital that all molecules possess but that isignored in
most elementary discussions of electronic structure. All molecules have so-called
Rydberg orbitals. These orbitals can be thought of aslarge diffuse orbitals that describe

the regions of space an electron would occupy if it were in the presence of the
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corresponding closed-shell molecular cation. Two examples of such Rydberg orbitals are
shown in Fig. 6.8. On the left, we see the Rydberg orbital of NH, and on the right, that of
H,N-CH,. The former species can be thought of as a closed-shell ammonium cation NH,,*
around which a Rydberg orbital resides. The latter is protonated methyl amine with its

Rydberg orbital.

Figure 6.8 Rydberg Orbitals of NH," and of Protonated Methyl Amine

B. Deficienciesin the Single Deter minant M odel

To achieve reasonable chemical accuracy (e.g., £ 5 kcal/mole) in electronic structure
calculations, one can not describe the wave function Y in terms of a single determinant.
The reason such awave function is inadequate is because the spatial probability density

functions are not correlated. This means the probability of finding one electron at position
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r isindependent of where the other electrons are, which is absurd because the electrons
mutual Coulomb repulsion causes them to “avoid” one another. This mutual avoidanceis
what we call electron correlation because the electrons’ motions, as reflected in their
gpatial probability densities, are correlated (i.e., inter-related). Let us consider asimple
exampleto illustrate this problem with single determinant functions. The |1sa(r) 1sb(r’)|

determinant, when written as

|1sa(r) 1sb(r)| = 2"4 1sa(r) 1sb(r’) - 1sa(r’) 1sb(r)}

can be multiplied by itself to produce the 2-electron spin- and spatial- probability density:

P(r, r') = 1/2{[1sa(r) 1sb(r')]* + [1sa(r’) 1sb(r)]*-1sa(r) 1sb(r’) 1sa(r’) 1sb(r)

- 1sa(r’) 1sb(r) 1sa(r) 1sb(r’)}.

If we now integrate over the spins of the two electrons and make use of

<ala>=<blb>=1, and <a|b> = <bja> =0,

we obtain the following spatial (i.e., with spin absent) probability density:

P(rr') = |11 [1s(r")F"
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This probability, being a product of the probability density for finding one electron at r
times the density of finding another electron at r’, clearly has no correlation init. That is,
the probability of finding one electron at r does not depend on where (') the other
electronis. This product form for P(r,r") isadirect result of the single-determinant form

for Y, so thisform must be wrong if electron correlation is to be accounted for.

1. Electron Correlation

Now, we need to ask how Y should be written if electron correlation effects are to
be taken into account. As we now demonstrate, it turns out that one can account for
electon avoidance by taking Y to be a combination of two or more determinants that
differ by the promotion of two electrons from one orbital to another orbital. For example,
in describing the p2 bonding electron pair of an olefin or the ns? electron pair in alkaline
earth atoms, one mixesin doubly excited determinants of the form (p*)2 or np?,
respectively.

Briefly, the physical importance of such doubly-excited determinants can be made

clear by using the following identity involving determinants:

Ci|.fafb.|-Cp|.f'afb.

=Ca/2{ | .(f -xtYa (f +xFYo.[-|.(f -xEYb (f +xf)a.|},

where
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x = (Co/C1)V2.,

This alows one to interpret the combination of two determinants that differ from one
another by a double promotion from one orbital (f ) to another (f ') as equivalent to a
singlet coupling (i.e., having ab-ba spin function) of two different orbitals (f - xf*) and
(f +xf") that comprise what are called polarized orbital pairs. In the simplest
embodiment of such a configuration interaction (Cl) description of electron correlation,
each electron pair in the atom or moleculeis correlated by mixing in a configuration state
function (CSF) in which that electron pair is"doubly excited" to a correlating orbital.

In the olefin example mentioned above, the two non-orthogonal polarized orbital

pairsinvolve mixing the p and p” orbitals to produce two |eft-right polarized orbitals as

v

p+ XIO
left polarized rlght polarize

depicted in Fig. 6.9:

N
2

Figure 6. 9 Left and Right Polarized Orbitals of an Olefin
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In this case, one says that the p2 electron pair undergoes left-right correlation when the

(p*)? determinant is mixed into the Cl wave function.
In the alkaline earth atom case, the polarized orbital pairs are formed by mixing

the ns and np orbitals (actually, one must mix in equal amounts of py, py , and p; orbitals

to preserve overal 1S symmetry in this case), and give rise to angular correlation of the

electron pair. Such a pair of polarized orbitalsis shownin Fig. 6.10.

v 2s - a 2p,
/ Q

L

2s + a 2p,
2s and 2p,

Figure 6.10 Angularly Polarized Orbital Pairs

More specifically, the following four determinants are found to have the largest

amplitudesinY:
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Y @C1 (152252 | - C2 [|1522px2 | +[1522py? | +[1522p72 |].

The fact that the latter three terms possess the same amplitude C2 is aresult of the

requirement that a state of 1S symmetry is desired. It can be shown that this function is

equivaent to:

Y @L/6 C1 |1salsbh{[(2s-a2px)a(2st+a2px)b - (2s-a2px)b(2s+a2px)a]
+[(2s-a2py)a(2st+aZpy)b - (2s-a2py)b(2sta2py)a]

+[(2s-a2pz)a(2s+a2pz)b - (2s-a2pz)b(2s+a2pz)a] |,

wherea=+/3C2/C1 .

Here two electrons occupy the 1s orbital (with opposite, a and b spins), and are
thus not being treated in a correlated manner, while the other pair resides in 25/2p
polarized orbitals in a manner that instantaneously correlates their motions. These
polarized orbital pairs (2s+ a2pyy, or z) are formed by combining the 2s orbital with
the 2px y, or z orbital in aratio determined by C2/Cj.

Thisratio C,/C, can be shown using perturbation theory to be proportional to the
magnitude of the coupling <1s22s? |H|1s22p2 > between the two configurations
involved and inversely proportional to the energy difference [<1s22s2H|1s22s2> -

<1s22p2|H|1s22p2>] between these configurations. In general, configurations that have
similar Hamiltonian expectation values and that are coupled strongly give rise to strongly

mixed (i.e., with large |C2/C1| ratios) polarized orbital pairs.
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In each of the three equivalent termsin the alkaline earth wave function, one of
the valence electrons moves in a 2s+a2p orbital polarized in one direction while the other
valence electron movesin the 2s-a2p orbital polarized in the opposite direction. For
example, thefirst term [(2s-a2px)a(2s+a2px)b - (2s-a2px)b(2s+a2px)a] describes one
electron occupying a 2s-a2py polarized orbital while the other electron occupies the

2st+a2py orbital. The electrons thus reduce their Coulomb repulsion by occupying

different regions of space; in the SCF picture 1s22s2, both electrons reside in the same 2s
region of space. In this particular example, the electrons undergo angular correlation to
‘avoid' one another.

The use of doubly excited determinantsis thus seen as a mechanism by which 'Y
can place electron pairs, which in the single-configuration picture occupy the same
orbital, into different regions of space (i.e., each one into a different member of the
polarized orbital pair) thereby lowering their mutual Coulombic repulsion. Such electron
correlation effects are extremely important to include if one expects to achieve

chemically meaningful accuracy (i.e., + 5 kcal/mole).

2. Essential Configuration Interaction

There are occasions in which the inclusion of two or more determinantsin Y is
essential to obtaining even aqualitatively correct description of the molecul€’ s electronic
structure. In such cases, we say that we are including essential correlation effects. To
illustrate, let us consider the description of the two electrons in a single covalent bond

between two atoms or fragments that we label X and Y. The fragment orbitals from
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which the bonding s and antibonding s* MOs are formed we will label s, and s,,
respectively.

Several spin- and spatial- symmetry adapted 2-electron determinants can be
formed by placing two electronsinto the s and s* orbitals. For example, to describe the
singlet determinant corresponding to the closed-shell s2 orbital occupancy, asingle
Slater determinant

1S(0) = |sa sb| = (2'V2{ sa(1) sb(2) - sb(1)sa(2) }
suffices. An analogous expression for the (s*)2 determinant is given by

1S (0) = |s*as*b| = (2)-Y2{ s*a (1) s*b (2) - s*a (2) s*b (1) }.

Also, the Mg = 1 component of the triplet state having ss* orbital occupancy can be

written as a single Slater determinant:

3S* (1) = [sas*al = (2V2{ sa(l)s* a(2)- s* a(l)sa(?) },

ascan the Ms=-1 component of thetriplet state

35 (1) = [sbs*b| = (2)-Y2{ sb(1) s* b(2) - s* b(1) sb(2) }.
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However, to describe the singlet and Mg = O triplet states belonging to the ss*

occupancy, two determinants are needed:
1s* (0) = L Ysas*bls- Usbs*al:
V2 i
isthesinglet and
38* ) = < Ysas*bYe+ Ysbs*al;
V2l i

isthetriplet. In each case, the spin quantum number S, its z-axis projection Mg, and the

L quantum number are given in the conventional 2S*1L (M) term symbol notation.
Asthe distance R between the X and Y fragmentsis changed from near its

equilibrium value of Re and approaches infinity, the energies of thes and s* orbitals

vary in amanner well known to chemists as depicted in Fig. 6.11 if X and Y are identical.
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Figure 6.11 Orbital Correlation Diagram Showing Two s-Type Orbitals Combining to

Form a Bonding and an Antibonding Molecular Orbital.

If X'and Y are not identical, the s; and sy orbitals still combine to form a bonding
s and an antibonding s* orbital. The energies of these orbitals, for R values ranging
from near Reto R® ¥, are depicted in Fig. 6.12 for the case in which X is more

electronegativethan Y.
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Figure 6.12 Orbital Correlation Diagram For s-Type Orbitals in the Heteronuclear Case

The energy variation in these orbital energies givesriseto variationsin the
energies of the six determinants listed above. ASR® ¥, the determinants’ energies are
difficult to "intuit" because the s and s* orbitals become degenerate (in the homonuclear
case) or nearly so (inthe X 1 Y case). To pursue this point and arrive at an energy
ordering for the determinants that is appropriate to the R® ¥ region, it isuseful to
express each such function in terms of the fragment orbitals s, and s, that comprise s and

s*. Todo so, the LCAO-MO expressionsfor s and s*,

s=C[sx+zs)]
and

s* =C* [z -],
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are substituted into the Slater determinant definitions given above. Here C and C* are the
normalization constants. The parameter zis 1.0 in the homonuclear case and deviates
from 1.0 in relation to the sy and s, orbital energy difference (if s liesbelow s, then z <
1.0; if s liesabove sy, z> 1.0).

Let us examine the X=Y case to keep the analysis as simple as possible. The
process of substituting the above expressionsfor s and s* into the Slater determinants

that define the singlet and triplet functions can beillustrated as follows for the *S(0) case:

15(0) = ¥sa sb¥= C2? Ya(s¢ + sy) a(sx + sy) b'%

= C2[¥s¢ & s b¥a+ Y5y a s, bya+ Yac a sy bYa+ Ysy a s bY4

Thefirst two of these atomic-orbital-based Slater determinants (¥sx a sx b2

and /s, a sy b%) are called "ionic" because they describe atomic orbital occupancies,
which are appropriatetothe R® ¥ region that correspondto X : + X and X + X :
valence bond structures, while ¥sy a s, b%2and Vs, a s¢ b¥%are called "covalent” because

they correspond to X- + X- structures.

In similar fashion, the remaining five determinant functions may be expressed in
terms of fragment-orbital-based Slater determinants. In so doing, use is made of the
antisymmetry of the Slater determinants |f 1 fof3|= -|f1f3f 2|, whichimpliesthat

any determinant in which two or more spin-orbitals are identical vanishes|f 1f2f o | =
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-|f1f2f2|=0. Theresult of decomposing the MO-based determinats into their

fragment-orbital componentsis as follows:

1S+ (0) =V¥s*a s*bY
= C*2[ ¥, a s b+ Y5y a sy b

- Y8y a sy b%- Vs a s bg

s (0) =5

1 *hl/,_ 1 *nl
\/E[/sas blYs-Ysbs a/i

= CC* \2 [Vsca s b%e- Yy a's, bYj

35 (1) =VYsa s a¥

= CC" 25y a sy a¥

1
3G = — 1 *hlh4 1 * a1l
S* (0) \/—2[/zsas bY2+ Ysb s a/i

=CC"\2 [¥8, a s« b¥s- ¥sca sy b

3+ (-1) =¥sa s*a%

= CC* 2s, b 5 b

These decompositions of the six valence determinants into fragment-orbital or

valence bond components allow the R =¥ energies of these states to specified. For
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example, the fact that both 1S and 1S** contain 50% ionic and 50% covalent structures

impliesthat, asR ® ¥, both of their energies will approach the average of the covalent

and ionic atomic energies /2 [E (X-) + E(X-) + E(X) + E(X: )]. ThelS* energy

approaches the purely ionic value E (X)+ E (X: ) asR® ¥. The energies of 35*(0),

3S* (1) and 3S*(-1) al approach the purely covalent value E (X¢) + E (X ) asR® ¥.
The behaviors of the energies of the six valence determinants as R varies are

depicted in Fig. 6.13 for situations in which the homolytic bond cleavage is energetically

favored (i.e., for which E (X¢) + E(Xe) < E(X)+E (X: )).

el

E(Y) +E(X)

V2[E(Xe) +E(Ys) + E(Y) +E(X)]

E(Xs) + E(Ye)

Figure 6. 13 Configuration Correlation Diagram Showing How the Determinants

EnergiesVary With R



It is essentia to realize that the energies of the determinants do not represent the
energies of the true electronic states. For R-values at which the determinant energies are
separated widely, the true state energies are rather well approximated by individual 'S
determinant energies; such isthe case near R,

However, at large R, the situation is very different, and it isin such cases that
what we term essential configuration interaction occurs. Specifically, for the X=Y
example, the 'S and 'S** determinants undergo essential Cl coupling to form a pair of
states of 'S symmetry (the 'S* CSF cannot partake in this Cl mixing because it is of
ungerade symmetry; the ®S* states can not mix because they are of triplet spin
symmetry). The Cl mixing of the'S and 'S** determinantsis described in terms of a 2x2

secular problem

§ dsyHvasi  asvasti | Gl _ Al
& u eu=Eéu
S *VHVASH dSH*yH/AS U &u &l

The diagonal entries are the determinants’ energies depicted in Fig. 6.13. The off-
diagonal coupling matrix elements can be expressed in terms of an exchange integral

between the s and s* orbitals:
. . 1 ~
ASYHYIS *fi= &/sa sh¥HY3/s*a s*bYii= &BSYgy, Yes*s*ii=Kss*

AtR® ¥, wherethe 1S and 1S** determinants are degenerate, the two solutionsto the

above Cl matrix eigenvalue problem are:
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1
E. =12[ E(X)+E(X:) +E(X)+E(X:)] ; &S Y, ¥es* s*f

+

with respective amplitudes for the 1S and 1S** CSFs given by

The first solution thus has

[Ysa sbYz- Ys*a s*b']

<
Il
il

which, when decomposed into atomic orbital components, yields

1
-— 1 141 1
Y. NG [ 8@ syb¥%s- ¥sb sja%.
The other root has
1
Y+ :E [Ysa sb¥z+Ys*a s*b']

il

[ Ysxa skbve+ Ysya syb'j.
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So, we see that 1S and 1S**, which both contain 50% ionic and 50% covalent parts,
combineto produce Y _whichis purely covalent and Y 4+ which is purely ionic.

The above essential Cl mixing of 1S and 1S** asR ® ¥ qualitatively alters the
energy diagrams shown above. Descriptions of the resulting valence singlet and triplet S

states are given in Fig. 6.14 for homonuclear situations in which covalent productslie

below the ionic fragments.

E(Y) + E(X)

E(X*) + E(Y*)

R —»

Figure 6.14 State Correlation Diagram Showing How the Energies of the States,

Comprised of Combinations of Determinants, Vary With R
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3. Various Approachesto Electron Correlation
There are numerous procedures currently in use for determining the 'best' wave

function that is usually expressed in the form:

Y =8 C| FJ,

where F| isaspin-and space- symmetry-adapted configuration state function (CSF) that
consists of one or more determinants | f|1f|2f3... f |N| combined to produce the
desired symmetry . In all such wave functions, there are two kinds of parameters that need
to be determined- the Cj coefficients and the LCAO-MO coefficients describing the f |k

in terms of the AO basis functions . The most commonly employed methods used to

determine these parameters include:

a. The Cl Method

In this approach, the LCAO-MO coefficients are determined first usualy viaa
single-configuration SCF calculation. The C| coefficients are subsequently determined by
making the expectationvalue<Y |H|Y >/<Y |Y > variationaly stationary.

The CI wave function is most commonly constructed from spin- and spatial-
symmetry adapted combinations of determinants called configuration state functions

(CSFs) F j that include:
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1. The so-called reference CSF that is the SCF wave function used to generate the

molecular orbitalsfj .

2. CSFs generated by carrying out single, double, triple, etc. level 'excitations (i.e.,
orbital replacements) relative to the reference CSF. Cl wave functions limited to include
contributions through various levels of excitation are denoted S (singly), D (doubly),

SD (singly and doubly), SDT (singly, doubly, and triply) excited.

The orbitals from which electrons are removed can be restricted to focus attention
on correlations among certain orbitals. For example, if excitations out of core orbitals are
excluded, one computes atotal energy that contains no core correlation energy. The
number of CSFsincluded in the CI calculation can be large. Cl wave functions including
5,000 to 50,000 CSFs are routine, and functions with one to several billion CSFs are
within the realm of practicality.

The need for such large CSF expansions can be appreciated by considering (i) that
each electron pair requires at least two CSFsto form polarized orbital pairs, (ii) there are
of the order of N(N-1)/2 = X electron pairs for amolecule containing N electrons, hence
(iii) the number of termsin the Cl wave function scales as 2X. For amolecule containing
ten electrons, there could be 245 = 3.5 x1013 terms in the Cl expansion. This may be an
over estimate of the number of CSFs needed, but it demonstrates how rapidly the number
of CSFs can grow with the number of electrons.

The Hamiltonian matrix elements H, between pairs of CSFs are, in practice,
evaluated in terms of one- and two- electron integrals over the molecular orbitals. Prior to
forming the H, ;matrix elements, the one- and two- electron integrals, which can be

computed only for the atomic (e.g., STO or GTO) basis, must be transformed to the
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molecular orbital basis. This transformation step requires computer resources
proportional to the fifth power of the number of basis functions, and thusis one of the
more troublesome steps in most configuration interaction calculations. Further details of

such calculations are beyond the scope of this text, but are treated in my QMIC text.

b. Perturbation Theory

This method uses the single-configuration SCF process to determine a set of

orbitals{f i} . Then, with a zeroth-order Hamiltonian equal to the sum of the N electrons

Fock operators HO = Si=1,N hgi), perturbation theory is used to determine the Cj
amplitudes for the other CSFs. The Mgaller-Plesset perturbation (MPPT) procedure is a
special case in which the above sum of Fock operatorsis used to define HO. The
amplitude for the reference CSF is taken as unity and the other CSFs' amplitudes are
determined by using H-HO as the perturbation.

In the MPPT method, once the reference CSF is chosen and the SCF orbitals
belonging to this CSF are determined, the wave function Y and energy E are determined
in an order-by-order manner. The perturbation equations determine what CSFs to include
through any particular order. Thisis one of the primary strengths of this technique; it
does not require one to make further choices, in contrast to the CI treatment where one

needs to choose which CSFsto include.

For example, the first-order wave function correction Y lis:

Y1=-Siqjmen[<ij Wyl mn>-<ij |Ur,| nm>][ emrej +en-g]-1 | FjjmN>,
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where the SCF orbital energies are denoted ek and Fj j™" represents a CSF that is
doubly excited (fj and f j are replaced by f m and f n) relative to the SCF wave function
F . Only doubly excited CSFs contribute to the first-order wave function; the fact that the
contributions from singly excited configurations vanish in Y *is known at the Brillouin
theorem.

The energy E is given through second order as:

E =ESCF - Si<j,m<n|<ij | Ur,|mn>-<ij|1lr,|nm> 12/[ em-€i +en -§ |.

Both Y and E are expressed in terms of two-electron integrals<i,j | 1/r;, | m,n > (that are
sometimes denoted <i,j|k,I>) coupling the virtual spin-orbitalsf,, andf , to the spin-
orbitals from which electrons were excited f ;and f; aswell as the orbital energy
differences[ em-€j +en -€j ] accompanying such excitations. Clearly, maor contributions
to the correlation energy are made by double excitationsinto virtual orbitalsf m f n with
large <i,j | r;, | m,n>integrals and small orbital energy gaps [em-€ +en -§]. In higher
order corrections, contributions from CSFs that are singly, triply, etc. excited relative to

F appear, and additional contributions from the doubly excited CSFs also enter. The
various orders of MPPT are usually denoted MPn (e.g.., MP2 means second-order

MPPT).

c. The Coupled-Cluster Method
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As noted above, when the Hartree-Fock wave function Y ° is used as the zeroth-
order starting point in a perturbation expansion, the first (and presumably most
important) corrections to this function are the doubly-excited determinants. In early
studies of Cl treatments of electron correlation, it was also observed that double
excitations had the largest C, coefficients after the SCF wave function, which has the
very largest C,. Moreover, in Cl studies that included single, double, triple, and quadruple
level excitations relative to the dominant SCF determinant, it was observed that
quadruple excitations had the next largest C, amplitudes after the double excitations. And,
very importantly, it was observed that the amplitudes C,,.,™™ of the quadruply excited
CSFsF ™™ could be very closely approximated as products of the amplitudes C,™
C. of the doubly excited CSFsF ;™ and F . This observation prompted workersto
suggest that a more compact and efficient expansion of the correlated wave function

might be realized by writing Y as:

Y =exp(T) F,

where F isthe SCF determinant and the operator T appearing in the exponential is taken

to be a sum of operators

T=T,+T,+T;+...+Ty

that create single (T,), double (T,), etc. level excited CSFswhen acting on F. Thisway of

writing Y is called the coupled-cluster (CC) form for Y .
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In any practical calculation, this sum of T, operators would be truncated to keep
the calculation practical. For example, if excitation operators higher than T, were
neglected, then onewoulduse T » T, + T, + T,. However, even when T is so truncated,
the resultant Y would contain excitations of higher order. For example, using the

truncation just introduced, we would have

Y=@Qt+T 4T+ T+ V2(To+ T+ Ty (T + T+ T) + U6 (T, + T, + Ty)

(Ty+T,+T) (T, +T,+Ty) +...)F.

This function contains single excitations (in T,F ), double excitations (in T,F and in
T,T,F), triple excitations (in T,;F, T,T,F, T,T,F, and T,T,T,F), and quadruple
excitationsin avariety of termsincluding T,T,F and T, T,F, aswell as even higher level
excitations. By the design of this wave function, the quandruple excitations T, T,F will
have amplitudes given as products of the amplitudes of the double excitations T,F just as
were found by earlier Cl workers to be most important. Hence, in CC theory, we say that
guadruple excitations include "unlinked" products of double excitations arising from the
T, T, product; the quadruple excitations arising from T,F would involve linked terms and
would have amplitudes that are not products of double-excitation amplitudes.

After writing Y in terms of an exponential operator, one is faced with determining
the amplitudes of the various single, double, etc. excitations generated by the T operator

acting on F. Thisis done by writing the Schrodinger equation as:
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Hexp(T) F =Eexp(T) F,

and then multiplying on the left by exp(-T) to obtain:

exp(-T) Hexp(T) F =EF.

The CC energy is then calculated by multiplying this equation on the left by F* and

integrating over the coordinates of al the electrons:

<F|exp(-T) H exp(T) F>=E.

In practice, the combination of operators appearing in this expression is rewritten and

dealt with as follows;

E=<F|T+[HT]+Y2[[HT],T]+Y6[[[HT]T]T]+24[[[[H,T],T],T],T] |F>;

this so-called Baker-Campbell-Hausdorf expansion of the exponential operators can be
shown truncate exactly after the fourth power term shown here. So, once the various
operators and their amplitudes that comprise T are known, E is computed using the above
expression that involves various powers of the T operators.

The equations used to find the amplitudes (e.g., those of the T, operator S, . ,

to T4, Wherethet,™ are the amplitudes and T, ™ are the excitation operators) of the
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various excitation level are obtained by multiplying the above Schroédinger equation on
the left by an excited determinant of that level and integrating. For example, the equation

for the double-excitationsis:

O0=<F,,™T+[HT]+V2[[H,T]T] +V6[[[H,T]T]T]+ V24 [[[[H,T],T],T], T] |F>.

The zero arises from the fact that <F ,™"|F > = 0; that is, the determinants are
orthonormal. The number of such equations is equal to the number of doubly excited
determinants F ™, which is equal to the number of unknown t,,™ amplitudes. So, the
above quartic equations must be solved to determine the amplitudes appearing in the
various T, operators. Then, as noted above, once these amplitudes are known, the energy
E can be computed using the earlier quartic equation.

Clearly, the CC method contains additional complexity as aresult of the
exponential expansion form of the wave function Y . However, it is thisway of writing Y
that allows us to automatically build in the fact that products of double excitations are the
dominant contributors to quadruple excitations (and T, T, T, is the dominant component
of six-fold excitations, not T). In fact, the CC method istoday the most accurate tool that

we have for calculating molecular electronic energies and wave functions.

d. The Density Functional M ethod
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These approaches provide alternatives to the conventional tools of quantum
chemistry which move beyond the single-configuration picture by adding to the wave
function more configurations whose amplitudes they each determine in their own way.
As noted earlier, these conventional approaches can lead to avery large number of CSFs
in the correlated wave function, and, as aresult, a need for extraordinary computer
resources.

The density functional approaches are different . Here one solves a set of orbital-

level equations

[- h2/2me N2 - SaZae/lr-Ral + 8r (r)e2/lr-r'jdr’

+UN]f =ef;

in which the orbitals {f i} 'feel’ potentials due to the nuclear centers (having charges Zg),

Coulombic interaction with the total electron density r (r'), and a so-called exchange-
correlation potential denoted U(r'). The particular electronic state for which the
calculation is being performed is specified by forming a corresponding density r (r').
Before going further in describing how DFT calculations are carried out, let us examine
the origins underlying this theory.

The so-called Hohenberg-K ohn theorem states that the ground-state electron
density r (r) describing an N-electron system uniquely determines the potential V(r) in

the molecul€ s e ectronic Hamiltonian
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H =S {-h/2m,N>+ V() + €/2 S, Ur,, },

and, because H determines the ground-state energy and wave function of the system, the
ground-state density r (r) therefore determines the ground-state properties of the system.
The fact that r (r) determines V (r) isimportant because it is V(r) that specifies where the

nuclel arelocated.

The proof of this theorem proceeds as follows:
a. r (r) determines the number of electrons N because or (r) d*r = N.
b. Assume that there are two distinct potentials (aside from an additive constant that
simply shifts the zero of total energy) V(r) and V' (r) which, when used inH and H’,
respectively, to solve for aground state produce E,, Y (r) and E,’, Y ' (r) that have the
same one-electron density: ofY [dr,dr,... dry=r (r)= 0 |Y’[dr,dr,... dry.
c. If wethink of Y’ as trial variational wave function for the Hamiltonian H, we know
that
Eo <<Y'H|Y'>=<Y’'|H|Y'>+0r(r) [V(r)-V'(N] Pr=E, +or(r) [V(r) -V’ (r)] .
d. Similarly, taking Y asatrial function for the H' Hamiltonian, one finds that
By <Ep+or(r)[V'(r)-V(r)] dr.
e. Adding the equations in ¢ and d gives
E+E <BE+E,

aclear contradiction unless the electronic state of interest is degenearate.
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Hence, there cannot be two distinct potentials vV and V' that give the same non-
degenerate ground-state r (r). So, the ground-state density r (r) uniquely determines N
and V, and thus H, and therefore Y and E,. Furthermore, because Y determinesall
properties of the ground state, then r (r), in principle, determines all such properties. This
means that even the kinetic energy and the electron-electron interaction energy of the
ground-state are determined by r (r). It is easy to see that or (r) V(r) o = V[r] givesthe
average value of the electron-nuclear (plus any additional one-electron additive potential)
interaction in terms of the ground-state density r (r). However, how are the kinetic energy
T[r] and the electron-electron interaction V [r ] energy expressed in terms of r ?

The main difficulty with DFT isthat the Hohenberg-Kohn theorem shows the
ground-state values of T, V., V, etc. are all unique functionals of the ground-stater (i.e.,
that they can, in principle, be determined oncer isgiven), but it does not tell us what
these functional relations are.

To see how it might make sense that a property such as the kinetic energy, whose
operator -h?/2m, NZinvolves derivatives, can be related to the electron density, consider a
simple system of N non-interacting electrons moving in athree-dimensional cubic “box”

potential. The energy states of such electrons are known to be

E = (h/8mL?) (n2+nj+n?),
where L isthe length of the box along the three axes, and n,, n,, and n, are the quantum
numbers describing the state. We can view n+ n?+n,>= R? as defining the squared

radius of a sphere in three dimensions, and we realize that the density of quantum states
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in this space is one state per unit volumein then,, n,, n,space. Becausen,, n,, and n,

y )
must be positive integers, the volume covering all states with energy less than or equal to

aspecified energy E = (h”/8m,L? R? is 1/8 the volume of the sphere of radius R:
F (E) = 1/8 (4p/3) R*= (p/6) (8 L2E/N?)*2.

Since there is one state per unit of such volume, F (E) is also the number of states with
energy lessthan or equal to E, and is called the integrated density of states. The number
of states g(E) dE with energy between E and E+dE, the density of states, is the derivative

of F:
g(E) = dF /dE = (p/4) (8mL¥n?)¥?EY2

If we calculate the total energy for N electrons that doubly occupy al of states having
energies up to the so-called Fermi energy (i.e., the energy of the highest occupied

molecular orbital HOMO), we obtain the ground-state energy:

Er

E, = 2 ¢p(E) EJE = (8p/5) (2m/h?)*?L° E.*

The total number of electrons N can be expressed as

Er

N = 2 dp(E)dE = (8p/3) (2mJi)**L°E*,
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which can be solved for E-in terms of N to then express E, in terms of N instead of in

terms of E:

E,= (3h%/10m,) (3/8p)23 L3 (N/L3)%:,

This gives the total energy, which is aso the kinetic energy in this case because the
potential energy is zero within the “box”, in terms of the electron density r (x,y,z) =
(N/L3). It therefore may be plausible to express kinetic energies in terms of electron
densitiesr (r), but it is by no means clear how to do so for “real” atoms and molecules
with electron-nuclear and el ectron-electron interactions operative.

In one of the earliest DFT models, the Thomas-Fermi theory, the kinetic energy of
an atom or molecule is approximated using the above kind of treatment on a“local” level.
That is, for each volume element in r space, one assumes the expression given above to

be valid, and then one integrates over al r to compute the total kinetic energy:

Trelr] = 0(3n?/10m,) (3/8p)*° [r (r)]** dr = C. o[r (r)]** d¥r,

where the last equality simply defines the C- constant. Ignoring the correlation and

exchange contributions to the total energy, this T is combined with the electron-nuclear V

and Coulombic electron-electron potential energies to give the Thomas-Fermi total

energy:

Eore [r] = Ce O[r (N2 d + oV(r) r (r) & + /2 or (r) r (r*)/|r-r’| &’ &,
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This expression is an example of how E, is given as alocal density functional
approximation (LDA). The term local means that the energy is given as afunctional (i.e.,
afunction of r) which depends only on r (r) at pointsin space but not onr (r) at more
than one point in space or on spatial derivativesof r (r).

Unfortunately, the Thomas-Fermi energy functional does not produce results that
are of sufficiently high accuracy to be of great use in chemistry. What ismissing in this
theory are a. the exchange energy and b. the electronic correlation energy. Moreover, the
Kinetic energy istreated only in the approximate manner described.

Dirac was able to address the exchange energy for the 'uniform electron gas (N
Coulomb interacting electrons moving in a uniform positive background charge whose
magnitude balances the charge of the N electrons). If the exact expression for the
exchange energy of the uniform electron gasis applied on alocal level, one obtains the

commonly used Dirac local density approximation to the exchange energy:

E®<,Dirac[r] =- Cx b[r (r)]413 dsr’

with C, = (3/4) (3/p)“*. Adding this exchange energy to the Thomas-Fermi total energy
Eo 1 [r] gives the so-called Thomas-Fermi-Dirac (TFD) energy functional.

Because electron densities vary rather strongly spatially near the nuclel,
corrections to the above approximationsto T[r ] and E,, ;... are needed. One of the more
commonly used so-called gradient-corrected approximations is that invented by Becke,

and referred to as the Becke88 exchange functional:
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E.(BeckeB8) = E, pirall | -9 O°r **(1+6 gx sinh™(x))™dr,

where x =r “3|Nr |, and gis a parameter chosen so that the above exchange energy can
best reproduce the known exchange energies of specific electronic states of the inert gas
atoms (Becke finds g to equal 0.0042). A common gradient correction to the earlier T[r ]

is called the Weizsacker correction and is given by

AT weissscker = (1/72)(7/my) O|Nr (r)[r (r) dr.

Although the above discussion suggests how one might compute the ground-state
energy once the ground-state density r (r) is given, one still needs to know how to obtain
r . Kohn and Sham (K S) introduced a set of so-called KS orbitals obeying the following

equation:

{R2m N2+ V(r) + &2 or(r')/r-r’| dr’ +U,(r) }f,=ef,,

where the so-called exchange-correlation potential U, (r) = dE,[r ]/dr (r) could be
obtained by functional differentiation if the exchange-correlation energy functional E,[r ]
were known. KS also showed that the KS orbitals {f;} could be used to compute the

density r by simply adding up the orbital densities multiplied by orbital occupancies n;:

r(r)=Sjnj[fj(r)?
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(herenj =0,1, or 2 is the occupation number of the orbital f j in the state being studied)

and that the kinetic energy should be calculated as

T = §j nj <fj(r)|K72m R? [f (r)>

The same investigations of the idealized 'uniform electron gas' that identified the
Dirac exchange functional found that the correlation energy (per electron) could also be
written exactly as a function of the electron density r of the system, but only in two
limiting cases- the high-density limit (larger) and the low-density limit. There still exists
no exact expression for the correlation energy even for the uniform electron gas that is
valid at arbitrary values of r . Therefore, much work has been devoted to creating
efficient and accurate interpolation formulas connecting the low- and high- density

uniform electron gas . One such expression is

Eclr]=or(r) e(r)dr,

where
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e(r) = A/2{In(x/X) + 2b/Q tan™(Q/(2x+h)) -bx,/X, [IN((X-Xz)X)

+2(b+2x,)/Q tan’(Q/(2x+b))

is the correlation energy per electron. Here x = r*?, X=x?+bx+c, X, =x,* +bx,+c and
Q=(4c - b»)"?, A = 0.0621814, x,=-0.409286, b = 13.0720, and ¢ = 42.7198. The
parameter r.is how the density r enters since 4/3 prlisequal to 1r; that is, r.isthe radius
of a sphere whose volume is the effective volume occupied by one e ectron.

A reasonable approximation to the full E [r] would contain the Dirac (and perhaps
gradient corrected) exchange functional plusthe above E[r ], but there are many
alternative approximations to the exchange-correlation energy functional. Currently,
many workers are doing their best to “cook up” functionals for the correlation and
exchange energies, but no one has yet invented functionals that are so reliable that most

workers agree to use them.

To summarize, in implementing any DFT, one usually proceeds as follows:
1. An atomic orbital basisis chosen in terms of which the KS orbitals are to be expanded.
2. Someinitial guessis made for the LCAO-KS expansion coefficientsC, ; f,= S,C, ,c..
3. The density is computed asr (r) = Sj nj [f j(r)|2 . Often, r (r) itself is expanded in an
atomic orbital basis, which need not be the same as the basis used for thef ;, and the
expansion coefficients of r are computed in terms of those of thef ;. It is aso common to

use an atomic orbital basis to expand r **(r) which, together with r, is needed to evaluate
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the exchange-correlation functional’ s contribution to E,.

4. The current iteration’ s density is used in the KS equations to determine the
Hamiltonian {-h72m N2+ V(r) + €42 or (r’)/|r-r’| dr’ +U(r) }whose“new”
eigenfunctions {f } and eigenvalues{e} are found by solving the KS equations.

5. These new f; are used to compute a new density, which, in turn, is used to solve anew
set of KS equations. This process is continued until convergence is reached (i.e., until the
f, used to determine the current iteration’sr are the same f ; that arise as solutions on the
next iteration.

6. Once the converged r (r) is determined, the energy can be computed using the earlier

expression

E[r]=Sjnj <fj(r)|-h72m N?f (r)>+ o/(r) r (r) dr + €423 (r)r (r*)/Jr-r’[dr dr’+ E[r].

e. Energy Difference M ethods

In addition to the methods discussed above for treating the energies and wave
functions as solutions to the electronic Schrédinger equation, there exists afamily of
tools that allow one to compute energy differences “directly” rather than by finding the
energies of pairs of states and subsequently subtracting them. Various energy differences
can be so computed: differences between two electronic states of the same molecule (i.e.,
electronic excitation energies DE), differences between energy states of a molecule and
the cation or anion formed by removing or adding an electron (i.e., ionization potentials
(IPs) and electron affinities (EAS)).

Because of space limitations, we will not be able to elaborate much further on
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these methods. However, it isimportant to stress that:
1. These so-called Greens function or propagator methods utilize essentially the same
input information (e.g., atomic orbital basis sets) and perform many of the same
computational steps (e.g., evaluation of one- and two- electron integrals, formation of a
set of mean-field molecular orbitals, transformation of integrals to the MO basis, etc.) as
do the other techniques discussed earlier.
2. These methods are now rather routinely used when DE, IP, or EA information is
sought.

The basic ideas underlying most if not all of the energy-difference methods are:
1. One forms areference wave function Y (this can be of the SCF, MPn, CI, CC, DFT,
etc. variety); the energy differences are computed relative to the energy of this function.
2. One expresses the final-state wave function Y’ (i.e., that describing the excited, cation,
or anion state) in terms of an operator Wacting on the referenceY: Y’ = WY . Clearly,
the W operator must be one that removes or adds an electron when one is attempting to
compute IPs or EAS, respectively.
3. Onewrites equationswhich Y and Y’ are expected to obey. For example, in the early
development of these methods, the Schrédinger equation itself was assumed to be
obeyed, soHY =EY and HY’ =E’' Y’ arethe two equations.
4. One combines WY =Y’ with the equationsthat Y and Y’ obey to obtain an equation
that Wmust obey. In the above example, one (a) usesWY =Y’ in the Schrodinger
equation for Y, (b) allows Wto act from the left on the Schrédinger equation for Y, and
(c) subtracts the resulting two equationsto achieve (HW-WH) Y =(E' - E) WY, or, in

commutator form[HW Y = DEWY.
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5. One can, for example, express Y in terms of a superposition of configurationsY =S,
C,F ; whose amplitudes C, have been determined from a Cl or MPn calculation and
express Win terms of operators { O,} that cause single-, double-, etc. level excitations
(for the IP (EA) cases, Wis given in terms of operators that remove (add), remove and
singly excite (add and singly excite, etc.) electrons): W= S, D, Oy .

6. Substituting the expansions for Y and for Winto the equation of motion (EOM) [H,WM
Y =DE WY, and then projecting the resulting equation on the |eft against a set of

functions (e.g., { O« |Y >}) gives amatrix eigenvalue-eigenvector equation

S.<O.Y|[H,0] Y>D, =DES, <O.Y|O.Y > Dy

to be solved for the D, operator coefficients and the excitation (or IP or EA) energies DE.
Such are the working equations of the EOM (or Greens function or propagator) methods.
In recent years, these methods have been greatly expanded and have reached a

degree of reliability where they now offer some of the most accurate tools for studying
excited and ionized states. In particular, the use of time dependent variational principles
have allowed a much more rigorous development of equations for energy differences and
non-linear response properties. In addition, the extension of the EOM theory to include
coupled-cluster reference functions now allows one to compute excitation and ionization

energies using some of the most accurate ab initio tools.

f. The Sater-Condon Rules
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To form Hamiltonian matrix elements Hyk | between any pair of Slater

determinants, one uses the so-called Slater-Condon rules. These rules express all non-
vanishing matrix elements involving either one- or two- electron operators. One-electron

operators are additive and appear as

F=S;i f(i);

two-electron operators are pairwise additive and appear as

G = Sjj d(i,)))-

The Slater-Condon rules give the matrix elements between two determinants

|>=|f1f of 3... TN|

and

|'>=[f'1f 'of '3...f '\

for any quantum mechanical operator that isasum of one- and two- electron operators (F
+ G). It expresses these matrix elementsin terms of one-and two-electron integrals
involving the spin-orbitals that appear in | > and | > and the operators f and g.

Asafirst step in applying these rules, one must examine | > and | "> and determine

by how many (if any) spin-orbitals | > and | "> differ. In so doing, one may have to
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reorder the spin-orbitals in one of the determinants to achieve maximal coincidence with
those in the other determinant; it is essential to keep track of the number of permutations
( Np) that one makes in achieving maximal coincidence. The results of the Slater-Condon
rules given below are then multiplied by (-1)Np to obtain the matrix elements between the
original | > and | >. The final result does not depend on whether one chooses to permute

| >or|">.

The Hamiltonian is, of course, a specific example of such an operator; the electric
dipole operator Sj erj and the electronic kinetic energy - h2/2meSiN;2 are examples of
one-electron operators (for which one takes g = 0); the electron-electron coulomb
interaction Si>j e2/rjj isatwo-electron operator (for which one takesf = 0).

Once maximal coincidence has been achieved, the Slater-Condon (SC) rules
provide the following prescriptions for evaluating the matrix elements of any operator F

+ G containing a one-electron part F = S; f(i) and atwo-electron part G = Sjj g(i,j).:

(i) If | >and | > are identical, then

<|F+G|>=S§<fj|f|fi>+G5i[<fifj[g|fifj>-<fifj|glfjfi>],

where the sums over i and j run over al spin-orbitalsin | >;

(i) If | > and | "> differ by asingle spin-orbital mismatch (fp* '),

<|F+G|>=<fp|f[fp>+5[<ffjlg|f'pfj>-<fpfjlglfijf'p>],
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where the sum over j runs over all spin-orbitalsin | > except f  ;

(iii) If | > and | > differ by two spin-orbitals (fp* f'pandfq? f'g),

<|F+G|>=<fpfqlg|fpfg>-<fpfqlg|figfp>

(note that the F contribution vanishes in this case);

(iv) If | > and | "> differ by three or more spin orbitals, then

<|F+G|>=0;

(v) For the identity operator |, the matrix elements< |1 |'>=0if | >and | > differ by one

or more spin-orbitals (i.e., the Slater determinants are orthonormal if their spin-orbitals

are).

Recall that each of these results is subject to multiplication by afactor of (-1)Np to

account for possible ordering differences in the spin-orbitalsin | > and | ">.

In these expressions,

<fi|f|fj>
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is used to denote the one-electron integral

of *i(r) f(r) fj(r) dr

and

<fifjlglfkfi>

(or in short hand notation < i j| k | >)represents the two-€electron integral

of *i(r) £%j(r") g(r,r") fk(r)f 1(r') drdr".

The notation < j | k 1> introduced above gives the two-electron integrals for the
g(r,r") operator in the so-called Dirac notation, in which the i and k indices label the spin-
orbitals that refer to the coordinates r and the j and | indices label the spin-orbitals
referring to coordinatesr'. Ther and r' denoter,q,f ,s and r',q',f',s" (with s and s’ being
the a or b spin functions).

If the operators f and g do not contain any electron spin operators, then the spin
integrations implicit in these integrals (all of thefj are spin-orbitals, so each f is
accompanied by an a or b spin function and each f * involves the adjoint of one of thea
or b spin functions) can be carried out as <ala> =1, <a|b> =0, <bla> =0, <b|b> =1,

thereby yielding integrals over spatial orbitals.
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g. Atomic Units

The electronic Hamiltonian that appears throughout this text is commonly
expressed in the literature and in other texts in so-called atomic units (aus). In that form,

it iswritten as follows:

He=S{ (-12) sz- SaZdtja} + Sj<k Urjk .

Atomic units are introduced to remove al of theh, e, and me factors from the
Schrodinger equation.

To effect the unit transformation that results in the Hamiltonian appearing as
above, one notes that the kinetic energy operator scales as rj'2 whereas the Coulomb
potentials scale asrj-1 and as rj k1. So, if each of the Cartesian coordinates of the
electrons and nuclel were expressed as a unit of length ag multiplied by a dimensionless
length factor, the kinetic energy operator would involve terms of the form
(- h2/2(ag)2me ) Nj2 , and the Coulomb potentials would appear as Za€2/(aq)rj,a and
e2/(ag)rj k , with ther, , and r;, factors now referring to the dimensionless coordinates. A
factor of e2/ag (which has units of energy since ag has units of length) can then be
removed from the Coulomb and kinetic energies, after which the kinetic energy terms
appear as ( - h2/2(e2ag)me ) N;2 and the potential energies appear as Z4/rj aand 1/r; k.
Then, choosing ap = h%/eZme changes the kinetic energy termsinto -1/2 N;2; as aresult,

the entire electronic Hamiltonian takes the form given above in which no €2, mg, or k2

72



factors appear. The value of the so-called Bohr radius ag = h2/e2me turns out to be 0.529

A, and the so-called Hartree energy unit e2/ag, which factors out of He, is 27.21 €V or

627.51 kcal/moal.

C. MoleculesEmbedded in Condensed M edia

Often one wants to model the behavior of amolecule or ion that is not isolated as
it might be in a gas-phase experiment. When one attempts to describe a system that is
embedded, for example, in acrystal lattice, in aliquid or aglass, one has to have some
way to treat both the effects of the surrounding “medium” on the molecule of interest and
the motions of the medium’s constituents. In so-called quantum mechanics- molecular
mechanics (QM-MM) approaches to this problem, one treats the molecule or ion of
interest using the electronic structure methods outlined earlier in this Chapter, but with
one modification. The one-electron component of the Hamiltonian, which contains the
electron-nuclei Coulomb potential S,; (-Z.€/|r,— Ry]), is modified to also contain aterm
that describes the potential energy of interaction of the electrons and nuclel with the
surrounding medium. In the simplest such models, this solvation potential depends only
on the dielectric constant of the surroundings. In more sophisticated models, the
surroundings are represented by a collection of (fractional) point charges that may also be
attributed with local dipole moments and polarizabilities that allow them to respond to
changes in the internal charge distribution of the molecule or ion. The locations of such
partial charges and the magnitudes of their dipoles and polarizabilities are determined to

make the resultant solvation potential reproduce known (from experiment or other
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simulations) solvation characteristics (e.g., solvation energy, radial distribution functions)

inavariety of calibration cases.

In addition to describing how the surroundings affect the Hamiltonian of the
molecule or ion of interest, one needs to describe the motions or spatial distributions of
the medium’ s constituent atoms or molecules. Thisis usually done within a purely
classical treatment of these degrees of freedom. That is, if equilibrium properties of the

solvated system are to be simulated, then Monte-Carlo (MC) sampling (this subject is

treated in Chapter 7) of the surrounding medium’s coordinates is used. Within suchaMC

sampling, the potential energy of the entire system is calculated as a sum of two parts:

I. the electronic energy of the solute molecule or ion, which contains the interaction
energy of the molecul€e' s electrons and nuclei with the surrounding medium, plus
ii. the intra-medium potential energy, which istaken to be of a simple molecular
mechanics (MM) force field character (i.e., to depend on inter-atomic distances and

internal anglesin an analytical and easily computed manner).

If, alternatively, dynamical characteristics of the solvated species are to be simulated, a
classical molecular dynamics (MD) treatment is used. In this approach, the solute-
medium and internal-medium potential energies are handled in the same way asin the
MC case but where the time evolution of the medium’ s coordinates are computed using

the MD techniques discussed in Chapter 7.

D. High-End Methods for Treating Electron Correlation
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Although their detailed treatment is beyond the scope of thistext, it isimportant
to appreciate that new approaches are always under development in all areas of
theoretical chemistry. In this Section, | want to introduce you to two tools that are
proving to offer the highest precision in the treatment of electron correlation energies.

These are the so-called quantum Monte-Carlo and r, ,- approaches to this problem.

1. Quantum Monte-Carlo

In this method, one first re-writes the time dependent Schrodinger equation

ihdY/dt=-h%2m,SN?Y +V Y

for negative imaginary values of the time variablet (i.e., one ssmply replacest by -it).

Thisgives

dy/dt =h/2m,SN2Y - (V) Y,

which is analogous to the well-known diffusion equation

dC/dt =D N*C + SC.
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The re-written Schrédinger equation can be viewed as a diffusion equation in the 3N
spatial coordinates of the N electrons with adiffusion coefficient D that isrelated to the

electrons mass m, by

D =h/2m,

The so-called source and sink term Sin the diffusion equation is related to the electron-

nuclear and electron-electron Coulomb potential energies denoted V:

In regions of space whereV islarge and negative (i.e., where the potentia is highly
attractive), V islarge and negative, so Sislarge and positive. This causes the
concentration C of the diffusing material to accumulate in such regions. Likewise, where
V ispositive, C will decrease. Clearly by recognizing Y asthe "concentration” variable in
this analogy, one understandsthat Y will accumulate where V is negative and will decay
whereV is positive, as one expects.

So far, we see that the "trick” of taking t to be negative and imaginary causes the
electronic Schrodinger equation to look like a 3N-dimensional diffusion equation. Why is
this useful and why does thistrick "work"? It is useful because, as we see in Chapter 7,
Monte-Carlo methods are highly efficient tools for solving certain equations; it turns out

that the diffusion equation is one such case. So, the Monte-Carlo approach can be used to
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solve the imaginary-time dependent Schrédinger equation even for systems containing
many electrons. But, what does this imaginary time mean?

To understand the imaginary time trick, let usrecall that any wave function
(e.g., thetrial wave function with which one begins to use Monte-Carlo methods to
propagate the diffusing Y function) F can be written in terms of the exact eigenfuctions

{Y «} of the Hamiltonian

H=-h%2m,SN? +V

as follows:

F=S.C. VY,

If the Monte-Carlo method can, in fact be used to propagate forward in time such a
function but with t = -it, then it will, in principle, generate the following function at such

an imaginary time:

F =S(C Y exp(-iEct/h) = S, C Y exp(-Ext/h).

Ast increases, the relative amplitudes { C, exp(-Et/h)} of all states but the lowest state
(i.e., that with smallest E,) will decay compared to the amplitude C, exp(-E,t /h) of the
lowest state. So, the time-propagated wave function will, at long enough t, be dominated

by its lowest-energy component. In this way, the quantum Monte-Carlo propagation
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method can generate awave function in 3N dimensions that approaches the ground-state
wave function.

It has turned out that this approach, which avoids tackles the N-electron
correlation problem "head-on", has proven to yield highly accurate energies and wave
functions that display the proper cusps near nuclei as well as the negative cusps (i.e., the
wave function vanishes) whenever two electrons coordinates approach one another.
Finally, it turns out that by using a "starting function™ F of a given symmetry and radial
nodal structure, this method can be extended to converge to the lowest-energy state of the
chosen symmetry and nodal structure. So, the method can be used on excited states al so.
In the next Chapter, you will learn how the Monte-Carlo tools can be used to simulate the
behavior of many-body systems (e.g., the N-electron system we just discussed) in a

highly efficient and easily parallelized manner.

2. Ther,, Method

In this approach to electron correlation, one employs atrial variational wave
function that contains components that depend on the inter-electron distancesr;
explicitly. By so doing, one does not rely on the polarized orbital pair approach
introduced earlier in this Chapter to represent all of the correlations among the electrons.

An example of such an explicitly correlated wave function is:

y =lf.fofs. fyl T+aSgr)
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which consists of an antisymmetrized product of N spin-orbitals multiplied by a factor
that is symmetric under interchange of any pair of electrons and contains the electron-
electron distances in addition to asingle variational parameter a. Such atrial function is
said to contain linear-r, , correlation factors. Of course, it is possible to write many other

forms for such an explicitly correlated trial function. For example, one could use:

y =|f ffs. 0y eXp('aS|<j ri,j))

asatria function. Both the linear and the exponential forms have been used in
developing thistool of quantum chemistry. Because the integral s that must be eval uated
when one computes the Hamiltonian expectation value <y |H]y > are most
computationally feasible (albeit still very taxing) when the linear form is used, this
particular parameterization is currently the most widely used.

Both ther, ,- and quantum Monte-Carlo methods currently are used when one
wishes to obtain the absolute highest precision in an electronic structure calculation. The
computational requirements of both of these methods are very high, so, at present, they
can only be used on species containing fewer than ca. 100 electrons. However, with the
power and speed of computers growing as fast asthey are, it islikely that these high-end

methods will be more and more widely used as time goes by.
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I1. Experimental Probes of Electronic Structure

A. Vishble and Ultraviolet Spectroscopy

Visible and ultraviolet spectroscopies are used to study transitions between states
of amolecule or ion in which the electrons’ orbital occupancy changes. We call these
electronic transitions, and they usually require light in the 5000 cmL to 100,000
cm-1 regime. When such transitions occur, the initial and final states generally differ in
their electronic, vibrational, and rotational energies because any change to the electrons
orbital occupancy will induce changesin the vibrational and rotational character.
Excitations of inner-shell and core orbital electrons may require even higher energy
photons as would excitations that eject an electron. The interpretation of all such

spectroscopic datarelies heavily on theory as this Section is designed to illustrate.

1. The Electronic Transition Dipole and Use of Point Group Symmetry

The interaction of electomagnetic radiation with a molecul€e's electrons and nuclel
can be treated using perturbation theory. Because thisis not atext specializing in
spectroscopy, we will not go into this derivation here. If you are interested in seeing this
treatment, my QMIC text coversit in some detail as do most books on molecular

spectroscopy. The result is a standard expression
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Rif = (2p/H?) g(wr,i) | Eo- <F¢|m|Fi> 2

for the rate of photon absorption between initial F; and final F; states. In this equation,
g(w) isthe intensity of the photon source at the frequency w, w;; is the frequency

corresponding to the transition under study, and Egisthe electric field vector of the

photon field. The vector mis the electric dipole moment of the electrons and nuclei in the

molecule.
Because each of these wave functionsis a product of an electronicy ., a
vibrational and arotational function, we realize that the electronic integral appearingin

this rate expression involves

<yef IMye>=m;(R),

atransition dipole matrix element between the initial y & and final y ¢ electronic wave
functions. This element isafunction of the internal vibrational coordinates of the
molecule, and is a vector locked to the molecul€e'sinternal axis frame.

Molecular point-group symmetry can often be used to determine whether a
particular transition's dipole matrix element will vanish and, as aresult, the electronic
transition will be "forbidden™ and thus predicted to have zero intensity. If the direct
product of the symmetries of theinitial and final electronic statesy ¢ and y ¢ do not
match the symmetry of the electric dipole operator (which has the symmetry of itsx, v,

and z components; these symmetries can be read off the right most column of the
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character tables), the matrix element will vanish.

For example, the formaldehyde molecule HoCO has a ground el ectronic state that
has 1A 1 symmetry in the Cpy point group. Its p ==> p* singlet excited state also has 1A
symmetry because both the p and p* orbitals are of by symmetry. In contrast, the lowest

==> p* (these orbitals are shown in Fig. 6.15) singlet excited state is of 1A, symmetry
because the highest energy oxygen centered non-bonding orbital is of by symmetry and
the p* orbital is of b; symmetry, so the Slater determinant in which both the n and p*
orbitals are singly occupied has its symmetry dictated by the by x b1 direct product,

whichisAo.

Figure 6.15 Electronic Transition From the Non-bonding n orbital to the antibonding p*

Orbital of Formaldehyde
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The p ==> p* transition thus involves ground (1A 1) and excited (1A 1) states
whose direct product (A1 X A1) isof A; symmetry. Thistransition thus requires that the
electric dipole operator possess a component of A; symmetry. A glance at the Cyy, point
group's character table shows that the molecular z-axisis of A1 symmetry. Thus, if the
light's electric field has a non-zero component along the C, symmetry axis (the
molecul€e's z-axis), the p ==> p* transition is predicted to be allowed. Light polarized
along either of the molecul€e's other two axes cannot induce this transition.

In contrast, the n ==> p* transition has a ground-excited state direct product of B>
x B1 = Ao symmetry. The Cyy 's point group character table shows that the electric dipole
operator (i.e., itsx, y, and z components in the molecule-fixed frame) has no component
of Ao symmetry; thus, light of no electric field orientation can induce this n ==> p*
transition. We thus say that the n ==> p* transition is forbidden.

The above examplesiillustrate one of the most important applications of visible-
UV spectroscopy. The information gained in such experiments can be used to infer the
symmetries of the electronic states and hence of the orbitals occupied in these states. It is

in this manner that this kind of experiment probes electronic structures.

2. The Franck-Condon Factors

Beyond such electronic symmetry analysis, it is also possible to derive vibrational

selection rules for electronic transitions that are allowed. It is conventional to expand
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m,i (R) in apower series about the equilibrium geometry of the initial electronic state
(since this geometry is characteristic of the molecular structure prior to photon

absorption):

m,i(R) = m i(Re) + Sa TNt i/TRa (Ra- Rae) + ...

The first term in this expansion, when substituted into the integral over the vibrational
coordinates, gives ny j(Re) <Cvf | Cvi>, which has the form of the electronic transition
dipole multiplied by the "overlap integral” between theinitial and final vibrational wave
functions. The m j(Re) factor was discussed above; it is the electronic transition integral

evaluated at the equilibrium geometry of the absorbing state. Symmetry can often be used
to determine whether this integral vanishes, as aresult of which the transition will be
"“forbidden".

The vibrational overlap integrals <cys | cyi> do not necessarily vanish because
cvf and cy; are eigenfunctions of different vibrational Hamiltonians. cyf isan
eigenfunction whose potential energy isthe final electronic state's energy surface; cyj has
theinitial electronic state's energy surface as its potential. The squares of these <cyf | Cy;i>
integrals, which are what eventually enter into the transition rate expression Rj =
(2p/h2) g(w i) | Eo - <F¢|m|Fi> |2, are called "Franck-Condon factors'. Their relative
magnitudes play strong rolesin determining the relative intensities of various vibrational
"bands’ (i.e., peaks) within a particular electronic transition's spectrum. In Fig. 6.16, |

show two potential energy curves and illustrate the kinds of absorption (and emission)

84



transitions that can occur when the two electronic states have significantly different

geometries.

Figure 6.16 Absorption From One Initial State to One Final State Followed by Relaxation

and Then Emission From the Lowest State of the Upper Surface.

Whenever an electronic transition causes a large change in the geometry (bond
lengths or angles) of the molecule, the Franck-Condon factors tend to display the
characteristic "broad progression” shown in Fig. 6.17 when considered for one initial-

state vibrational level v, and various final-state vibrational levelsv;:
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|<Ci|Cf>|2

vi= 0 1 2 3 456
Final state vibrational Energy (E)

Figure 6.17 Broad Franck-Condon Progression Characteristic of Large Geometry Change

Notice that as one movesto higher v; values, the energy spacing between the states (Eys -
Evf-1) decreases, this, of course, reflects the anharmonicity in the excited-state vibrational
potential. For the above example, the transition to the v; = 2 state has the largest Franck-
Condon factor. This means that the overlap of the initial state's vibrational wave function
cvj islargest for the final state's cyf function with v, = 2.

Asaqualitative rule of thumb, the larger the geometry difference between the
initial- and final- state potentials, the broader will be the Franck-Condon profile (as
shown in Fig. 6.17) and the larger the v; value for which this profile peaks. Differencesin
harmonic frequencies between the two states can also broaden the Franck-Condon

profile.
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If theinitial and final states have very similar geometries and frequencies along
the mode that is excited when the particular electronic excitation is realized, the type of

Franck-Condon profile shown in Fig. 6.18 may result:

2
I<cilee|

vi=0 12 3456

Final state vibrational Energy (E.;)

Figure 6.18 Franck-Condon Profile Characteristic of Small Geometry Change

Another feature that isimportant to emphasize is the relation between absorption
and emission when the two states’ energy surfaces have different equilibrium geometries
or frequencies. Subsequent to photon absorption to form an excited el ectronic state but
prior to photon emission, the molecule usually undergoes collisions with other nearby
molecules. This, of course, is especialy true in condensed-phase experiments. These
collisions cause the excited molecul e to lose much of its vibrational and rotational
energy, thereby “relaxing” it to lower levels on the excited electronic surface. This

relaxation processisillustrated in Fig. 6.19.
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Figure 6.19 Absorption Followed by Relaxation to Lower Vibrational Levels of the

Upper State.

Subsequently, the electronically excited molecule can undergo photon emission (also

called fluorescence) to return to its ground electronic state as shown in Fig. 6.20.

Radiation
(fluorescence)

Figure 6.20 Fluorescence From Lower Levels of the Upper Surface
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The Franck-Condon principle discussed earlier a'so governs the relative intensities of the
various vibrational transitions arising in such emission processes. Thus, one again

observes a set of peaks in the emission spectrum as shown in Fig. 6.21.

Absorption

Absorption or emission intensity

Wavelength, A

Figure 6.21 Absorption and Emission Spectra With the Latter Red Shifted

There are two differences between the lines that occur in emission and in absorption.
First, the emission lines are shifted to thered (i.e., to lower energy or longer wavelength)
because they occur at transition energies connecting the lowest vibrational level of the
upper electronic state to various levels of the lower state. In contrast, the absorption lines
connect the lowest vibrational level of the ground state to various levels of the upper

state. These relationships are shown in Figure 6.22.
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Figure 6.22 Absorption to High States on the Upper Surface, Relaxation, and Emission

From Lower States of the Upper Surface

The second difference relates to the spacings among the vibrational lines. In emission,

these spacings reflect the energy spacings between vibrational levels of the ground state,

whereas in absorption they reflect spacings between vibrational levels of the upper state.
The above examples illustrate how vibrationally resolved visible-UV absorption
and emission spectra can be used to gain valuable information about

a. thevibrational energy level spacings of the upper and ground electronic states (these
spacings, in turn, reflect the strengths of the bonds existing in these states),

b. the change in geometry accompanying the ground-to-excited state electronic
transition as reflected in the breadth of the Franck-Condon profiles (these changes
also tell us about the bonding changes that occur as the electronic transition occurs).

So, again we see how visible-UV spectroscopy can be used to learn about the electronic

structure of molecules in various electronic states.
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3. Time Correlation Function Expressionsfor Transition Rates

The above so-called "golden-rule” expression for the rates of photon-induced
transitions are written in terms of the initial and final electronic/vibrational/rotational
states of the molecule. There are situations in which these states simply can not be
reliably known. For example, the higher vibrational states of alarge polyatomic molecule
or the states of a molecule that strongly interacts with surrounding solvent molecules are
such cases. In such circumstances, it is possible to recast the golden rule formulainto a
form that is more amenabl e to introducing specific physical models that lead to additional
insights.

Specificaly, by using so-called equilibrium averaged time correlation functions, it
Is possible to obtain rate expressions appropriate to alarge number of molecules that exist
in adistribution of initial states (e.g., for molecules that occupy many possible rotationa
and perhaps several vibrational levels at room temperature). As we will soon see, taking
this route to expressing spectroscopic transition rates also allows us to avoid having to
know each vibrational-rotational wave function of the two electronic states involved; this
is especialy useful for large molecules or molecules in condensed media where such
knowledge is likely not available.

To begin re-expressing the spectroscopic transition rates, the expression obtained

earlier

Rif = (2p/H?) g(wr,i) | Eo- <F¢|m|Fi>|2,
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appropriate to transitions between a particular initial state F and a specific final state F ¥,

isrewritten as

Rif = (2p/2) Bg(w) | Eg- <Ft|m|Fi> [ dws - w) dw.

Here, the d(ws i - w) function is used to specifically enforce the "resonance condition”

which states that the photons' frequency w must be resonant with the transition frequency

wt i . The following integral identity can be used to replace the d-function:

¥
1 & ,
d(wii - w) =25 Bexpli(wy - wyt dt
¥

by aform that is more amenable to further development. Then, the state-to-state rate of

transition becomes:

0 ¥
0 ,

Rif = (1/2) agW) | Eo- <F | m|F>[2Bexp[i(wr, - w)t] dt dw .
6 ¥

If this expression is then multiplied by the equilibrium probability r that the

moleculeisfound in the state F; and summed over al such initial states and summed
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over all final states F ¢ that can be reached from F with photons of energy h w, the

equilibrium averaged rate of photon absorption by the molecular sample is obtained:

9 ¥
0 ,

Regae = (1S 1, 60(W) | Eg - <Ff | m| Fi>[28expli(wr, - w)t] dt dw .
0 -y

This expression is appropriate for an ensemble of molecules that can be in various initial
states F; with probabilitiesr ;. The corresponding result for transitions that originate in a

particular state (F,) but end up in any of the "alowed" (by energy and selection rules)

final states reads;
0 Y
R = (RS 1, 69(W) | Eo- <Ft | m|F>[28exp[i(ws, - w)t] dt dw .
0 -¥

Aswe discuss in Chapter 7, for an ensemble in which the number of molecules, the

temperature, and the system volume are specified, r, takes the form:

ri =g exp(-E°KT)/IQ
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where Q is the partition function of the molecules and g, is the degeneracy of the state F,
whose energy is E°. If you are unfamiliar with partition functions and do not want to
simply “trust me” in the analysis of time correlation functions that we am about to
undertake, | suggest you interrupt your study of Chapter 6 and read up through Section
[.C of Chapter 7 at thistime.

In the above expression for Reg.ave., @ double sum occurs. Writing out the

elements that appear in this sum in detail, one finds:

S friEo- <Fi|m|F>Eg- <Ft|m|F > expi(w)t.

In situations in which one isinterested in developing an expression for the intensity
arising from transitions to al allowed final states, the sum over these final states can be
carried out explicitly by first writing

<Ft | m| Fi>expi(ws )t = <F ¢ |exp(iHt/lR) mexp(-iHt/R)| F >

and then using the fact that the set of states{F k} are complete and hence obey

SkIFie<Fil=1.

The result of using these identities as well as the Heisenberg definition of the time-

dependence of the dipole operator
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n(t) = exp(iHt/k) mexp(-iHt/h),

Siri <Fi|Eo- mEg- m(t) |Fi>.

In this form, one says that the time dependence has been reduce to that of an equilibrium

averaged (i.e., asreflected in the Si ri<Fi| |Fi>expression) time correlation function

involving the component of the dipole operator along the external electric field at t = 0,
( Eo- m) and this component at adifferent timet, (Eg- m(t)).

If wg j is positive (i.e., in the photon absorption case), the above expression will
yield a non-zero contribution when multiplied by exp(-i wt) and integrated over positive
w- values. If wg j is negative (as for stimulated photon emission), this expression will
contribute, when multiplied by exp(-i wt), for negative w-values. In the latter situation, r

is the equilibrium probability of finding the molecule in the (excited) state from which

emission will occur; this probability can be related to that of the lower stater s by

I excited = I lower €XP[ - (Eoexcited - Eolower)/ KT ]

=T 1ower €XP[ - AW/KT ].
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The absorption and emission cases can be combined into a single expression for
the net rate of photon absorption by recognizing that the latter process leads to photon
production, and thus must be entered with a negative sign. The resultant expression for

the net rate of decrease of photonsis:

Req.avenet = (1/R?) Si ri

8g(w) <Fi|(Ep- m)Eg- m(t) |Fi> (1-exp(- hw/kT) ) exp(-iwt) dw at.

It is convention to introduce the so-called "line shape" function | (w):

Lw)= Siri8 <F;|(Eg- m)Eg- m(t) |Fi> exp(-iwt) dt

in terms of which the net photon absorption rateis

Regavenet = (1/h2) (1 - exp(- A wikT) )8 gw) | (w) dw.

The function

CMt)=Siri <Fi|(Eo- m)Eo- m(t) |Fi>
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is called the equilibrium averaged time correlation function of the component of the
electric dipole operator along the direction of the external electric field Eq. Its Fourier
transform is| (w), the spectral line shape function. The convolution of | (w) with the light
source's g (w) function, multiplied by (1 - exp(-h w/kT) ), the correction for stimulated
photon emission, gives the net rate of photon absorption.

Although the correlation function expression for the photon absorption rate is
equivalent to the state-to-state expression from which it was derived, we notice that
a. C(t) does not contain explicit reference to the final-state wave functions F;; instead,
b. C(t) requires us to describe how the dipole operator changes with time.
That is, in the time correlation framework, one is allowed to use models of the time
evolution of the system to describe the spectra. Thisis especially appealing for large
complex molecules and molecules in condensed media because, for such systems, it
would be hopeless to attempt to find the final-state wave functions, but it is reasonable
(albeit challenging) to model the system’ s time evolution. It turns out that a very wide
variety of spectroscopic and thermodynamic properties (e.g., light scattering intensities,
diffusion coefficients, and thermal conductivity) can be expressed in terms of molecular
time correlation functions. The Satistical Mechanics test by McQuarrie has a good
treatment of many of these cases. Let’s now examine how such time evolution issues are

used within the correlation function framework for the specific photon absorption case.

4. Line Broadening M echanisms

97



If the rotational motion of the system’s moleculesis assumed to be entirely
unhindered (e.g., by any environment or by collisions with other molecules), itis
appropriate to express the time dependence of each of the dipole time correlation
functions listed above in terms of a"free rotation” model. For example, when dealing
with diatomic molecules, the electronic-vibrational-rotational C(t) appropriate to a

specific electronic-vibrational transition becomes:

C(t) = (o O G A)2 Sy (23+1) exp(- h2J(3+1)/(8p2IKT)) exp(- hnyiby, /KT)

gie <f 3| Eo- mi(Re) Eo- M #(Ret) If 7 |<Civ | civ>[?

exp(i [hnyip] t + iDE; ¢ t/R).

Here,

gr = (8p2IkT/h2)

istherotational partition function (I being the molecule's moment of inertia

| = nReZ, and h2J(3+1)/(8p2l) the molecul€e's rotational energy for the state with quantum

number J and degeneracy 2J+1),

av = exp(-hnyip/2KT) (1-exp(-hnyip/kT))-1
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isthe vibrational partition function (nyjp being the vibrational frequency), gie isthe

degeneracy of the initial electronic state,

gt = (2pmkT/h2)32 Vv

isthe trandational partition function for the molecules of mass m moving in volumeV,
and DE; ¢ isthe adiabatic el ectronic energy spacing. The origins of such partition
functions are treated in Chapter 7.

Thefunctions<f 3| Eg- m#(Re) Eo- M #(Ret) [f 7 describe the time evolution of
the electronic transition dipole vector for the rotational state J. In a"free-rotation” model,

this function is taken to be of the form:

<f3|Eo- mi(Re) Eo: ms(Ret) If »

=<fj]Eo- mf(Re) Eo- mf(Re) If > Cosw,,

where w; is the rotational frequency (in cycles per second) for rotation of the molecule in
the state labeled by J. This oscillatory time dependence, combined with the exp(i [hnyip] t
+ 1DE; £ t/h) time dependence arising from the electronic and vibrational factors, produce,

when this C(t) function is Fourier transformed to generate I(w), a series of d-function

"peaks’. The intensities of these peaks are governed by the
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(O Qv Ge )L Sy (23+1) exp(- h2X(F+1)/(8p2IKT)) exp(- hnyipvi /KT) gie

Boltzmann population factors as well as by the |<ciy | cfy>[2 Franck-Condon factors and
the <f 3| Eo- m(Re) Eo - M (Re0) [f 5> terms.

This same analysis can be applied to the pure rotation and vibration-rotation C(t)
time dependences with analogous results. In the former, d-function peaks are predicted to

occur at

and in the latter at

W= Wiy iy W3,

with the intensities governed by the time independent factors in the corresponding
expressions for C(t).

In experimental measurements, such sharp d-function peaks are, of course, not
observed. Even when very narrow band width laser light sources are used (i.e., for which
g(w) isan extremely narrowly peaked function), spectral lines are found to possess finite
widths. Let us now discuss several sources of line broadening, some of which will relate

to deviations from the "unhindered" rotational motion model introduced above.

a. Doppler Broadening
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In the above expressions for C(t), the averaging over initial rotational, vibrational,
and electronic states is explicitly shown. There is also an average over the trandational
motion implicit in all of these expressions. Itsrole has not (yet) been emphasized because
the molecular energy levels, whose spacings yield the characteristic frequencies at which
light can be absorbed or emitted, do not depend on translational motion. However, the
frequency of the electromagnetic field experienced by moving molecules does depend on
the velocities of the molecules, so this issue must now be addressed.

Elementary physics classes express the so-called Doppler shift of awave's

frequency induced by relative movement of the light source and the molecule as follows:

Wobserved = Wnominal (1 + V2/€)"1 » Wnomina (1 - vZ/c +...).

Here, Wnominal iS the frequency of the unmoving light source seen by unmoving
molecules, v; isthe velocity of relative motion of the light source and molecules, c isthe
speed of light, and wopserved 1S the Doppler shifted frequency (i.e., the frequency seen by
the molecules). The second identity is obtained by expanding, in a power series, the (1 +
vz/c)-1factor, and is valid in truncated form when the molecules are moving with speeds
significantly below the speed of light.

For al of the cases considered earlier, a C(t) function is subjected to Fourier
transformation to obtain a spectral lineshape function I(w), which then providesthe
essential ingredient for computing the net rate of photon absorption. In this Fourier

transform process, the variable w is assumed to be the frequency of the electromagnetic
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field experienced by the molecules. The above considerations of Doppler shifting then

lead one to realize that the correct functional form to use in converting C(t) to I(w) is:

I(w) = BC(t) exp(-itw(1-v,/c)) dt ,

where w is the nominal frequency of the light source.

As stated earlier, within C(t) there is also an equilibrium average over
tranglational motion of the molecules. For a gas-phase sample undergoing random
collisions and at thermal equilibrium, this average is characterized by the well-known

Maxwell-Boltzmann velocity distribution:

(M/2pkT)3/2 exp(-m (vy2+vy2+v,2)/2KT) dvy dvy dvy.

Here m is the mass of the molecules and vy, vy, and v, label the velocities along the lab-
fixed Cartesian coordinates.

Defining the z-axis as the direction of propagation of the light's photons and
carrying out the averaging of the Doppler factor over such avelocity distribution, one

obtains:

¥
exp(-itw(1-v/c)) (m/2pkT)3/2 exp(-m (vyx2+vy2+v,2)/2KT) dvy dvy dv,
-¥
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¥

= exp(-iwt) é(m/Zka)l/2 exp(iwtv,/c) exp(-mvz2/2kT) dv,
¥

= exp(-iwt) exp(- wat2kT/(2mc2)).

This result, when substituted into the expressions for C(t), yields expressionsidentical to
those given for the three cases treated above but with one modification. The trandlational
motion average need no longer be considered in each C(t); instead, the earlier expressions
for C(t) must each be multiplied by afactor exp(- w2t2kT/(2mc?)) that embodies the
trandationally averaged Doppler shift. The spectral line shape function I(w) can then be

obtained for each C(t) by simply Fourier transforming:

¥
I(w) = Bexp(-iwt) C(t) dt .
¥

When applied to the rotation, vibration-rotation, or electronic-vibration-rotation
cases within the "unhindered" rotation model treated earlier, the Fourier transform

involvesintegrals of the form:

¥

éexp(-iwt) exp(- w2t2kT/(2mc2))exp(i(Wry iy + DE; t/h £ w)t) dt .
-¥
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Thisintegral would arise in the electronic-vibration-rotation case; the other two cases

would involve integrals of the same form but with the DE; ¢/h absent in the vibration-
rotation situation and with wey jy + DE;j /A missing for pure rotation transitions. All such

integrals can be carried out analytically and yield:

2mc2p
Wk &Pl -(W-wry,jv - DEj fh £ w, 3)2 mc2/(2w2kT)].

Theresult is a series of Gaussian "peaks’ in w-space, centered at:
W = Wy jv + DE;j 1/ + w;
with widths (s) determined by
s2=w2ZkT/(mc2),
given the temperature T and the mass of the molecules m. The hotter the sample, the
faster the molecules are moving on average, and the broader is the distribution of Doppler
shifted frequencies experienced by these molecules. The net result then of the Doppler
effect isto produce aline shape function that is similar to the "unhindered" rotation

model's series of d-functions but with each d-function peak broadened into a Gaussian

shape.
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If spectra can be obtained to accuracy sufficient to determine the Doppler width
of the spectral lines, such knowledge can be used to estimate the temperature of the
system. This can be useful when dealing with systems that can not be subjected to
alternative temperature measurements. For example, the temperatures of stars can be
estimated (if their velocity relative to the earth is known) by determining the Doppler
shifts of emission lines from them. Alternatively, the relative speed of a star from the
earth may be determined if its temperature is known. As another example, the
temperature of hot gases produced in an explosion can be probed by measuring Doppler

widths of absorption or emission lines arising from molecules in these gases.

b. Pressure Broadening
To include the effects of collisions on the rotational motion part of any of the
above C(t) functions, one must introduce a model for how such collisions change the
dipole-related vectors that enter into C(t). The most elementary model used to address
collisions applies to gaseous samples which are assumed to undergo unhindered
rotational motion until struck by another molecule at which time a"kick" is applied to the
dipole vector and after which the molecule returns to its unhindered rotational movement.
The effects of such infrequent collision-induced kicks are treated within the so-
called pressure broadening (sometimes called collisional broadening) model by
modifying the free-rotation correlation function through the introduction of an

exponential damping factor exp( -|t|/t):
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hJ(J+1) t
<f3lEo- m#(Re) Eo- Mf(Re0) If 5> Cos™ 451

h J(3+1) t
P <f3]Eo- mf(Re) Eo- M(Re0) f 5> Cos ™ 4p exp( -[t)/t).

This damping function's time scale parameter t is assumed to characterize the average
time between collisions and thus should be inversely proportional to the collision
frequency. Its magnitude is also related to the effectiveness with which collisions cause
the dipole function to deviate from its unhindered rotational motion (i.e., related to the
collision strength). In effect, the exponential damping causes the time correlation
function <f 3] Eo- m(Re) Eo - mf(Ret) |f 7 to "loseits memory" and to decay to zero.
This "memory" point of view is based on viewing <f 3| Eg- m#(Re) Eo- m#(Ret) [f 5>
asthe projection of Eg - m#(Ret) alongitst =0 value Eg - m #(Re,0) as afunction of
timet.

Introducing this additional exp( -[t|/t) time dependence into C(t) produces, when

C(t) is Fourier transformed to generate I (w), integrals of the form

¥

éexp(-ivvt)exp(-|t|/t Yexp(-w2t2kT/(2mc2))exp(i (Wry jy+DE; /A = wa)t)dt .
-¥

In the limit of very small Doppler broadening, the (w2t2kT/(2mc2)) factor can be ignored

(i.e., exp(-w2tZkT/(2mc2)) set equal to unity), and
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¥
B exp(-iwt)exp(-|t]/t )exp(i(Wsv jv+DE; /A + wy)t)dt
-¥

results. Thisintegral can be performed analytically and generates:

1 1/t 1/t
ap Loz (W-Wy jy-DE; A £ w32 " (1/t)2+ (WHwiy jy+DE; (/A + W;)2 b

apair of Lorentzian peaks in w-space centered again at

W =+ [Wry jy+DE; A £ wy.

The full width at half height of these Lorentzian peaksis 2/t . One says that the individual
peaks have been pressure or collisionally broadened.
When the Doppler broadening can not be neglected relative to the collisiona

broadening, the above integral

¥
8 exp(-iwt)exp(-|t)/t )exp(-w2t2k T/(2mc2) )exp(i (W jv+DE; /A + wi)t)dt
-¥

is more difficult to perform. Nevertheless, it can be carried out and again produces a

series of peaks centered at
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w = Wy jy+DEj 1/ £ w;

but whose widths are determined both by Doppler and pressure broadening effects. The
resultant line shapes are thus no longer purely Lorentzian nor Gaussian (which are
compared in Fig. 6.23 for both functions having the same full width at half height and the

same integrated area), but have a shape that is called a VV oight shape.

Intensity

W _—p

Figure 6.23 Typica Forms of Gaussian and L orentzian Peaks

Experimental measurements of line widths that allow one to extract widths
originating from collisional broadening provide information (through t) on the frequency
of collisions and the “strength” of these collisions. By determining t at a series of gas
densities, one can separate the collision-frequency dependence and determine the strength
of theindividual collisions (meaning how effective each collision isin reorienting the

molecul €' s dipole vector).

c. Rotational Diffusion Broadening
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Moleculesin liquids and very dense gases undergo such frequent collisions with
the other molecules that the mean time between collisionsis short compared to the
rotational period for their unhindered rotation. As aresult, the time dependence of the
dipole-related correlation functions can no longer be modeled in terms of free rotation
that isinterrupted by (infrequent) collisions and Dopler shifted. Instead, a model that
describes the incessant buffeting of the molecul€e's dipole by surrounding molecules
becomes appropriate. For liquid samples in which these frequent collisions cause the
dipole to undergo angular motions that cover all angles (i.e., in contrast to a frozen glass
or solid in which the molecul€'s dipole would undergo strongly perturbed pendular
motion about some favored orientation), the so-called rotational diffusion model is often
used.

In this picture, the rotation-dependent part of C(t) is expressed as:

<f3|Eo- mi(Re) Eo- mf(Ret) If

=<fy]Eo- mf(Re) Eo- m(Re0) [f 5> exp(-2Drolt]),

where Dyqt is the rotational diffusion constant whose magnitude details the time
decay in the averaged value of Eg - m $(Ret) at timet with respect to itsvalue at time t =
0; the larger Dyqt, the faster isthis decay.

As with pressure broadening, this exponential time dependence, when subjected

to Fourier transformation, yields:
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¥
B exp(-iwt)exp(-2Drott]) exp(-w2t2k T/(2mc2))exp(i (Wry, jv+DE; #/h + wy)t)dt .
-¥

Again, in the limit of very small Doppler broadening, the (W2t2kT/(2mc?)) factor can be

ignored (i.e., exp(-w2t2kT/(2mc?)) set equal to unity), and

¥
8 exp(-iwt)exp(-2Drorlt]) exp(i (Wry,iv+DE; /A + wy)t)at
-¥

results. Thisintegral can be evaluated analytically and generates:

1 2Drot
p { 20,2 (W-Wry jy-DE; /A + wj)2

2Drot
* (2Dyor) 2+ (W+wsy jy+DE; A + w3)2 b

apair of Lorentzian peaksin w-space centered again at

W = +[Wry jy+DE; th + wj].

The full width at half height of these Lorentzian peaksis 4Dyqt. In this case, one says that

the individual peaks have been broadened viarotational diffusion. In such cases,
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experimental measurement of line widths yield valuable information about how fast the

molecule isrotationally diffusing in its condensed environment.

d. Lifetime or Heisenberg Homogeneous Broadening

Whenever the absorbing species undergoes one or more processes that depletes its
numbers, we say that it has afinite lifetime. For example, a species that undergoes
unimolecular dissociation has afinite lifetime as does an excited state of a molecule that
decays by spontaneous emission of a photon. Any process that depletes the absorbing
species contributes another source of time dependence for the dipole time correlation
functions C(t) discussed above. This time dependence is usually modeled by appending,
in amultiplicative manner, afactor exp(-[t}/t). This, in turn modifies the line shape
function I(w) in amanner much like that discussed when treating the rotational diffusion

case:

¥
B exp(-iwt)exp(-|tl/t )exp(-w2t2k T/(2mc2) )exp(i (W jiv+DE; A + w)t)dt .
¥

Not surprisingly, when the Doppler contribution is small, one obtains:

1 1t
2p L (Wty2+ (W-wiy,iv-DEi /A £ ;)2

1/t
T (W) 2+ (WHWiy v +DE; (/A £ W3)2 +
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In these Lorentzian lines, the parameter t describes the kinetic decay lifetime of the
molecule. One says that the spectral lines have been lifetime or Heisenberg broadened by
an amount proportional to 1/t. The latter terminology arises because the finite lifetime of
the molecular states can be viewed as producing, via the Heisenberg uncertainty relation

DEDt > h, states whose energy is "uncertain” to within an amount DE.

e. Site Inhomogeneous Broadening

Among the above line broadening mechanisms, the pressure, rotationa diffusion,
and lifetime broadenings are all of the homogeneous variety. This means that each and
every moleculein the sampleis affected in exactly the same manner by the broadening
process. For example, one does not find some molecules with short lifetimes and others
with long lifetimes in the Helsenberg case; the entire ensemble of moleculesis
characterized by asingle lifetime.

In contrast, Doppler broadening isinhomogeneous in nature because each
molecule experiences a broadening that is characteristic of its particular velocity v,. That
IS, the fast molecules have their lines broadened more than do the slower molecules.
Another important example of inhomogeneous broadening is provided by so-called site
broadening. Molecules imbedded in aliquid, solid, or glass do not, at the instant of their
photon absorption, all experience exactly the same interactions with their surroundings.
The distribution of instantaneous "solvation" environments may be rather "narrow" (e.g.,
in ahighly ordered solid matrix) or quite "broad” (e.g., inaliquid at high temperature or

in asuper-critical liquid). Different environments produce different energy level
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splittings w = wy jy+DE;j /R + wj (because the initial and final states are "solvated"
differently by the surroundings) and thus different frequencies at which photon
absorption can occur. The distribution of energy level splittings causes the sample to
absorb at arange of frequencies asillustrated in Fig. 6.24 where homogeneous and

inhomogeneous line shapes are compared.

Avy Aving

Awy

GY (b)

Homogeneous (a) and inhomogeneous (b) band shapes having
inhomogeneous width DnINH’ and homogeneous width Dn o

Figure 6.24 Illustration of Homogeneous Band Showing Absorption at Several
Concentrations and of Inhomogeneous Band Showing Absorption at One Concentration

by Numerous Sub-populations

The spectral line shape function I(w) is therefore further broadened when site
inhomogeneity is present and significant. These effects can be modeled by convolving
the kind of I(w) function that results from Doppler, lifetime, rotational diffusion, and
pressure broadening with a Gaussian distribution P(DE) that describes the

inhomogeneous distribution of energy level splittings:
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I(w) = 819(w;DE) P(DE) dDE .

Here 19(w;DE) is aline shape function such as those described earlier each of which
contains a set of frequencies (e.g., wsy jy+DE; f/h = wj +DE = w + DE/h) at which
absorption or emission occurs and P(DE) is a Gaussian probability function describing the
inhomogeneous broadening of the energy splitting DE.

A common experimental test to determine whether inhomogeneous broadening is
significant involves hole burning. In such experiments, an intense light source (often a
laser) is tuned to afrequency wpyrn that lies within the spectral line being probed for
inhomogeneous broadening. Then, with the intense light source constantly turned on, a
second tunable light source is used to scan through the profile of the spectral line, and an
absorption spectrum is recorded. Given an absorption profile as shown in Fig. 6.25 in the

absence of the intense burning light source:

Intensity

w ==

Figure 6.25 Absorption Profile in the Absence of Hole Burning
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one expects to see a profile such as that shown in Fig. 6.26 if inhomogeneous broadening

IS operative.

Intensity

w—>

Figure 6.26 Absorption Profile With Laser Turned On to Burn aHole

The interpretation of the change in the absorption profile caused by the bright
light source proceeds as follows:
() In the ensemble of molecules contained in the sample, some molecules will absorb at
or near the frequency of the bright light source wpyrn; other molecul es (those whose
environments do not produce energy level splittings that match wiyrn) will not absorb at
this frequency.
(i) Those molecules that do absorb at Wiy Will have their transition saturated by the
intense light source, thereby rendering this frequency region of the line profile
transparent to further absorption.
(iii) When the "probe" light source is scanned over the line profile, it will induce

absorptions for those molecules whose local environments did not allow them to be
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saturated by the wypyrn light. The absorption profile recorded by this probe light source's
detector thus will match that of the original line profile, until

(iv) the probe light source's frequency matches wiyrn, upon which no absorption of the
probe source's photons will be recorded because molecules that absorb in this frequency
regime have had their transition saturated.

(v) Hence, a"hole" will appear in the absorption spectrum recorded by the probe light
source's detector in the region of Wpyrn.

Unfortunately, the technique of hole burning does not provide afully reliable
method for identifying inhomogeneously broadened lines. If aholeis observed in such a
burning experiment, this provides ample evidence, but if oneis not seen, the result is not
definitive. In the latter case, the transition may not be strong enough (i.e., may not have a
large enough "rate of photon absorption™) for the intense light source to saturate the

transition to the extent needed to form a hole.

B. Photoelectron Spectr oscopy

Photoel ectron spectroscopy (PES) is a special kind of electronic spectroscopy. It
usesvisible or UV light to excite amolecule or ion to afinal state in which an electronis
gjected. In effect, it induces transitions to final states in which an electron has been
promoted to an unbound or so-called continuum orbital. Most PES experiments are
carried out using afixed-frequency light source (usually alaser). This source’s photons,

when absorbed, g ect electrons whose intensity and kinetic energies KE are then
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measured. Subtracting the electrons’ KE from the photon’ s energy hn gives the binding

energy BE of the electron:

BE =hn - KE.

If the sample subjected to the PES experiment has moleculesin avariety of initial states

(e.g., two €electronic states or various vibrational-rotational levels of the ground electronic

state) having various binding energies BE,, one will observe a series of “peaks’
corresponding to electrons g ected with avariety of kinetic energies KE, asFig. 6.27

illustrates and as the energy-balance condition requires:

BEk = hn = KEk.

The peak of electrons detected with the highest kinetic energy came from the highest-

lying state of the parent, while those with low kinetic energy came from the lowest-

energy state of the parent.
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Figure 6.27 Photoelectron Spectrum Showing Absorption From Two States of the Parent

By examining the spacings between these peaks, one learns about the spacings between
the energy levels of the parent species that has been subjected to electron loss.
Alternatively, if the parent species exists primarily in its lowest state but the
daughter species produced when an electron is removed from the parent has excited
(electronic, vibration-rotation) states, one can observe a different progression of peaks. In
this case, the electrons with highest kinetic energy arise from transitions leading to the
lowest-energy state of the daughter as Fig. 6.28 illustrates. In that figure, the lower

energy surface belongs to the parent and the upper curve to the daughter.
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Figure 6.28 Photoel ectron Events Showing Detachment From One State of the Parent to

Several States of the Daughter

An example of experimental photodetachment datais provided in Fig. 6.29 showing the

intensity of electrons detected when Cu, loses an electron vs. the kinetic energy of the

gjected electrons.

119



electron binding energy (eV)

L0 09

0.2

r—|—r T T I | T T

eletnan CoUnts

T T 1

Cuy

L i ] |. ] ] L '

i L

L5 L&

1.7

electon kanetic energy {2V

; -

Figure 6.29 Photoel ectron Spectrum of Cu,. The Peaks Belong to a Franck-Condon

Vibrational Progression of Neutral Cu,

The peak at akinetic energy of ca. 1.54 eV, corresponding to a binding energy of 1.0 eV,

arises from Cu, in v=0 losing an electron to produce Cu, in v=0. The most intense peak

corresponds to av=0 to v=4 transition. Asin the visible-UV spectroscopy case, Franck-

Condon factorsinvolving the overlap of the Cu, and Cu, vibrational wave functions

govern the relative intensities of the PES peaks.

Another exampleisgivenin Fig. 6.30 where the photodetachment spectrum of

H,C=C (the anion of the carbene vinylidene) appears.
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Figure 6.30 Photoel ectron Spectrum of H,C=C" Showing Detachments to Two Electronic

States of the Neutral

In this spectrum, the peaks having electron binding energies near 0.5 €V correspond to
transitions in which ground-state H,C=C" in v=0 is detached to produce ground-state
(*A)) H,C=C invariousV levels. The spacings between this group of peaks relate to the
spacings in vibrational states of this'A, electronic state. The series of peaks with binding
energies near 2.5 eV correspond to transitions in which H,C=C is detached to produce
H,C=C inits °B, excited electronic state. The spacings between peaks in this range relate

to spacings in vibrational states of this B, state. The spacing between the peaks near 0.5
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eV and those near 2.5 eV relate to the energy difference between the B, and *A;
electronic states of the neutral H,C=C.

Because PES offers a direct way to measure energy differences between anion and
neutral or neutral and cation state energies, it is a powerful and widely used means of
determining molecular electron affinities (EAS) and ionization potentials (IPs). Because
IPsand EAs relate, via Koopmans' theorem, to orbital energies, PES isthus seen to bea
way to measure orbital energies. Its vibrational envelopes aso offer agood way to probe

vibrational energy level spacings, and hence the bonding strengths.

C. Probing Continuum Or bitals

There is another type of spectroscopy that can be used to directly probe the orbitals
of amolecule that lie in the continuum (i.e., at energies higher than that of the parent
neutral). | ask that you reflect back on our discussion of tunneling and of resonance states
that can occur when an electron experiences both attractive and repulsive potentials. In
such cases, there exists a special energy at which the electron can be trapped by the
attractive potential and have to tunnel through the repulsive barrier to tunnel and
eventually escape. It is these kinds of situations that this spectroscopy probes.

This experiment is called electron-transmission spectroscopy (ETS). In such an
experiment a beam of electrons having a known intensity |, and narrowly defined range
of kinetic energies E is alowed to pass through a sample (usually gaseous) of thickness

L. Theintensity | of electrons observed to pass through the sample and arrive at a
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detector lying along the incident beam’ s direction is monitored, as are the kinetic energies

of these electrons E’. Such an experiment is described in qualitative formin Fig. 6.31.

Sample of thickness L

—

Intensity of Intensity of
Incident Electron Transmitted
Beam I Electron Beam |

Figure 6.31 Prototypical Electron Transmission Spectrum Setup

If the molecules in the sample have aresonance orbital whose energy is close to the
kinetic energy E of the colliding electrons, it is possible for an electron from the beam to
be captured into such an orbital and to exist in this orbital for a considerable time. Of
course, in the absence of any collisions or other processes to carry away excess energy,
this anion will re-emit an electron at a later time. Hence, such anions are called
metastable and their electronic states are called resonance states. If the captured electron
remainsin thisorbital for alength of time comparable to or longer than the time it takes
for the nascent molecular anion to undergo vibrational or rotational motion, various
events can take place before the electron is re-emitted:

i.  some bond lengths or angles can change (this will happen if the orbital occupied by

the beam’ s el ectron has bonding or antibonding character) so, when the electron is

123



subsequently emitted, the neutral molecule is left with a change in vibrational
energy;
Ii. the molecule may rotate, so when the electron is gected, it is not emitted in the same
direction as the incident beam.
In the former case, one observes electrons emitted with energies E’ that differ from that
of the incident beam by amounts related to the internal vibrational energy levels of the
anion. In the latter, one sees areduction in the intensity of the beam that is transmitted
directly through the sample and electrons that are scattered away from this direction.
Such an ETS spectrum is shown in Fig. 6.32 for a gaseous sample of CO, molecules.
In this spectrum, the energy of the transmitted beam’s electronsis plotted on the
horizontal axis and the derivative of the intensity of the transmitted beam is plotted on the
vertical axis. It iscommon to plot such derivatives in ETS-type experiments to allow the

variation of the signal with energy to be more clearly identified.
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Figure 6.32 ETS Spectrum (plotted in derivative form) of CO,

The energy at which the signal passes through zero then represents the energy at which a

“peak” in the spectrum would be observed; that is, the energy of the virtual orbital. In this

ETS spectrum of CO,, the oscillations that appear within the one spectral feature

displayed correspond to stretching and bending vibrational levels of the metastable CO,

anion. It isthe bending vibration that is primarily excited because the beam electron

enters the LUMO of CO,, which isan orbital of the form shown in Fig. 6.33.
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Figure 6.33 Antibonding p* Orbital of CO, Holding the Excess Electron in CO,

Occupancy of this antibonding p* orbital, causes both C-O bonds to lengthen and the
O-C-0 angle to bend away from 180 deg. The bending allows the antibonding nature of
this orbital to be reduced.

Other examples of ETS spectraare shown in Fig. 6.34.
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Here, again a derivative spectrum is shown, and the vertical lines have been added to
show where the derivative passes through zero, which is where the ETS signal would
have a* peak”. These maxima correspond to electrons entering various virtual p* orbitals
of the uracil and DNA base molecules. It is by finding these peaksin the ETS spectrum
that one can determine the energies of such continuum orbitals.

Before closing this section, it isimportant to describe how one uses theory to
simulate the metastabl e states that arise in such ETS experiments. Such calculations are
not at all straightforward, and require the introduction of special tools designed to
properly model the resonant continuum orbital.

For metastable anions, it is difficult to approximate the potential experienced by
the excess electron. For example, singly charged anions in which the excess electron
occupies amolecular orbital f that possesses non-zero angular momentum have effective
potentials as shown in Fig. 6.35, which depend on the angular momentum L value of the

orbital.
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For example, the p* orbital of N, shown in Fig. 6.36 produces two counteracting

contributions to the effective radial potential V 4(r) experienced by an electron occupying

it.

Figure 6.36 Antibonding p* Orbital of N, Showing itsL = 2 Character
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First, the two nitrogen centers exert attractive potentials on the electron in this orbital.
These attractions are strongest when the excess electron is near the nuclei but decay
rapidly at larger distances because the other electrons’s Coulomb repulsions screen the
nuclear attractions. Secondly, because the p* molecular orbital is comprised of atomic
basis functions of p,, d,, etc. symmetry, it possesses non-zero angular momentum.
Because the p* orbital has gerade symmetry, itslarge-r character isdominated by L = 2
angular momentum. As aresult, the excess electron has a centrifugal radial potential

L (L+1)/2m,r? derived largely from its L = 2 character.

The attractive short-range valence potetials V(r) and the centrifugal potentia
combine to produce a net effective potential asillustrated in Fig. 6.35. The energy of an
electron experiencing such a potential may or may not lie below ther ® ¥ asymptote. If
the attractive potential is sufficiently strong, asit isfor O,*, the electron in the p* orbital
will be bound and its energy will lie below this asymptote. On the other hand, if the
attractive potential is not as strong, asis the case for the less-el ectronegative nitrogen
atomsin N,*, the energy of the p* orbital can lie above the asymptote. In the latter cases,
we speak of metastable shape-resonance states. They are metastable because their
energies lie above the asymptote so they can decay by tunneling through the centrifugal
barrier. They are called shape-resonances because their metastability arises from the
shape of their repulsive centrifugal barrier.

If one had in-hand a reasonable approximation to the attractive short-range
potential V(r) and if one knew the L-symmetry of the orbital occupied by the excess
electron, one could form V 4(r) as above. However, to compute the lifetime of the shape

resonance, one has to know the energy E of this state.
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The most common and powerful tool for studying such metastable states
theoretically is the stabilization method (SM). This method involves embedding the
system of interest (e.g., the N,* anion) within afinite radial “box” in order to convert the
continuum of states corresponding, for example, to N, + €, into discrete states that can be
handled using more conventional methods. By then varying the size of the box, one can
vary the energies of the discrete states that correspond to N, + € (i.e., one varies the
kinetic energy KE of the orbital containing the excess electron). Asthe box sizeisvaried,
one eventually notices (e.g., by plotting the orbitals) that one of the N, + € states
possesses a significant amount of valence (i.e., short-range) character. That is, one such
state has significant amplitude not only at large-r but also in the region of the two
nitrogen centers. It is this state that corresponds to the metastable shape-resonance state,
and it is the energy E where significant valence components develop that provides the
stabilization estimate of the state energy.

L et us continue using N, as an example for how the SM would be employed,
especially how one usually varies the box within which the anion is constrained. One
would use a conventiona atomic orbital basis set that would likely include sand p
functions on each N atom, perhaps some polarization d functions and some conventional
diffuse sand p orbitals on each N atom. These basis orbitals serve primarily to describe
the motions of the electrons within the usual valence regions of space.

To this basis, one would append an extra set of diffuse p-symmetry orbitals.
These orbitals could be p, (and maybe d,)) functions centered on each nitrogen atom, or
they could be p, (and maybe d,) obitals centered at the midpoint of the N-N bond. One

usually would not add just one such function; rather several such functions, each with an
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orbital exponent a, that characterizesitsradia extent, would be used. Let us assume, for
example, that K such p functions have been used.

Next, using the conventional atomic orbital basis aswell asthe K extrap basis
functions, one carries out a calculation (most often a variational calculation in which one
computes many energy levels) on the N,* anion. In this calculation, one tabulates the
energies of many (say M) of the electronic states of N,*. Of course, because afinite
atomic orbital basis set must be used, one finds a discrete "spectrum" of orbital energies
and thus of electronic state energies. There are occupied orbitals having negative energy
that represent, via. Koopmans' theorem, the bound states of the N,. There are aso so-
called virtual orbitals (i.e., those orbitals that are not occupied) whose energies lie above
zero (i.e., do not describe bound states). The latter orbitals offer a discrete approximation
to the continuum within which the resonance state of interest lies.

One then scales the orbital exponents{a} of the K extrap basisorbitals by a
factor h: a;® h a,and repeats the calculation of the energies of the M lowest energies
of N,™. This scaling causes the extra p basis orbitals to contract radially (if h > 1) or to
expand radially (if h < 1). It isthisbasis orbital expansion and contraction that produces
expansion and contraction of the “box” discussed above. That is, one does not employ a
box directly; instead, one varies the radial extent of the most diffuse basis orbitals to
simulate the box variation.

If the conventional orbital basis is adequate, one finds that the extra p orbitals,
whose exponents are being scaled, do not affect appreciably the energy of the neutral N,
molecule. This can be probed by plotting the N, energy as afunction of the scaling

parameter h; if the energy varieslittle with h, the conventional basisis adequate.
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In contrast to plots of the neutral N, energy vs. h, plots of the energies of the M

N, states show significant h-dependence as Fig. 6.37 illustrates.

4 | Anion State Energy (eV)

Resonance State Energy (€

Lz

Orbital Scaling Parameter h ——»

Figure 6.37 Typica Stabilization Plot Showing Several Levels of the Metastable

Anion and their Avoided Crossings

What does such a stabilization plot tell us and what do the various branches of the
plot mean? First, one should notice that each of the plots of the energy of an anion state
(relative to the neutral molecul€e’ s energy, which is independent of h) grows with

increasing h. This h-dependence arises from the h-scaling of the extradiffuse p basis
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orbitals. Because most of the amplitude of such basis orbitals lies outside the valence
region, the kinetic energy is the dominant contributor to such orbitals' energy. Because h
enters into each orbital as exp(-ha r?), and because the kinetic energy operator involves
the second derivative with respect to r, the kinetic energies of orbitals dominated by the
diffuse p basis functions vary as h%

For small h, al of the p diffuse basis functions have their amplitudes concentrated
at larger and have low kinetic energy. As h grows, these functions become more radially
compact and their kinetic energies grow. For example, note the three lowest energies
shown above increasing from near zero as h grows.

As h further increases, one reaches a point at which the third and fourth anion-
state energies undergo an avoided crossing. At thish value, if one examines the nature of
the two wave functions whose energies avoid one another, one finds that one of them
contains substantial amounts of both valence and extra diffuse p function character. Just
to the left of the avoided crossing, the lower-energy state (the third state for small h)
contains predominantly extra diffuse p orbital character, while the higher-energy state
(the fourth state) contains largely valence p* orbital character.

However, at the special value of h where these two states nearly cross, the kinetic
energy of the third state (aswell asits radial size and de Broglie wavelength) are
appropriate to connect properly with the fourth state. By connect properly we mean that
the two states have wave function amplitudes, phases, and slopes that match. So, at this
specia h value, one can achieve a description of the shape-resonance state that correctly

describes this state both in the valence region and in the large-r region. Only by tuning
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the energy of the large-r states using the h scaling can one obtain this proper boundary
condition matching.

In summary, by carrying out a series of anion-state energy calculations for severa
states and plotting them vs. h, one obtains a stabilization graph. By examining this graph
and looking for avoided crossings, one can identify the energies at which metastable
resonances occur. It is also possible to use the shapes (i.e., the magnitude of the energy
splitting between the two states and the slopes of the two avoiding curves) of the avoided
crossings in a stabilization graph to compute the lifetimes of the metastable states.
Basically, the larger the avoided crossing energy splitting between the two states, the
shorter is the lifetime of the resonance state. So, the ETS and PES experiments offer
wonderful probes of the bound and continuum states of molecules and ionsthat tell us a
lot about the electronic nature and chemical bonding of these species. The theoretical
study of these phenomenais complicated by the need to properly identify and describe
any continuum orbitals and states that are involved. The stabilization technique allows us

to achieve a good approximation to resonance states that lie in such continua.
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