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Part 2. Three Primary Areas of Theoretical Chemistry

Chapter 5. An Overview of Theoretical Chemistry

In this Chapter, many of the basic concepts and tools of theoretical chemistry are

discussed only at an introductory level and without providing much of the background

needed to fully comprehend them. Most of these topics are covered again in considerably

more detail in Chapters 6-8,  which focus on the three primary sub-disciplines of the

field. The purpose of the present Chapter is to give you an overview of the field that you

will learn the details of in these later Chapters.

I. What is Theoretical Chemistry About?

The science of chemistry deals with molecules including the radicals, cations, and

anions they produce when fragmented or ionized. Chemists study isolated molecules

(e.g., as occur in the atmosphere and in astronomical environments), solutions of

molecules or ions dissolved in solvents, as well as solid, liquid, and plastic materials

comprised of molecules. All such forms of molecular matter are what chemistry is about.

Chemical science includes  how to make molecules (synthesis), how to detect and

quantitate them (analysis), how to probe their properties and how they undergo or change

as reactions occur (physical).
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A. Molecular Structure- bonding, shapes, electronic structures

One of the more fundamental issues chemistry addresses is molecular structure,

which means how the molecule’s atoms are linked together by bonds and what the

interatomic distances and angles are. Another component of structure analysis relates to

what the electrons are doing in the molecule; that is, how the molecule’s orbitals are

ocupied and in which electronic state the molecule exists. For example, in the arginine

molecule shown in Fig. 5.1, a HOOC- carboxylic acid group (its oxygen atoms are shown

in red) is linked to an adjacent carbon atom (yellow) which itself is bonded to an –NH2

amino group (whose nitrogen atom is blue). Also connected to the α-carbon atom are a

chain of three methylene –CH2- groups, a –NH- group, then a carbon atom attached both

by a double bond to an imine –NH group and to an amino –NH2  group.

   1.987   1.987
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Figure 5.1 The arginine molecule in its non-zwitterion form with dotted hydrogen bond.

The connectivity among the atoms in arginine is dictated by the well known valence

preferences displayed by H, C, O, and N atoms. The internal bond angles are, to a large

extent, also determined by the valences of the constituent atoms (i.e., the sp3 or sp2 nature

of the bonding orbitals). However, there are other interactions among the several

functional groups in arginine that also contribute to its ultimate structure. In particular,

the hydrogen bond linking the α-amino group’s nitrogen atom to the –NH- group’s

hydrogen atom causes this molecule to fold into a less extended structure than it

otherwise might.

What does theory have to do with issues of molecular structure and why is knowledge

of structure so important? It is important because the structure of a molecule has a very

important role in determining the kinds of reactions that molecule will undergo, what

kind of radiation it will absorb and emit, and to what “active sites” in neighboring

molecules or nearby materials it will bind. A molecule’s shape (e.g., rod like, flat,

globular, etc.) is one of the first things a chemist thinks of when trying to predict where,

at another molecule or on a surface or a cell, the molecule will “fit” and be able to bind

and perhaps react. The presence of lone pairs of electrons (which act as Lewis base sites),

of π orbitals (which can act as electron donor and electron acceptor sites), and of highly

polar or ionic groups guide the chemist further in determining where on the molecule’s

framework various reactant species (e.g., electrophylic or nucleophilic or radical) will be

most strongly attracted. Clearly, molecular structure is a crucial aspect of the chemists’

toolbox.
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 How does theory relate to molecular structure? As we discussed in the Background

Material, the Born-Oppenheimer approximation leads us to use quantum mechanics to

predict the energy E of a molecule for any positions ({Ra}) of its nuclei given the number

of electrons Ne in the molecule (or ion). This means, for example, that the energy of the

arginine molecule in its lowest electronic state (i.e., with the electrons occupying the

lowest energy orbitals) can be determined for any location of the nuclei if the

Schrödinger equation governing the movements of the electrons can be solved.

If you have not had a good class on how quantum mechanics is used within chemistry,

I urge you to take the time needed to master the Background Material. In those pages, I

introduce the central concepts of quantum mechanics and I show how they apply to

several very important cases including

1.  electrons moving in 1, 2, and 3 dimensions and how these models relate to electronic

structures of polyenes and to electronic bands in solids

2. the classical and quantum probability densities and how they differ,

3. time propagation of quantum wave functions,

4. the Hückel or tight-binding model of chemical bonding among atomic orbitals,

5. harmonic vibrations,

6. molecular rotations,

7. electron tunneling,

8. atomic orbitals’ angular and radial characteristics,

9. and point group symmetry and how it is used to label orbitals and vibrations.



5

You need to know this material if you wish to understand most of what this text offers, so

I urge you to read the Background Material if your education to date has not yet

adequately been exposed to it.

Let us now return to the discussion of how theory deals with molecular structure. We

assume that we know the energy E({Ra}) at various locations {Ra} of the nuclei. In some

cases, we denote this energy V(Ra) and in others we use E(Ra) because, within the Born-

Oppenheimer approximation, the electronic energy E serves as the potential V for the

molecule’s vibrational motions. As discussed in the Backgound Material, one can then

perform a search for the lowest energy structure (e.g., by finding where the gradient

vector vanishes ∂E/∂Ra = 0 and where the second derivative or Hessian matrix

(∂2E/∂Ra∂Rb) has no negative eigenvalues). By finding such a local-minimum in the

energy landscape, theory is able to determine a stable structure of such a molecule. The

word stable is used to describe these structures not because they are lower in energy than

all other possible arrangements of the atoms but because the curvatures, as given in terms

of eigenvalues of the Hessian matrix (∂2E/∂Ra∂Ra), are positive at this particular

geometry. The procedures by which minima on the energy landscape are found may

involve simply testing whether the energy decreases or increases as each geometrical

coordinate is varied by a small amount. Alternatively, if the gradients ∂E/∂Ra are known

at a particular geometry, one can perform searches directed “downhill” along the negative

of the gradient itself. By taking a small “step” along such a direction, one can move to a

new geometry that is lower in energy. If not only the gradients ∂E/∂Ra but also the second

derivatives (∂2E/∂Ra∂Ra) are known at some geometry, one can make a more “intelligent”
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step toward a geometry of lower energy. For additional details about how such geometry

optimization searches are performed within modern computational chemistry software,

see the Background Material where this subject was treated in greater detail.

It often turns out that a molecule has more than one stable structure (isomer) for a

given electronic state. Moreover, the geometries that pertain to stable structures of

excited electronic state are different than those obtained for the ground state (because the

orbital occupancy and thus the nature of the bonding is different). Again using arginine as

an example, its ground electronic state also has the structure shown in Fig. 5.2 as a stable

isomer. Notice that this isomer and that shown earlier have the atoms linked together in

identical manners, but in the second structure the α-amino group is involved in two

hydrogen bonds while it is involved in only one in the former. In principle, the relative

energies of these two geometrical isomers can be determined by solving the electronic

Schrödinger equation while placing the constituent nuclei in the locations described in the

two figures.
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Figure 5.2 Another stable structure for the arginine molecule.

If the arginine molecule is excited to another electronic state, for example, by

promoting a non-bonding electron on its C=O oxygen atom into the neighboring C-O π*

orbital, its stable structures will not be the same as in the ground electronic state. In

particular, the corresponding C-O distance will be longer than in the ground state, but

other internal geometrical parameters may also be modified (albeit probably less so than

the C-O distance). Moreover, the chemical reactivity of this excited state of arginine will

be different than that of the ground state because the two states have different orbitals

available to react with attacking reagents.
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In summary, by solving the electronic Schrödinger equation at a variety of geometries

and searching for geometries where the gradient vanishes and the Hessian matrix has all

positive eigenvalues, one can find stable structures of molecules (and ions). The

Schrödinger equation is a necessary aspect of this process because the movement of the

electrons is governed by this equation rather than by Newtonian classical equations. The

information gained after carrying out such a geometry optimization process include (1)

all of the interatomic distances and internal angles needed to specify the equilibrium

geometry {Raeq} and (2) the total electronic energy E at this particular geometry.

It is also possible to extract much more information from these calculations. For

example, by multiplying elements of the Hessian matrix (∂2E/∂Ra∂Rb) by the inverse

square roots of the atomic masses of the atoms labeled a and b, one forms the mass-

weighted Hessian (ma mb)
-1/2 (∂2E/∂Ra∂Rb) whose non-zero eigenvalues give the harmonic

vibrational frequencies {ωk} of the molecule. The eigenvectors {Rk,a} of the mass-

wieghted Hessian mantrix give the relative displacements in coordinates Rka that

accompany vibration in the kth normal mode (i.e., they describe the normal mode

motions). Details about how these harmonic vibrational frequencies and normal modes

are obtained were discussed earlier in the Background Material.

B. Molecular Change- reactions, isomerization, interactions

1. Changes in bonding
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Chemistry also deals with transformations of matter including changes that occur

when molecules react, are excited (electronically, vibrationally, or rotationally), or

undergo geometrical rearrangements. Again, theory forms the cornerstone that allows

experimental probes of chemical change to be connected to the molecular level and that

allows simulations of such changes.

Molecular excitation may or may not involve altering the electronic structure of the

molecule; vibrational and rotational excitation do not, but electronic excitation,

ionization, and electron attachment do. As illustrated in Fig. 5.3 where a bi-molecular

reaction is displayed, chemical reactions involve breaking some bonds and forming

others, and thus involve rearrangement of the electrons among various molecular orbitals.

Figure 5.3 Two bimolecular reactions; a and b show an atom combining with a diatomic;

c and d show an atom abstracting an atom from a diatomic.
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In this example, in part (a) the green atom collides with the brown diatomic molecule and

forms the bound triatomic (b). Alternatively, in (c) and (d), a pink atom collides with a

green diatomic to break the bond between the two green atoms and form a new bond

between the pink and green atoms. Both such reactions are termed bi-molecular because

the basic step in which the reaction takes place requires a collision between to

independent species (i.e., the atom and the diatomic).

A simple example of a unimolecular chemical reaction is offered by the arginine

molecule considered above. In the first structure shown for arginine, the carboxylic acid

group retains its HOOC- bonding. However, in the zwitterion structure of this same

molecule, shown in Fig. 5.4, the HOOC- group has been deprotonated to produce a

carboxylate anion group –COO-, with the H+ ion now bonded to the terminal imine group,

thus converting it to an amino group and placing the net positive charge on the adjacent

carbon atom. The unimolecular tautomerization reaction in which the two forms of

arginine are interconverted involves breaking an O-H bond, forming a N-H bond, and

changing a carbon-nitrogen double bond into a carbon-nitrogen single bond. In such a

process, the electronic structure is significantly altered, and, as a result, the two isomers

can display very different chemical reactivities toward other reagents. Notice that, once

again, the ultimate structure of the zwitterion tautomer of arganine is determined by the

valence preferences of its constitutent atoms as well as by hydrogen bonds formed among

various functional groups (the carboxylate group and one amino group and one –NH-

group).
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   1.740
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Figure 5.4 The arginine molecule in a zwitterion stable structure.

2. Energy Conservation

In any chemical reaction as in all physical processes, total energy must be conserved.

Reactions in which the summation of the strengths of all the chemical bonds in the reactants

exceeds the sum of the bond strengths in the products are termed endothermic. For such

reactions, energy must to provided to the reacting molecules to allow the reaction to occur.

Exothermic reactions are those for which the bonds in the products exceed in strength those

of the reactants. For exothermic reactions, no net energy input is needed to allow the reaction

to take place. Instead, excess energy is generated and liberated when such reactions take

place. In the former (endothermic) case, the energy needed by the reaction usually comes

from the kinetic energy of the reacting molecules or molecules that surround them. That is,

thermal energy from the environment provides the needed energy. Analogously, for

exothermic reactions, the excess energy produced as the reaction proceeds is usually
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deposited into the kinetic energy of the product molecules and into that of surrounding

molecules. For reactions that are very endothermic, it may be virtually impossible for thermal

excitation to provide sufficient energy to effect reaction. In such cases, it may be possible to

use a light source (i.e., photons whose energy can excite the reactant molecules) to induce

reaction. When the light source causes electronic excitation of the reactants (e.g., one might

excite one electron in the bound diatomic molecule discussed above from a bonding to an

anti-bonding orbital), one speaks of inducing reaction by photochemical means.

3. Conservation of Orbital Symmetry- the Woodward-Hoffmann Rules

An example of how important it is to understand the changes in bonding that

accompany a chemical reaction, let us consider a reaction in which 1,3-butadiene is

converted, via ring-closure, to form cyclobutene. Specifically,  focus on the four π

orbitals of 1,3-butadiene as the molecule undergoes so-called disrotatory closing along

which the plane of symmetry which bisects and is perpendicular to the C2-C3 bond is

preserved. The orbitals of the reactant and product can be labeled as being even-e or odd-

o under reflection through this symmetry plane. It is not appropriate to label the orbitals

with respect to their symmetry under the plane containing the four C atoms because,

although this plane is indeed a symmetry operation for the reactants and products, it does

not remain a valid symmetry throughout the reaction path. That is, we symmetry label the

orbtials using only those symmetry elements that are preserved throughout the reaction

path being examined.
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Lowest π orbital of
1,3- butadiene denoted 
π1

π2

π3 π4

π orbital of 
cyclobutene

π* orbital of
cyclobutene

σ orbital of 
cyclobutene

σ* orbital of 
cyclobutene

Figure 5.5 The active valence orbitals of 1, 3- butadiene and of cyclobutene.



14

The four π orbitals of 1,3-butadiene are of the following symmetries under the

preserved symmetry plane (see the orbitals in Fig. 5.5): π1 = e, π2 = o, π3 =e, π4 = o. The

π and π* and σ and σ* orbitals of the product cyclobutane, which evolve from the four

orbitals of the 1,3-butadiene, are of the following symmetry and energy order: σ = e, π =

e, π* = o, σ* = o. The Woodward-Hoffmann rules instruct us to arrange the reactant and

product orbitals in order of increasing energy and to then connect these orbitals by

symmetry, starting with the lowest energy orbital and going through the highest energy

orbital. This process gives the following so-called orbital correlation diagram:

Figure 5.6 The orbital correlation diagram for the 1,3-butadiene to cyclobutene reaction.

We then need to consider how the electronic configurations in which the electrons are

arranged as in the ground state of the reactants evolves as the reaction occurs.

We notice that the lowest two orbitals of the reactants, which are those occupied

by the four π electrons of the reactant, do not connect to the lowest two orbitals of the

σ∗

σ

π∗

π

π4

π3

π2

π1
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products, which are the orbitals occupied by the two σ and two π electrons of the

products. This causes the ground-state configuration of the reactants (π1
2 π2

2) to evolve

into an excited configuration (σ2 π*2) of the products. This, in turn, produces an

activation barrier for the thermal disrotatory rearrangement (in which the four active

electrons occupy these lowest two orbitals) of 1,3-butadiene to produce cyclobutene.

If the reactants could be prepared, for example by photolysis, in an excited state

having orbital occupancy π12π21π31 , then reaction along the path considered would not

have any symmetry-imposed barrier because this singly excited configuration correlates

to a singly-excited configuration σ2π1π*1 of the products. The fact that the reactant and

product configurations are of equivalent excitation level causes there to be no symmetry

constraints on the photochemically induced reaction of 1,3-butadiene to produce

cyclobutene. In contrast, the thermal reaction considered first above has a symmetry-

imposed barrier because the orbital occupancy is forced to rearrange (by the occupancy

of two electrons from π2
2 = π*2 to π2 = π3

2) from the ground-state wave function of the

reactant to smoothly evolve into that of the product. Of course, if the reactants could be

generated in an excited state having π1
2 π3

2 orbital occupancy, then products could also be

produced directly in their ground electronic state. However, it is difficult, if not

impossible, to generate such doubly-excited electronic states, so it is rare that one

encounters reactions being induced via such states.

It should be stressed that although these symmetry considerations may allow one

to anticipate barriers on reaction potential energy surfaces, they have nothing to do with

the thermodynamic energy differences of such reactions. What the above Woodward-

Hoffmann symmetry treatment addresses is whether there will be symmetry-imposed
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barriers above and beyond any thermodynamic energy differences. The enthalpies of

formation of reactants and products contain the information about the reaction's overall

energy balance and need to  be considered independently of the kind of orbital symmetry

analysis just introduced.

As the above example illustrates, whether a chemical reaction occurs on the

ground or an excited-state electronic surface is important to be aware of. This example

shows that one might want to photo-excite the reactant molecules to cause the reaction to

occur at an accelerated rate. With the electrons occupying the lowest-energy orbitals, the

ring closure reaction can still occur, but it has to surmount a barrier to do so (it can

employ thermal collisional energy to surmount this barrier), so its rate might be slow. If

an electron is excited, there is no symmetry barrier to surmount, so the rate can be

greater. Reactions that take place on excited states also have a chance to produce

products in excited electronic states, and such excited-state products may emit light. Such

reactions are called chemiluminescent because they produce light (luminescence) by way

of a chemical reaction.

4. Rates of change

Rates of reactions play crucial roles in many aspects of our lives. Rates of various

biological reactions determine how fast we metabolize food, and rates at which fuels burn

in air determine whether an explosion or a calm flame will result. Chemists view the rate

of any reaction among molecules (and perhaps photons or electrons if they are used to

induce excitation in reactant molecules) to be related to (1) the frequency with which the

reacting species encounter one another and (2) the probability that a set of such species
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will react once they do encounter one another. The former aspects relate primarily to the

concentrations of the reacting species and the speeds with which they are moving. The

latter have more to do with whether the encountering species collide in a favorable

orientation (e.g., do the enzyme and substrate “dock” properly, or does the Br-  ion collide

with the H3C- end of H3C-Cl or with the Cl end in the SN2 reaction that yields CH3Br +

Cl- ?) and with sufficient energy to surmount any barrier that must be passed to effect

breaking bonds in reactants to form new bonds in products.

The rates of reactions can be altered by changing the concentrations of the

reacting species, by changing the temperature, or by adding a catalyst. Concentrations

and temperature control the collision rates among molecules, and temperature also

controls the energy available to surmount barriers. Catalysts are molecules that are not

consumed during the reaction but which cause the rate of the reaction to be increased

(species that slow the rate of a reaction are called inhibitors). Most catalysts act by

providing orbitals of their own that interact with the reacting molecules’ orbitals to cause

the energies of the latter to be lowered as the reaction proceeds. In the ring-closure

reaction cited earlier, the catalyst’s orbitals would interact (i.e., overlap) with the 1,3-

butadiene’s π orbitals in a manner that lowers their enrgies and thus reduces the energy

barrier that must be overcome for reaction to proceed

In addition to being capable of determining the geometries (bond lengths and angles),

energies, vibrational frequencies of species such as the isomers of arginine discussed

above, theory also addresses questions of how and how fast transitions among these

isomers occur. The issue of how chemical reactions occur focuses on the mechanism of

the reaction, meaning how the nuclei move and how the electronic orbital occupancies
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change as the system evolves from reactants to products. In a sense, understanding the

mechanism of a reaction in detail amounts to having a mental moving picture of how the

atoms and electrons move as the reaction is occurring.

The issue of how fast reactions occur relates to the rates of chemical reactions. In

most cases, reaction rates are determined by the frequency with which the reacting

molecules access a “critical geometry” (called the transition state or activated complex)

near which bond breaking and bond forming takes place. The reacting molecules’

potential energy along the path connecting reactants through a transition state to produces

is often represented as shown in Fig. 5.7.

Figure 5.7 Energy vs. reaction progress plot showing the transition state or activated

complex and the activation energy.
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In this figure, the potential energy (i.e., the electronic energy without the nuclei’s

kinetic energy included) is plotted along a coordinate connecting reactants to products.

The geometries and energies of the reactants, products, and of the activated complex can

be determined using the potential energy surface searching methods discussed briefly

above and detailed earlier in the Background Material. Chapter 8 provides more

information about the theory of reaction rates and how such rates depend upon

geometrical, energetic, and vibrational properties of the reacting molecules.

The frequencies with which the transition state is accessed are determined by the

amount of energy (termed the activation energy E*) needed to access this critical

geometry. For systems at or near thermal equilbrium, the probability of the molecule

gaining energy E* is shown for three temperatures in Fig. 5.8.
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Figure 5.8 Distributions of energies at various temperatures.

For such cases, chemical reaction rates usually display a temperature dependence

characterized by linear plots of ln(k) vs 1/T. Of course, not all reactions involve

molecules that have been prepared at or near thermal equilibrium. For example, in

supersonic molecular beam experiments, the kinetic energy distribution of the colliding

molecules is more likely to be of the type shown in Fig. 5.9.

Figure 5.9 Molecular speed distributions in thermal and super-sonic beam cases.

In this figure, the probability is plotted as a function of the relative speed with which
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reactant molecules collide. It is common in making such collision speed plots to include

the v2  “volume element” factor in the plot. That is, the normalized probability

distribution for molecules having reduced mass µ to collide with relative velocity

components vz, vy, vz is

P(vz, vy, vz) dvx dvy dvz = (µ/2πkT)3/2 exp(-µ(vx
2+vy

2+vz
2)/2kT)) dvx dvy dvz.

Because only the total collisional kinetic energy is important in surmounting reaction

barriers, we convert this Cartesian velocity component distribution to one in terms of v =

(vx
2+vy

2+vz
2)1/2  the collision speed. This is done by changing from Cartesian to polar

coordinates (in which the “radial” variable is v itself) and gives (after integrating over the

two angular coordinates):

P(v) dv = 4π (µ/2πkT)3/2 exp(-µv2/2kT) v2 dv.

It is the v2  factor in this speed distribution that causes the Maxwell-Boltzmann

distribution to vanish at low speeds in the above plot.

Another kind of experiment in which non-thermal conditions are used to extract

information about activation energies occurs within the realm of ion-molecule reactions

where one uses collision-induced dissociation (CID) to break a molecule apart. For
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example, when a complex consisting of a Na+  cation bound to a uracil molecule is

accelerated by an external electric field to a kinetic energy E and subsequently allowed to

impact into a gaseous sample of Xe atoms, the high-energy collision allows kinetic

energy to be converted into intrernal energy. This collisional energy tramsfer may deposit

into the Na+(uracil) complex enough energy to fragment the Na+ …uracil attractive

binding energy, thus producing Na+  and neutral uracil fragments. If the signal for

production of Na+  is monitored as the collision energy E is increased, one generates a

CID reaction rate profile such as I show in Fig. 5.10.

Figure 5.10 Reaction cross-section as a function of collision energy.

On the vertical axis is plotted a quantity proportional to the rate at which Na+  ions are

formed. On the horizontal axis is plotted the collision energy E in two formats. The

laboratory kinetic energy is simply 1/2 the mass of the Na+(uracil) complex multiplied by
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the square of the speed of these ion complexes measured with respect to a laboratory-

fixed coordinate frame. The center-of-mass (CM) kinetic energy is the amount of energy

available between the Na+(uracil) complex and the Xe atom, and is given by

ECM =  1/2 mcomplex mXe/(mcomplex + mXe) v
2,

where v is the relative speed of the complex and the Xe atom, and mXe  and mcomplex are the

respective masses of the colliding partners.

The most essential lesson to learn from such a graph is that no dissociation occurs

if E is below some critical “threshold” value, and the CID reaction

Na+(uracil) → Na+  + uracil

occurs with higher and higher rate as the collision energy E increases beyond the

threshold. For the example shown above, the threshold energy is ca. 1.2-1.4 eV. These

CID thresholds can provide us with estimates of reaction endothermicities and are

especially useful when these energies are greatly in excess of what can be realized by

simply heating the sample.
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C. Statistical Mechanics: Treating Large Numbers of Molecules in Close

Contact

When one has a large number of molecules that undergo frequent collisions

(thereby exchanging energy, momentum, and angular momentum), the behavior of this

collection of molecules can often be described in a simple way. At first glance, it seems

unlikely that the treatment of a large number of molecules could require far less effort

than that required to describe one or a few such molecules.

To see the essence of what I am suggesting, consider a sample of 10 cm3 of water

at room temperature and atmospheric pressure. In this macroscopic sample, there are

approximately 3.3 x1023 water molecules. If one imagines having an “instrument” that

could monitor the instantaneous speed of a selected molecule, one would expect the

instrumental signal to display a very “jerky” irregular behavior if the signal were

monitored on time scales of the order of the time between molecular collisions. On this

time scale, the water molecule being monitored may be moving slowly at one instant, but,

upon collision with a neighbor, may soon be moving very rapidly. In contrast, if one

monitors the speed of this single water molecule over a very long time scale (i.e., much

longer than the average time between collisions), one obtains an average square of the

speed that is related to the temperature T of the sample via 1/2 mv2  = 3/2 kT. This

relationship holds because the sample is at equilibrium at temperature T.

An example of the kind of behavior I describe above is shown in Fig. 5.11.



25

Figure 5.11 The energy posessed by a CN- ion as a function of time.

In this figure, on the vertical axis is plotted the log of the energy (kinetic plus potential)

of a single CN- anion in a solution with water as the solvent as a function of time. The

vertical axis label says “Eq.(8)” because this figure was taken from a literature article.

The CN- ion initially has excess vibrational energy in this simulation which was carried

out in part to model the energy flow from this “hot” solute ion to the surrounding solvent

molecules.  One clearly sees the rapid jerks in energy that this ion experiences as it

undergoes collisions with neighboring water molecules. These jerks occur approximately

every 0.01 ps, and some of them correspond to collisions that take energy from the ion

and others to collisions that given energy to the ion. On longer time scales (e.g., over 1-

10 ps), we also see a gradual drop off in the energy content of the CN-  ion which

illustrates the slow loss of its excess energy on the longer time scale.

Now, let’s consider what happens if we monitor a large number of molecules

rather than a single molecule within the 1 cm3 sample of H2O mentioned earlier. If we

imagine drawing a sphere of radius R and monitoring the average speed of all water
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molecules within this sphere, we obtain a qualitatively different picture if the sphere is

large enough to contain many water molecules. For large R, one finds that the average

square of the speed of all the N water molecules residing inside the sphere (i.e., ΣK =1,N 1/2

mvK
2) is independent of time (even when considered at a sequence of times separated by

fractions of ps) and is related to the temperature T through ΣK 1/2 mvK
2  = 3N/2 kT.

This example shows that, at equilibrium, the long-time average of a property of

any single molecule is the same as the instantaneous average of this same property over a

large number of molecules. For the single molecule, one achieves the average value of

the property by averaging its behavior over time scales lasting for many, many collisions.

For the collection of many molecules, the same average value is achieved (at any instant

of time) because the number of molecules within the sphere (which is proportional to 4/3

πR3) is so much larger than the number near the surface of the sphere (proportional to

4πR2) that the molecules interior to the sphere are essentially at equilibrium for all times.

Another way to say the same thing is to note that the fluctuations in the energy

content of a single molecule are very large (i.e., the molecule undergoes frequent large

jerks) but last a short time (i.e, the time between collisions). In contrast, for a collection

of many molecules, the fluctuations in the energy for the whole collection are small at all

times because fluctuations take place by exchange of energy with the molecules that are

not inside the sphere (and thus relate to the surface area to volume ratio of the sphere).

So, if one has a large number of molecules that one has reason to believe are at

thermal equilibrium, one can avoid trying to follow the instantaneous short-time detailed

dynamics of any one molecule or of all the molecules. Instead, one can focus on the

average properties of the entire collection of molecules. What this means for a person
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interested in theoretical simulations of such condensed-media problems is that there is no

need to carry out a Newtonian molecular dynamics simulation of the system (or a

quantum simulation) if it is at equilibrium because the long-time averages of whatever is

calculated can be found another way. How one achieves this is through the “magic” of

statistical mechanics and statistical thermodynamics. One of the most powerful of the

devices of statistical mechanics is the so-called Monte-Carlo simulation algorithm. Such

theoretical tools provide a direct way to compute equilibrium averages (and small

fluctuations about such averages) for systems containing large numbers of molecules. In

Chapter 7, I provide a brief introduction to the basics of this sub-discipline of theoretical

chemistry where you will learn more about this exciting field.

Sometimes we speak of the equilibrium behavior or the dynamical behavior of a

collection of molecules. Let me elaborate a little on what these phrases mean.

Equilibrium properties of molecular collections include the radial and angular distribution

functions among various atomic centers. For example, the O-O and O-H radial

distribution functions in liquid water and in ice are shown in Fig. 5.12.

Figure 5.12 Radial O-O distribution functions at three temperatures.
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Such properties represent averages, over long times or over a large collection of

molecules, of some property that is not changing with time except on a very fast time

scale corresponding to individual collisions.

In contrast, dynamical properties of molecular collections include the folding and

unfolding processes that proteins and other polymers undergo; the migrations of protons

from water molecule to water molecule in liquid water and along H2O chains within ion

channels; and the self assembly of molecular monolayers on solid surfaces as the

concentration of the molecules in the liquid overlayer varies. These are properties that

occur on time scales much longer than those between molecular collisions and on time

scales that we wish to probe by some experiment or by simulation.

Having briefly introduced the primary areas of theoretical chemistry- structure,

dynamics, and statistical mechanics, let us now examine each of them in somewhat

greater detail, keeping in mind that Chapters 6-8 are where each is treated more fully.

II. Molecular Structure: Theory and Experiment

A. Experimental Probes of Molecular Shapes

I expect that you are wondering why I want to discuss how experiments measure

molecular shapes in this text whose aim is to introduce you to the field of theoretical

chemistry. In fact, theory and experimental measurement are very connected, and it is

these connections that I wish to emphasize in the following discussion. In particular, I

want to make it clear that experimental data can only be interpreted, and thus used to

extract molecular properties, through the application of theory. So, theory does not
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replace experiment, but serves both as a complementary component of chemical research

(via. simulation of molecular properties) and as the means by which we connect

laboratory data to molecular properties.

1. Rotational Spectroscopy

Most of us use rotational excitation of molecules in our every-day life. In

particular, when we cook in a microwave oven, the microwave radiation, which has a

frequency in the 109- 1011 s-1 range, inputs energy into the rotational motions of the

(primarily) water molecules contained in the food. These rotationally “hot” water

molecules then collide with neighboring molecules (i.e., other water as well as proteins

and other molecules in the food and in the cooking vessel) to transfer some of their

motional energy to them. Through this means, the translational kinetic energy of all the

molecules inside the cooker gain energy. This process of rotation-to-translation energy

transfer is how the microwave radiation ultimately heats the food, which cooks it. What

happens when you put the food into the microwave oven in a metal container or with

some other metal material? As shown in the Background Material, the electrons in metals

exist in very delocalized orbitals called bands. These band orbitals are spread out

throughout the entire piece of metal. The application of any external electric field (e.g.,

that belonging to the microwave radiation) causes these metal electrons to move

throughout the metal. As these electrons accumulate more and more energy from the

microwave radiation, they eventually have enough kinetic energy to be ejected into the

surrounding air forming a discharge. This causes the sparking that we see when we make
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the mistake of putting anything metal into our microwave oven. Let’s now learn more

about how the microwave photons cause the molecules to become rotationally excited.

Using microwave radiation, molecules having dipole moment vectors (µ) can be

made to undergo rotational excitation. In such processes, the time-varying electric field E

cos(ωt) of the microwave electromagnetic radiation interacts with the molecules via a

potential energy of the form V = E•µ cos(ωt). This potential can cause energy to flow

from the microwave energy source into the molecule’s rotational motions when the

energy of the former hω/2π matches the energy spacing between two rotational energy

levels.

This idea of matching the energy of the photons to the energy spacings of the

molecule illustrates the concept of resonance and is something that is ubiquitous in

spectroscopy. Upon first hearing that the photon’s energy must match an energy-level

spacing in the molecule if photon absorption is to occur, it appears obvious and even

trivial. However, upon further reflection, there is more to such resonance requirements

than one might think. Allow me to illustrate using this microwave-induced rotational

excitation example by asking you to consider why photons whose energies

hω/2π considerbaly exceed the energy spacing ∆E will not be absorbed in this transition.

That is, why is more than enough energy not good enough? The reason is that for two

systems (in this case the photon’s electric field and the molecule’s rotation which causes

its dipole moment to also rotate) to interact and thus exchange energy (this is what

photon absorption is), they must have very nearly the same frequencies. If the photon’s

frequency (ω) exceeds the rotational frequency of the molecule by a significant amount,

the molecule will experience an electric field that oscillates too quickly to induce a torque



31

on the molecule's dipole that is always in the same direction and that lasts over a

significant length of time. As a result, the rapidly oscillating electric field will not provide

a coherent twisting of the dipole and hence will not induce rotational excitation.

One simple example from every day life can further illustrate this issue. When

you try to push your friend, spouse, or child on a swing, you move your arms in

resonance with the swinging person’s movement frequency. Each time the person returns

to you, your arms are waiting to give a push in the direction that gives energy to the

swinging individual. This happens over and over again; each time they return, your arms

have returned to be ready to give another push in the same direction. In this case, we say

that your arms move in resonance with the swing’s motion and offer a coherent excitation

of the swinger. If you were to increase greatly the rate at which your arms are moving in

their up and down pattern, the swinging person would not always experience a push in

the correct direction when they return to meet your arms. Sometimes they would feel a

strong in-phase push, but other times they would feel an out-of-phase push in the

opposite direction. The net result is that, over a long period of time, they would feel

random “jerks” from your arms, and thus would not undergo smooth energy transfer from

you. This is why too high a frequency (and hence too high an energy) does not induce

excitation. Let us now return to the case of rotational excitation by microwave photons.

As we saw in the Background Material, for a rigid diatomic molecule, the

rotational energy spacings are given by

EJ+1 – EJ = 2 (J+1) (h2/2I) = 2hc B (J+1),
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where I is the moment of inertia of the molecule given in terms of its equilibrium bond

length re  and its reduced mass µ=mamb/(ma+mb) as I = µ re
2. Thus, in principle, measuring

the rotational energy level spacings via microwave spectroscopy allows one to determine

re. The second identity above simply defines what is called the rotational constant B in

terms of the moment of inertia. The rotational energy levels described above give rise to a

manifold of levels of non-uniform spacing as shown in the Fig. 5.13.

Figure 5.13 Rotational energy levels vs. rotational quantum number.

The non-uniformity in spacings is a result of the quadratic dependence of the rotational

energy levels EJ on the rotational quantum number J:
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 EJ =  J (J+1) (h2/ 2I).

Moreover, the level with quantum number J is (2J+1)-fold degenerate; that is, there are

2J+1 distinct energy states and wave functions that have energy EJ and that are

distinguished by a quantum number M. These 2J+1 states have identical energy but differ

among one another by the orientation of their angular momentum in space (i.e., the

orientation of how they are spinning).

For polyatomic molecules, we know from the Background Material that things are

a bit more complicated because the rotational energy levels depend on three so-called

principal moments of inertia (Ia,, Ib, Ic) which, in turn, contain information about the

molecule’s geometry. These three principle moments are found by forming a 3x3

moment of inertia matrix having elements

Ix,x = Σa ma [ (Ra-RCofM)2 -(xa - xCofM )2]; and Ix,y = Σa ma [ (xa - xCofM) ( ya -yCofM) ]

expressed in terms of the Cartesian coordinates of the nuclei (a) and of the center of mass

in an arbitrary molecule-fixed coordinate system (analogous definitions hold for Iz,z , Iy,y

, Ix,z and Iy,z). The principle moments are then obtained as the eigenvalues of this 3x3

matrix.

For molecules with all three principle moments equal, the rotational energy levels

are given by EJ,K  = h 2J(J+1)/2I, and are independent of the K quantum number and on

the M quantum nunber that again describes the orientation of how the molecule is
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spinning in space.  Such molecules are called spherical tops. For molecules (called

symmetric tops) with two principle moments equal (Ia)) and one unique moment Ic, the

energies depend on two quantum numbers J and K and are given by EJ,K  = h2J(J+1)/2Ia

+ h2K2  (1/2Ic  - 1/2Ia). Species having all three principal moments of inertia unique,

termed asymmetric tops, have rotational energy levels for which no analytic formula is

yet known. The H2O molecule, shown in Fig. 5.14, is such an asymmetric top molecule.

More details about the rotational energies and wave functions were given the Background

Material.

Figure 5.14 Water molecule showing its three distinct principal moment of inertia.

The moments of inertia that occur in the expressions for the rotational energy

levels involve positions of atomic nuclei relative to the center of mass of the molecule.

So, a microwave spectrum can, in principle, determine the moments of inertia and hence

the geometry of a molecule. In the discussion given above, we treated these positions,

and thus the moments of inertia as fixed (i.e., not varying with time). Of course, these

distances are not unchanging with time in a real molecule because the molecule’s atomic

nuclei undergo vibrational motions. Because of this, it is the vibrationally-averaged
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moment of inertia that must be incorporated into the rotational energy level formulas.

Specifically, because the rotationally energies depend on the inverses of moments of

inertia, one must vibrationally average (Ra –RCofM)-2 over the vibrational motion that

characterizes the molecule’s movement. For species containing “stiff” bonds, the

vibrational average <v| (Ra –RCofM)-2|v> of the inverse squares of atomic distances relative

to the center of mass does not differ significantly from the equilibrium values

(Ra,eq –RCofM)-2 of the same distances. However, for molecules such as weak van der Waals

complexes (e.g., (H2O)2 or Ar..HCl) that undergo “floppy” large amplitude vibrational

motions, there may be large differences between the equilibrium Ra,rq
-2 and the

vibrationally averaged values <v|(Ra –RCofM)-2|v>. The proper treatment of the rotational

energy level patterns in such floppy molecules is still very much under active study by

active theoretical chemists.

So, in the area of rotational spectroscopy theory plays several important roles:

a. It provides the basic equations in terms of which the rotational line spacings relate to

moments of inertia.

b. It allows one, given the distribution of geometrical bond lengths and angles

characteristic of the vibrational state the molecule exists in, to compute the proper

vibrationally-averaged moment of inertia.

c. It can be used to treat large amplitude floppy motions (e.g., by simulating the nuclear

motions on a Born-Oppenheimer energy surface), thereby allowing rotationally resolved

spectra of such species to provide proper moment of inertia (and thus geometry)

information.
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2. Vibrational Spectroscopy

The ability of molecules to absorb and emit infrared radiation as they undergo

transitions among their vibrational energy levels is critical to our planet’s health. It turns

out that water and CO2 molecules have bonds that vibrate in the 1013-1014 s-1 frequency

range which is within the infrared spectrum (1011 –1014 s-1). As solar radiation (primarily

visible and ultraviolet) impacts the earth’s surface, it is absorbed by molecules with

electronic transitions in this energy range (e.g, colored molecules such as those contained

in plant leaves and other dark material). These molecules are thereby promoted to excited

electronic states. Some such molecules re-emit the photons that excited them but most

undergo so-called radiationless relaxation that allows them to return to their ground

electronic state but with a substantial amount of internal vibrational energy. That is, these

molecules become vibrationally very “hot”. Subsequently, these hot molecules, as they

undergo transitions from high-energy vibrational levels to lower-energy levels, emit

infrared (IR) photons.

If our atmosphere were devoid of water vapor and CO2, these IR photons would

travel through the atmosphere and be lost into space. The result would be that much of

the energy provided by the sun’s visible and ultraviolet photons would be lost via IR

emission. However, the water vapor and CO2 do not allow so much IR radiation to

escape. These greenhouse gases absorb the emitted IR photons to generate vibrationally

hot water and CO2 molecules in the atmosphere. These vibrationally excited molecules

undergo collisions with other molecules in the atmosphere and at the earth’s surface. In

such collisions, some of their vibrational energy can be transferred to translational kinetic

energy of the collision-partner molecules. In this manner, the temperature (which is
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measure of the average translational energy) increases. Of course, the vibrationally hot

molecules can also re-emit their IR photons, but there is a thick layer of such molecules

forming a “blanket” around the earth, and all of these molecules are available to

continually absorb and re-emit the IR energy. In this manner, the blanket keeps the IR

radiation from escaping and thus keeps our atmosphere warm. Those of us who live in

dry desert climates are keenly aware of such effects. Clear cloudless nights in the desert

can become very cold, primarily because much of the day’s IR energy production is lost

to radiative emission through the atmosphere and into space. Let’s now learn more about

molecular vibrations, how IR radiation excites them, and what theory has to do with this.

When infrared (IR) radiation is used to excite a molecule, it is the vibrations of

the molecule that are in resonance with the oscillating electric field E cos(ωt). Molecules

that have dipole moments that vary as its vibrations occur interact with the IR electric

field via a potential energy of the form V = (∂µ/∂Q)•E cos(ωt). Here ∂µ/∂Q denotes the

change in the molecule’s dipole moment µ associated with motion along the vibrational

normal mode labeled Q.

As the IR radiation is scanned, it comes into resonance with various vibrations of

the molecule under study, and radiation can be absorbed. Knowing the frequencies at

which radiation is absorbed provides knowledge of the vibrational energy level spacings

in the molecule. Absorptions associated with transitions from the lowest vibrational level

to the first excited lever are called fundamental transtions. Those connecting the lowest

level to the second excited state are called first overtone transtions. Excitations from

excited levels to even higher levels are named hot-band absorptions.
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Fundamental vibrational transitions occur at frequencies that characterize various

functional groups in molecules (e.g., O-H stretching, H-N-H bending, N-H stretching, C-

C stretching, etc.). As such, a vibrational spectrum offers an important “fingerprint” that

allows the chemist to infer which functional groups are present in the molecule.

However, when the molecule contains soft “floppy” vibrational modes, it is often more

difficult to use information about the absorption frequency to extract quantitative

information about the molecule’s energy surface and its bonding structure. As was the

case for rotational levels of such floppy molecules, the accurate treatment of large-

amplitude vibrational motions of such species remains an area of intense research interest

within the theory community.

In a polyatomic molecule with N atoms, there are many vibrational modes. The

total vibrational energy of such a molecule can be approximated as a sum of terms, one

for each of the 3N-6 (or 3N-5 for a linear molecule) vibrations:

E(v1 ... v3N-5or6)  = ∑
j=1

3N-5or6
        hωj (vj + 1/2).

Here, ωj is the harmonic frequency of the jth mode and vj is the vibrational quantum

number associated with that mode. As we discussed in the Background Material, the

vibrationsl wave functions are products of harmonic vibrational functions for each mode:

ψ       =  Πj=1,3N-5or6  ψvj
 (x (j)),
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and the spacings between energy levels in which one of the normal-mode quantum

numbers increases by unity are expressed as

∆Evj  = E(...vj+1 ...) - E (...vj ...) = h ωj.

That is, the spacings between successive vibrational levels of a given mode are predicted

to be independent of the quantum number v within this harmonic model as shown in Fig.

5.15.

Figure 5.15 Harmonic vibrational energy levels vs. vibrational quantum number.

In the Background Material, the details connecting the local curvature (i.e., Hessian

matrix elements) in a polyatomic molecule’s potential energy surface to its normal modes

of vibration are presented.
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Experimental evidence clearly indicates that significant deviations from the

harmonic oscillator energy expression occur as the quantum number vj grows. These

deviations are explained in terms of the molecule's true potential V(R) deviating strongly

from the harmonic 1/2k (R-Re)2 potential at higher energy as shown in the Fig. 5.16.

Figure 5.16 Harmonic (parabola) and anharmonic potentials.

At larger bond lengths, the true potential is "softer" than the harmonic potential, and

eventually reaches its asymptote, which lies at the dissociation energy De above its

minimum.  This deviation of the true V(R) from 1/2 k(R-Re)2 causes the true vibrational

energy levels to lie below the harmonic predictions.



41

It is convention to express the experimentally observed vibrational energy levels,

along each of the 3N-5 or 6 independent modes in terms of an anharmonic formula

similar to what we discussed for the Morse potential in the Background Material:

E(vj) = h[ωj (vj + 1/2) - (ω x)j (vj + 1/2)2 + (ω y)j  (vj + 1/2)3 + (ω z)j (vj + 1/2)4 + ...]

The first term is the harmonic expression.  The next is termed the first anharmonicity; it

(usually) produces a negative contribution to E(vj) that varies as (vj + 1/2)2. Subsequent

terms are called higher anharmonicity corrections.  The spacings between successive vj

→ vj + 1 energy levels are then given by:

∆Evj = E(vj + 1) - E(vj)

= h [ωj - 2(ωx)j (vj + 1) + ...]

A plot of the spacing between neighboring energy levels versus vj should be linear for

values of vj where the harmonic and first anharmonicity terms dominate.  The slope of

such a plot is expected to be -2h(ωx)j and the small -vj intercept should be h[ωj - 2(ωx)j].

Such a plot of experimental data, which clearly can be used to determine the ωj and (ωx)j

parameters of the vibrational mode of study, is shown in Fig. 5.17.
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Figure 5.17 Birge-Sponer plot of vibrational energy spacings vs. quantum number.

These so-called Birge-Sponer plots can also be used to determine dissociation energies of

molecules if the vibration whose spacings are plotted corresponds to a bond-stretching

mode.  By linearly extrapolating such a plot of experimental ∆Evj values to large vj

values, one can find the value of vj at which the spacing between neighboring vibrational

levels goes to zero.  This value vj, max specifies the quantum number of the last bound

vibrational level for the particular bond-stretching mode of interest. The dissociation

energy De can then be computed by adding to 1/2hωj (the zero point energy along this

mode) the sum of the spacings between neighboring vibrational energy levels from vj = 0

to vj = vj, max:

De = 1/2hωj + Σ
∑

vj = 0
vj max        ∆Evj.

So, in the case of vibrational spectroscopy, theory allows us to
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i. interpret observed infrared lines in terms of absorptions arising in localized functional

groups;

ii.  extract dissociation energies if a long progression of lines is observed in a bond-

stretching transition;

iii. and treat highly non-harmonic “floppy” vibrations by carrying out dynamical

simulations on a Born-Oppenheimer energy surface.

3. X-Ray Crystallography

In x-ray crystallography experiments, one employs crystalline samples of the

molecules of interest and makes use of the diffraction patterns produced by scattered x-

rays to determine positions of the atoms in the molecule relative to one another using the

famous Bragg formula:

nλ = 2d sinθ.

In this equation, λ is the wavelength of the x-rays, d is a spacing between layers (planes)

of atoms in the crystal, θ is the angle through which the x-ray beam is scattered, and n is

an integer (1,2, …) that labels the order of the scattered beam.

 Because the x-rays scatter most strongly from the inner-shell electrons of each

atom, the interatomic distances obtained from such diffraction experiments are, more
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precisely, measures of distances between high electron densities in the neighborhoods of

various atoms. x-rays interact most strongly with the inner-shell electrons because it is

these electrons whose characteristic Bohr frequencies of motion are (nearly) in resonance

with the high frequency of such radiation. For this reason, x-rays can be viewed as being

scattered from the core electrons that reside near the nuclear centers within a molecule.

Hence, x-ray diffraction data offers a very precise and reliable way to probe inter-atomic

distances in molecules.

The primary difficulties with x-ray measurements are:

i. That one needs to have crystalline samples (often, materials simply can not be

grown as crystals),

ii. That one learns about inter-atomic spacings as they occur in the crystalline state,

not as they exist, for example, in solution or in gas-phase samples. This is

especially problematic for biological systems where one would like to know the

structure of the bio-molecule as it exists within the living organism.

Nevertheless, x-ray diffraction data and its interpretation through the Bragg formula

provide one of the most widely used and reliable ways for probing molecular structure.

4.  NMR Spectroscopy

NMR spectroscopy probes the absorption of radio-frequency (RF) radiation by the

nuclear spins of the molecule. The most commonly occurring spins in natural samples are
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1H (protons), 2H (deuterons), 13C and 15N nuclei. In the presence of an external magnetic

field B0z along the z-axis, each such nucleus has its spin states split in energy by an

amount given by  B0(1-σk)γk MI, where MI  is the component of the kth nucleus’ spin

angular momentum along the z-axis, B0 is the strength of the external magnetic field, and

γk is a so-called gyromagnetic factor (i.e., a constant) that is characteristic of the kth

nucleus. This splitting of magnetic spin levels by a magnetic field is called the Zeeman

effect, and it is illustrated in Fig. 5.18.

Figure 5.18 Splitting of magnetic nucleus's two levels caused by magnetic field.

The factor (1-σk) is introduced to describe the screening of the external B-field at the kth

nucleus caused by the electron cloud that surrounds this nucleus. In effect, B0(1-σk) is the

magnetic field experienced local to the kth nucleus. It is this (1-σk) screening that gives

rise to the phenomenon of chemical shifts in NMR spectroscopy, and it is this factor that

allows NMR measurements of shieiding factors (σκ) to be related, by theory, to the
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electronic environment of a nucleus. In Fig. 5.19 we display the chemical shifts of proton

and 13C nuclei in a variety of chemical bonding environments.

Figure 5.19 Chemical shifts characterizing various electronic envrionments for protons

and for carbon-13 nuclei.

Because the MI  quantum number changes in steps of unity and because each photon

posesses one unit of angular momentum, the RF energy hω that will be in resonance with

the kth nucleus’ Zeeman-split levels is given by hω = B0(1-σk)γk.
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In most NMR experiments, a fixed RF frequency is employed and the external

magnetic field is scanned until the above resonance condition is met. Determining at what

B0 value a given nucleus absorbs RF radiation allows one to determine the local shielding

(1-σκ) for that nucleus. This, in turn, provides information about the electronic

environment local to that nucleus as illustrated in the above figure. This data tells the

chemist a great deal about the molecule’s structure because it suggests what kinds of

functional groups occur within the molecule.

To extract even more geometrical information from NMR experiments, one

makes use of another feature of nuclear spin states. In particular, it is known that the

energy levels of a given nucleus (e.g., the kth one) are altered by the presence of other

nearby nuclear spins. These spin-spin coupling interactions give rise to splittings in the

energy levels of the kth nucleus that alter the above energy expression as follows:

EM = B0(1-σk)γk M + J M M’

Where M is the z-component of the kth nuclear spin angular momentum, M’ is the

corresponding component of a nearby nucleus causing the splitting, and J is called the

spin-spin coupling constant between the two nuclei.

Examples of how spins on neighboring centers split the NMR absorption lines of

a given nucleus are shown in Figs. 1.20-1.22 for three common cases. The first involves a

nucleus (labeled A) that is close enough to one other magnetically active nucleus (labeled

X); the second involves a nucleus (A) that is close to two equivalent nuclei (2X); and the

third describes a nucleus (A) close to three equivalent nuclei (X3).
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Figure 5.20 Splitting pattern characteristic of AX case

In Fig. 5.20 are illustrated the splitting in the X nucleus’ absorption due to the presence of

a single A neighbor nucleus (right) and the splitting in the A nucleus’ absorption (left)

caused by the X nucleus. In both of these examples, the X and A nuclei have only two MI

values, so they must be spin-1/2 nuclei. This kind of splitting pattern would, for example,

arise for a 13C-H group in the benzene molecule where A = 13C and X = 1H.
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Figure 5.21 Splitting pattern characteristic of AX2 case

The  (AX2) splitting pattern shown if Fig. 5.21 would, for example, arise in the 13C

spectrum of a –CH2- group, and illustrates the splitting of the A nucleus’ absorption line

by the four spin states that the two equivalent X spins can occupy. Again, the lines shown

would be consistent with X and A both having spin 1/2 because they each assume only

two MI values.
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Figure 5.22 Splitting pattern characteristic of AX3 case

In Fig. 5.22 is the kind of splitting pattern (AX3) that would apply to the 13C NMR

absorptions for a –CH3 group. In this case, the spin-1/2 A line is split by the eight spin

states that the three equivalent spin-1/2 H nuclei can occupy.

 The magnitudes of these J coupling constants depend on the distances R between the

two nuclei to the inverse sixth power (i.e., as R-6). They also depend on the γ values of the

two interacting nuclei. In the presence of splitting caused by nearby (usually covalently

bonded) nuclei, the NMR spectrum of a molecule consists of sets of absorptions (each

belonging to a specific nuclear type in a particular chemical environment and thus have a

specific chemical shift) that are split by their couplings to the other nuclei.  Because of

the spin-spin coupling’s strong decay with internuclear distance, the magnitude and
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pattern of the splitting induced on one nucleus by its neighbors provides a clear signature

of what the neighboring nuclei are (i.e., through the number of M’ values associated with

the peak pattern) and how far these nuclei are (through the magnitude of the J constant,

knowing it is proportional to R-6).  This near-neighbor data, combined with the chemical

shift functional group data, offer powerful information about molecular structure.

An example of a full NMR spectrum is given in Fig. 5.23 where the 1H spectrum

(i.e., only the proton absorptions are shown) of H3C-H2C-OH appears along with plots of

the integrated intensities under each set of peaks. The latter data suggests the total

number of nuclei corresponding to that group of peaks.  Notice how the OH proton’s

absorption, the absorption of the two equivalent protons on the –CH2- group, and that of

the three equivalent protons in the –CH3 group occur at different field strengths (i.e., have

different chemical shifts). Also note how the OH peak is split only slightly because this

proton is distant from any others, but the CH3 protons peak is split by the neighboring

–CH2- group’s protons in an AX2 pattern. Finally, the –CH2- protons’ peak is split by the

neighboring –CH3 group’s three protons (in an AX3 pattern).
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Figure 5.23 Proton NMR of ethanol showing splitting of three distinct protons as well as

integrated intensities of the three sets of peaks.

In summary, NMR spectroscopy is a very powerful tool that:

a. allows us to extract inter-nuclear distances (or at least tell how many near-neighbor

nuclei there are) and thus geometrical information by measuring coupling constants J and

subsequently using the theoretical expressions that relate J values to R-6  values.

b. allows us to probe the local electronic environment of nuclei inside molecules by

measuring chemical shifts or shielding σI  and then using the theoretical equations

relating the two quantities. Knowledge about the electronic environment tells one about

the degree of polarity in bonds connected to that nuclear center.
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c. tells us, through the splitting patterns associated with various nuclei, the number and

nature of the neighbor nuclei, again providing a wealth of molecular structure

information.

B. Theoretical Simulation of Structures

We have seen how microwave, infrared, and NMR spectroscopy as well as x-ray

diffraction data, when subjected to proper interpretation using the appropriate theoretical

equations, can be used to obtain a great deal of structural information about a molecule.

As discussed in the Background Material, theory is also used to probe molecular structure

in another manner. That is, not only does theory offer the equations that connect the

experimental data to the molecular properties, but it also allows one to “simulate” a

molecule. This simulation is done by solving the Schrödinger equation for the motions of

the electrons to generate a potential energy surface E(R), after which this energy

landscape can be searched for points where the gradients along all directions vanish. An

example of such a PES is shown in Fig. 5.24 for a simple case in which the energy

depends on only two geometrical parameters. Even in such a case, one can find several

local minima and transition state structures connecting them.
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Figure 5.24 Potential energy surface in two dimensions showing reactant and product

minima, transition states, and paths connecting them.

Among the “stationary points” on the potential energy surface (PES), those at which

all eigenvalues of the second derivative (Hessian) matrix are positive represent

geometrically stable isomers of the molecule. Those stationary points on the PES at

which all but one Hessian eigenvalue are positive and one is negative represent transition

state structures that connect pairs of stable isomers.

Once the stable isomers of a molecule lying within some energy interval above the

lowest such isomer have been identified, the vibrational motions of the molecule within

the neighborhood of each such isomer can be described either by solving the Schrödinger

equation for the vibrational wave functions χv(Q) belonging to each normal mode or by
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solving the classical Newton equations of motion using the gradient ∂E/∂Q  of the PES to

compute the forces along each molecular distortion direction Q:

FQ = - ∂E/∂Q.

The decision about whether to use the Schrödinger or Newtonian equations to treat the

vibrational motion depends on whether one wishes (needs) to properly include quantum

effects (e.g., zero-point motion and wave function nodal patterns) in the simulation.

Once the vibrational motions have been described for a particular isomer, and given

knowledge of the geometry of that isomer, one can evaluate the moments of inertia, one

can properly vibrationally average all of the R-2 quantities that enter into these moments,

and, hence, one can simulate the microwave spectrum of the molecule. Also, given the

Hessian matrix for this isomer, one can form its mass-weighted variant whose non-zero

eigenvalues give the normal-mode harmonic frequencies of vibration of that isomer and

whose eigenvectors describe the atomic motions that correspond to these vibrations.

Moreover, the solution of the electronic Schrödinger equation allows one to compute the

NMR shieilding σI  values at each nucleus as well as the spin-spin coupling constants J

between pairs of nuclei (the treatment of these subjects is beyond the level of this text;

you can find it in Molecular Electronic Structure Theory by Helgaker, et. al.). Again,

using the vibrational motion knowledge, one can average the σ and J values over this

motion to gain vibrationally averaged σI  and JI,I’ values that best simulate the

experimental parameters.

One carries out such a theoretical simulation of a molecule for various reasons.



56

Especially in the “early days” of developing theoretical tools to solve the electronic

Schrödinger equation or the vibrational motion problem, one would do so for molecules

whose structures and IR and NMR spectra were well known. The purpose in such cases

was to calibrate the accuracy of the theoretical methods against well known experimental

data. Now that theoretical tools have been reasonably well tested and can be trusted

(within known limits of accuracy), one often uses theoretically simulated structural and

spectroscopic properties to identify spectral features whose molecular origin is not

known. That is, one compares the theoretical spectra of a variety of test molecules to the

observed spectral features to attempt to identify the molecule that produced the spectra.

It is also common to use simulations to examine species that are especially difficult

to generate in reasonable quantities in the laboratory and species that do not persist for

long times. Reactive radicals, cations and anions are often difficult to generate in the

laboratory and may be impossible to retain in sufficient concentrations and for a

sufficient duration to permit experimental characterization. In such cases, theoretical

simulation of the properties of these molecules may be the most reliable way to access

such data.

III. Chemical Change

A. Experimental Probes of Chemical Change

Many of the same tools that are used to determine the structures of molecules can be

used to follow the changes that the molecule undergoes as it is involved in a chemical
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reaction. Specifically, for any reaction in which one kind of molecule A is converted into

another kind B, one needs to have

i. the ability to identify, via some physical measurement, the experimental signatures of

both A and B,

ii. the ability to relate the magnitude of these experimental signals to the concentrations

[A] and [B] of these molecules, and

iii. the ability to monitor these signals as functions of time so that these concentrations

can be followed as time evolves.

The third requirement is what allows one to determine the rates at which the A and B

molecules are reacting.

Many of the experimental tools used to identify molecules (e.g., NMR allows one to

identify functional groups and near-neighbor functional groups, IR also allows functional

groups to be seen) and to determine their concentrations have restricted time scales over

which they can be used. For example, NMR spectra require that the sample be studied for

ca. 1 second or more to obtain a useable signal. Likewise, a mass spectroscopic analysis

of a mixture of reacting species requires many second or minutes to carry out. These

restrictions, in turn, limit the rates of reactions that can be followed using these

experimental tools (e.g., one can not use NMR of mass spectroscopy to follow a reaction

that occurs on a time scale of 10-12 s).

Especially for very fast reactions and for reactions involving unstable species that

can not easily be handled, so-called pump-probe experimental approaches are often used.
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For example, suppose one were interested in studying the reaction of Cl radicals (e.g., as

formed in the decomposition of chloroflurocarbons (CFCs) by ultraviolet light) with

ozone to generate ClO and O2:

Cl + O3 → ClO + O2.

One can not simply deposit a known amount of Cl radicals from a vessel into a container

in which gaseous O3 of a known concentration has been prepared; the Cl radicals will

recombine and react with other species, making their concentrations difficult to

determine. So, alternatively, one places known concentrations of some Cl radical

precursor (e.g.,  a CFC or some other X-Cl species) and ozone into a reaction vessel. One

then uses, for example, a very short light pulse whose photon's frequencies are tuned to a

transtion that will cause the X-Cl precursor to undergo rapid photodissociation:

h ν  + X-Cl  → X + Cl.

Because the "pump" light source used to prepare the Cl radicals is of very short duration

(δt) and because the X-Cl dissociation is prompt, one knows, to within δt, the time at

which the Cl radicals begin to react with the ozone. The initial concentration of the Cl

radicals can be known if the quantum yield for the h ν  + X-Cl  → X + Cl reaction is

known, This means that the intensity of photons, the probability of photon absorption by

X-Cl, and the fraction of excited X-Cl molecules that dissociate to produce X + Cl must
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be known. Such information is available (albeit, from rather tedious earlier studies) for a

variety of X-Cl precursors.

So, knowing the time at which the Cl radicals are formed and their initial

concentrations, one then allows the Cl + O3 h ν → ClO + O2 reaction to proceed for some

time duration ∆t. One then, at t = ∆t, uses a second light source to "probe" either the

concentration of the ClO, the O2 or the O3, to determine the extent of progress of the

reaction. Which species is so monitored depends on the  availability of light sources

whose frequencies these species absorb. Such probe experiments are carried out at a

series of time delays ∆t, the result of which is the determination of the concentrations of

some product or reactant species at various times after the initial pump event created the

reactive Cl radicals. In this way, one can monitor, for example, the ClO concentration as

a function of time after the Cl begins to react with the O3. If one has reason to believe that

the reaction occurs in a single bimolecular event as

Cl + O3 → ClO + O2

one can then extract the rate constant k for the reaction by using the following kinetic

scheme;

d[ClO]/dt = k [Cl] [O3].
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If the initial concentration of O3 is large compared to the amount of Cl that is formed in

thepump event, [O3] can be taken as constant and known. If the initial concentration of Cl

is denoted [Cl]0, and the concentration of ClO is called x, this kinetic equation reduces to

dx/dt = k ( [Cl]0 -x) [O3]

the solution of which is

[ClO] = x = [Cl]0 {1 - exp(-k[O3]t) }.

So, knowing the [ClO] concentration as a function of time delay t, and knowing the initial

ozone concentration [O3] as well as the initial Cl radical concentration, one can find the

rate constant k.

Such pump-probe experiments are necessary when one wants to study species that

must be generated and allowed to react immediately. This is essentially always the case

when one or more of the reactants is a highly reactive species such as a radical. There is

another kind of experiment that can be used to probe very fast reactions if the reaction

and its reverse reaction can be brought into equilibrium to the extent that reactants and

products both exist in measurable concentrations. For example, consider the reaction of

an enzyme E and a substrate S to form the enzyme-substrate complex ES:

E + S ⇔ ES.
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At equilibrium, the forward rate

kf  [E]eq [S]eq

and the reverse rate

kr [ES]eq

are equal:

kf  [E]eq [S]eq  = kr [ES]eq.

The idea behind so called "perturbation techniques" is to begin with a reaction that is

in such an equilibrium condition and to then use some external means to slightly perturb

the equilibrium. Because both the forward and reverse rates are assumed to be very fast,

it is essential to use a perturbation that can alter the concentrations very quickly. This

usually precludes simply adding a small amount of one or more of the reacting species to

the reaction vessel. Instead, one usually employs a fast light source or electric field pulse

to perturb the equilibrium to one side or the other. For example, if the reaction

thermochemistry is known, the equilibrium constant Keq can be changed by  rapidly

heating the sample (e.g, with a fast laser pulse that is absorbed and rapidly heats the

sample) and using
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d lnKeq/dT = ∆H/(RT2)

to calculate the change in Keq and thus the changes in concentrations caused by the

sudden heating. Alternatively, if the polarity of the reactants and products is substantially

different, one may use a rapidly applied electric field to quickly change the

concentrations of the reactant and product species.

In such experiments, the concentrations of the species is "shifted" by a small amount

δ as a result of the application of the perturbation, so that

[ES] = [ES]eq -δ

[E] = [E]eq + δ

[S] = [S]eq + δ,

once the perturbation has been applied and then turned off. Subsequently, the following

rate law will govern the time evolution of the concentration change δ:

- dδ/dt = - kr ([ES]eq -δ) + kf ([E]eq + δ) ([S]eq + δ).

Assuming that δ is very small (so that the term involving δ2 cam be neglected) and using

the fact that the forward and reverse rates balance at equilibrium, this equation for the

time evolution of δ can be reduced to:
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- dδ/dt = (kr + kf [S]eq + kf [Eeq]) δ.

So, the concentration deviations from equilibrium will return to equilibrium (i.e., δ will

decay to zero) exponentially with an effective rate coefficient that is equal to a sum of

terms:

keff = kr + kf [S]eq + kf [Eeq]

involving both the forward and reverse rate constants.

So, by quickly perturbing an equilibrium reaction mixture for a short period of time

and subsequently following the concentrations of the reactants or products as they return

to their equilibrium values, one can extract the effective rate coefficient keff. Doing this at

a variety of different initial equilibrium concentrations (e,g., [S]eq and [E]eq), and seeing

how keff changes, one can then determine both the forward and reverse rate constants.

Both the pump-probe and the perturbation methods require that one be able to

quickly create (or perturb) concentrations of reactive species and that one have available

an experimental probe that allows one to follow the concentrations of at least some of the

species as time evolves. Clearly, for very fast reactions, this means that one must use

experimental tools that can respond on a very short time scale. Modern laser technology

and molecular beam methods have provided the most widely used of such tools.  These

experimental approaches are discussed in some detail in Chapter 8.
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B. Theoretical Simulation of Chemical Change

The most common theoretical approach to simulating a chemical reaction is to use

Newtonian dynamics to follow the motion on a Born-Oppenheimer electronic energy

surface. If the molecule of interest contains few (N) atoms, such a surface could be

computed (using the methods discussed in Chapter 6) at a large number of molecular

geometries {QK} and then fit to an analytical function E({qJ}) of the 3N-6 or 3N-5

variables denoted {qJ}. Knowing E as a function of these variables, one can then compute

the forces

FJ  = -∂E/∂qJ

along each coordinate, and then use the Newton equations

mJ d
2qJ/dt2 = FJ

to follow the time evolution of these coordinates and hence the progress of the reaction.

The values of the coordinates {qJ(tL)} at a series of discrete times tL constitute what is

called a classical trajectory. To simulate a chemical reaction, one begins the trajectory

with initial coordinates characteristic of the reactant species (i.e., within one of the

"valleys" on the reactant side of the potential surface) and one follows the trajectory long

enough to determine whether the collision results in
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i. a non-reactive outcome characterized by final coordinates describing reactant not

product molecules, or

ii. a reactive outcome that is recognized by the final coordinates describing product

molecules rather than reactants.

However, if the molecule contains more than 3 or 4 atoms, it is more common to not

compute the Born-Oppenheimer energy at a set of geometries and then fit this data to an

analytical form. Instead, one begins a trajectory at some initial coordinates {qJ(0)} and

with some initial momenta {pJ(0)}and then uses the Newton equations, usually in the

finite-difference form:

qJ  = qJ(0) + (pJ(0)/mJ) δt

pJ = pJ(0) -(∂E/∂qJ)(t=0) δt,

to propagate the coordinates and momenta forward in time by a small amount δt.. Here,

(∂E/∂qJ)(t=0) denotes the gradient of the BO energy computed at the {qJ(0)} values of the

coordinates. The above propagation procedure is then used again, but with the values of

qJ and pJ appropriate to time t = δt as "new" t = 0 coordinates and momenta, to generate

yet another set of {qJ} and {pJ} values. In such "direct dynamics" approaches, the energy

gradients, which produce the forces, are computed only at geometries that the classical

trajectory encounters along its time propagation. In the earlier procedure, in which the

BO energy is fit to an analytical form, one often computes E at geometries that the

trajectory never accesses.
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In carrying out such a classical trajectory simulation of a chemical reaction, there are

other issues that must be addressed. In particular, one can essentially never use any single

trajectory to simulate a reaction carried out in a laboratory setting. One must perform a

series of such trajectory calculations with a variety of different initial coordinates and

momenta chosen in a manner to represent the experimental conditions of interest. For

example, suppose one were to wish to model a molecular beam experiment in which a

beam of species A having a well defined kinetic energy EA collides with a beam of

species B having kinetic energy EB as shown in Fig. 5.25.
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Figure 5.25 Crossed beam experiment in which A and B molecules collide in a reaction

vessel.

Even though the A and B molecules all collide at right angles and with specified kinetic

energies (and thus specified initial momenta), not all of these collisions occur "head on".

Fig. 5.26 illustrates this point.

Beam of A having kinetic energy EA

Beam of B having kinetic energy EB

Reaction Vessel
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Figure 5.26 Two A + B collisions. In the first, the A and B have a small distance of

closest approach; in the second this distance is larger.

Here, we show two collisions between an A and a B molecule, both of which have

identical A and B velocities VA and VB, respectively. What differs in the two events is

their distance of closest approach. In the collision shown on the left, the A and B come

together closely. However, in the left collision, the A molecule is moving away from the

region where B would strike it before B has reached it. These two cases can be viewed

from a different perspective that helps to clarify their differences. In Fig. 5.27, we

illustrate these two collisions viewed from a frame of reference located on the A

molecule.

A VA

B

VB

A VA

B

VB
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Figure 5.27 Same two close and distant collisions viewed from sitting on A and in the

case of no attractive or repulsive interactions.

In this figure, we show the location of the B molecule relative to A at a series of times,

showing B moving from right to left. In the figure on the left, the B molecule clearly

undergoes a closer collision than is the case on the right. The distance of closest approach

in each case is called the impact parameter and it represents the distance of closest

approach if the colliding partners did not experience any attractive or repulsive

interactions (as the above figures would be consistent with). Of course, when A and B

have forces acting between them, the trajectories shown above would be modified to look

more like those shown in Fig. 5.28.

A

B

A

B
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Figure 5.28 Same two close and distant collisions viewed from sitting on A now in the

case of repulsive interactions.

In both of these trajectories, repulsive intermolecular forces cause the trajectory to move

away from its initial path which defines the respective impact parameters.

So, even in this molecular beam example in which both colliding molecules have

well specified velocities, one must carry out a number of classical trajectories, each with

a different impact parameter b to simulate the laboratory event. In practice, the impact

parameters can be chosen to range from b = 0 (i.e., a "head on" collision) to some

maximum value bMax beyond which the A and B molecules no longer interact (and thus

can no longer undergo reaction). Each trajectory is followed long enough to determine

whether it leads to geometries characteristic of the product molecules. The fraction of

such trajectories, weighted by the volume element 2π b db for trajectories with impact

A

B

A

B

Impact 
Parameter

Impact 
Parameter
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parameters in the range between b and b + db, then gives the averaged fraction of

trajectories that react.

In most simulations of chemical reactions, there are more initial conditions that also

must sampled (i.e., trajectories with a variety of initial variables must be followed) and

properly weighted. For example,

i. if there is a range of velocities for the reactants A and/or B, one must follow trajectories

with velocities in this range and weigh the outcomes (i.e., reaction or not) of such

trajectories appropriately (e.g., with a Maxwell-Boltzmann weighting factor), and

ii. if the reactant molecules have internal bond lengths, angles, and orientations, one must

follow trajectories with different values of these variables and properly weigh each such

trajectory (e.g., using the vibrational state's coordinate probability distribution as a

weighting factor for the initial values of that coordinate).

As a result, to properly simulate a laboratory experiment of a chemical reaction, it usually

requires one to follow a very large number of classical trajectories. Fortunately, such a

task is well suited to distributed parallel computing, so it is currently feasible to do so

even for rather complex reactions.

There is a situation in which the above classical trajectory approach can be foolish to

pursue, even if there is reason to believe that a classical Newton description of the

nuclear motions is adequate. This occurs when one has a rather high barrier to surmount

to evolve from reactants to products and when the fraction of trajectories whose initial

conditions permit this barrier to be accessed is very small. In such cases, one is faced

with the reactive trajectories being very "rare" among the full ensemble of trajectories

needed to properly simulate the laboratory experiment. Certainly, one can apply the
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trajectory following technique outlined above, but if one observes, for example, that only

one trajectory in 106 produces a reaction, one does not have adequate statistics to

determine the reaction probability. One could subsequently run 108 trajectories (chosen

again to represent the same experiment), and see whether 100 or 53 or 212 of these

trajectories react, thereby increasing the precision of your reaction probability. However,

it may be computationally impractical to perform 100 times as many trajectories to

achieve better accuracy in the reaction probability.

When faced with such rare-event situations, one is usually better off using an

approach that breaks the problem of determining what fraction of the (properly weighted)

initial conditions produce reaction into two parts:

i. among all of the (properly weighted) initial conditions, what fraction can access the

high-energy barrier? and

ii. of those that do access the high barrier, how may react?

This way of formulating the reaction probability question leads to the transition state

theory (TST) method that is treated in detail in Chapter 8, along with some of its more

common variants.

Briefly, the answer to the first question posed above involves computing the quasi-

equilibrium fraction of reacting species that reach the barrier region in terms of the

partition functions of statistical mechanics. This step becomes practical if the chemical

reactants can be assumed to be in some form of thermal equilibrium (which is where

these kinds of models are useful). In the simplest form of TST, the answer to the second

question posed above is taken to be "all trajectories that reach the barrier react". In more

sophisticated variants, other models are introduced to take into consideration that not all



73

trajectories that cross over the barrier indeed proceed onward to products and that some

trajectories may tunnel through the barrier near its top. I will leave further discussion of

the TST to Chapter 8.

In addition to the classical trajectory and TST approaches to simulating chemical

reactions, there are more quantum approaches. These techniques should be used when the

nuclei involved in the reaction include hydrogen or deuterium nuclei. A discussion of the

details involved in quantum propagation is beyond the level of this Chapter, so I will

delay it until Chapter 8.


