
Chapter 4
Some important tools of theory

4.1 Perturbation theory and the variat ional method
In most practical applications of quantum mechanics to n.rolecular problerns.
one is faced with the harsh reality t irat the Schrcidinger equation pertinent to
the prclblem at hand can not be solved exactly. To i l lustrate hou,desperate this
situation is, I note that neither of the following two Schrcidinger equations have
ever been solved exactly (n.reaning analytically):

(i) The Schrodinger equation for the t*,o elcctrons mor ing about the He nucleus:
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( i i )  The Schrcidingcr equation for the trvo electronsrn,,r ini in an H1 rnolee ule even i f
the locations of the two nuclej ( labejed A and B) are held clamoccl:
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These two problerns are examples of u'hat is called the ..three-body problern",
meaning solving for the behavior of three bodies moving relative to one another.
Motions of the sun, earth, and moon (even ne_electing all the otherplanets and their
moons) constitute another three-body problem. None of these problems, even the
classical Newton equation for the sun. earth, and moon, have ever been solved
exactly. So, what does one do when faced u'ith trying to study real molecules
uslng quantum mechanics?

There are two very powerful tools that one can use to "sneak up" on the
solutions to the desired equations by first solving an easier.,rnodel, 'problem and
then using the solutions to this problem to approximate the solutions to the real
Schrodinger problem of interest. For example, to solve for the energies and r,,,ave
functions of a boron atom, one could use hydrogenic l s orbitals (but u,ith Z = 5)
and hydrogenic 2s and 2p orbitals with Z : 3 ro account for the screening ofthe
full nuclear charge by the two is electrons as a starting point. To solve for the
vibrational energies of a diatomic molecule whose energy.,,s. bond length E(R)
is known, one could use the Morse oscillator wave functions as starting points.
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But. once one has decided on a reasonable "starting point" model to use, horv

does one connect this model to the real system of interest? Perfurbation theory

and the variational method are the two tools that are most commonly used for

this PurPose.

4.1.1 Per turbat ion theory

In this method one has available a set of equations for -uenerating a sequence

of approximations to the true energy E and true wave function /. I will now

briefly outline the derivation of these working equations for you. First. one de-
composes the true Hamiltonian H into a so-called zerorh order part H0 (this is
the Hamiltonian of the model problem one has chosen to use to represent the real
s.v-stem) and the difference ( H - H 0 

l ivhich is called the perturbation and often
denoted tr/:

H : H " + l / . (4.3)

The fundamental assumption of perturbation theory is that the wave functions
and energies can be expanded in a Taylor series involving various powers ofthe
perturbation. That is. one expands the energy E and the wave function ry' into
zeroth. f irst. second etc.. order pieces which form the unknowns in this method:
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Next. one substitutes these expansions for E of H and of t! into H$ : EtL.
This produces one equation rvhose right- and lett-hand sides both contain terms
of various "powers" in the perturbation. For exantple. terms of the form Et {2 and
Vt!2 and E0lt) are all of third power (also called third order). Next. one equates
the terms on the lefi and right sides that are of the same order. This produces a
set of equations. each containing all the terms of a given order. The zeroth, f irst,
and second orcler such equations are given below:

(4 .6 )

(4 .1 )

(4 .8 )

The zeroth order equation simplir instructs us to solve the zeroth order Schrodinger
equation to obtain the zeroth order wave function ry'0 and its zeroth order energy
80. In the first order equation. the unknowns are ry'r and El (recall that Z is
assumed to be known because it is the difference between the Hamiltonian one
wants to solve and the model Hamiltonian F1')).

To solve the first order and higher order equations. one expands each ofthe
corrections to the wave function ry' K in terms of the complete set of wave functions
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of the zeroth order problem {V/l,}. This means that one must be able to solve
Aur!t!) : Elrltj notjust for the zeroth order state one is interested in (clenoted
ry' 'above) but for all of the other (e.-e.. excited states if r/r(r is the ground state)
zeroth order states {ry' l}. For example. expanding ry'l in this manner gives

r '  : \ " r ,  ( ' 1 e )

Nou', the unknowns in the first order equation become El and the C) expansron
coefficients. Substitutin_e this expansion tnto Ht)rftt -, l 'ryo: E0lrl + Etr1r0
and solving for these unknowns produces the folloil.ing final first ordcr lvorking
eouations:

E ' :  i , \ t " l l , l 1 t / ) .
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where the index J is restricted such that ry'l not equal the state r/r0 vou are inter-
ested in. These are the fundamental working equations olfirst order perturbation
theory. They instruct us to compute the average value ofthe perturbation taken
over a probability distribution equal to tlrrt^ ,yo to obtain the first order correction
to the energy f l. They also tell us hou'to compute the first order correctron to
the u,ave function in terms of coefficients multiplying various clther zeroth order
wave functions ry'j.

An analogous approach is used to solve the second and higher order equations.
Although modern quantum mechanics does indeed use high order perturbation
theory in some cases. much of what the student needs to knou,is contained in the
first and second order results to which I will therefore restrict our attention. The
expression for the second order energy correction is found to be

E , : t l , t / r , / , , ) l ' / ( E u - E : ) .  ( 1 . 1 2 \

where again, the index J is restricted as noted above. Let's now consider an
example problem that illustrates how perturbation theory is used.

Example problem for perturbation theory
As rve discussed earlier, an electron moving in a conjugated bond framework
can be modeled as a particle-in-a-box. An externally applied electric field of
strength e interacts with the electron in a fashion that can be described by adding
the perturbati on V : e€(x - ! t to ttre zeroth order Hamiltonian. Here, x is the
position of the electron in the box, e is the electron's charge, and Z is the length
ofthe box.

First, we will compute the first order correction to the energy of the r = I
state and the first order wave function for the r : I state. In the wave function
calculation, we will only compute the contribution to ry' made by riil (ttris is
just an approximation to keep things simple in this example). Let me now do all
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the steps needed to solve this part of the problem. Try to make sure you can do
the algebra but also make sure you understand how we are using the first order
perturbation equations.
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The first integral can be evaluated using the following identity with a : {.
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The second integral can be evaluated using the following identity with 0 : f
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Making al l  of these appropriate substi tut ions we obtain:
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The two integrals in the numerator need to be evaluated:
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Using the integral [,cos(ax)clx: lcos(a;r) f ] sin(ax), and the
; cos(a.v)ri.r - -L sin(a.r), we obtain the following:
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Making all of these appropriate substitutions we obtain
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Now. let's compute the induced dipole moment caused by the polarization of
the eiectron density due to the electric f ield effect using the equation l/ inducetl :
-e 

I V.1x - i lV r/r with V now being the sum of our zeroth and first order
wave functions. In computing this integral. we neglect the term proportional to
e2 because we are interested in oniy the term linear in e because this is what
gives the dipole moment. Again. allow me to do the algebra and see if you

can follow.
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The first integral is zero (see the evaluation of this
fourth integral is neglected since it is proportional
integrals are the same and are combined to give

integral for.Ell) above). The
to e2. The second and third
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Subsr i tu t ing  w ln '  :  ( i ) ,  s in ( f  t  and t t l l "  :  Y ; t i t i  s in r f  ) .  we ob ta in
2
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Nor.v let's compute the polarizability, a, of the electron in the il : I state of
the box, and try to understand physically why a should depend as it does upon
the length of the box z. To compute the polarizabiiity, we need to know that
o : #1.:6. Using our induced moment result above, we then find

" : f t )  - n r L ' e ) 2 t "
\ , J F l _ , )  h : t , . J i '

Notice that this finding sLr-sgests that the larger the box (molecule). the more
polarizable rhe electron density. This resLrlt also suggests that the polarizabil ity
ofconjugated polyenes should vary non-linearll, with the length ofthe conjugated
chain.

4 .1 .2  f  he  va r ia t i ona l  me thod

Let us now turn to the other method that is used to solve Schrddinger equarions
approximatel,v. the variational method. In this approach. one must again have some
reasonable wave flnction iy'trthat is used to approximate the true,,vave function.
within this approximate wave function, one imbeds one or more variables {a.7}
that one subsequently varies to achieve a minimum in the energy of ry'0 computed
as an expectation 'nalue of the true Hamiltonian F1:

E({dJ l )  = l | t t lH j l /a)1H., , ,1 . ,1r , , ) .  (4.  13)

The optimal values of the cyl parameters are determineci by makine

J E 1 d a . , : Q (+ .  l+ )

to achieve the desired energy minimum (n.b., we also should verifz that the second
derivative matrix 1i)16/d a.t dar) has all positive eigenvalues).

The theoretical basis underlying the- variational method can be understood
through the fbllor.ving derivation. Suppose- that someone knew the eract eigen-
states (i.e.. true w1' and true 6r) of the true Hamiltonian H. These states obev
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Because these true states form a cornplete set (it can be shoi.vn that the eigen-
functions of all t l ie Hamiltonian operators we ever encountcr have this propertv).
ourso-called "trial r. l 'ave function" tfrt) can. in principle. be expandecl in terms of
these V6 :

/ " : f c r v r

Before ploceeding further. allor.r 'nre to overcome one Iikelv rnisconception. what
I arn going throu-sh nou is onlv a derir,ation of the u,orking formula of t l ie
variational method. The final formula wil l not require us ro e\/cr knoil ' the exact
v6 or the exact 81 . but rl 'e are allor.r,ed to use ther.r.r as tools in our derivation
because rve knou'they exist even if u,e ner,,er knou' ther"u.

with the above expansion of our trial funcrion in lernrs of the exact eigen-
funct ions.  Ier  us norv subst i tu te th is  in to the quant i ty  \ r l r r lHl { r , t ) l (7rr )1r2{) ;  that
the variational method instructs us to colnDute:

( .+  l 7 )

Using the fact that the W6 obel HW6 : f x Vr, and that the W1. are orthonorr.nal
(l hope vou remember this propertl '  of solutions to all Schrodinser cquations thal
we discussed earlier)

( :1 .1  6  )

( 4 . 1 8 )( V , i  I  W r ) =  6 r z .

the above expression reduces to

E:  ( r l r t ' �H l l ro , ) l l l r , )  iV , ' , )  = (F .^*^ i r l f  ,  * r ) l

(  F.^  a^ f ,  ,  * , )

r  :  f  (c {v  r tHtCr* , ,  
I  ( f  {c"v"  c^  w() )

= f tc,t ' r ,  /  +,r, t  . ( 4 .  l 9  )

one of the basic properties of the kind of Hamiltonian we encounter is that they
have a lowest-energy state. Sometilnes we say they are bounded from belou,.
which n.reans their energy states do not continue all the u'ay, to minus infinity.
There are systems for which this is not the case, but \\,e lvill now assuine that
we are not dealing with such systems. This allows us to introduce the inequality
E x > Eo u'hich says that all of the energies are higher than or equal to the e'erg1.,
of the lou,est state which we denore 86. Introducing this inequality into the above
expression sives

r = p tcrr,E,, / F,.^� 
t2 : Eo (4.20)
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This means that the variational energ)'. computed as qr1t01H1ty0)l(,10 I /0) wil l
lie above the true ground-state energy no matter what trial function ry'0 we use.

The significance of the above result that 6 > Es is as follows. we are allowed
to imbed into our trial wave function ry'0 parameters that we can varv to make E,
cornputed as 1rp01n1y0) lhlt ' t 1,y'o), ar lor.v as possible because rve know that we
can never make (ry'01 Hlrlrq)lilt\ | ry'o) lower than the true ground-state energy.
The philosophy then is to vary the parameters in ry'0 to render E as low as possible,
because the closer E is to ,00 the "better" is our variational wave function. Let me
now demonstrate how the variational method is used in such a manner by solving
an erample problem.

Exa m pl e va ri atio n al problem

Suppose yoLl are given a trial wave function of the form

o = = ,*p(-4.,,, ) .*o( 
-r"', .1

nd , ,  \  . . r . ,  /  
' \  

c r r ,  /

to represent a two-electron ion ofnuclear charge Z and suppose that you are lucky
enough that I have already evaluated the Q/0lH)lto)l0lr,, i  ry'O) integral" which
I' l l  call l /. tbr you and found

Now. let's find the optimum value of the variational parameter Z, for anarbitrary
nuclear chargc Z by setting dIl ' ldZ":0. After hnding the optimal value of
2., we'l l then find the optimal ener_qy by plugging this Z. into the above W
expression. I ' l l  do the algebra and see if you can fbllow

/  5  \ - :
i l  -  

l / . .  _ 2 2 2 , - , . 2 . ] l ' _ .
\  11 /  "1, ,

t l  I I '  / - _  5 r e l
_  = f  2 2 , - 2 2 - - l _ : { ) ,
t L ,  \  U , /  r r , r

5
2 2 " - 2 2 * ; : 0 .

5
z . L (  -  _ L  -  - .

Z " : Z - ; :  z - 0 . 3 1 2 s

(n.b.. 0.3 I 25 represents the shielding factor of one I s electron ro the other).
Noq using this optimal Z. in our energy expression gives

r y  :  z e ( t . - t ,  -  l ) ' :
\  8 . /  a , ,

= ( '  - ,1 , )  f f  z  -  : \  -  r r *  : l  1
\  1 6 l L \  t 6 /  8 J r o

l z 5

n  =  ( t . ,  -  2 z  1 . .  
; r . )  ;
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(n.b."  s ince a6 is  the Bohr radius 0.529 A,  e1 luo -  27.21 ey) .
Is this energv "any good"? The total energies of some two-electron atoms and

ions have been experimentally determined to be:

Atom Energy  (eV)

/  \ r r  a t " :

\ t  -  n ) \ - t  -  * ' J  ;
- ( z  -  1 \ ( r -  i ) l  : - ( z -  I  ) ' l

\  1 6 l \  1 6 / u , ,  \  1 6 /  c r e
- (z  -  0 .3125yr127.2 1 I  cv

i
2
3
4
5

7
I

H -

H e

L i *

tse-'

B-3
/ - r4

N * 5

n+6

-  |  4 . 5 C

-78.98
-  198 .02
- J  /  t . 5

-  599.3
- a J a t  t . o

-1218.3

Using our optimized expression for
energies of each of these atoms and
estimate for each ion.

W, let"s now calculate the estirnated total
lons as well as the percentage error in our

Z Atom Exper imenta l  (eV) Calculated (eV) o/oError

1 H -
2 H e
?  t i +

4 Be+2

5 B+3
A a+4

7 N+5
g 0*6

-  14 .35
-78.98

-  198 .02
- J l  t . 5

_ 6 q q  ?

-881 .6
-1218.3
-  1609 .5

- 1 2 . 8 6
-77.46

-  196 .46
- J O V . U O

-597.66
-879.86

-1216.48
-  1607.46

10 .38
t . J z

0 .79
0.44
0.27
0 . 1 9

u .  t 5

The energy errors are essentiaily constant over the range of Z, but produce a
larger percentage error at small Z.

In 1928, when quantum mechanics was quite young, it was not known whether
the isolated gas-phase hydride ion, H-, was stable with respect to dissociation
into a hydrogen atom and an electron. Let's compare our estimated total enersv
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for H- to the ground-state energy of a hydrogen atom and an isolated electron
lrvhich is known to be - 13.60 ev). when we use our expression for I i and take
Z - l. we obtain W : - 12.86 eV which is greater than _ 13.6 eV (H * e- ), so
this simple r' 'ariational calculation erroneously predicts H- to be unstable. More
cornplicated variational treatments give a ground state energy of H- of - 14.35 eV
in agreemenr rv i th  exper iment .

4.2 Point group symmetry

It is assumed that the reader has previously learned. in undergra<iuate inorganic
or physical chemistry classes, how symmetry arises in molecular shapes and
structures and what symmetry elements are (e.g., planes, axes of rotation, cen-
ters of inversion, etc.). For the reader who feels, after reading this section. that
additional background is needed. the texts by Eyring, walter. and Kimball or
by Atkins and Friedman can be consulted. we review and teach here only that
material that is of direct application to symmerry analysis of molecular orbitals
and vibrations and rotations of molecules. we use a specific example. the arn_
monia molecule, to introduce and il lustrate the important aspects of point group
symmetry.

4.2.1 The C3u s lmmetry  group of  ammonia -  an example
The ammonia molecule NH.r belongs. in its ground-state equil ibrium geometry,
to-the c;,. point group. lts symmetry operations consist of two C-r rotations, c-i,
cr2 (rotations by 120 and 240'. respectivel.v, about an axis passing through the
nltrogen atom and lying perpendicular to the plane formed by the three hydrogen
atoms), three vertical reffections, o,, o,l, oj ', and the identity operation. corre-
sponding to these six operations are symmetry e lements: the three-fbld rotarron
arrs' C3 a rd the three symmetry planes ou. ol and o,' rharcontain the three NH
bonds and the :-axis (see Fig. 4. I ).
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These six symmetry operatioirs form a mathernatical group. A group is defined

as  a  se l  o fob iec ts  sa t is fv ing  four  p roper t ies .

( i)  A combination rule is defined through which trvo group elements are combined to
give a result q'hich u'e cal l  the product. The product ofnvo elements in the group

must also be a member of the group ( i .e.,  the group rs closed under the

combination rule).
( i i )  One special member of the group. when combined u,i th an! 'other member of the

group. must leave the group member unchanged ( i .e..  the group conlalns an

identi ty element).
(iii) Everv group member must have a reciprocal in the group. When any' group

member is combined with i ts reciprocal. the product is the rdenti t l  element.
( iv) The associat ive law must hold u'hen combining three group menrbers ( i .e.,  (AB)C

must equal A(BC)).

The members of symmetry groups are symmetry operations; the cornbination

rule is a successive operation. The identity element is the operation of doing noth-

ing at all. The group propenies can be demonstrated by forming a multiplication

table. Let us label the rows of the table by the first operation and the columns by

the second operation. Note that this order is important because most croups are

not commutative. The C3, group mult ipl icat ion table is as fol lou's:

Second operation

E
L . l

o\

t '

6,

First
operation

Note the reflection plane labels do not move. That is, although we start with Hr
in the o., plane, H2 in oj', and H3 in oj', if H1 moves due to the first symmetry
operation, o,. remains fixed and a different H atom lies in the o, plane.

4.2.2 Matrices as group representations

In using symmetry to help simplify molecular orbital (m.o.) or vibrationiroration
energy level identifications, the following strategy is followed:

(i) A set of M objects belonging to the constituent atoms (or molecular fragments, in a
more general case) is introduced. These objects are the orbitals ofthe individual

E Cr C: o\ oi oi'

C s C 4 E o i o i o \

Cr'� E C3 oi' o' oy
o\ oi o, E C'�3 C3
oi 6\ oi' C3 E C21

ol' oi o\ Ci C3 E
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atoms (or of the fragments) in the m.o. case: they are unit vectors along the -r, -v,
and: direct ions located on each ofthe atoms, and represent displacements along
each ofthese directions. in the t,ibrationirotation case.

(ii) Symmetry tools are used to combine these M objects into M nerv objects each of
u'hich belongs to a specific symmetry of the point group. Because the Hamiltonian
(electronic in the m.o. case and vibrationi'rotation in the latter case) commutes with
the symmetry operations of the point group, the matrix representation of H within
the symmetry adapted basis will be "block diagonal". That is. objects of differenr
symmetry will not interact; only interactions among those of the same symmetry
need be considered.

To illustrate such symmetry adaptation, consider symmetry adapting the 2s
orbital of N and the three I s orbitals ofthe three H atoms. we begin by determining
hou' these orbitals transform under the symmetrv operations of the c3u point
group. The act of each of the six symmetry operations on the four atomic orbitals
can be denoted as follows:

( . tN. sr , . t , ,  sr) (sN. sr. s., s.)

C-r
+  (S r .  S r . . t r .  S : )

C.r
e  (S r .  S : ,  S , .  S r )

o\
+  ( 5 \ ,  S r ,  S r ,  S . )

o\
-  ( . t \ .  Sj .  Sr .  Sr )

o\
-  (SN , . t 2 ,  S r  .  S r ) ( 4 . 2 1 )

Here we are using the active view that a c3 roration rotates the molecule by 120..
The equivalent passive vierv is that the ls basis functions are rotated -120.. In
the C3 rotation, S3 ends up where 51 began, 51 ends up where 52 began, and 52
ends up where 53 began.

These transfbrmations can be thought of in terms of a matrix multiplyrng a
vector with elements (Srr, Sr . S:. S:) For example, 

'tpt+t 
(C:) is the represen_

tation matrix giving the c3 rransformation, then the above action of cr on the
fbur basis orbitals can be expressed as

1 2 7

E

[r* l  [r o o nl [r, l  [s"lD" ' � ' c , l  I  l = l ;  i  :  ; l i l i = l ; i
L s,J Lo o I  oJ Ls, j  Ls, l

(4.22)
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o.Cr :  o ' .  or . c3
Sr

d \  
t 4  ) J \

S: .l Sr .t: S: Sl

Note that this same relationship is carried by the matrices:

[ r  o  o  o l [ r  o  o  o l  [ r  o  o  o l
D,o ,1o ,1pa ,6 , : l :  ;  ;  ? l l :  I  :  ; l : l ;  :  i  ; l

Lo o I  oJLo o r  oJ [o r  o o]
- Dt4)@). (.251

Likewise we can veri$, that C3 o,. : oj, directly and we can notice that the matrices

(4.26)
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we can likewise rvrite rnatrix representations for each of the symmetry operatlons
of the C.r, point group:

t-l : : ll [r o (' ol
, , ( c : )  = l :  : ;  ? l  a , , , r r : l l  ;  ? : l

L o r o o J  f o o o r j
f r o o o l  f r o o o l, , . , ," ,) : l :  ;  ;  i l  , , , ,n,, : l l  ; : ; l
L o o  r o l  L n  r  o o _ ]

^ : 1 , , , f ; : ? : lD , 1 ) ( o , , ) : l o  
I  o  o l  e . n )

L ; o ; ; l
It is easy to verify that a Cr rotation foilowed by a o, reffection is equi'alent to
a o] reffection alone. In other r.vords

sl

also show the same identity:

[ r  o  o  o l [ ,  o  o  o l  [ r  o  o  o l
p , r ' { c r r o , o , r o , l : 1 9  0  0  ' l l o  I  0  o l - l o  o  |  0 l

l o  I  o  o l l o  o  o  ' l - l o  I  o  o l
Lo o I  oJLo o I  oJ [o  o  o r ]
Dt4)G:').

In fact, one finds that the six matrices, D6)(R),when multipiied together in all
36 possible ways obey the same multiplication table as did the six symmetry
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operations. we say the matrices form a representation of the group because the
matrices have all the properties of the group.

Ch a racte rs of rep resentati on s
one important property of a matrix is the sum of its diagonal elements which is
called the trace of the matrix D and is denoted Tr(D):

T r ( D ) :  
) o , , :  

^ .  ( 4 . 2 7 )

So, x is called the trace or character of the matrix. In the above examDle
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x (E)  :  a .
x , c ) :  x  ( c , ' ) :  1 .
X @ ) : x @ ) = X 1 o , , 1 : 2 .

(4 .28)

(4.2e)
(1.30)

The importance of the characters of the symmetry operations lies in the fact that
they do not depend on the specific basis used to form them. That is, they are
invariant to a unitary or orthogonal transformation ofthe objects used to define
the matrices. As a result, they contain information about the symmetry operation
itselfand about the sp./ce spanned by the set ofobjects. The significance ofthis
observation tbr our symmetry adaptation process will become clear later.

Note that the characters of both rotations are the same as are those of all
three reflections. Collections ofoperations having identical characters are called
classes, Each operation in a c'lass of operations has the same character as other
members ofthe class. The character ofa class depends on the space spanned by
the basis of functions on which the symmetry operations act.

Another basis and another representation
Above we used (S5 , "91 , S:,.t3) as a basis. If, alternatively. we use the one_
dirnensional basis consisting of the ls orbital on the N atom, we obtain dii lbrent
characters. as we now demonstrate.

The act of the six symmetry operations on this Sy can be represented as
follo."vs:

(4 .3  r )

we can represent this group of operations in this basis by the one-dimensional
set of matrice-s:

E C ;
Sx --' SN. Sr'; + Sy.

o\ o,
Snr --+ Su. Sr - Sx,

L i
Sr --+ '!ru,

ov
Sr.r - Sr.r.

D \ ' � ( E ) :  l .

D l r ) ( o , . )  -  l ,

D ( r ) 1 C , , 1 :  l .

p r , 1 1 6 , , , ) :  l ,

D( ' ) (C r r )  :  I ,

D(  r ) ( . rJ)  -  l .
G.32)
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Again we have

D(t t1o ,7Dt t )1C- . )  :  I  .  t  -  r t r t1o , " )

and D\ t '1C. .1D ' t '1o , )  :  I  .  I  :  I ) ' r ) (o , ' ) .

These six matrices form another representation of the -eroup. In this basis. each
character is equal to unity. The representation forrned by, allo*'ing the six sym-
metry operatrons to act on the 1s N-atom orbital is clearly not thc same as that
formed when the same sir operations acted on the ( S^- . St . S: . 5i ) basis. We nou,
need to learn hou'to further analyze the information content of a specific repre-
sentation of the group formed when the symmetry operations act on any specific
set of objects.

4.2.3 Reducib le and i r reducib le  representat ions

A red uci bl e re presentati on
Note that every matrix in the four-dimensional group representation labcled D(a)
has the so-called block diaconal forrn

This means that these D(a) matrices are really a combination of two separate
group representations (mathematically, it is called a direct sum representatlon.).
We say that D(a) is reducible into a one-dimensional representation D(l)and a
three-dimensional representation formed by the 3 x 3 submatrices that we will
call DQ).

D(3) (E)  =

D,,,  (o,.) - D 1 3 ) 1 o ] ; :

The characters of  D(3)  are X(E):3,  X(2C):0,  X(3o,)  :  1 .  Note that  we
would have obtained this D(3) representation directly if we had originally chosen

r-1.-lj r

[o o rl [o I o-l
I r  o  o l ,  D . ( c i )  : l o  o t l
L0 I 0-J Ll 0 0l

l o  o  l l  [ o  i  o l

l o t  o l ,  D ( 3 ) ( c ' J ' ) : l l  o  o l
Lr o oJ [o o 

,,0]ro,

D ' r ) 1 C , ; :
[ t  o ol
l 0  '  o l .
L0 0 r l

[ r o o l
l 0  o ' 1 .
L0 r 0_.1

3 x 3 matrix
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ro examine the basis (Sr. S:, 5l): also note that these characters are equal to those
of  Dl1)minus those of  D( l ) .

A change in basis

Now let us convert to a neu, basis that is a linear combination of the original
(Sr .  S: .  S3)  basis :

(4.35)

(4.36)

(4.37)

I r : S r * S : + S : .

l = 2 S r - S : - S : .

l : S : - S r .

(Don't worry about how. we construct Ty. 72. and 7l yet. As will be demonstrated
Iater. we form them by using symmetry projection operators defined below:) we
determine how the "T" basis functions behave under the group operations by
allorving the operations to act on the s, and interpreting the results in terms of
the 4. In particular

( 1 . i 8 )

( r r .  l .  n ) 3  t r , .  n .  _ n l .  ( T t .  T z . r , 7  7  g , . T . . r ; .
(T t .  T ) .  T la  f s ,  + .S :  * ^ ! r ,  2 . t r  -  S :  -  S r ,  S :  -  S r )
:  ( .  -  j  , .  -3.r, ,-  jn * jn),

(T t .  T : . 7 )a  tS ,  + . ! r  *  5 ' . .  25 :  - .S r  -  S : .  . t r  -  S r )

:  ( .  -  j r .+3r r , ln .  j ^ )
( T t . T 2 . T t ) ! t S , + S r  * S : .  l ! , - S r  - S : , . t r  - - t : )

= (n - j r. _�3rr, Ir. - )n)
(n, l .  n)j  , t ,  * sr + s,. 2s: - s, - s'r.  . tr - "tr)

: (n - j r. + 3rr,. -)r. - 
)r.,)

So the matrix representations in the new. I basis are

.  [ r  o  o l  [ t  o  o . l
D ' . ' ( E ) : 1 0  I  0 1 .  a o ) 1 c , ; : 1 0  _ +  _ l l

lo o ,J [o * j  _; i

,,,,,.,, = fj i j*l D,,,(*): [; ? :.l
[o - ]  - j l  lo o - 'J

[ '  o l  [ r  o  o l
D ( ' ) ( o j ) : 1 0  - j  - i  I  D , r , 1 o , , ) : 1 0  _ +  + + l

[o -l *j] Lo +i .J.l
(4.3e)
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Reduction of the reducible representation
These six matrices can be verif ied to multiply just as the symmetry operations
do: thus they form another three-dimensional representation of the group. we see
that in the 7l basis the matrices are block diagonal. This means that rhe space
spanned by the f functions, which is the same space as the s, span. forms a
reducible representation that can be decomposed into a one-climensional space
and a two-dimensional space (r,ia formation of the 7] functions). Note that the
characters nraces)  of the matnces are not  changcd by rhe changc in bases.

The one-dimensionar part of the above reducible three-dirnensionar represen_
tation is seen to be the same as the totally symmetric representation we ar.ved
at before, D( r). The two-dimensional representation that is reft can be shown to
be in'educ'ible; it has the follou,ing matrix represenrations:

r  I  ,  j - l
|  1  r l

l - - t .
t l l t
l - i  - ;  I

l - -1  _ r t
|  :  r l
|  - t  . r - 1  l '
l . r l

(4.40)

[ _ 1  _ ] t
I  ,  : l
L  t  r l '
l r ;  - ;  I

T  I  . t - t
I  :  : I: t  I
l - 1  r l  I
l ) . 1

D, , , (E ) : l t  o l .
L0 ] j

.  [ r  o l
D ' - ' 1 o , ) -  |  |

LO - I J

D(2'1c.1 :

2t(2t to,) ,

o(:)(c l )  :

D(2)1oi ,1 :

The characters can be obtained by sun-rming diagonal elements:

x ( E \  : 2 x ( 2 C t \  :  - 1 . x13o,  I  :  g

Rotations as a basis
Another one-dimensional representation of the group can
rotation about the :-axis (the C3 axis) as the obiect on
operations act:

( 4 . 4  t )

be obtained by taking
ivhich the symmetry

n-- 3 R,,
R,3  -R . ,  R .

n.- S R,,
5 -R, ,

c?
R _ i

R . a-R " (4.42)

(4.43)

In writing these relations, we use the fact that reflection reverses the sense of
a rotation. The matrix representarions corresponding to this one-dimensional
basis are

Dt t tE)  -  l ,  D( r ) (C3)  -  l ,  Dor  (Cr2)  :  l .
D ( r ) ( o " )  :  - 1 ,  D ( r ) 1 o ] ' ;  =  - 1 ,  D ( r ) 1 o ; ; :  _ 1 .

These one-dimensional matrices can be shown to multipry together just like the
symmetry operations of the c3, group. They form an irreduc,ible representation
of the group (because it is one-dimensional, it can not be further reduced). Note
that this one-dimensional representation is not identical to that found above for
the 1s N-atom orbital, or the | function.
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Overview
\l'e ha'e found three distinct irreducibre representations for the C;u slmmetr!
sroup; t$'o different one-dimensional and one two-dimensional .ap..r.nrur,onr.
Arc' rhere any more? An important theorem of group theory shows that the number
of irreducible representations of a group is equal to the number of classes. Since
rhere are three classes of operation (i.e.. E. C3 and ou), we have found alr the
irreducible representations of the C:u point group. There are no more.

The irreducible representations have standard names; the first D( r) lthat arrsing
from the 11 and ls1' orbitals) is called A1, the D( r) arising from R,- is cailed 42
anil D1:) is ca'ed E (not to be confused with the rdentity operation t). we wil l
see shortly where to find and identify these names.

Thus. our original D(a) representation was a combination of two A1 represen-
tations and one E representation. we say that D(a) is a direct ,u. ..pr...n,u_
tion: D(a) :2Ar e E. A consequence is that the characters of the cornbinatron
representation D(a) can be obtained by adding the characters of its constltuent
irreducible representations.
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3o,

I

I

0

E

I

IA .

E

1

I

I

2

2
)

' ]

I

I

- l

? A ,  a  t r

How to decompose reducible representations in general
suppose vou were -eiven only the characters (4. 1.2). How can you find out howmany times A1, E. and 42 appear wlien you reduce D(a) to its irrecrucible parts,/
You rvant to find a l inear combination of the characters of A1. 42 and E that addup (4.1,2). You can treat the characters ofmatrices as vectors and take the dotproduct of ,,1 r with Dt+t

[ r  I  r  r  r
I
l E C .  o .
L '

E
c]

6\
: 4 + l - l * ' + r - ) - r ? (4.44)

The vector  ( l . l . l . r . l . r )  is  not  normar ized;  hence to obta in the component  of
{4 ,1 .1 ,2 ,  2 ,  2 )  a long  a  un i t  vec to r  i n  t he  (1 ,1 .1 .1 ,1 .1 )  d i rec t i on ,  one  mus t  d i v i deby the norm of( l . l . l , l . r , l ) :  th is  norm is  6.  The resur t  is  that  the reducibrerepresentation contains r2/6 :2 A1 components. Anaiogous projections in the
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E ar.rd A.2 directions give components of I and 0" respectively. In seneral, to
determine the number,?r of t imes irreducible representatior.r I '  appears in the
reducible representation with characters Xred. one calculates

t1. .15 r

r"'here g is the orderof the group and 1p(R) are the characters of the fth irre-
ducible representation.

Commonly used bases
We could take anl set of functions as a basis for a group representation. Cornmonlv
used sets include: coordinates (r..t ' .:) located on the atoms of a polvatomic
molecule (their symmetry treatment is equivalent to that involved in treating
a set of p orbitals on the sarne atoms). quadratic functions such as d orbitals
-,r,r,, ,1,:. ,r:, .r2 -.r '2. :2, as well as rotations about the ,r. -i '  and : axes. The
transformation properties of these very comlnonly used bases are listed in the
character tables shown in the Aopendix.

Summary
The basic idea of symmetry analysis is that any basis of orbitals. displacements.
rotations. etc. transforms either as one of the irreducible representations or as
a direct sum (reducible) representation. Symmetry tools are used to first deter-
mine hou' the basis transforms under action of the symmetry operations. They
are then used to decompose the resultant representations into their irreducible
components.

4.2.4 Another example

The 2p orbitals of nitrogen
For a function to transform according to a specific irreducible representation
means that the function, when operated upon by a point-group symmetry operator,
yields a linear combination of the functions that transform according to that
irreducible representation. For example, a 2p.- orbital (z is the C3 axis of NH3) on
the nitrogen atom belongs to the .A1 representation because it yields unity times
itself when Ct, Cl, ou, o!, o,'.'or the identity operation act on it. The factor of I
means that 2p, has A1 symmetry since the characters (the numbers listed opposite
.A1 and below E, 2C3, and 3ou in the C3u character table shown in the Appendix)
of all six symmetry operations are I for the A1 irreducible representation.

The 2p_* and2p, orbitals on the nitrogen atom transform as the E representation
since C3, C?, o,, oi, oi' and the identity operation map 2p, and 2p, among one

l

r t 7 :  !  f  Z r tn )x , . . , r (R ' ) .
q -
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(.+.46)

(4.47)

(4.18)

(4.4e)

(1.50)

(4 .51  )

1 3 5

another. SPecificallY.

F A

c ,  l ' p .  I  =
L:P 'J
t r l

c i l - p ' l ='  
L:P'J
T ]

E l ' p , l =
L2p. l
lzo I
L :P 'J
T f

" : l t P ' | :'  
Lzp 'J
T f

o " l t P ' l  ='  
L :P ' l

l[il:]
l[;;:]

fcos 
120' -  s in 120'

Is in 120 cos 120"

T  , I  ' i - l
I  T .  - 1 - T  

I
l - - l
1 , , 5  r  I
l r r  - ;  I

[cos 
2a0' - sin 240

lsin 240' cos 2210''

[r o.l [zp.l
l o ' j L r o _ j
[- r o.l [,0, j
I  o r ]  L:p, l
i  * l  +; l  [ :p, l
L*: - i  J Lzp J
| *i --"1 lro I
L-+ - i  J L:p J

The 2 x 2 matrices. which indicate how each symmetry operation maps 2p. and
2p. into some combinations of 2p., and 2p,., are the representation matrices 1Dr rnr';
for that particular operation and for this particular irreducible representation (lR).
For example.

=  D , t , { o ,  } ( 4 5 ) r

This set of matrices have the same characters as the D(l) matrices obtainecl
earlier r'vhen the 7] displacement vectors were analyzerl but the individual matrix
elements are different because we used a ciifferent basis set (here 2p.. and 2p,,,;
above it rvas I and 11). This illustrates the invariance ofthe trace to the specific
representation: the trace only depends on the space spannecl not on the specific
manner in which it is spanned.

A short-cut
A short-cut device exists for evaluating the trace ofsuch representation matrices
(that is. fbr computing the charaoers). The diagonal elements of the representa-
tlon matnces are the proiections along each orbital of the effect of the symme-
try operation acting on that orbital. For example, a diagonal elemenr of the C3
matrix is the component of Cs2p, along the 2p,, direction. More rigorously, it is
I  Zp:  

.C,2p, .  
c l t .Thus.  the characi terof  the C3 marr ix  is  rhe sum ol  J '  2piC j2p,  dr

and / 2pl C3 2p, dt . In general, the character X of any ,y**"i.y operation S
can be computed by allowing S to operate on each orbital @;, then projecting .!@i
along @; (i.e., forming I O: SO, rtt), and summing rhese terms,

\  |  
o : t o  L t t :  x ( S l (4.53 )
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If these rules are applied to the 2p. and 2p,. orbitals of nitrogen'"vithin the Cr,.
point  group.  orre obra ins

x ( E l : 2 .  x ( C : ) :  x  ( C ; )  :  - t  x t o , t :  x @ i l :  r t o , l : 0 .  ( 4 . 5 4 )

This set of characters is the same as rrl) above and agrees u,ith those of the E
representation lor the Cj.. point group. Hence. 2p., and 2p,. belong to or transform
as the E representation. This is why (.r..1') is to the riglrt of the row of characters
for the E representation in the Cq, character table shou,n in the Appendix. In
similar fashion, the Cr, character table (please refer to this table now) states that
d,,-,,. and d., orbitals on nitrogen transform as E, as do d.,. and d,.--. but d-,
transforms as A1.

Earlier. u,e considered in sorne detail hor.",the three I sp1 orbitals on the hydrogen
atoms translbrm. Repeating this analysis using the short-cut rule just described
the traces (characters) of the 3 x 3 representatiorr rnltrices are cornputed by
al lowing E,2Ct,  and 3o,  to  operate on lss, .  lsp. .  and 1ss.  and then comput ing
the component of the resulting function along the original function. The resulting
c h a r a c t e r s  a r e  y . l E  )  =  3 . 2 { 6 . y :  X t C i ) : 0 .  a n d  X ( 6 \ l :  y t o , y :  / l o , ' l :
l , in agreement u'ith what we calculated before.

Using the orthogonality ofcharacters taken as vectors \\rc can reduce the above
set of characters to A1* E. Hence, we say that our orbital set of three lss orbitals
forms a redLrcible representation consisting of the sum of A1 and E IRs. This
means that the tl.rree lss orbitals can be con.rbined to yield one orbital of ,A1
symmetry and a pair that transfornr according to the E representation.

4.2.5 Pro ject ion operators:  symmetry-adapted l inear
combinat ions of  a tomic orb i ta ls

To -eenerate the above A'1 and E symmetry-adapted orbitals, we make use of so-
called symmetry projection operators P6 and Pa, . These operators are given in
terms of linear combinations of products of characters times elementary symme-
trv oDerations as follows:

^ s -r ' ,  :  
)_  Xe(J15.

5'

P.  :  t  y r ( ,S)S.
'  

L " -
.l

r 4  5 5 1

(4.56)

where ,S ranges over C3, C! . o,,. o, and o| and the identity operation. The result
of  apply ing Pa,  to say lss,  is

Pa,  l ss ,  :  l sH,  *  l s6 ,  *  l ss ,  *  l sp .  1  l ss ,  *  l ss ,
-  2 ( l s y 1 ,  *  l s H .  +  1 s " , )  -  d n ' . (4 57)
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s.hich is an (unnormalized) orbital having Al symmetry. Clearly, this same @a,
rYould be -generated by Ps, acting on lsg, or 1s11.. Hence, only one Al orbital
exists. Likewise,

P p l s 1 1 ,  - 2 x l s g , - l S r r : - l s u , : d e . r .  
( 4 . 5 g )

*hich is one of the symmetry-adapted orbitals havin_e E symmetry. The other E
orbital can be obtained by allowing pE to act on lsH, or lss.:

P s  l s p ,  -  2 .  l s g ,  -  l s s ,  -  l s s .  :  @ E . ; .
P E  1 s 1 1 .  =  2 . l s l r ,  -  l s H r  l s u ,  =  d e . : .

(4.59)

(4.60)

It might seem as though three orbitals having E symrnetry were generated. but
only two of these are really independent functions. For example, @E 3 is related
to @r- r and dr : as follows:

Q t . : : - l t r . t * Q r . z ) . (4.6 r  )

(4.62)

Thus, onry /s 1 and Q2.2 afe needed to span the two-tlimensional space of the E
representation. If we include @p. 1 in our set of orbitals and require our orbitals to
be orthogonal, then we must find numbers a and b such that @i : aQp.:f b@g.3 is
orthogonal to Qv.1: .f 0o0o.t t lt :0. A straightforwarcl calculation gives a : _b
or Qu : a( lss. - lsH,) which agrees with what we used earlier to construct the
?l functions in terms of the Si functions.

4 .2 .6  Summary

Let us now summarize what we have learned. Any given set ofatomic orbitars {@; }.atom-centered displacements or rotations can be used as a basis fbr the symmetry
operations of the point group of the molecule. The characters X(S) bllung,ng
to the operations S of this point group within any such space can be founcl by
summing the inte-urals I o; so, rlt over all the atomic orbitals (or corresponding
unit vector atomic displacements). The resultant characters rvil l . in ,9eneral, be
reducible to a combination of the characters of the irreducible reprJsentations
xi(5'). To decompose the characters x(s) of the reducible representation to a
sum of characters X;(S) of the irreciucible representatron

x (S) :  I r , x , (S ) .

tt is necessary to determine how many times, n;. the i th irreducible representatron
occurs ln the reducible representation. The expression for n; is

, , = : I . x ( s ) x i ( s ) , (.+.63 )

tn rvhich g is the order of thc point group - the total number of symmetry
operatrons in the group (e.g., g: 6 fbr C:").
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For example. the reducible representation y,( E ) : 3. / ( ( ' : ) : 0" and Xlo, ) :

I formed by the three lss orbitals discussed above can be decornposed as follou's:

These equations state that the three 1s11 orbitals can be combined to give one A1

orbital and since E is de-generate. one pair of E orbitals. as e stablished abovc. With

knolvledse of the n;, the symmetrl '-adapted orbitals can be formed by allou'ing

the projectors

I
r ^ : - ( i . l + 2 . 0 . 1 + l . l

l
/ r A r  :  

6 ( 3 . 1 + 2 . 0 . 1 + - l  
. l

I
i r ,  =  - 1 1 . 1 - 1 . ( l . r -  l r + 1 .  l . { ) ) :  I

/,, : I x;(s)s

I
n n ,  =  

6 [ 1  
. 1 . 1 2 + 2 . 1 . 0 + 3 ' 1 . 2 ] = 3 .

I
n o ,  =  

A [ 1  
' 1 . 1 2 +  2 . 1 . 0 + 3 . ( - 1 ) . 2 ] : 1 .

I
n E  =  

6 t 1 . 2 .  
1 2  +  2 .  ( . - l ) . 0  +  3 .  0 . 2 1  :  4 .

' l ) :  l .

' ( - l ) ) : 0

(4 .64)

(.1.6-51

(.:1.66)

(1 .67  |

to operate on each of the primitive atomic orbitals. Hou'this is carried out was

il lustrated for the lsu orbitals in our earlier discussion. These tools allow a

symmetry decomposition of anv set of aton.ric orbitals into appropriate sylnmetry-

adapted orbitals.
Before considering other concepts and group-theoretical machinery. it should

once again be stressed that these sar.ne tools can be used in symtnetry anall '-

sis of the translational. vibrational and rotational motions of a molecule. The

tweive motior.rs of NH: (three translatior.rs, three rotations, six vibratior.rs)can be

described in terms of combinations of displacements of each of the four atoms
in each of three (.r, _r,. --1 directions. Hence. unit vectors placed on each atom
directed in the x.-r '. and: directions form a basis for action by the operations

{S} of the point group. In the case of NHr, the characters of the resultant l2 x

I2 representation matrices form a reducible representation in the C2.. point group:

X @ ) : 1 2 .  X € ) :  X ( C : r )  :  0 .  X ( o ,  ) :  X @ , \ :  X @ l ' ) :  2 . F o r e x a m p l e u n -

der o.,. the H2 and H3 atoms are interchangecl so unit vectors on either one will

not contribute to the trace. Unit:-vectors on N and H1 remain unchanged as well

as the corresponding t,-r,'ectors. However, the x-vectors on N and H1 are reversed

in sign. The total character for o] of the H2 and H3 atoms are interchanged so

unit vectors on either one will not contribute to the trace. Unit ;-vectors on N

and H1 remain unchanged as well as the corresponding l'-vectors. However, the

r-vectors on N and H1 0r€ reversed in sign. The total character for o, is thus

4 - 2 :2. This representation can be decomposed as follows:

(4.68 )

(4.6e)

(4.70)
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From the information on the right side of the c-i,. character table. translations of all
fbur atoms in the:. -v and -r, directions transform as A 1(: ) and E(.v. -r.,), respectively.
*hcreas rotat lons about  the:(  R--) . . r (R,) .  and r - (R,)  a. res t ransfbrm as A:  and
E. l{ence. of the trvelve motions. three translations have A1 and E symmetry and
three rotations have A2 and E symmetry. This leal'es six vibrations, of r.vhich tu,o
ha'e 41 svmmetrv. none have Al symmetry. ancl two (pairs) have E symmery.
\! 'e could obtain symmeffy-adapted'ibrationar and rotational bases byallowing
svlnnlctrv projection operators of the irredrrcible representation svlrmetries to
operate on various elementary cartesian (r.,r.:) atomic displacement vectors.

4.2.7 Di rect  product  representat ions

Direct products in N-electron wave functions
we now turn to the syrnmetry analysis of orbital products. Such knowledge is
important because one is routinely faced with constructing sl,mmetry_adapted
N-electron configurations that consist of products of N individual spin orbitars,
one for each electron. A point-group svrnmetry operator s. when acting on strch a
product of orbitals. gir,es the product of s actin,e on each of the individual orbrtals

S( tb t rbze) .  .  .d r  )  =  (Sdr  ) ( " td :  X . t@:  )  .  ( . !@r  ) (4 .7  |  )
For example' reflection of an ,v-orbital protruct throu_sh the ou prane in NH-q
applies the reflqction operation to all ,V electr.ons.

Just as the individLrar orbitais formed a basis t.r action of the poinr--rroup
operators, the configr-rrations (.V_orbital prociucts) fbrm a basis for the actron of
these same point--eroup operotors. Hence. the various electr.nic configuratrons
can be treated as tirnctions on rvhich s operates. and the machinery i l lustrated ear_
lier for decornposing orbitar symmetry can then be used to carrv out a svmnletry
analysis of confi -gLrrations.

Another shorr-cut makes this task easier. Since the synrmetry-adapted indi-
t idual  orb i ta l  s  {Qi .  i  -  l .  . . . .  , t1}  t ransforrn according to i r reducib le represen-
tations, the representation r.natrices for the .v-term products shor.vn above consist
of products of the rnatrices beron-uing to cach @;. This rnatrix product rs not a
simple product but what is called a direct product. To compute the characters of
the direct prodtrct matrices. one rnultiplies the characters of the i6dividLral matri-
ces of the irreducible representations of'the ,\ orbitals that appear in the electron
configuration. The direct-product representation fbrmed b1,the orbital products
can therefbre be s.u-rnmetry analyzed (reduced) using the same tools as we used
earlier.

For erample. if one is interested i. knowing the svmmetry of an orbital product
of the lorm alaier lnote: lower case letters are usecl to denote the symmetry
of electronic orbitals. whereas capital lerters are reserved to label the o'crall
confi-quration's symmetry) in Clv symmetrl,. 11.,. fbllowing procedure is used. For
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each of the six symmetry operations in the C2, point group. tr"te ptrxruct of the
characters associated with each of the.rrr spin orbitals (orbitar multipried by a or
p spin) is formed:

x (s )  =  f l  x i (Sy  =  ( x . r , rS ) ) r  ( xn . ( . ! ) ) :  ( x r ( s ) ) : .  ( . 72 )

In  t he  spec i f i c  case  cons ide red  he re ,  X (E ) :4 .  XeCt )  :  l .  and  y (3o , ) : 6 .
Notice that the contributions of any doubiv occupied non_degenerate orbitals
(e.g.. ai a'<1 aj) to these direct producr chara*ers x(s) are ur.rity because ror a//
operators (xr(s))2 : I fbr any one-di'ensio'al irreducible represenratron. As
a result, only the singly occupied or degenerate orbirals need to be consrdered
when fbrnrinq the characters ofthe reducible direct-product representarion x (J ).For this example this nreans that the direct-procluct characters can be dererrrrrned
from the characters x6(s) of the two active (i.e.. non-crosed-shell) orbitars _ the
e2 orb i ta ls .  That  is .  X(^g)  :  Xr . (S)  .  Xn(S).

Fror' the direct-product characters x(s) belonging to a particular electronic
configuration te.g.. a]aie:;. one musr sti l l  deconpose this l ist of characters into a
sum of irreducible characters. For the example at hand. the direct-pr.duct charac_
ters 1(s)decompose int. one A1, ore 42. ancl ore E representation. This means
that the e2 configuration contains Ar. A:. and E symnrerry eiements. projection
operators analo-qous to those introduced earlier.for orbitals can be used to lbrnr
slimmetry-adapted orbital products from the individual basis orbital products
of the fornr afaiell 'ei '  . * 'here ,r and, nr' denote the occupation ( l or 0) of'the
trvo degenerate orbitals e,, and e, . when dealing u,ith indistinguishabre parrr-
cles such as electrons. it is also necessary to further project the resulting orbital
products to make them a'tisymmetric (for fernrrons) or sy'metric (for bosons)
with respect to interchange of any pair of particles. This step reduces the set of
'v-electron states that can arise. For example, in the above e2 configuration case.
only 3A2,  lAr ,  andlE states ar ise;  the tE,  tA, .  andr42 possib i i i t - ies d isappear
when the antisvmmetry projector is applied. In contrast, for an ele'l configura-
tion, all states arise even after the wave functio' has been rnade antisymmetric.
The steps involved in combining the point-group symmetry rvith permutationar
antisynrmetry are illustrated in chapter l0 of my eMIC text.In Appendix III
of Electronic Spectra and Electr.onic Structure of pol),atornic Molecules,
G. Herzberg, Van Nostrand Reinhold Co., Ner.r,york, N.y. (1966), the resolu_
tion ofdirect products arnong 'arious represenrations u,ithin 'rany point grcups
are tabulated.

Direct products in selection rules
Two states tlro and 1Lb thatare eigenfunctions of a Hamiltonian H{r in the absence
of some external perturbation (e.g., erectromagnetic field or static erectric fierd or
potential due to surrounding ligands) can be "coupred" 

by the perturbation v only
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if the symmetries of v and of the two wave functions obey a so-called selectron
rule. In particular, only ifthe coupling integral

[ 
,/':v,L,a, : r,.n
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(4.73)

is non-vanishing wii l the two states be coupled by V.
The role of symrnetry in determining whether such integrars are non-zero can

be demonstrated by noting that the integrand considered as a whole, must contain
a component that is invariant under all of the group operations (i.e., belongs ro
the totally symmetric representation of the group) if the integral is to not vanish.
In terms of the projectors introduced above we must have

I x.,,rsl sl.r.Yg1,

not vanish. Here the subscript I denotes the totally symmetric representation of
whatever point group applies. The symmetry of the product ,lrivrltt is. according
to what was covered earlier. given by the direct product of the symmetries of
'ltj of Y and of /a. So. the conclusion is that the integral will vanish unless this
triple direct product contains, when it is reduced to its irreducible components, a
component of the totally symmetric representation.

To see horv this result is used consider the integral that arises in formulating the
interaction of electromagnetic radiation with a molecule within the electric-dinole
approximation:

(4.74)

(4 .76)

(4.7sl

Here, r is the vector -riving. together with e, the unit charge. the quantum me-
chanical dipole moment operator

. : o f  Z n R , - n I . , .

where 2,, and R,, are the charge and position of the nth nucleus and r, is the
position of the 7th electron. Now, consider evaluating this inte-eral fbr the singlet
n "-> n* transition in fbrmaldehyde. Here. the closed-shell ground state is of I A 1
symmetry and the singlet excited state, rvhich involves promoting an electron
from the non-bonding b2 lone pair orbital on the oxygen into the z*b1 orbital on
the CO moiety, is of rAz symmetry (b1 x b: : a:). The direct product of tne t,rvo
rvave function svmmetries thus contains only a2 symmetry. The three components
(,r.1,. and;) of the dipole operator have. respectively. b1, b2, and a1 stmmetr1l.
Thus' the triple direct products give rise to the fbllorving possibil i t ies:

1 ,t,,:,*,,,,

a 2 X b l : f .

a 2 x b l : ! 1

a : X a t = a l

(4 .77 )

(4.78)

(4.7e)
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There is no component of a1 svmmetry in the triple direct product, so the integral

vanishes. This allou's us to conclude that the n -'- 7t* excitation in formaldehyde

is electric dipole forbidden.

4.2.8 Overv iew

We have shown hou,' to make a symmetrv decomposition of a basis of atornic

orbitals (or Cartesian displacements or orbital products) into irreducible rep-

resentation compouents. This tool is ver,v helpful when studying spectroscopy

and when constructing the orbital correlatiou diagrar.ns that form the basis of

the Woodward-Hoffnrann rules. We also learned hor"'to form the direct-product

symmetries that arise when considering configuratiotls consisting of products of

symmetry-adapted spin orbitals. Finally. u,e learned hou'tl.re direct product analy-

sis allows one to determine u'hether or not integrals of products of u'ave functrons

with operators between them vanish. This tool is of utmost importance in deter-

mining selection rules in spectroscopy and for determining the effects of external

perturbations on the states ofthe species under investigation.


